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Abstract: Several stress-strain models were used to predict the strengths of steel fiber reinforced
concrete, which are distinctive of the material. However, insufficient research has been done on the
influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics
of concrete. For this reason, the researchers conducted an experimental program to determine the
stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of
polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of
80% of the experimental results were used to develop a new empirical stress-strain model, which
was accomplished through the application of the particle swarm optimization (PSO) technique. It
was discovered in this investigation that the new stress-strain model predictions are consistent with
the remaining 20% of the experimental stress-strain curves obtained. Case studies of hybrid–fiber–
reinforced concrete constructions were investigated in order to better understand the behavior of such
elements. The data revealed that the proposed model has the highest absolute relative error (ARE)
frequencies (ARE 10%) and the lowest absolute relative error (ARE > 15%) frequencies (ARE > 15%).

Keywords: fibrous concrete; high–strength concrete (HSC); mechanical characteristics; steel fiber;
hybrid fibers; concrete damage plasticity (CDP); concrete modeling

1. Introduction

The use of high–strength concrete (HSC) in buildings is spreading as the cross-section
of members can be actually reduced. With the low water/cementitious materials ratio
for high strength concrete, concrete durability can be improved. Compressive strength,
on the other hand, causes concrete to become more brittle [1]. Steel fibers can improve
section behavior [2,3], since they provide a bridging action across matrix microcracks and
improve crack opening resistance [4]. Steel fibers’ ability to cross microcracks is greatly
influenced by the shear stress at the interface between the fibers and the matrix (bond
strength between steel fibers and the matrix). Fibers and the matrix are held together by an
interfacial connection as a result of this shear stress [4].

To increase the mechanical properties of concrete, numerous types of fibers are com-
monly used [5–7]. Hybrid fiber-reinforced concrete (HFRC) has been developed by com-
bining different types of fibers in order to get the desired mechanical features of fiber-
reinforced concrete. However, many fiber mixes, such as carbon and polypropylene, glass
and polypropylene, and glass and carbon fibers, have been used to generate HFRC [8–10].
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The hybrid steel–polypropylene fibers have been the subject of a lot of research. Because
the fibers contribute to the toughness, which lowers brittle failure under static and dynamic
stresses, HFRC exhibits an increased reaction. It also improves energy absorption.

It is well acknowledged that steel fibers can improve mechanical properties such
as compressive and tensile strengths; ductility; impact resistance; toughness; and so on
(ACI Committee 544 [11]). However, the effect of the combinations of hybrid fibers (two
or more different types of fibers) on the concrete properties is not extensively addressed.
Requirements for high–strength fiber reinforced concrete has been increasing significantly
over the past few decades due to the need for design members that are small in size,
which also decreases the mass of members, to lead to effective seismic-resistant concrete
structure [12,13]. By extending the post-peak region of stress-strain diagrams, which is
otherwise nearly nonexistent or steeply sloped in high-strength concrete (HSC), the fibers
in FRC improve toughness [13]. This enhancement in structural response can only be
considered once the stress-strain curves of the resulting FRC have been studied in detail.
Stress-strain diagrams can be used to assess the toughness of FRC. By extending the post-
peak region of stress-strain diagrams, which is otherwise nearly nonexistent or steeply
sloped in high-strength concrete (HSC), the fibers in FRC improve toughness [13]. This
enhancement in structural response can only be considered once the stress-strain curves of
the resulting FRC have been studied in detail. Stress-strain diagrams can be used to assess
the toughness of FRC. In addition, using the steel fibers for reinforcing the normal strength
concrete (NSC) and reactive powder concrete (RPC) had been investigated [14]. Where, the
study confirmed that the aggregate interlock, crack surface friction and steel fiber content
are the main three factors influenced the shear strength of the NSC, meanwhile, on RPC,
only the factors of crack surface friction and steel fibers are affected.

The effects of replacing Portland cement with pumice powder and nano-clay were
studied [15]. The possibility of making pervious concrete with varied amounts of recycled
concrete aggregate (RCA) was made with a combination of new and used materials, in-
cluding recycled and industrial fibers. The author(s) recommends the usage of pervious
concrete containing 50% RCA and 2% steel fiber in the constructions of structures. Other
researchers investigated the use of recycled concrete aggregate and pozzolanic additives in
fiber-reinforced pervious concrete reinforced with industrial and recycled fibers [16]. They
discovered that introducing 2% steel fiber increased compressive and flexural strengths by
up of 65% and 79%, respectively, over the unreinforced counterpart mix (STF). Additionally,
it was reported that the use of 100% RCA with 2% STF and 2% nano-clay (NC) results in a
previous concrete suited for structural purposes. Sinaei et al. [17] investigated the efficacy
of composite fiber reinforced polymer (CFRP) layers for five exterior beam-column connec-
tions using a finite element model (FEM) based on previously collected experimental data.
It was discovered that L-shaped FRP composite overlays at the beam-column interface were
an appropriate method for increasing ductility. Additionally, U-shaped overlays beneath
the beam and the use of FRP on both lateral sides of the beam were excellent reinforcing
solutions for enhancing the RC joints’ strength and ductility.

