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THE Lp   BEHAVIOR OF EIGENFUNCTION EXPANSIONS
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HAROLD E. BENZINGER

ABSTRACT. We investigate the extent to which the eigenf unction expansions

arising from a large class of  two-point boundary  value problems behave like

Fourier   series expansions in the norm of   Lp(0, 1),   1 < p < oo.  We obtain our re-

sults  by relating Green's function to the Hilbert transform.

1.   Introduction.   If  /   is in L^O, 1),   1 < p < oo,  and if  sNf denotes the Nth

partial sum of  the Fourier series of  /, then it is known [l, p. 100]   that there exists

a constant  K   > 0 such that

and in addition,

(1.2) lim ||/- s   /H    =0.
N —oo

In this paper, we investigate the extent to which these relations remain true for

the eigenfunction expansions arising from a large class of  two-point boundary

value problems.   Let T: Lp —» Lp  denote a linear differential operator arising

from such a boundary value problem.   (A detailed definition  of   T will be given

below.)   Let SNf denotethe   Nth partial sum of the expansion of   / in eigenfunc-

tions  of   T.   For each integer ttz > 1,  let Bp  denote the subspace of   Lp(0, 1)

consisting of functions / such that  /        exists and is in  Lp,  and such that

f(k)(0) = f{k)(l) = 0   for 0<*<m-l. Let Bp = Lp.    Our basic result is that each

operator T detetmines a smallest interger m > 0 such that if  /   is in Bp , then

(1.3) lim   ||/-Vlp = °.
N -.oo "

and there is a constant  K   = K AT) > 0 such that

(L4> l|5N/llí,<VII/llí)+ll/(1)llí) + --- + l|/(m)||p].

For Birkhoff regular [3, p. 49l boundary conditions  ttz = 0.   Since  Bq = Lp,

we see that (1.3) and (1.4) then are direct analogs of (1.1) and (1.2).   Thus our

results include the results of  Rutovitz [ll],  Smart [5], and Turner  [12]  for special

cases of   Birkhoff regular problems.   For ztz > 1,   it is no longer possible to expand
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334 H. E. BENZINGER [December

all functions in Lp   Referring to Example 2 in [4, p. 23], it is merely a matter of

computation to see that for the function f(x) =1,  0 < x < 1, ||^m+i/ - ^   /||     does

not converge to   zero as N —» °°.   It is still an open problem to determine if  Bp

is the largest class of functions for which Lp convergence occurs.   We note how-

ever that for each m, the set of eigenfunctions of   T is complete in Lp,   1 < p

< « [13].

One method for comparing general eigenfunction expansions with Fourier series

involves using Paley-Wiener  theorems on perturbation of bases [14].   A recent

discussion of such ideas can be found in [151, and applications to eigenfunction

expansions can be found  in [16]  and [17].    Referring again to Example 2 in [4],

we see that our results apply to eigenfunctions  which do not come close to satis-

fying any extant conditions for Paley-Wiener theorems.

For p = 2, the results (1.3) and (1.4), with m = 0, are known [2, Chapter XLX]

for the class of spectral differential operators which arise from Birkhoff  regular

boundary conditions.   In fact, in this case one can carry the analogy with Fourier

series  even further, since the eigenfunction expansions of spectral operators are

unconditionally convergent, as are Fourier series in L (0, l).   For p = 2 and

ttz > 1,  we have examples [4] which show that unconditional convergence is not

preserved.    For p 4 2, even if   m = 0, there is no longer unconditional convergence

in general, since Fourier series arise as a special case [5, p. 82].   We will not

pursue any further in this paper the question of rearrangements of eigenfunction

expansions.

It is our hope that by discovering the extent to which general eigenfunction

expansions reflect the properties of Fourier  series, we will be able to predict

these results from general principles.

Let  T denote the TZth order linear differential expression defined for appro-

priate functions   u by

riu) = uM + a      Ax)u(n-l) + • . . + aAx)u,
n— 1 u

where the coefficients a . ate bounded measurable functions   for   0 < x < 1,  /'=

0, 1, ... , tz - 1.   Let M, N denote tz x tz  matrices of complex constants with n

linearly independent columns between them, and let u\x)  denote the column vector

with components (u(x), u(l'(x), • • • , u(n~   '(x)).   Let  U stand for the boundary

expression

U(u) = Mû(0) + Nû(l).

