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Abstract 
 
        A new population-based search algorithm called the Bees Algorithm (BA) is presented. The algorithm 
mimics the food foraging behaviour of swarms of honey bees. In its basic version, the algorithm performs a 
kind of neighbourhood search combined with random search and can be used for both combinatorial 
optimisation and functional optimisation. This paper focuses on the latter. Following a description of the 
algorithm, the paper gives the results obtained for a number of benchmark problems demonstrating the 
efficiency and robustness of the new algorithm. 
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1. Introduction 
 

Many complex multi-variable optimisation 
problems cannot be solved exactly within 
polynomially bounded computation times. This 
generates much interest in search algorithms that 
find near-optimal solutions in reasonable running 
times. The swarm-based algorithm described in this 
paper is a search algorithm capable of locating good 
solutions efficiently. The algorithm is inspired by the 
food foraging behaviour of honey bees and could be 
regarded as belonging to the category of “intelligent” 
optimisation tools [1]. 

Section 2 reviews related work in the area of 
intelligent optimisation. Section 3 describes the 
foraging behaviour of natural bees and the core ideas 
of the proposed Bees Algorithm. Section 4 details 
the benchmarking problems used to test the 
efficiency and robustness of the algorithm and 
presents the results obtained. These show that the 
algorithm can reliably handle complex multi-model 
optimisation problems without being trapped at local 
solutions. 

 

2. Intelligent swarm-based optimisation 
 

Swarm-based optimisation algorithms (SOAs) 
mimic nature’s methods to drive a search towards the 
optimal solution. A key difference between SOAs 
and direct search algorithms such as hill climbing 
and random walk is that SOAs use a population of 
solutions for every iteration instead of a single 
solution. As a population of solutions is processed in 
an iteration, the outcome of each iteration is also a 
population of solutions. If an optimisation problem 
has a single optimum, SOA population members can 
be expected to converge to that optimum solution. 
However, if an optimisation problem has multiple 
optimal solutions, an SOA can be used to capture 
them in its final population. SOAs include the Ant 
Colony Optimisation (ACO) algorithm [2], the 
Genetic Algorithm (GA) [3] and the Particle Swarm 
Optimisation (PSO) algorithm [4]. 

Common to all population-based search methods 
is a strategy that generates variations of the solution 
being sought. Some search methods use a greedy 
criterion to decide which generated solution to retain. 
Such a criterion would mean accepting a new 
solution if and only if it increases the value of the 
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objective function (assuming the given optimisation 
problem is one of optimisation). A very successful 
non-greedy population-based algorithm is the ACO 
algorithm which emulates the behaviour of real ants. 
Ants are capable of finding the shortest path from the 
food source to their nest using a chemical substance 
called pheromone to guide their search. The 
pheromone is deposited on the ground as the ants 
move and the probability that a passing stray ant will 
follow this trail depends on the quantity of 
pheromone laid. ACO was first used for functional 
optimisation  by Bilchev [5] and further attempts 
were reported in [5, 6].  

The Genetic Algorithm is based on natural 
selection and genetic recombination. The algorithm 
works by choosing solutions from the current 
population and then applying genetic operators – 
such as mutation and crossover – to create a new 
population. The algorithm efficiently exploits 
historical information to speculate on new search 
areas with improved performance [3]. When applied 
to optimisation problems, the GA has the advantage 
of performing global search. The GA may be 
hybridised with domain-dependent heuristics for 
improved results. For example, Mathur et al [6] 
describe a hybrid of the ACO algorithm and the GA 
for continuous function optimisation. 

Particle Swarm Optimisation (PSO) is an 
optimisation procedure based on the social behaviour 
of groups of organisations, for example the flocking 
of birds or the schooling of fish [4]. Individual 
solutions in a population are viewed as “particles” 
that evolve or change their positions with time. Each 
particle modifies its position in search space 
according to its own experience and also that of a 
neighbouring particle by remembering the best 
position visited by itself and its neighbours, thus 
combining local and global search methods [4]. 