Through the use of artificial neural networks (ANN) and extreme learning machines,
scholars have evaluated the influence of fly ash and silica fume replacement content on
the strength of concrete [18]. Various ratios of fly ash with (without) additional silica fume
have been evaluated for this. The ratio of water to cement varies throughout the test. FA
contributed less to the strength of concrete at younger ages, but significantly more at older
ages. As a result, the increased effect of a small amount of SF on compressive strength
was not statistically significant. In the short term, adding fly ash decreased compressive
strength, but boosted it in the long run. Adding silica fume increases the strength in
the short term but diminishes it over time. The behavior of angle shear connections was
examined numerically by researchers [19]. Thermo-mechanical finite element modeling was
done on push-out samples using the ABAQUS software, and the findings were compared to
those obtained from laboratory tests. The research findings indicated that the numerically
models were capable of effectively predicting laboratory results such as shear strength
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and slip. Additionally, data indicated that increasing the temperature to 850 ◦C results
in a 56% reduction in the shear strength of the samples. Shariati et al. assessed the
compressive strength of concrete combining furnace slag and fly ash in place of cement [20].
A database of 1030 data sets was used in the evaluation of the compressive strength of
the modified concrete. The author(s) utilized a hybrid artificial neural network-genetic
algorithm (ANN-GA) in the study. The ANN-GA model for concrete compressive strength
prediction outperformed an ANN-BP model in terms of precision, the study’s findings
revealed. Furthermore, the hybrid ANN technique was adopted for theoretically predicted
the cohesion between the sand-soil that combined with fibers [21].

A uniaxial compression test was used to characterize the behavior of 48 cylindri-
cal specimens prepared from fiber-reinforced concrete with end-hooked steel fibers and
analytical model was proposed [22]. The test revealed a ductile behavior of steel fibre-
reinforced concrete specimens even exceeding its compressive strength. Additionally, it
was demonstrated that the strain at compressive strength generally increased as the fiber
volumetric ratio and aspect ratio increased, although the elastic modulus reduced. Chalioris
and Panagiotopoulos studied the flexural response of steel fibrous concrete cross-sections
with a randomly chosen geometry through a computational approach [23]. Moreover, a
compressive stress-strain graphs and 257 strength values were used to construct a new
compressive stress-strain model for steel fibrous concrete. The proposed sectional analysis
was validated against experimental data for 42 SFC beams, and it accurately predicts the
flexural capacity and curvature ductility of SFC members. The behavior of double-ended
hook steel fiber concrete elements with 80 MPa compressive strength was also investigated
considering specimens dimensions, shape, content, aspect ratio, and tensile strength of
the embedded steel fiber [24]. The mechanical testing-crack opening displacement test
was used to determine the flexural performance of the specimens, and the findings were
compared to code specifications. Further studies are concerned the cracking behavior of the
fiber-reinforced concrete element with synthetic fibers [25], and steel fiber-reinforced beams
under cyclic deformation [26]. In general, further researchers have been concerned the
behaviors of the corroded concrete [27] and using hybrid extreme learning machine-grey
wolf optimizer to predict concrete strength that partially replacement of cement [28]. A
new technique off-site and self-form segmental concrete masonry was also experimentally
studied [29].

Using the extended finite element method, Abbas and AlZuhairi investigated the
behavior of simply supported reinforced concrete beams [30]. The experimental program
includes two RC beams loaded in two points. It was found that the mesoscale numerical
model produced findings that were closer to the experimental data, and that mesoscale
modeling of reinforced concrete is most convenient when the maximum aggregate size is
reduced. Hason et al. investigated the effects of numerous critical parameters on the energy
absorption (EA) of torsional RC beams reinforced with external FRP [31]. Whereas, (81)
gathered datasets for investigating (28) factors were studied and evaluated including the
concrete compressive strength through using response surface methodology (RSM). They
claimed that the proposed model has an acceptable correlation coefficient (R) of around 80%
and is reasonably accurate and the EA also works as a safety index for FRP-strengthened
RC beams exposed to torsional loads, preventing unexpected structural failure.

Analytical models for predicting the stress-strain diagram of steel fiber reinforced
concrete that take into account the major properties of a single type of fibers have been
proposed in current research. This is because, to date, a lack of information in predicting
the compressive stress-strain relation of concrete with two or more different types of fibers
has been reported. For this purpose, this study was suggested to carry the experimental
program for testing varied concrete samples reinforced with hybrid fibers (polyvinyl alcohol
and steel fibers). The majority of the experimental results were used to develop an empirical
model to simulate the HFRC stress-strain relationship. The proposed model simulation was
done using the particle swarm optimization (PSO). Besides, the validity of the proposed
model was verified with the experimental test results. In addition, ten finite elements (FE)
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models have been developed using ABAQUS software to further prove the validity of
the new proposed stress-strain model when adopted in the numerical analysis methods.
Concrete cubes with hybrid–fibers and steel fiber–reinforced concrete columns are used as
case studies for this numerical investigation. The findings that predicted using this newly
proposed model substantially align with the balanced outcomes achieved in this analysis
of the experimental stress-strain curves.

2. Research Significance

Fibers are frequently used in the construction industry to improve the mechanical
properties of concrete parts. Given the fact that no single type of fiber can increase all
the desired mechanistic characteristics of concrete, combinations of fibers (hybrid fibers)
can have a higher effect, which is referred to as high-performance reinforced concrete
(HFRC). The HFRC exhibits collaborative behavior as a result of the contributions of steel
and polyvinyl alcohol fibers, among other factors. Steel fibers, on the other hand, add
to the material’s crack resistance and toughness by increasing the material’s toughness.
Polyvinyl alcohol fibers, on the other hand, are essential in order to prevent the formation
and development of microcracks. The use of hybrid fibers in the manufacturing of high-
strength HFRC improves toughness by altering the post-peak region of the stress-strain
graphs, as seen in the figure. It is proposed in this paper that a stress-strain model for
high-frequency reinforced concrete be utilized to improve the structural response in present
design procedures.

