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THE BEHAVIOR OF I N V E R T E D  P E N D U L U M  S T R U C T U R E S  D U RIN G  

E A R T H Q U A K E S  

BY GEORGE W. HOUSNER 

ABSTRACT 

During the Chilean earthquakes of May, 1960, a number of tall, slender structures survived 
the ground shaking whereas more stable appearing structures were severely damaged. An 
analysis is made of the rocking motion of structures of inverted pendulum type. It is shown 
that there is a scale effect which makes tall slender structures more stable against overturning 
than might have been expected, and, therefore, the survival of such structures during earth- 
quakes is not surprising. 

INTRODUCTION 

During the Chilean earthquakes of May, 1960, several golf-ball-on-a-tee types of 
elevated water tanks survived the ground shaking despite the appearance of in- 
stability, as described in a companion paper by W. 14. Cloud. On the other hand, 
much more stable-appearing reinforced-concrete, elevated water tanks were se- 
verely damaged as described in a companion paper by K. V. Steinbrugge and R. 
Flores. It is clear that, in this case, the concept of representing the effect of an earth- 
quake by a certain static lateral force (percent g design) may be quite misleading. 
It is not uncommon for building codes to specify that elevated water tanks should 
be designed for 10 per cent g and, judged from this point of view, the golf-ball tank 
appears to be in danger from earthquakes whereas the strength and proportions of 
the concrete tank would be reassuring as to its ability to survive earthquakes. 
Other unstable types of structures have also survived strong earthquakes. During 
the Arvin-Tehachapi earthquake in California (July 21, 1952) a number of tall, 
slender, petroleum-cracking towers stretched their anchor bolts and rocked back 
and forth on their foundations. 1 In some Indian cities, free-standing stone columns 
that  supported heavy statues remained standing although at the end of the earth- 
quake they were surrounded by  heaps of debris that  had been more stable struc- 
tures. Tall, slender stone pillars in graveyards have also survived strong ground 
motions. On the other hand, it has sometimes happened that  box-like electric power 
transformers have rocked and overturned. Some light is thrown on this anomalous 
behavior by an analysis of the dynamics of a rigid block that  is resting upon a rigid, 
horizontal base and is excited into rocking motion. I t  will be seen that  the vibrational 
characteristics of this type of structure are markedly different from those of a lin- 
early elastic structure. 

FREE VIBRATIONS 

The rigid block shown in fig, 1 will oscillate about the centers of rotation 0 and 
0' when it is set to rocking. I t  is assumed that  the coefficient of friction is suffi- 
ciently large so that  there will be no sliding between the block and the base. The 
significant properties of the block are its weight, W, its moment of inertia, I0, about 

1 Housner, G. W., "Limit Design of Structures to Resist Earthquakes," Proceedings of the 
1956 World Conference on Earthquake Engineering, Earthquake Engineering Research Institute, 
1956. 
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the point 0, and the location of the center of gravity a distance h above the base 
and a distance b from the side of the block. As shown in fig. 1, the radial distance 
from the center of rotation 0 to the center of gravity is R = V ~  + b 2. When 
the block is at rest, the line R makes an angle a with the vertical. The tilting of the 
block from the vertical is measured by the angle 0. b!b 

0' 0 
FI~.  1. A rock ing  block.  

When the block is rotated through an angle 0, the weight of the block will exert 
a restoring moment WR sin (a - 0). The equation of motion is then 

d20 
Io - W R  sin (a - 0) ( 1 ) 

dt  2 

For tall, slender blocks having the angle a less than about 20 ° the sine of the angle 
may be approximated by the angle and equation (1) may be written 

[o 0 - W R O  = - W R o e  

This equation describes the free vibration of the block. Setting W R / I o  = p~, the 
equation becomes 

- p20 = -p2oe  

This equation, subject to the conditions 0 = 00 and 0 = 0 at t = 0 which represent 
the block released from rest with initial displacement 00, has the solution: 

0 = a - ( a  -- 00) cosh p t  (2) 

Equation (2) describes the rotation of the block about the point 0 as it falls back 
into the vertical position. The block will then tilt about the point 0', and if there is 
negligible energy loss during impact, the block will rotate through an angle 0 = 
-00 .  The block will then fall back again to the vertical position and will rise about 
point 0 until 0 is again equal to 00. At this instant, one complete cycle will have been 
completed. The time, T, required to complete this cycle is the period of free vibra- 
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tion. The block will fall from 0 = 00 to 0 = 0 in a time t = T / 4  and at this instant 
equation (2) becomes 

T 
0 = c ~ -  (c~-Oo) coshp~- 

or  

eosh p T  _ 1 
4 1 - 00/a 
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FIG. 2. Period T of block rocking with amplitude 00. 