For fixed p, 1 < p < t»,   let A = A    denote the subspace of Lp(0, 1) consisting of

all functions  u of class C"       [0, l]  such that trn~   ' is absolutely continuous,

uM  is of class  L^O, 1),  and U(u) = 0.   Then the linear operator T: Lp — Lp   is

defined on A by   Tu = Au).   Since A contains all functions   u of class

C"[0, 1] such that    u(k)i0) = u(k)il) = 0,   0 < k < n - 1,    we  see  that A
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1972] THE Lp BEHAVIOR OF EIGENFUNCTION EXPANSIONS 335

is dense in LpiO, l).

For any complex number p,  the differential equation r(u) = - pnu  has 72  lin-

early independent solutions u such that u is in C"     [O, l] and u  is absolutely

continuous  [6, p. 703].   Thus u  is in Lpi0, l), and consequently, r(u) is in

L^O, l).   Therefore, if í>(x, p) is any fundamental matrix for  Áu) = - p"u, - pn

is an eigenvalue of T if and only if

Dip) = det [M$(0, p) + /V$(l, p)]

is zero.   If Dip) / 0, then Green's function G(x, r, zj) is bounded in x and i, so

that

(1.5) u{x,p)=  [lG(x. t, p)f(t)dt

is in L^O, 1) if / is in Lpi0, l).   Additionally,  u  is in A and Tu = - pnu + f.

Thus the Green's function for the problem is the kernel of the resolvent operator

[T + p"I]     ,  and the partial sums S„ of eigenfunction expansions corresponding

to T ate obtained as the sums of residues of (1.5).   Since it is more convenient

to work with the complex parameter  p than with  A = - p", we shall integrate

over circular arcs subtending angles  277/72  in the p-plane, rather than over circles

in the A plane.

In §2 of this paper we discuss the asymptotic properties of solutions to

riu) = - pnu,  and we define the class of boundary conditions we shall consider.

This material is basically a convenient reformulation of known material, with some

generality added.   In §3 we will investigate the Green's function for T and we

shall show how to associate the integer ttz to a particular problem.   In §4 we will

use the Hilbert transform to estimate the norms of a family of integral operators,

and in §5 we shall obtain the results (1.3), (1.4).

2.  Boundary conditions and solutions to riu) - — pnu.

Theorem 2.1.  Let riu) = uM + an_ 2 (x)zv("~ 2) + • • • + aQix)u.   Let  v>0be

a fixed integer.   For max in - v - 2, 0) < 7 < 72 - 2, assume a i-n) ¿s Qj

class L°°[0, l].   For 0 </ < » -v - 2, assume a . is of class  L°°[0, l].   Then

for each sector krr/n < arg p <ik + l) 77/72, and for  \p\  sufficiently large, the

equation  riu) = - p"u has an analytic fundamental matrix 3>(x, p) such that iin

the notation of [7, p. 482])

(2.1)    0>(x, p) = Tip)[l + (l/p)A,(x) + .. . + i\/p)vAvix) + il/p)vnAix, p)]Eix, p),

where A(x, p) = Oil) uniformly in x, 0 <x < 1, as   \p\ —► 00,  and A t~v~l> is of

class L°°[0, l] for   1 < i < v.

Remark. Theorem 2.1 can be proved by translating into matrix notation the

computations given in [3, p. 46]. An indication of this technique is given in [8,

Theorem 2.2].
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Lemma 2.1. Let A(x, p) = I + 2^, (l/p)M .(x) + il/pVn A i/ + 1 (x, p), «/¿ere

p varies in an unbounded region S of the p-plane,  0 < x < 1, A .'v_') ¡s of class

L°°[0, l] for   1 < í < v, and A v+¡(x, p) = 0(l) uniformly in x for 0 <x < 1.   T/ïieTz

/or   |p| sufficiently large in S .,

v

A~X(x, p) = / + Z (WV*) + il/p)VnBvnix, p),
z = l

where B v + l(x, p) = 0(l) uniformly in x, 0 < x < 1,  cztzzj7 ß .(v" r)  z's o/ c/ass

L°°[0, 1] ¡or   1 < /' < v.

Proof.   Let ßQ(x) - /.   It is easily verified that Bk ----- - 2^     A (x)ß       (x) for

1 < k < V,  and

Bu+1(x, p) := - A    '(x, p)Al/+i(x, p) / t ^Ü/pr^-U)
¿^1

The ß  's  clearly have the required properties,   1 < i < v H   1.