3. Work Methodology

The methodology approach followed in the current study included a literature survey,
experimental program, optimization analysis, and numerical simulations using finite
element (FE) analysis. Figure 1 displays a schematic depiction of the methodology approach
adopted in the current study.

3.1. Experimental Program
3.1.1. Testing Materials

Two kinds of Portland cement (PC) naming, type I (CEM I 42.5R) and II (CEM I 52.5R),
were utilized in the batches. The use of supplementary cementing materials “silica fume SF”
and coal combustion residue “fly ash (FA)” as cement substitutes has been widely accepted.
Cementitious material’s chemical and physical properties are listed in Table 1. The addition
of a chemical admixture, superplasticizer (SP), reduced the amount of water required to
obtain the desired consistency of concrete mixture. It was decided to use river sand as both
the fine and coarse aggregates, which had a finesse modulus of 2.67. A constant ratio of 3
has been adopted for water (w) to binder (B) (w/B = 0.3). In addition, the fraction of SF of
8% by weight has been adopted as a cement replacement. In order to reduce the amount of
cement required, FA/B (15, 35, and 65%) was utilized as a fly ash binder with three ratios of
aggregate (A/B) (1, 2, and 3). Two different fibers: polyvinyl alcohol (P) and hocked steel
(S) have been used in this work, as shown in Figure 2 (length L = 18 mm, and diameter
D = 0.4 mm, respectively). Table 2 lists the characteristics of the fibers that were employed.
P and S Fiber have a maximum volume fiber fraction of 0.75% and 0.75%, respectively,
while the maximum total fiber fraction is 1.5%.

3.1.2. Sample Preparation and Testing

Ordinary composite Portland cement type II conforming to ASTM C150/C150M-
19a [32] was used as a binding material in the mixture of the concrete. This study prepared
and tested a total of 30 concrete mixtures, the proportions of which are listed in Table 3.
The batches were prepared using a 40-L concrete mixer pan. First, the sand and gravel are
combined for 3 min in a dry environment to ensure a uniform distribution. Then, for 5 min,
the dry blend was supplemented with cement and fly ash. Afterwards, silica fume and
superplasticizer are dissolved in water and slowed added to the mixture for at least five



Appl. Sci. 2022, 12, 2245 5 of 26

minutes until the desired consistency is reached. After fibers are added, the entire mixture
is re-mixed for 5 min. Figure 3 shows the compression test specimens, which are cuboidal
specimens with dimensions of (150 mm).

Figure 1. A diagrammatic illustration of the research approach.

Table 1. Portland cement, Class-F fly ash, and silica fume composition and properties.

Chemical Composition, %
Portland Cement (PC)

FA SF
CEM I 42.5R CEM I 52.5R

SiO2 20.77 21.6 57.01 91.96
Al2O3 5.55 4.10 20.97 1.20
Fe2O3 3.35 0.26 4.15 0.84
MgO 2.49 1.30 1.76 1.02
CaO 61.4 65.7 9.78 0.62

Na2O 0.19 0.19 2.23 0.67
K2O 0.77 0.77 1.53 1.16

Loss on Ignition (LOI) 2.2 3.20 1.25 1.86
Physical properties

Specific gravity 3.15 3.15 2.2 2.3
Blaine fineness (m2/kg) 325 460 290 -
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Figure 2. Respective features of (a) Steel fiber and (b) polyvinyl alcohol fiber.

Table 2. Properties of the fibers used.

Material Length
(mm)

Diameter
(mm)

Tensile
Strength

(MPa)

Stiffness
(Gpa) Specific Gravity

P 18 0.4 1000 29 1.3
S 30 0.75 1100 200 7.8

Table 3. Mixture proportions.

Mixture
No.

Cement I
kg/m3

Cement II
kg/m3 Fly Ash Silica Fume

kg/m3
Water
kg/m3

PVA
kg/m3

Steel Fiber
kg/m3

Fine Agg.
kg/m3

Coarse Agg.
kg/m3

A/B
Ratio

1 739 0 144 77 288 0 0 351 609 1
2 533 0 327 75 281 0 0 342 594 1
3 243 0 585 72 270 0 0 329 572 1
4 739 0 144 77 288 0 58.5 351 609 1
5 533 0 327 75 281 0 58.5 342 594 1
6 243 0 585 72 270 0 58.5 329 572 1
7 739 0 144 77 288 9.75 58.5 351 609 1
8 533 0 327 75 281 9.75 58.5 342 594 1
9 243 0 585 72 270 9.75 58.5 329 572 1

10 531 0 104 55 207 9.75 58.5 506 879 2
11 386 0 237 54 203 9.75 58.5 497 862 2
12 178 0 428 53 198 9.75 58.5 482 837 2
13 419 0 82 44 163 9.75 58.5 598 1038 3
14 302 0 186 42 159 9.75 58.5 593 1029 3
15 141 0 341 42 157 9.75 58.5 576 1000 3

16 0 739 144 77 288 0 0 351 609 1
17 0 533 327 75 281 0 0 342 594 1
18 0 243 585 72 270 0 0 329 572 1
19 0 739 144 77 288 0 58.5 351 609 1
20 0 533 327 75 281 0 58.5 342 594 1
21 0 243 585 72 270 0 58.5 329 572 1
22 0 739 144 77 288 9.75 58.5 351 609 1
23 0 533 327 75 281 9.75 58.5 342 594 1
24 0 243 585 72 270 9.75 58.5 329 572 1
25 0 531 104 55 207 9.75 58.5 506 879 2
26 0 386 237 54 203 9.75 58.5 497 862 2
27 0 178 428 53 198 9.75 58.5 482 837 2
28 0 419 82 44 163 9.75 58.5 598 1038 3
29 0 302 186 42 159 9.75 58.5 593 1029 3
30 0 141 341 42 157 9.75 58.5 576 1000 3
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Figure 3. Concrete cubes samples.