Equation (3) expresses the period T in terms of p and 00/a 

T = 4 c o s h - ~ (  1 ) _  p i ---04~ (3) 

A graph of this equation is shown in fig. 2 where it is seen that the period is strongly 
dependent upon the amplitude ratio 00/a. When 00/a is close to unity the period is 
long, and when 00/a is close to zero the period is short. 

During the rocking of a real block there would be, of course, a dissipation of energy 
when the block impacted on the base. Thus, once during each half-cycle there would 
be an increment decrease in the energy of vibration. Consequently, the period of 
each half-cycle would be longer than that which preceded it. If the impact is as- 
sumed to be inelastic (no bouncing), the rotation continues smoothly about the point 
0' and the moment of momentum about 01 is conserved. The reduction in kinetic 
energy during impact is 
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Equat ing the moment  of momentum about  0 / immediately before impact  to tha t  
immediately after impact  gives 

Io 61 - 2tuRbO1 sin a = I0 t~2 (4) 

This gives for the reduction of energy by  the impact  

[ m R  2 ;5 
r = 1 - I-/0- (1 - cos 2a) 

For slender blocks this relation may  be writ ten 

2mR2a 2 
X / r =  1 

Io 

(.;sing the notation ~ = 0/a;  ~0 = 00/a, the displacement and velocity of the block 
m a y  be writ ten 

= 1 - ( 1  - ~0) coshp t  

-- - ( 1  - ~o)p sinh pt 

At the instant  of the n-th impact  (~ = 0, t = t~) 

1 
cosh pt~ - 

1 - ~ - 1  
and 

sinh 2 ptn = (i 1 ~2 1 

U s i n g  this relation, the impact  velocity may  be written: 

*n  = - - p  V ~  - - ( 1  - -  ~ _ 1 )  ~ (5 )  

where ~. is the amplitude following the n-th impact.  The kinetic energy just after 
impact  is reduced to r times the energy just before impact. The velocity is therefore 
reduced to x / r  times the velocity before impact.  This condition may  be written 

- p x / 1  - (1 - ~)2  = _ p v / ~ -  V/1 _ ( 1  -- (~n_l) 2 (6) 

This equation can be written 

1 - -  (1 - -  ~ ) 2  = r[1 - -  (1  - -  ~ _ ~ ) 2 ]  

and, as this recurrence relation implies, 

1 - ( 1  - = rr [1 - -  ( 1  - -  

Solving this for ~ gives 

~ = 1 -- %/1 - - r , [1  -- (1 - -~0)  ~] 

A graph of this equation for r = 0.7 is presented in fig. 3 where the decrease in 
ampli tude for successive n is shown for several values of the initial displacement. 
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It  is seen that for large amplitudes the energy of vibration decreases rapidly but 
for small oscillations the energy decreases slowly. 

I t  follows from equations (3) and (6) that the successive half periods of vibra- 
tion during the free rocking are given by 

T - 2 ~ ° R t a n h - 1 % / r ~ [ l -  ( 1 - ~ o ) 2  ] 
2 

According to the foregoing analysis the free rocking of a block proceeds as follows. 
At first there will be a few oscillations of large amplitude and slow rocking. The 
amplitude decreases markedly with each impact and corresponding with this there 
is an increase in frequency of oscillation to an infinite value. Actually, a freely 
rocking block does not make a truly inelastic impact, but there is a slight bouncing 
and sliding involved. This is another source of energy absorption and under favor- 
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FIG. 3. Amplitude ~ subsequent to n- th  impact.  

able conditions the block makes only some eight or ten impacts before being brought 
to rest. 