Corollary, ^(x, p) ¿as /èe properties obtained in Theorem 2.1, then for   \p\

sufficiently large, krr/ n < arg p < (k -t  1)77/tt,

«l»-I(x,p)=E-1(x,p)[/4 (l/p)B ,(*)-, •■• 1 (l/p)vBv(*)

1 Ü/p^BOt.p^T*"1^),

tz^ere  ß(x, p) = O(l) uniformly in x, 0 < x < 1, a/ií/ ß'.1'"1'  z's 0/ r.7«ss   L°°[0,  l],

1 < 1 < v.

Corollary.   // the components of the last column of <J>~   (x, p) are denoted by

v.ix, p), j     1, • n.  then
P'J'X

(2.3)
i/;.(*,p)-     (o/np^Ac       Ml  , (l/p)Bt/(x)4

(\/p)vBv.ix) , (l/pr^'ß.Up)],

where  B (x, p) = 0(1) uniformly in x.,  0 < x < 1,  f/wr/  ,V.V~''  z's 0/ r/7zss   L^lO, l]

/or   1 < i < v.

1/
Proof.   The only difficulty here is to express  T~   (p).   It is easy to verify that

the last column of T" '(p)  is (- l/np"~  ) [co    ■ ■ • to ].

The case that a      ,(x) / 0 can be reduced to the case considered above, pro-n - 1 r

(n- 1)
1

exists.   Then the substitution  u     qv   is permissible, where  <7(x)vided a

exp [(l/n) f*a  _], and then Au)     qr'(i),  where  r'   is an rzth order differential expres-

sion with no (tz - l)th derivative term.   If the coefficients of t    ate to satisfy the con-

ditions of Theorem 2.1, it suffices to assume that the coefficients zz0, • ■ • , a   _2

of  T satisfy the conditions given there, and in addition that a _',   be of class

L^tO, l], where k     max (n ■   1, v i  l).

In the case that  t has  no   (77 - l)th derivative term, the boundary expression

U  and the coefficients  a    are to be selected so that the resulting boundary value

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] THE  Z^ BEHAVIOR OF EIGENFUNCTION EXPANSIONS 337

problem is Stone regular [7, p. 487].   As is pointed out in [7, p. 494], there are

boundary value problems which are Stone regular for all choices of coefficients

a., /' = 0, 1, • • • , n — 2, provided certain linear combinations of determinants

formed from M   and   N  ate not zero.

If there is an   (tí - l)th derivative term in r, the influence of the substitution

u = qv  is easily described.   Since

u^\x)

1 = 0 N

(I \x)q{'~l\x),

we see that   zz(x) = Zix)iAx),  where

~qix)

Zix)

Z(1)(x) qix)

ql"-l)ix)     in-l)q{"-2)ix) qix)

Thus Uu=U'v,  where U ' v = MZi0)vi0) + /VZ(l)i7(l) = M ' ¿(O) + N'viO).   Using;

primes to denote the transformed problem, we have, in the notation of [7, p. 48l],

2Xp) = D' (p),  P(p) = P'(p), Q(p) = Q'(p),  so for any  p not a zero of Dip),

Í2.4) G(x, t, p) = qix)G\x, t, p)q~lit).

Although the notation in [7] is for problems in which <*n_i ~ 0,  the expressions

(2.2)-(2.5) apply also to the case that a^_ x ¿ 0.   Let A: Lp(0, l) -» Lp(0, l) be defined

by  (Af)(x)= qix)fix).   Then from (2.4) and the definition of the partial sums  S       we

have for any / in  Lp(0, l),

S„f = {AS¿A-l)f.

Thus the  Lp convergence of the sequence  SNf is exactly the same as the conver-

gence of the sequence  SNf.

From now on we shall assume that a   _    = 0 and that the problem (r, U) is

Stone regular.   We shall no longer use the prime notation.

3.  Green's function.   In this section we will rely heavily on the notation and

equations of [7].

The expression

(3.1) iSNf)ix)=   P(l/277z) f     np"-lGix, t, p)dpfit)dt
JO -ZCp

denotes the /Vth partial sum of the expansion of / in eigenfunctions of T, where

C „   is a circular arc of radius  R  subtending an angle of  2rr/n, and the sum in-

cludes the invariant subspaces corresponding to the N  eigenvalues X = - p" fot

which  |p| < R.   If G0ix, t, p) denotes the Green's function for the operator corre-

sponding to   Au) = u     , M = I = - N, then the corresponding eigenfunction expan-

sion coincides with the Fourier series expansion.   Thus to compare a general
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eigenfunction expansion with the Fourier series expansion, one considers the

expression

po(l/2rn)fc   np"-1[G(x, t, p)-G0(x, t, p)]dpf(t)dt.