In order to conduct the uniaxial compression tests, a 2000 kN capacity compression
machine was used. The loading rate was approximately 4 kN/min, and each specimen took
about 20 min until it completely failed. The dimensions of the cube and cylinder samples
used were 200 mm × 200 mm × 200 mm. The specimens were de-moulded after 24 h and
cured in water according to ASTM C192 [33]. After 28 days of curing, the compressive
strength was tested, as depicted in Figure 4. To ensure that the results were valid, the
experiments were performed three times for each test model (cube). The linear variable
differential transformer (LVDT) coupled to the loading cell of the machine was used to
measure the deformation of the cubic specimens during the test. A data acquisition system
recorded and presented deformation data on the computer. As a result of the compressive
test, all the specimens were crushed. Compressive stresses and strains were derived from
this data.

Figure 4. Uniaxial compression tests setup.

3.2. Optimization Model of Stress-Strain Relationship for HFRC

In order to generate an ideal HFRC stress-strain curve in two dimensions, optimization
is required. The objective function was formulated, an optimization method was chosen,
and a convergence criterion was established, all three of which were taken into account.
The following sections go into detail about each of these points.
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3.2.1. PSO Algorithm

It has been found that machine learning techniques outperform traditional methods in
terms of their performance. Conventional regression methods have a key drawback in that
they require a suitable initial model parameter set [31]. In addition, conventional methods
may end up in multiple local minima, which is a problem. An extensive search space can be
found in the new metaheuristic high-level procedure called “particle swarm optimization”
(PSO). The ultimate results would be global minima, free of the local trap. PSO is memory
and performance efficient when it comes to computing. It is simpler to build than other
optimization methods since it makes use of probabilistic transition rules and does not start
with a seed solution. the number of [1,34]. When combined with other optimization tools,
it can build hybrid tools that have several advantages over other optimization methods.

It was motivated by observing the behavior of birds and fish in groups that inspired
the PSO technique. Kennedy and Eberhart first proposed it [35,36]. A “swarm” of particles
is formed in this method, which moves to find the best possible position for an optimization
solution. When it comes to evolutionary algorithms, such as PSO, there is a population of
people (also known as particles) whose positions are constantly being changed. Individual
particles and swarms are repositioned as follows using the pbest and gbest positions of the
best-performing particles in each iteration:

V[k+1]
i = w×V[k]

i + C1r1

(
p[k]best i − X[k]

i

)
+ C2r2

(
g[k]best i − X[k]

i

)
(1)

X[k+1]
i = X[k]

i + V[k+1]
i

(2)

In which (Xi and Vi) express the current position and velocity of the (ith) particle; C1
and C2 denote two positive acceleration constants; (r1 and r2) two random values between
(0 and 1); (p[k]best i) the ideal position visited by each particle; and g[k]best i represents the flying
particle’s global optimal location in the swarm up to iteration k, when the flying particle’s
global exploration and local exploitation abilities are balanced by w which is a weighting
factor. A large inertia weight aids global exploration, but a low inertia weight aids local
exploitation. Decrement function [w(k) = a w (x− 1)] is used in this study to reduce the
inertia mass, where (a) is an increment constant less than but close to one.

The terms Xi and Vi denote the i-th particle’s current position and velocity; C1 and C2
denote two positive acceleration constants; (r1 and r2) denote random values between (0
and 1); (p[k]best i) represents the optimal position visited by each particle; g[k]best i represents the
flying particle’s global optimal location in the swarm up to iteration k; w is a weighting factor
(inertia weight) that governs the trade-off between the flying particle’s global exploration
and local exploitation abilities. Global exploration is facilitated by a high inertia weight,
but local exploitation is facilitated by a low inertia weight. The inertia weight is decreased
in this study using a decrement function defined by [w(k) = a w (x− 1)], where (a) is a
constant that is less than but near to one.

Using PSO to maximize the objective function is represented in Figure 5, as shown.
With each iteration, information from previous iterations, as well as information provided
by other particles, is combined to create a new travel direction (solid line) for particle A.
Particle B’s proximity to the ultimate solution in this iteration means it will pass along
the global optimal coordinates to the other particles in turn. All particles can change
their coordinates based on the best position of other particles thanks to this information
sharing system.
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Figure 5. The main concept of using PSO.

3.2.2. Objective Function

Objective function is defined as the difference between predicted and observed values.
Measurement of agreement between model output predictions and experimental outcomes
is a primary goal of this objective function. The root-mean-square error is chosen as the
objective function (RMSE). This objective function [37–39] can be calculated using the
following expression:

RMSE =

√
1
n

n

∑
i=1

(SA − SE)
2 (3)

where SA and SE represent the actual and predicted levels of stress, with n denoting the
sample size.

3.2.3. Convergence Criteria

There must be a set point at which the PSO search can be stopped because of its iterative
nature. The two most prevalent criteria for convergence are the number of iterations and
the smallest error in the objective function. If the optimum value is known in advance,
the algorithm can be tested or fine-tuned. Although this is true in theory, it does not
hold true in real-world structural optimization issues. PSO parameters are summarized in
Table 4, while the PSO convergence parameters used in this study are listed and explained
in Table 5.
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Table 4. The primary PSO variables.