OVERTURNING B~ CONSTANT ACCELERATION 

If the block is resting on a base which is suddenly given a constant acceleration 
a lasting for a time tl the block may or may not overturn, depending upon the 
magnitude of a and the duration of tl. For small angles of oscillation the effect of 
the acceleration is the same as if a force Wa/g were acting horizontally through 
the center of gravity of the block and thus the equation of motion is: 

[o 0 -  WRO = WRa/g -- WRa (7) 

I t  is seen from this equation that a necessary condition for motion to be initiated is 
that a/g > a, which specifies the fraction of g acceleration required to begin tilting 
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the block. The solution of equation (7), subject to the conditions that  at  t = 0 
both the velocity and displacement are zero is 

O - ( g - 1 )  ( cosh pt - 1) 
( x  

I t  is seen that  if a/g > ~  and if the acceleration acts for a sufficient length of time, 
the block will overturn. I t  is not necessary, however, for the base acceleration to 
act continuously in order to overturn the block. For each value of a there is a time 
tl during which the acceleration can generate a velocity sufficient to overturn the 
block. 

The condition for overturning is that  the total work done by the inertial force 
Wa/g  is just equal to the difference in potential energy between positions 0 = 
and 0 = 0. This condition may be written 

o t' RW(a/g)O dt = W R ( 1  - cos a) (8) 

Carrying out the integration and approximating (1 - cos a) by a~/2, equation 
(8) becomes 

a a2 
g - - ~  ( c o s h p t l -  1) - 2 

If this equation is solved for cosh pt l ,  there is obtained 

cosh h = 1 + (9) 

Figure 4 is a graph of this equation giving the duration, t , ,  of ground acceleration a 
required to overturn the block. 

The foregoing analysis is not realistic for earthquake ground motions since it 
assumes constant ground accelerations of finite duration followed by a constant 
velocity of the ground. This type of ground motion does not occur during earth- 
quakes and hence it is not meaningful to discuss the overturning of blocks in terms 
of percent g acceleration. 

OVERTURNING BY SINUSOIDAL ACCELERATION 

The accelerograms recorded during earthquakes show certain maximum peaks 
whose shapes can be approximated closely by one loop of a sine wave. The question 
then arises as to the amplitude and period of a half sine-wave acceleration pulse 
that will suffice to overturn the block. 

If the base is given a sinusoidal acceleration, the equation of motion is 

Io0 = - W R  sin (~ -- O) + W R  a_ sin (~t + ~b) 
g 
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In this equation the ground acceleration has been expressed by 

- a  sin (~t + ~b) 

where a is the amplitude of the acceleration and ¢ is defined by the condition 

a sin ¢ = g sin a 

This insures that  at time t = 0 the base acceleration will have reached the value 
required to initiate rocking of the block. For small angles, and setting W R / I o  = 

p2, the equation may be written: 

Isin (~t -4- tP) 11 
- P20 = aP~ sin 
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FIG. 4. C o n s t a n t  acce le ra t ion  a of du ra t i on  tl r equ i red  for  ove r tu rn ing .  

The solution of this equation, subject to the conditions 0 = 0, 0 = 0 at t = 0, is 

a 1-1- 

where 

sin ~ -- g a / a ;  cos ¢ = %/1 -- ( g a / a )  2 

The condition for overturning is tha t  0 = a at time t = (~ - ~)/~. This insures 
that  8 will reach the value a at the instant tha t  the ground acceleration has com- 
pleted its first half-cycle and has the value zero. 
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Substituting in equation (10) and rearranging terms gives: 

t a n  = t a n h  - (11) 
co L¢o d 

and this equation specifies the amplitude and frequency of the sinusoidal accelera- 
tion pulse required to iust overturn the block. Under the conditions of the problem 
tanh p/~o(Tr - ~) may be approximated by unity and hence equation (11) may be 
written 

tan @ - p ( l l ) a  
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FIG. 5. S inuso ida l  acce l e r a t i on  pu l se  a s in  cot r e q u i r e d  for  o v e r t u r n i n g .  

Making use of equation (10) and rearranging terms, equation (11)a can be put in 
the form 

a _ 1 + ( 1 2 )  
ga 

o r  

a _ ~ / /1  + I0 [27ry 

where Tg is the period of the ground acceleration. This relation was first derived by 
Kirkpatrick 2 and it expresses the conditions under which a single sine pulse will 
overturn the block. As may be verified, this is a minimum condition as it insures 
t h a t 0  = 0 w h e n 0  = a. 