There are other SOAs with names suggestive of 
possibly bee-inspired operations [7-10]. However, as 
far as the authors are aware, those algorithms do not 
closely follow the behaviour of bees. In particular, 
they do not seem to implement the techniques that 
bees employ when foraging for food. 
 
3. The bees algorithm  

 
3.1. Bees in nature 
 

A colony of honey bees can extend itself over 
long distances (more than 10 km) and in multiple 
directions simultaneously to exploit a large number 

of food sources [7,8]. A colony prospers by 
deploying its foragers to good fields. In principle, 
flower patches with plentiful amounts of nectar or 
pollen that can be collected with less effort should be 
visited by more bees, whereas patches with less 
nectar or pollen should receive fewer bees [9,10].  

The foraging process begins in a colony by scout 
bees being sent to search for promising flower 
patches. Scout bees move randomly from one patch 
to another. During the harvesting season, a colony 
continues its exploration, keeping a percentage of the 
population as scout bees [8]. 

When they return to the hive, those scout bees 
that found a patch which is rated above a certain 
quality threshold (measured as a combination of 
some constituents, such as sugar content) deposit 
their nectar or pollen and go to the “dance floor” to 
perform a dance known as the “waggle dance” [7]. 

This mysterious dance is essential for colony 
communication, and contains three pieces of 
information regarding a flower patch: the direction in 
which it will be found, its distance from the hive and 
its quality rating (or fitness) [7,10]. This information 
helps the colony to send its bees to flower patches 
precisely, without using guides or maps. Each 
individual’s knowledge of the outside environment is 
gleaned solely from the waggle dance. This dance 
enables the colony to evaluate the relative merit of 
different patches according to both the quality of the 
food they provide and the amount of energy needed 
to harvest it [10].  After waggle dancing on the dance 
floor, the dancer (i.e. the scout bee) goes back to the 
flower patch with follower bees that were waiting 
inside the hive. More follower bees are sent to more 
promising patches. This allows the colony to gather 
food quickly and efficiently. 

While harvesting from a patch, the bees monitor 
its food level. This is necessary to decide upon the 
next waggle dance when they return to the hive [10]. 
If the patch is still good enough as a food source, 
then it will be advertised in the waggle dance and 
more bees will be recruited to that source. 
 
3.2. Proposed bees algorithm 
 

As mentioned , the Bees Algorithm is an 
optimisation algorithm inspired by the natural 
foraging behaviour of honey bees to find the optimal 
solution [4]. Figure 1 shows the pseudo code for the 
algorithm in its simplest form. The algorithm 
requires a number of parameters to be set, namely: 
number of scout bees (n), number of sites selected 
out of n visited sites (m), number of best sites out of 
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m selected sites (e), number of bees recruited for best 
e sites (nep), number of bees recruited for the other 
(m-e) selected sites (nsp), initial size of patches (ngh) 
which includes site and its neighbourhood and 
stopping criterion. The algorithm starts with the n 
scout bees being placed randomly in the search space. 
The fitnesses of the sites visited by the scout bees are 
evaluated in step 2. 
 

 
1. Initialise population with random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) 

//Forming new population. 
4. Select sites for neighbourhood search. 
5. Recruit bees for selected sites (more bees 

for best e sites) and evaluate fitnesses. 
6. Select the fittest bee from each patch. 
7. Assign remaining bees to search randomly 

and evaluate their fitnesses. 
8. End While. 

 

Fig.1 Pseudo code of the basic bees algorithm 
 

In step 4, bees that have the highest fitnesses are 
chosen as “selected bees” and sites visited by them 
are chosen for neighbourhood search. Then, in steps 
5 and 6, the algorithm conducts searches in the 
neighbourhood of the selected sites, assigning more 
bees to search near to the best e sites. The bees can 
be chosen directly according to the fitnesses 
associated with the sites they are visiting. 
Alternatively, the fitness values are used to 
determine the probability of the bees being selected. 
Searches in the neighbourhood of the best e sites 
which represent more promising solutions are made 
more detailed by recruiting more bees to follow them 
than the other selected bees. Together with scouting, 
this differential recruitment is a key operation of the 
Bees Algorithm.  