Description Details

Particle count, N
Between 10 and 40 is a common range. The
number can be extended to 50–100 for some
challenging or specific problems.

The dimension of particles, D Optimum solution is decided by the problem
at hand

Inertia weight, w

As a rule of thumb, w = 0.7 is considered to be
a good starting point [38]. It is also possible to
make changes to it throughout subsequent
rounds.

Lower and upper bounds for each of the n
design variables, x, LxUU

Optimum solutions are based on the problem
to be optimized. In general, a variety of ranges
can be used for different particle diameters.

Cognitive and social characteristics Usually (c1 = c2 = 1.494) and other numbers
are acceptable as long as [0 < c1 + c2 < 4] [40].

Table 5. Parameters governing PSO convergence.

Description Details

T-max is the maximum number of iterations
that can be completed in a particular
time period.

In combination with other PSO parameters, the
complexity of the issue to be optimized (D, N)

k f is the number of times the improvement of
the objective function meets the
convergence condition.

A convergence has occurred if the objective
function’s improvement over the last k f
iterations (including this one) is less than or
equal to f m.

The minimum improvement f m in the
objective function’s value

3.2.4. Proposed Analytical Model and Data Processing

Four analytical models were used and modified to attain a good agreement between
predicted and measured stress-strain relationships. In the proposed model, the stress-strain
relationship of the HFRC was simulated using MATLAB code. PSO is used to find a
previously unknown set of coefficients in the solution space. In the proposed model, the
stress-strain relationship of the HFRC was simulated using MATLAB code.

Due to its consistency and simplicity, the formula suggested by Carreira and Chu [41]
was used. For optimization analysis conducted using their experimental results, the
following equations were obtained:

f ′HFRC = α0 f ′c + α1(RIws)
α2 + α3

(
RIwp

)α4 (4)

ε′HFRC = α5ε′c + α6RIws + α7RIwp (5)

β = α8 + α9(RIws)
α10 + α11

(
RIwp

)α12 (6)

where fc
′ is the compressive strength of plain concrete (MPa), ε′c is the strain to correspond

to fc
′ (ε′c = 0.002). RIws and RIwp are reinforcing index, which is is determined based on

the fiber fraction:

RIw = w f ·
L f

d f
(7)
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where w f = fiber weight fraction (w f ≈ 3Vf , Vf = fiber volume fraction), L f = length of
fiber (mm) and d f = diameter of the fiber (mm):

fHFRC
f ′HFRC

=

 α13β
(

ε
εo

)
α14β− α15 +

(
ε
εo

)α16β

 (8)

Here, fHFRC is the stress acting on the concrete (MPa); f ′HFRC, the compressive stress
of concrete (MPa); ε, the compressive strain; εo is the strain at peak stress; and β, a coefficient
that determines the slope and shape of the curve.

The values of unknown coefficients, α13 to α14 are obtained from the PSO algorithm,
as presented in the following section. These values are then inserted in Equation (8) to
generate the stress-strain curve. Figure 6 displays a flowchart of the proposed model.

Figure 6. Flowchart of the proposed algorithm.

It is possible to use soft-computing technologies to infer models that can predict within
the data range given. Because the accuracy of the final models depends on the amount of
data adopted during the modeling process, the magnitude of this data is important. The
size of a dataset and the distribution of its variables have an impact on the performance
of any model that is developed utilizing this data. There were two independent datasets:
one to build the model, and the other to test it once it had been built. Twenty-four (80%) of
the 30 curves were utilized to build the model; the remaining six (20%) were used to test
the model. Using a fraction of three samples for each variable, were able to attain model
adequacy [42]. The construction set ratio was 4 in this investigation, which fulfills and
exceeds the requirement specified in the study design (i.e., 3).
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4. Results and Discussion
4.1. Experimental Results

During the experimental program, a dataset containing 30 various mixing proportions
was achieved, which was utilized to build and verify the proposed stress-strain model of
hybrid fiber concrete. Figure 7 graphically depicts the results of the compressive strength
of 30 mixtures at 28 days of curing, the red dashed line representing the best fit changing in
the maximum compressive strength of the tested concrete samples. At the same ratio of
fiber content and aggregate (A) to binder (B) ratio (A/B), the results show that increasing
the replacement ratio of FA induces a loss in compressive strength. Due to the higher
particle size of FA compared to conventional Portland cement (NPC), this may be the cause.
Cement particles dissolving in an alkaline liquid provide a smaller surface area than FA,
which contributes to a delayed hydration process [43].

Figure 7. Compressive strength.

Each concrete specimen’s maximum strain can be determined from its stress-strain
curves, based on the results of the experiments. The maximum strain of all samples can be
shown to vary depending on the variance of the FA, fiber, and A/B ratios of the samples.
The results show that using cement type I I causing a reduction in the maximum strain
values. Moreover, increasing the FA and A/B ratios has opposite effects where FA has a
positive trend in increasing the strain value while the A/B leads to a decrease in the strain,
as shown in Figure 8, the red dashed line representing the best fit changing in the maximum
strain values of the tested concrete samples. The stress-strain compressive behavior with
increasing strain of the tested hybrid concrete specimens has been investigated through
displacement-controlled tests, as illustrated in Figure 9.