A graph of equation (12) is presented in fig. 5 for small values of ~o/p For large 
values of w/p, say o~/p > 3, equation (12) can be represented by 

a 
- ( 1 2 ) b  

ga p 

2 Nirkpatrick, P., "Seismic Measurements by the Overthrow of Columns," Bull. of the 
Seism. Soe. of Amer., Vol. 17, No. 2, 1927. 
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o r  

a Jr 

ga 2-T° ~WRIo 

As an example, a rectangular block such as shown in fig. 1 has 

and hence equation (12)b can be written 

a _ A~-- Rc°~ 
ga ' ] / 3  g 

o r  

o r  

- a Rg 
0.) 

a T g - a ' 2 j r ~ 3 R g 2  

where T~ is the period of the pulse. If we consider all blocks that have a given length 
of diagonal, 2R, the equation may be written 

aT~ _ Ka 
2 

where K is a constant. I t  is thus seen that the product of the amplitude of the 
acceleration pulse by its duration must be proportional to the slenderness angle 
a for a given R. 

OVERTURNING BY EARTHQUAKE MOTION 

The preceding paragraphs dealt with the overturning of the block by a square 
acceleration pulse and by a half sine-wave pulse and equations (9) and (12) give 
the minimum accelerations required to overturn a block by such single pulses. 
Smaller accelerations than are specified by these equations may set the block to 
rocking but will not overturn it. It is, however, possible to overturn the block with 
smaller accelerations if a number of pulses act successively. This would be the 
case of strong-motion earthquake ground acceleration, which may be thought of 
as a train of pulses which, in general, have periods that are short compared to the 
rocking periods of structures. The resulting behavior of the block is indicated by 
the following approximate analysis. 

For purposes of illustration, consider ground acceleration composed of a sequence 
of N discrete step changes ±Av in ground velocity, that are randomly distributed 
over time 0 < t < tl, and have equal probability of being positive or negative in 
sign. This represents an idealized earthquake ground motion whose average velocity 
response spectrum (undamped) is a constant. The effect of such ground motion on 
structures is the same as if the ground were at rest and impulsive inertial forces 
F~At were acting through the center of mass, where 

F~At = ±MAy (n = 1, 2 . . .  N) 
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The response of a linearly elastic structure, such as is shown in fig. 6, to the random 
succession of forces F~ is to be excited into oscillations. The effect of the n-th im- 
pulse, F,At,  is to produce a change in velocity Av, and hence to produce a change in 
kinetic energy of vibration 

A K E .  = ½ M(v~ + Av) 2 -- ½ Mv~ 2 

= M v .  (Av) -t- ½ M(Av) 2 

where v~ is the velocity of the structure at the time that F~At acts. If a large num- 
ber of such idealized earthquakes were to act upon the structure, the AKE~ would, 

~ X  

M 

FIG. 6. S imple  l inea r  s t r u c t u r e .  

in general, be different for each of the earthquakes. However, the average incre- 
ment change in energy, A K E , ,  averaged over all the earthquakes would be 

AKE~ = M v~(Av) + ½M(Av) ~ 

and since v-~, the average velocity is zero and the average Av is also zero, it follows 
that 

A K E .  = ½M(Av) ~ 

On the average, then, the total energy of vibration of undamped structures is 

E,~ = ½M(Av)2n (n = 1, 2 . . .  N )  

This represents an average building up of energy with the number of pulses and 
hence the average rate of energy input, P, is 

1 M(~v)2 N 
P = 2 t~ 

This constant power input P will cause the average amplitude of vibration to in- 
crease proportional to %/t-. 

If the structure has viscous damping, the power input, P, will build up the 
amplitude of vibration until the average rate of energy loss iust balances the input. 
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The energy loss per cycle for a linearly damped oscillator is 4~rkE, where ~ is the 
fraction of critical damping, and E is the energy of vibration. The average time rate 
of energy loss is then 4~r~ P,/T,  where T is the period of vibration. An energy balance 
for the system then is 3 

0E_ p _ 4 ~  (13) 
Ot T 

The solution of this equation is 

(v)) = ~ 1 -- exp -- t 

The average energy of vibration thus increases asymptotically to PT/47r~; 
however, for each individual earthquake the energy may be larger or smaller de- 
pending upon how the impulses happen to strike. For individual earthquakes there 
will be a certain probability distribution of E about the mean E. 