As is indicated in [7, p. 479], it is convenient to introduce a function Fix, t, p)

related to G  [7, p. 483], and the analogous function TQ for G„, and then to

write G - GQ = (G - D + (T - T0) + (FQ - G j.   (An indication of the intrinsic

meaning of V is given in [8].)   Let

(3.2) ER(x)= JJ.Ü/277Z') f     np"-l[F0(x, t, p)-G0(x, t, p)]dpf(t)dt,

(3.3) Hf>)=    P (1/27") / T2p"-1[r(x,   t,   p)-r0(x,   t,   p)]dpf(t)dt.
JO c R

Lemma 3.1.  For any f in L  (0, l),  1 < p < °o,

lim   ||F   ||    =0, lim   ||HR|L = 0,
K-»oo K R-* oo K

and there exists a constant  K    > 0 such that

llFRll,<KfH/ll,.       M"Rll,<^ll/llp-
Proof.   For E„, we note that

(l/2iri)J     Tzp"-1r0(x, l, p)dp = [sin R(x - i)]/[ir(x - i)l = Dix, t, R)

R

which is the Dirichlet kernel for the Fourier integral, and

.lil/2m)j      np"-lG0(x,t,p)dpf(t)dt=     £    (f,e)e.(x)

J0 CR \k\<N

where e ,(x) = e .   For any / of class Lp(- <x, oo) which is of compact support,

we have [10, p. 143],

j1 Dix, t, R)fit)dt <KA\f\\p

for R   sufficiently large.   Since the same is true of the partial sums of the Fourier

series expansion of /,  we see that the transformation / —>FR   is uniformly

bounded.   By Theorem 2.3 in [7, p. 486], we see that  ||ER|| —* 0 on a dense sub-

set of L^(0, l),  so by the uniform boundedness,  ||ER|| —»0 on all of L^iO, l).

(The argument in this paragraph sets the pattern for the more involved arguments

in §§4 and 5.)

For HR, using equations (2.9) and (2.11) in [7, p. 484], we can easily verify

that the kernel of (3.3) is uniformly bounded and, by the argument following

Theorem 2.3 in [7, p. 486], that for any f in L  (0, l), HR(x) goes to zero uni-

formly as  R  gets large.

Note that the properties of T  are independent of the assumption of Stone

regularity.   This assumption is needed to obtain for G - T  results analogous to

those above.
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Referring to the expression for G — V given in the proof of Theorem 4.1 in

[7, p. 492], let TTZ  denote the largest of the integers ¡k. - zC.   Having determined

the integer ztz  in this way, we now assume that the differential expression r sat-

isfies the conditions of Theorem 2.1, for v = ttz.   Then since

v.(t, p) = [- eo/np"-1] ■ [1 + il/p)BX]it) +■■■ + il/p)mBmjit)

+ ...+ il/pm+l)Bm^it,p)]e-p">t,

where B*™-0 is of class L°°[0, l] for  1 < i < m  and Bm+1  . = Oil), and

ukix, p) = [1 + (1 lp)Ahix,p)]e     k

where A A\x, p) =0(l), we have

tz       n

npn-l[Gix, t, p) - H*, t, p)] = £   Z \,(*> '• P}'

fe = l    ;=1

where

\kjix, t, p) = pmhk¡ix, p)[l + il/p)BX]it) +■■■ + il/p)mBm.it)

In (3.4), h      stands for a uniformly bounded function of all indicated variables

and the exponent yk .ix, t) is as defined in the proof of Theorem 4.1 in \j, p. 492].

We will suppress the subscripts k  and / whenever possible.

Lemma 3.2.  For f in  Bp ,
' m'

f1 (1/2777)   f A(X,   t,   p)dpfit)dt
J 0 JCR

(3.5) = Z   f' I f     hiix,p)ePy^-'Up\[Biit)fit)Ym-')dt
¿ = 0 LJCR J

+ fl jc    H/p)hm + xix. t, p)ePVt*- »dpfit)dt,

where the h 's  are uniformly bounded in all indicated variables.

Proof.   The proof is an immediate consequence of integration by parts, noting

the simple form of the exponents  yxx, t), and the fact that the boundary values

of /   '  are zero for  0 < i < m - 1.