4.2. Building of Stress-Strain Relationship Model
4.2.1. Development of the Proposed Models

The primary target is to develop stress-strain models that are based on the PSO
approach’s ability to predict the best matching parameters. It is well established that
models developed utilizing soft-computing exhibit predictive capability within the data
range used in their creation. The amount of data that may be gathered is of paramount
importance, since it has a substantial impact on the trustworthiness of the resulting models.
The entire database was partitioned into a building dataset and a validation dataset for
post-construction validation. A 24 (80%) of the 30 tested concrete combinations were used
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to develop the model, while the remaining six testing samples (20%) were used to verify
the suggested model. The minimum ratio of objects to specified variables is three for model
acceptability. Scholars claim that a value of five is more secure [42]. In this study, the
adopted ratio is 30/3, or about ten, which is significantly greater than the stated threshold.

Figure 8. Maximum strain.

The PSO method was run by obtaining the aimd function for 40, 60, 80, and 100 swarms
using the PSO parameter settings stated in Section 3.2.1 as displayed in Figure 10. The
PSO method is able to pick the swarms with the smallest error and the shortest time by
implementing several swarms. With the RMSE as an objective function, a suitable goal was
chosen. As a result, four different swarms of varying sizes were evaluated. When the given
convergence condition is met, the PSO search strategy continues. According to the results
in Figure 10, the search became stable after 4100 iterations since the goal functions could
only handle a maximum of 5000 iterations. To find the swarms with the lowest error and
fastest convergence, a variety of swarms were tested. As shown in Figure 10, the optimal
solution for the PSO method is achieved by using 100 swarms.

According to the proposed model, variables that have optimum coefficients are shown
in Table 6. Per the data in the table, the stress-strain relationship predicted by the suggested
model is accurate. To demonstrate its accuracy and consistency, as depicted in Figure 11,
the acceptable model predicts output with an average value of 0.93, standard deviation of
0.122, and covariance of 12.67%. In addition, the following final description of the proposed
model is obtained after rounding the coefficients for simplicity and replacing them into
Equations (4)–(8):

f ′HFRC = 1.54 f ′c − 0.0024 (RIws)
1.09 + 6

(
RIwp

)9.17 (9)

ε′HFRC = 0.031 ε′c + 0.82 RIws − 38.45 RIwp (10)

β = −0.29 + 80.39(RIws)
31.42 − 23.51

(
RIwp

)61.91 (11)

fHFRC
f ′HFRC

=

 −6.40β
(

ε
εo

)
−4.31β− 0.09 +

(
ε
εo

)−17.86β

 (12)
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Figure 9. Stress-strain curves of cubic specimens with various fiber content percentages.
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Figure 10. Convergence of swarms of various sizes.

Table 6. The PSO algorithm and the best possible values for the unknown coefficients.

Parameters
Swarms Size

40 Swarms 60 Swarms 80 Swarms 100 Swarms

α0 1.5407 1.0783 0.7533 0.7560
α1 −0.0024 −0.0001 0.0008 0.0008
α2 0.00003 −0.0008 −0.0007 −0.0007
α3 1.0873 1.0873 1.0873 1.0873
α4 5.9940 6.8733 6.6133 5.9445
α5 9.1699 6.7863 8.4157 3.8006
α6 0.0310 0.2989 0.2234 0.0147
α7 0.8189 0.0531 0.6006 0.9368
α8 −38.4471 −11.0016 21.0096 −0.2854
α9 63.6051 11.0420 −36.6410 80.3926
α10 37.4007 62.5102 1.0888 31.4167
α11 −47.4932 45.0255 48.2601 −23.5096
α12 0.2754 3.5791 44.1699 61.9069
α13 7.1427 −71.4840 39.3211 −6.4045
α14 7.0842 −43.5667 26.5333 −4.3061
α15 −89.6652 1.5469 1.0000 0.0886
α16 −22.8279 −12.7488 4.4237 −17.8640

MV 1.065 0.952 1.004 0.963
SD 0.224 0.161 0.186 0.122
CoV% 21.03 16.95 18.56 12.67

Figure 11. Using the proposed model, a comparison of predicted and experimental stress capacity.

Based on these factors, a model’s performance can be evaluated using the following
criteria [44,45]:



Appl. Sci. 2022, 12, 2245 16 of 26

• Predicted and actual values have a very strong correlation if the model’s, |R| > 0.8.
• Good correlation can be found between actual and predicted values when an R-squared

model provides 0.2 < |R| < 0.8.
• When a model provides, |R| < 0.2, the correlation between the expected and the actual

values is weak.

As depicted in Figure 12, this work used a variety of statistical methods to verify
the geographic variation of the expected stress capacity by the proposed model over that
which was observed in a single topology. These results, as illustrated in this figure, show
the superior performance of the proposed model for stress capacity forecast because they
are so similar to what has been measured. Additionally, Figure 12 shows that the PSO
model accurately predicts target values with a high R-value. This suggests that the model
presented is capable of prediction based on low values and the applicability performance
based on comparable values.

Figure 12. Taylor diagrams of predicted versus observed standardized stress capacity using the PSO
model (for 80% of the data).

4.2.2. Error Evaluation of the Proposed Model

For additional validation, it has been suggested that the model’s estimate ability
should be calculated using the relative error distribution [46]. Therefore, the absolute
relative error (ARE) percentage is calculated as follows:

ARE =

∣∣∣∣SAi − SEi
SAi

∣∣∣∣× 100 (13)

With a high R-value, the PSO model accurately predicts the required values with high
accuracy, as shown in Figure 13. As a result, the proposed model has a good ability to
predict (i.e., low values) and to generalize (i.e., similar values).
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Figure 13. The proposed model’s (ARE) distribution.