The behavior of a rocking block subjected to a series of random impulses is 
similar to that of the linearly elastic structure in that the impulses tend to build 
up the energy of vibration and hence the amplitude of the motion. However, as 
was shown in the analysis of the free vibrations, the energy dissipation of the block 
depends upon both the amplitude and frequency of rocking. In addition, if the 
amplitude of the block exceeds a limiting value the block will overturn. The effect 
of these differences are brought out by the following approximate anMysis. 

If the rocking block is subjected to the series of random pulses, the increment 
change in kinetic energy produced by F~At is 

A K E .  = ½Io (On + AO~) 2 -- ½10t~ ~ 

For slender bodies, having I / Io  ~ 1, we may write approximately 

Io AOn "~- R F ,  At 

AO,~ - RF~ At _ R M A v  

Io Io 

and hence 

AKE~ -- MR(Av)O~ + 1 ( M R )  ~ (Av)~ 
2 Io 

and the ensemble average is 

AKE,~ - 1 ( M R )  2 (Av)2 
2 Io 

If there were no energy loss during the rocking, the buildup of energy would give 
on the average 

~,~ -- AKE~ - 1 ( M R )  2 (Av)2n 
2 Io 

3 Hudson, D. E., "Response Spectrum Techniques in Engineering Seismology", Proceedings 
of the First World Conference on Earthquake Engineering, Earthquake Engineering Research 
Institute, 1956. 
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The total energy required to overturn the block is 

P E  = W R ( 1  - cos a) - 
W R o ~  2 

On the average the condition for overturning at the end of N pulses is 

o r  

W R a  2 _ 1 (MR) 2 (Av)2N 
2 2 I0 

(14) 

o~ "V [o R g  

When the idealized earthquake motion satisfies equation (15) there is a50 per cent 
probability that the ground motion will overturn the block. If a is greater than the 
quantity on the right side of equation (15) the probability of overturning is less 
than 50 per cent, and if a is smaller than this quantity the probability of over- 
turning is greater. 

If there is an energy loss during the rocking of the block, with a fraction r E  of 
the energy of vibration being lost at each impact on the base as described by equa- 
tion (5), an energy balance would require 

0;g 2rE 
- -  p - -  

Ot T 

with T, as defined by equation (4), given by 

T = 4 eosh_l 1 
P 1 0o 

og 

The potential energy of the freely rocking block is 

P E  = W R a  2 - -  

and for the forced vibration of the block the average instantaneous amplitude of 
rocking, O0, is defined by 

o r  

= W R o e  2 - -  

0 ° -  1 - -  4 / / 7  2a2/~ 
a W R  

The energy balance can then be written 

a E  _ p _ prfi-, 

2oe2 _= 
Ot 2 cosh -1 1 -- ~ / ~  (16) 
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This may be compared with equation (13) for the elastic structure. For very small 
/~, the denominator of the right side approaches a value of 2 and equation (6) has 
essentially the same form as equation (13): 

Off .  _ p _ pr__~E 

Ot 2 

On the other hand, when the amplitude of vibration approaches the unstable point 
(J~ = WR/2a 2) the denominator becomes extremely large and the last term in 
equation (16) may be neglected and the equation written 

0E - p  
Ot 

In this case the block is effectively undamped. It  is thus seen that, although the 
equivalent fraction of critical damping remains constant, as the amplitude of 
rocking increases, the rate of energy dissipation decreases strongly and this in turn 
promotes an increased amplitude of vibration. It may, therefore, be expected that 
the behavior of the rocking block could be quite variable in that relatively small 
ground motion may fortuitously build up the amplitude at the beginning of the 
ground motion and lead to overturning the block. 