However, in step 6, for each patch only the bee 
with the highest fitness will be selected to form the 
next bee population. In nature, there is no such a 
restriction. This restriction is introduced here to 
reduce the number of points to be explored.  In step 7, 
the remaining bees in the population are assigned 
randomly around the search space scouting for new 
potential solutions. These steps are repeated until a 
stopping criterion is met. At the end of each iteration, 
the colony will have two parts to its new population 

– representatives from each selected patch and other 
scout bees assigned to conduct random searches. 

 
4. Experiments  
 

Clearly, the Bees Algorithm as described above 
is applicable to both combinatorial and functional 
optimisation problems. In this paper, functional 
optimisation will be demonstrated. The solution of 
combinatorial optimisation problems differs only in 
the way neighbourhoods are defined. 

Two standard functional optimisation problems 
were used to test the Bees Algorithm and establish 
the correct values of its parameters and another eight 
for benchmarking the algorithm. As the Bees 
Algorithm searches for the maximum, functions to 
be minimised were inverted before the algorithm was 
applied. 

Shekel’s Foxholes (Fig. 2), a 2D function from 
De Jong’s test suite, was chosen as the first function 
for testing the algorithm. 
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The following parameter values were set for this 
test:  population n= 45, number of selected sites m=3, 
number of elite sites e=1, initial patch size ngh=3, 
number bees around elite points nep=7, number of 
bees around other selected points nsp=2. Note that 
ngh defines the initial size of the neighbourhood in 
which follower bees are placed. For example, if x is 
the position of an elite bee in the ith dimension, 
follower bees will be placed randomly in the interval 
xie ± ngh in that dimension at the beginning of the 
optimisation process. As the optimisation advances, 
the size of the search neighbourhood gradually 
decreases to facilitate fine tuning of the solution. 

Fig 3. Evolution of fitness with the number of points 
visited (Inverted Shekel’s Foxholes) 

 
Fig. 3 shows the fitness values obtained as a 

function of the number of points visited. The results 
are averages for 100 independent runs. It can be seen 
that after approximately 1200 visits, the Bees 
Algorithm was able to find solutions close to the 
optimum. 

To test the reliability of the algorithm, the 
inverted Schwefel’s function with six dimensions 
(Eq. 2) was used. Fig. 4 shows a two-dimensional 
view of the function to highlight its multi modality. 

The following parameter values were set for this 
test:  population n=500, number of selected sites 
m=15, number of elite sites e=5, initial patch size 
ngh=20, number of bees around elite points nep=50, 
number of bees around other selected points nsp=30. 
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Fig 4. 2D Schwefel’s function 
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Fig 5. Evolution of fitness with the number of points 

visited (Inverted Schewefel’s Fuction) 
 

Fig. 5 shows how the fitness values evolve with 
the number of points visited. The results are averages 
for 100 independent runs.  It can be seen that after 
approximately 3,000,000 visits, the Bees Algorithm 
was able to find solutions close to the optimum. 

The Bees Algorithm was applied to eight 
benchmark functions [6] and the results compared 
with those obtained using other optimisation 
algorithms. The test functions and their optima are 
shown in Table 1. For additional results and a more 
detailed analysis of the Bees Algorithm, see [1]. 

Table 2 presents the results obtained by the Bees 
Algorithm and those by the deterministic Simplex 
method (SIMPSA) [6], the stochastic simulated 
annealing optimisation procedure (NE SIMPSA) [6], 
the Genetic Algorithm (GA) [6] and the Ant Colony 
System (ANTS) [6]. 

Again, the numbers of points visited shown are 
averages for 100 independent runs. Table 3 shows 
the empirically derived Bees Algorithm parameter 
values used with the different test functions. 
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The optimisation stopped when the difference 

between the maximum fitness obtained and the 
global optimum was less than 0.1% of the optimum 
value or less than .001, whichever was smaller.  In 
case the optimum was 0, the solution was accepted 
if it differed from the optimum by less than 0.001.  