In an ideal scenario, the frequency of ARE should decrease as the amount of ARE
increases. This model has highest frequencies at low absolute relative error (ARE 10%) and
lowest frequencies at high absolute relative error (ARE > 15%). Accordingly, the proposed
model has an acceptable error distribution. As a result of errors, it is possible to conclude
that the proposed model can serve as an excellent design guide for future research projects.

4.3. Building of Stress-Strain Relationship Model

The suggested model was evaluated using a dataset including six testing samples
(20% of the entire dataset), which was obtained from a secondary source. These facts were
not taken into consideration during the optimization procedure. Comparing stress strength
capacity from observed data with that predicted by the suggested model in Figure 14
demonstrates this model’s accuracy can be relied upon. The proposed model yielded a
value that was quite near to one standard deviation above the mean (1.03). Figure 14
shows that the R-value is 0.9997, which implies that the actual and anticipated strength
capacities are in good agreement with one another. This data shows that the proposed
model accurately predicts concrete’s strength capacity when varying fiber proportions are
taken into consideration.

Moreover, Golbraikh and Tropsha [47] proposed a new criterion for determining the
external validity of the PSO model, which they believe is more reliable. It is suggested that
at least one slope of regression lines According to this criterion, it is recommended that
at least one regression line’s slope (k or ḱ) across the origin be close to one in accordance
with this criterion. Since Roy and Roy [48] made their proposal, a new indicator of model
predictability has emerged (Rm). The requirement is satisfied in the case of Rm = 40.5. The
squared correlation coefficient (through the origin) between the predicted and experimental
values, or the correlation coefficient between experimental and predicted values, R2

o . Table 7
lists the validation criteria that were taken into consideration, as well as the relevant results
acquired by the model. According to these findings, the generated model is sufficiently
and precisely satisfying the conditions that have been established.
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Figure 14. Taylor diagrams of predicted versus observed standardized stress capacity using the PSO
model (for 20% of the data).

Table 7. The PSO model’s statistical parameters for verification.

No. Expression Limitation Model Suggestion

1 R =
∑n

i=1(PDAi−PDAi)(PDEi−PDEi)√
∑n

i=1(PDAi−PDAi)
2

∑n
i=1(PDEi−PDEi)

2
R > 0.8 0.9997

2 k = ∑n
i=1(PDAi×PDEi)

PDAi
2 0.85 < k < 1.15 1.0010

3 ḱ = ∑n
i=1(PDAi×PDEi)

PDEi
2 0.85 < k′ < 1.15 0.9989

4 Rm = R2 ×
(

1−
√∣∣R2 − R2

o
∣∣) Rm > 0.5 0.7584

where, R2
o = 1− ∑n

i=1(PDEi−PDAo
i )

2

(PDEi−PDEi)
2 , PDAo

i = k× PDEi

5. Modeling of Hybrid Fiber-Reinforced Concrete Elements
5.1. Modeling of the Structural Elements

The main purpose of this section is to further validate the newly suggested stress-strain
expression (Equation (12)) that developed earlier in Section 4.2, where we demonstrate
that the nonlinear finite element (FE) technique could be used to simulate the structural
behavior of fiber-reinforced concrete elements using the ABAQUS software. Therefore, a
total of 10 structural elements have been selected to exam the model (Equation (12)) of
the stress-strain relationship of the HFRC, included five plain cubes tested in the current
research and five specimens of RC columns that were tested in [49]. The typical structural
geometry and boundary conditions of the selected structural elements are presented in
Figure 15 for both models of cubes (150 mm) and RC columns (150 mm × 150 mm ×
1200 mm).
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Figure 15. Typical boundary conditions of the suggested 3D FE models. (a) Cube model. (b) RC
column model.

5.2. Model Description

There are a variety of elements in the ABAQUS software library that can be used to
represent the concrete and steel bars that have been used in several investigations [50–54],
as example. In this study, the solid element type C3D8R has been adopted for the concrete
part in both of the cubes and RC columns models, since this element has 8-node linear
brick, reduced integration with six degrees of freedom at each node. A truss element
type T3D2 was selected for the steel bars of the RC columns models. The typical bonding
behavior between the concrete and the steel bars of the RC columns was implemented
using the “embedded region” option that is available in the ABAQUS software. Downward
displacement option was applied at the top face of the models which increased gradually
during the analyses representing the actual loading test scenario that applied on the
corresponding specimens (see Figure 15). Dynamic-explicit step was used for the analyzed
FE models to achieve the best concrete performance.

5.3. Materials Constitutive Models

As a brittle material, concrete is susceptible to two types of failure mechanisms:
crushing under compression stress and cracking under tension stress, which often occurs
in the plastic range. To a certain extent, however, concrete is considered an isotropic
material in the elastic range. The elastic-isotropic function in the ABAQUS software was
used to identify the concrete model’s modulus of elasticity (Ec) and Poisson’s ratio (0.2).
Meanwhile, to implementing the actual concrete performance at the plastic range for
these FE models, two different stress-strain constitutive models were adopted for the
concrete under compression and tension stresses using the concrete damage plasticity
(CDP) option [50–54].