EFFECT OF SLENDERNESS ON OVERTURNING 

The stability of a rocking type of structure may be estimated by comparing the 
energy input with the energy required to overturn the structure. If the energy input 
is computed from the velocity response spectrum, S~, of the earthquake ground 
motion the requirement for overturning, equation (14), is 

1WRa2 1 W MR ~ 
2 g Io 

or  

s. a /~-~ (17) 

It is seen that this has the same form as equation (15). For slender structures 
MR2/Io has a value close to unity so that equation (17) can be approximated by 

Sv 
= ~/g~ (17)a 

This equation may be interpreted as stating that for a given spectrum value S~, 
a block having an angle a given by equation (17)a will have approximately a 50 % 
probability of being overturned. The dimensions of the structure enter only through 
the length R and as equation (17)a shows, the larger the value of R the more stable 
against overturning is the block. That is, comparing two blocks of the same propor- 
tions, the larger block is more stable than the smaller. There is thus an unexpected 
scale effect which is explained by the fact that the ground motion is not scaled 



416 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 

with the block. If equations (17)a, (9), and (12)a are compared, setting M R 2 / I o  = 

1 and a = b /h ,  there is obtained for small a 

motion: b = Sv 

h 

Earthquake 

a 2h 
Square pulse: b = - 

g 1 + 1 + gtl-- 2 

a h 
Sine pulse: b -- 

g , / 1  + h (2 y 'V 

w I 

S 
FIG. 7. Golf-bal l -on-a- tee  e levated  wa te r  t ank .  

I t  is seen from these equations that  the semiwidth b required for stability does not 
increase linearly with h as physical intuition indicates, but is affected less strongly, 
or in other words, tall slender structures are more stable than might be supposed. 

GOLF-BALL WATER TANK 

Let h be the height of the center of gravity and D the diameter at the base as 
shown in fig. 7, and suppose that  the structure is rigid and is free to rock (no anchor 
bolts). For a structure of such proportions h may be taken equal to R, and I0 may 
be taken equal to M R  2. Equation (17) then becomes 

D Sv 

a - 2h - v / g h  

o r  

S~ = ~ D  
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This value of S, gives 50 per cent probability of overturning, and it is seen that  the 
result is independent of the mass; that  is, the stability is not affected by whether 
the tank is completely full or completely empty if h may be taken to be a constant. 
Experience with earthquakes in the United States indicates that  a value of Sv = 
2 ft/sec represents strong ground motion. If the tank has h = 100 ft  and D = 10 ft, 
the required Sv to give a 50 per cent probability of overturning is 

S~ = 5 /~/ ~ -- 2.Cif/see 

I t  may be concluded, therefore, that  for an Sv = 2 ft/sec, it is more likely that  the 
tank would remain standing than that  it would overturn. If the tank has anchor 
bolts that  stretch and absorb energy during the rocking, there will be even less 
probability that  the tank will overturn. I t  is, therefore, not so surprising that  some 
golf-ball tanks have remained standing during earthquakes. There is, of course, a 
certain probability that  a tank of these proportions will be overturned by a ground 
motion having Sv -- 2.0 or even less than 2.0. 

For comparison, suppose that  the tank is t ightly anchored to the foundation so 
that  it cannot rock but can only bend and that  the period of vibration is 3 seconds. 
In this case the maximum shear force generated would be 

2~ 
F = ~ MS v 

and 

F 2~ S~ 21r 2 
- - - 0 . 1 3  

W T g 3 32.2 

Thus the tank should be designed for 13 per cent g. I t  might appear from this that  
it would be advantageous to design tall slender structures to act as rocking blocks; 
however, a 50 per cent probability of survival for a rocking structure is not a satis- 
factory design. At present it is not known how to design a rocking structure to have 
specified small probability of failure. I t  may also be noted that, if the tank is partly 
full, the sloshing water introduces another mode of vibration which will affect the 
behavior of the structure. 

SVMMARY 

The free oscillations of a rocking block are analyzed and the rocking period and 
energy loss are set forth. The overturning of a block by a constant, horizontal 
acceleration, by a single sine pulse, and by an earthquake type excitation are ex- 
amined. I t  is shown that  there is an unexpected scale effect which makes the larger 
of two geometrically similar blocks more stable than the smaller block. I t  is also 
shown that  the stability of a tall slender block subjected to earthquake motion is 
much greater than would be inferred from its stability against a constant horizontal 
force. In the light of these facts, the occasional survival of a slender structure that  
is apparently highly unstable is not surprising. 
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