The first test function was De Jong’s, for 
which the Bees Algorithm could find the optimum 
120 times faster than ANTS and 207 times faster 

than GA, with a success rate of 100%. The second 
function was Goldstein and Price’s, for which the 
Bees Algorithm reached the optimum almost 5 
times faster than ANTS and GA, again with 100% 
success. With Branin’s function, there was a 15% 
improvement compared with ANTS and 77% 
improvement compared with GA, also with 100% 
success. 

 

Table 1.  Test Functions 
No Function Name Interval Function Global Optimum 
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Table 2.  Results 
SIMPSA NE SIMPSA GA ANTS Bees Algorithm 

func 
no su

cc
 %

 

mean no. of   
evaluations su

cc
 %

 

mean no. of   
evaluations su

cc
 %

 

mean no. of 
evaluations su

cc
 %

 

mean no. of   
evaluations Su
cc

 %
 

mean no. of   
evaluations 

1 **** **** **** **** 100 10160 100 6000 100 868 
2 **** **** **** **** 100 5662 100 5330 100 999 
3 **** **** **** **** 100 7325 100 1936 100 1657 
4 **** **** **** **** 100 2844 100 1688 100 526 
5a 100 10780 100 4508 100 10212 100 6842 100 631 
5b 100 12500 100 5007 **** **** 100 7505 100 2306 
6 99 21177 94 3053 **** **** 100 8471 100 28529 
7 **** **** **** **** 100 15468 100 22050 100 7113 
8 **** **** **** **** 100 200000 100 50000 100 1847 

**** Data not available 
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Functions 5 and 6 were Rosenbrock’s functions 

in two and four dimensions respectively. In the 
two-dimensional function, the Bees Algorithm 
delivers 100% success and good improvement over 
the other methods (at least twice fewer evaluations 
than the other methods). In the four-dimensional 
case, the Bees Algorithm needed more function 
evaluations to reach the optimum with 100% 
success. NE SIMPSA could find the optimum with 
10 times fewer function evaluations but the success 
rate was only 94% and ANTS found the optimum 
with 100% success and 3.5 times faster than the 
Bees Algorithm. Test function 7 was a Hyper 
Sphere model of six dimensions. The Bees 
Algorithm needed half of the number of function 
evaluations compared with GA and one third of that 
required for ANTS. The eighth test function was a 
ten-dimensional function. The Bees Algorithm 
could reach the optimum 10 times faster than GA 
and 25 times faster than ANTS and its success rate 
was 100%. 
 
5. Conclusion 
 

This paper has presented a new optimisation 
algorithm. Experimental results on multi-modal 
functions in n-dimensions show that the proposed 
algorithm has remarkable robustness, producing a 
100% success rate in all cases. The algorithm 
converged to the maximum or minimum without 
becoming trapped at local optima. The algorithm 
generally outperformed other techniques that were 
compared with it in terms of speed of optimisation 
and accuracy of the results obtained. One of the 
drawbacks of the algorithm is the number of 
tunable parameters used. However, it is possible to 
set the parameter values by conducting a small 
number of trials. 

Other optimisation algorithms usually employ 
gradient information. However, the proposed 
algorithm makes little use of this type of 
information and thus can readily escape from local 
optima. Further work should address the reduction 
of parameters and the incorporation of better 
learning mechanisms. 
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Table 3.  Bees Algorithm parameters 
fun 
no n m e n1 n2 ngh (initial) 

1 10 3 1 2 4 0.1 

2 20 3 1 1 13 0.1 

3 30 5 1 2 3 0.5 

4 20 3 1 1 10 0.5 

5a 10 3 1 2 4 0.1 
5b 6 3 1 1 4 0.5 
6 20 6 1 5 8 0.1 
7 8 3 1 1 2 0.3 

8 10 3 2 4 7 5 
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