In general, for implementing the concrete model at the plastic range, the values of
dilation angle, eccentricity, stress ratio, shape factor (K), and viscosity parameters have been
taken equal to 40, 0.1, 1.16, 0.667, and 0.0, respectively. The newly developed analytical
expression (Equation (12)) was used for the concrete compressive behaviour to estimate the
stress-strain relationships for the hybrid fiber-reinforced concrete. While, for the concrete
tension behavior, the same constitutive model adopted earlier by Al Zand et al. [50]
for estimating the concrete stress-strain relationships were used, which are expressed
as follows:

εcr = fto/Ec (14)
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ft = Ec·εt for εt ≤ εcr (15)

ft = fto·(εcr/εt)
0.8 for εt < εcr (16)

where Ec is the elastic modulus of concrete; ft and fto are the concrete tensile strength, and
the cracking failure (0.31(0.8 fcu)

1/2), respectively. The fc and fcu are the cubic compressive
strength and the ultimate cubic compressive strength of concrete, respectively. The εt
and εcr are the strains of concrete at relevant tensile stress ( ft) and cracking strain at fto,
respectively. The CDP of the concrete model under compression and tension stresses are
illustrated in Figure 16, where their damage parameters (dc and dt) and the related inelastic
and cracking stains (εin and εck) are estimated as follows:

dc = 1− fc/ fcu (17)

dt = 1− ft/ fto (18)

εin = εc − fc/Ec (19)

εck = εt − ft/Ec (20)

Figure 16. The CDP of concrete FE model. (a) Under compression stresses. (b) under tension stresses.

Both the steel bars’ elastic modulus and Poisson’s ratio as well as their yield strengths
were determined in the elastic-isotropic option, whereas their plastic-isotropic (related
plastic strain) were identified. Stress-strain models similar to those used in [49] were
employed in this work.

5.4. Validate the FE Models

The selected mixtures from the current study to modeling the FE cubes are Mix-1,
Mix-17, Mix-22, Mix 26, and Mix-28, which achieved fcu values equal to 55.8, 75.4, 86.5,
100.5 and 118.3 MPa, respectively (see the above Table 3 and Figure 7). Due to the FE
analyses study, the related cubes models achieved very close fcu values as compared in
Figure 17, where the FE analyses showed slightly overestimated the actual tested values
with acceptable deviations of about 6% (estimated from the average results of all five cube
models). The actual crushed concrete behavior under the compression test once reached
the ultimate mixture strength has been simulated accurately in the currently analyzed FE
cubes model, as presented in Figure 18 for the model with mix-17 as an example.
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Figure 17. Compression of the cubes ultimate compression strengths.

Figure 18. The failure mode of the FE cube model (Mix-17).

Furthermore, five hybrid-fiber reinforced concrete columns tested in [49] were selected
to verify the newly developed analytical concrete stress-strain model. The cross-sectional
details of HFRCs are depicted in Figure 19, which is representing the same details given
in [49]. Particularly, current FE columns models are prepared to simulating the tested
columns with sample labels HC0.7–0.1, HC0.8–0.3, HC0.8–0.7, HC1.0–0.3, and HC1.0–0.9
which achieved fcu values equal to 34.38 MPa, 37.81 MPa, 32.05 MPa, 35.17 MPa, and
29.74 MPa respectively, as given in [49]. The FE analyses showed that the HFRC columns
models achieved slightly higher ultimate loading capacity values compared to the related
tested specimens in [50], as presented in Figure 20. This deviation could be occurred
due to the idealistic behavior that usually behaved by the numerical elements of the FE
model compared to the actual elements of the experimental specimen’s components [49].
Generally, the overall standard deviations obtained from the comparisons between the
FE column results and the corresponding tested columns are equal to 2.7%, which was
estimated from the average values of ultimate loading capacities of the FE models to the
tested specimens. In addition, the failure modes that achieved numerically for the analyzed
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columns are fairly matched to the actual crushed failures of the corresponding tested
columns (HC1.0–0.9), as shown in Figure 21.

Figure 19. Cross-sectional details of RC columns specimens.

Figure 20. Compression of the ultimate axial load capacity of HFRC columns.
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Figure 21. The failure mode of the FE HFRC model HC1.0–0.9.

6. Conclusions

This work developed a stress-strain curves for hybrid fiber reinforced concrete (HFRC)
in compression with varying fiber content. This study is limited to two fibre types:
polyvinyl alcohol and hocked-end steel fibers. The suggested stress-strain relationship
model was developed and validated using a dataset containing 30 HFRC mixtures. The
CoV, the mean, and the correlation coefficient (R) values of 12.67%, 0.963, and 0.9997, re-
spectively, were found in the statistical analysis, confirming the model’s excellent predictive
accuracy and consistency, so it is possible to precisely predict concretes’ stress and strain
capacity by using a proposed model that incorporates polyvinyl alcohol and hocked-end
steel fibers.

The PSO technique was discovered to be a highly useful instrument for predicting
stress-strain problems and providing an optimum solution for estimating stress capacity
values utilizing a variety of parameters with a tolerable degree of precision. The devel-
opment approach entails the collection of 30 HFRC curves. High-strength concrete with
a compressive strength between 40 and 120 MPa can be estimated using the proposed
stress-strain model. The proposed model has the highest ARE frequency (ARE 10%) and
the lowest ARE frequency (ARE > 15%). Carreira and Chu’s model has been modified
to incorporate two distinct fibers. The updated equation’s critical parameters have been
empirically determined as a function of concrete strength.

The results display that, increases in the hocked steel fiber content up to a particular
level, with a constant polyvinyl alcohol fiber amount, lead to increases in the stress capacity
values. The established model can be utilized for practical predesign purposes because
it is produced from testing on mixes with a wide variety of material components and
attributes. The adequacy of modeling the structural elements that have varied contains
fibers (one or more) have been achieved through a valid compression with the results
of their corresponding tested specimens, confirming that the hybrid-reinforced concrete
mixtures can be simulated adequately using the proper FE analysis software, opening the
gate to further investigations of numerical analyses in this field.
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