The value of (3.5) is that each of the positive powers of p appearing in (3.4)

has been eliminated.   In addition, each of the first ttz + 1  terms on the right of

(3.5) is of the form

(3.6) £K(*. i. RlB^AfiA^-'Ut

w here

(3.7) Kix, t, R) =   f      hix, p)ePy(-x- 'Up,
»*    C.    M
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while the last term in (3.5) is of the form

(3-8) flQKix, t, R)fit)dt

where

(3.9) K(x, t, R) =   f      il/p)hix, t, p)e?y(x- »dp.
JCR

We consider these integral operators in the next section.

4.  A family of integral operators.  Let g be of class LpiO, l),  1 < p < oo, and

consider the transformation

(4.1) GR(x)= JJk(*. /, R)git)dt

where

(4.2) K(x, t. R)=  J      b(x, t, p)e*x^dp.
CR

In this section of the paper,  C„  is the arc p = Re'  ,  77/2 < 8 < 3n/2.

Lemma 4.1.   Kix, t, R) = 0(l/(x + t)), for R  sufficiently large.

Proof.   From (4.2),   \Kix, t, R)\ < MR Qj(2 eR(x+t) cos 9d6, for some con-

stant M.   Using the relations cos 0 < 1 - 26/n for 77/2 < 6 < n, cós 6 < - 3 +

26/tt for 77 < 0 < 377/2, we have

\Kix, t, R)\ < M[l- e-R<-x+t)]/[x + t]< M/ix + t).

Theorem (M. Riesz) [9, p. 132].   If g £ Lpi- 00, 00),   1 < p < 00, then

H  (x) = C.P.V. f"   git)/ix-t)dt

exists almost everywhere.   In addition, there exists a constant  K    > 0 such that

l",l,<K,lcI,-

Remark.   The function H     is called the Hilbert transform of g.

Theorem 4.1.   There exists a constant  K   > 0 such that for GR as defined in

(4.1), (4.2), and for R sufficiently large,   \\GR\\p < Kp \\g\\p.

Proof.   From Lemma 4.1, for  R   sufficiently large,

\GRix)\ < M flo\g(t)\/(x + t)dt.

We make the change of variable t = - s  and define g(- s) to be zero outside of

[-1,0].   Thus

|GR(x)| < M f00^ \g{- s)\/ix - s)ds.

It 0 <x < 1,  then

C.P.V.   f°°    \gi-s)\/ix-s)ds =   f00    \gi-s)\/ix-s)ds,
J   — oo J  — oo

since g(— s)  is zero for s near x.   Thus using the theorem of M. Riesz, and

restricting back to functions in L'XO, l),  ||GR||    < K   \\g\\..
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Lemma 4.2. If K(x, t, R) = fc (l/p)h (x, t, p)ep(x+t)dp, then for any func-

tion g of class L'(0, l) which is zero for 0 < t < 8, 8> 0, GR(x) = 0(l/R), uni-

formly in x, 0 < x < 1.

Proof.   Repeating the estimates in the proof of Lemma 4.1, we now have

\K(x, t, R)\ < M[l - e-R^x^]/[R(x + t)] < M/RS

fot 0<x<l.   Thus  |GR(x)|<M \\g\\x/R8.

Corollary.  // K(x, t, R) = fc    b(x, p)ep     ^dp, and if g  is absolutely con-

tinuous on  [0, l] and vanishes for 0 < t < 8, 8 > 0, then  G Ax) = 0(l/R) uniformly

in x, 0 < x < 1.

Proof.  We use integration by parts:

CR(x) =   fc    h(x,p)ePxf1Qeptg(t)dtdp

=   fc    (l/p)h(x, p)epxïepg(l) - epSg(8) - f\eptg(1\t)dt]dp

= /     (l/p)h(x,p)g(l)e«x + "dp-   C      (l/p)h(x, p)g(8)ep{x^dp
R CR

-   \\\^    (l/p)h(x,p)e*x^dpg"\t)dt.
J a JCR

Each of these three terms is  0(l/R) by Lemma 4.2 and its corollary.

Theorem 4.2.   // K(x, t, R) is as in Lemma 4.2 or its corollary, then for each

g  in Lp(0, 1),
jfcie.1,-0.

Proof.   The class of functions g  which are in C  [0, l]  and which vanish in

[0, 8] (fot all 8 > 0) is dense in Lp(0, l).   By Lemma 4.2 and its corollary,

||GR||    = Oil/R) fot such functions.   But by Theorem 4.1, the transformation

g —> GR  is uniformly bounded on all of Lpi0, l).   Thus using the density, the re-

sult follows.

If the expression x + / is replaced by any of  1 - x + t,  1 + x - t, or 2 — x — /,

Theorems 4.1 and 4.2 remain true.   For the density arguments using  1 + x - t  and

2 — x — t,  it would be necessary to consider intervals [O, 1 - 5].

5.  The expansion theorem.  We return to the expressions (3.6) — (3.9).   The

exponents y(x, t) = yk-(x, t) ate given explicitly in [7, p. 392].   Let a, r be as

defined in [7, p. 485], and let the sets of indices A ., ß . and the sectors S . be as717 i1     i i

defined in [7, p. 483].

Lemma 5.1.  For p in S.,
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ePykjl*. t) _ epŒ{1-x+t)hx(x, t, p) + epT<-l-x*t)h2(x, t, p), k in A., j in A .,

= epcr(2-x-t)hx(x, t, p) + epT(2-x-,)h2(x, t, p),      k in A., j in Bf,

= epcT(x+t)hx(x, t, p) + epT{x+t)h2(x, t, p), k in B., ; in A.,

= •'B<1**-,)*10tI i. p) + •'r(l+*-|)*2(*. Í. p),       A z« B., / zrz B.,

where the h 's are uniformly bounded in all indicated variables.

Proof.  Note that a and r depend upon  z.   Consider the case k  in A ., ;' in

A..   Theni
P[^,(X-1)-ÍÜ.,] PO-í.l-X + 1)    -/°ÍU-X)(0-+<U    )+í(CT+6J.)]

e i    — e e K J

= e
/3f(l-x+()    -P[(l-X )(?•+&).) + /(r+ù).)].

fcJ

For given p in S., the exponent of at least one of the two right-hand factors will

have nonpositive real part.

The other possibilities for k and / are handled similarly.

Lemma 5.2. // K(x, t, R) is as in (3.7), and if for g  in  Lp(0, 1),

(5'2) GR(x)= poK(x, t, R)g(t)dt,

then

(5.2) A*6*!»-0'

Proof. Using the simple form of each of the exponents y(x, t), we see that

Lemma 4.2 and its corollary hold when x + / is replaced by y(x, z), except that

it may be necessary to use the interval [0, 1 - 8] rather than [8, l]. By Lemma

5.1 and Theorem 4.1, we see that the transformation (5.1) is uniformly bounded.

Thus (5.2) follows by a density argument.

Theorem 5.1.  Ler  T be a differential operator arising from a Stone regular

boundary value problem.   Let m  be the integer associated with  T, and assume

the coefficients of T satisfy the conditions of Theorem 2.1, for v = ttz.    Then for

f in Bp,1 m

lim   ||/-SM/|L=0
(5.3) N-.cc "'       N' llp

and there is a constant  Kp = Kp(T) > 0 such that for all N,

(5-4) iiviii<yii/ii<,+ii/(1)iiP+---+ii/<m)u-

Proof.   Referring to (3.5), let

F.(x, R) = po \p    b.ix, p)epy^x- Orfpl [BXAfd^-^dt

n, and let

E      Ax, R)=   f1 r f      U/p)Mx, /, p)epy(x- lUp\\fit)dt.
TTZ+l J   0   \   J C p J

for  0 < i < m, and let
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It suffices to prove that

(5-5) lim   ||F.(.,R)||    =0
R-eo        ' p

and

(5-6) l|Fz(-,«)|lí)<VII/!lí, + ll/(1)llí, + --- + ll/(m)|lí)],

for R  sufficiently large,  0 < z < ztz + 1.   For i = m + 1, replace epy(x,t) by the

appropriate expression from Lemma 5.1.   Then (5.5) is obtained by using Theorem

4.2, and from Theorem 4.1 we obtain

l'.4i(-.*)l,<SI/l,-
For 0 < i < ttz,  the result (5.5) follows from Lemma 5.2.   To obtain (5.6), replace

epy(x,t) ky tjle appr0priate expression from Lemma 5.1.   Then by Theorem 4.1,

\\F( ■ , R)\\p < Kp\\[Bif]^-% < Kp[\\f\\p + . . . + »/<"-%].

Note that we have used the fact that each B    is determined only by  7 ,  and in

addition each B . is in L°°[0, l].
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