LOUGHBOROUGH

AUTHOR
\qquad
COPY NO.$821 / 01$
VOL NO.
CLASS MARK
ARCHIVES

TME BRYAVIOUR OF OPTIMAL

LYAPUNOV FUNCTIONS

by
Derek Nicholas Shields BSc., D.I.S. (Loughborough)

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of the Loughborough University of Technology.

October 1973

Supervisor: Prof. C. Storey,
Department of Mathematics.
(C) by D.N. Shields, 1973

Summary

The use of Lyapunov's direct method in obtaining regions of asymtotic stability of non-1inear autonomous systems is well known. This thesis is an investigation into the optimization of some function of these systems over different classes of Lyapunov functions.

In Chapter 2 bounds on the transient response of two systems are optimized over a subset of quadratic Lyapunov functions and numerical work is carried out to compare several bounds.

Zubov's equation is the subject of Chapter 3. The nonuniformity of the series-construction procedure is studied analytically and a new approach is made to the solution of the equation by finite difference methods.

Chapters 4, 5 and 6 have a common theme of optimizing the RAS over a class of Lyapunov functions. Chapter 4 is restricted to optimal quadratics which are investigated analytically and numerically, two algorithms being developed. An optimal quadratic algorithm and a RAS algorithm are proposed in Chapter 5 for high order systems. Extensions are made in Chapter 6 to optimal Lyapunov functions of general degree and relay control systems and systems of Lure' form are considered.

Acknowledgements

The author would like to thank Professor C. Storey for his guidance and encouragement in carrying out this work. His thanks are also due to the efficient work of the LUT computing centre and his wife, Greta, for typing this thesis.

Contents

page
Chapter 1. Introduction
1.1 Discussion 1
1.2 Preliminaries 2
1.3 Basic Definitions of Stability 4
1.4 The Autonomous Case 6
1.5 The Theorems of Lyapunov 7
1.6 A Practical RAS For The Autonomous Case 10
1.7 Motivation 11.
1.8 Contents of Chapters and BackgroundMaterial12
Chapter 2: Optimal Bounds on the Response of
Non-1inear Stable Systems
2.1 Introduction 19
2.2 The Optimum ? 22
2.3 The Minimum Condition Number, $\mu(P)$ 24
2.4 A Conjecture of Wiberg 25
2.5 An Optimum Class of Matrices "
2.6 Bounds on $\mu(P)$ 28
2.7 Non-uniqueness of P in Form 2.2.2 30
2.8 Numerical Optimum of the ConditionNumber 32
2.9 C in Jordan Form 35
2.10 Some Numerical Experiments 36
Chapter 3 : The Determination of Stability
Regions by Zubov's Approach
3.1 Introduction 40
3.2 The Main Theorem "
3.3 The Construction Procedure 42
3.4 An Example (Zubov) page
43
3.5 Direct Numerical Solution of The PDE 47
3.6 Numerical Examples 50
3.7 Recent Methods 52
Chapter 4 : Optimal Quadratic Lyapunov Functions58
4.2 Examples on the Determination of 60Optimal Quadratics and Simple RAS's
4.3 Numerical Determination of a RAS
and an Optimal Quadratic 72
4.4 Numerical Results 77
4.5 Optimal Quadratics for a RestrictedClass of High Order Systems82
4.6. Some Numerical Results 85
Chapter 5 : Computational Methods for Optimal
Quadratic and RAS Determination for
General Non-Iinear Systems
5.1 Introduction 104
5.2 An Optimal Quadratic Algorithm n
5.3 Numerical Results 113
5.4 A Method for Quadratic RASDetermination for High Order
Systems 114
Chapter 6 : General Optimal Lyapunov Functions
for Non-linear Systems Including
Those of Lure' Form and Relay
Control Systems
6.1 High Degree Lyapunov Functions for
Autonomous Non-linear Systems 130
Numerical Examples 133
6.2 Optimum Lyapunov Functions forRelay Control Systems139
Numerical Examples 142
The Piecewise Linear LF 144
6.3 Finite Regions of Attraction for the Problem of Lure ${ }^{\text { }}$ 148
An Optimal Quadratic for the
Infinite Sector 149
Variation of ρ with q 152
Conclusions 164
References 170
Appendix 1 176
Appendix 2 177
Appendix 3 179
Appendix 4 182
Appendix 5 185

Chaster 1

Introduction

1.1. Discussion

The classical idea of stability originated in the motion of rigid bodies in mechanics. An equilibrium was said to be stable if a body returned to its original position after a small displacement. In the last twenty years this idea of stability has been extended considerably both in depth and scope, and powerful tools now exist to treat the stability of a large number of dynamic motions or systems. The most striking development has been the direct method of Lyapunov with its many theoretical and applicative aspects. This thesis is mainly concerned with
'optimum problems' in the use of so called Iyapunov functions to find estimates of transient response and of the domain of attraction of nonlinear autonomous differential equations.

1.2 Preliminaries

In what follows the usual notations for vectors and matrices in n-dimensional Euclidean space will apply throughout (See (14)).

Elements of E^{n} will be denoted by X, Y etc. and will be treated as column vectors, although written as rows in long hand i.e.

$$
\underline{x}=\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right)
$$

$\|\cdot\|$ is the Euclidean norm defined as

$$
\left\|x_{i}^{2}\right\|^{2}=x^{2} \underline{x}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}
$$

The elements of matrices A, B etc. will be denoted by $a_{i, j}$ and $b_{i, j}$ respectively. E^{n} may also be called the statespace or phase space depending upon the nature of x. For $n=2$ we may write $x=(x, y)$.

We will be concerned with the vector differential equation

$$
\dot{x}=\frac{d \underline{x}}{d t}=\underline{f}(\underline{x}, t)
$$

where $x \in E^{n} ; t$ is an independent parameter, usually the time; and $£ \in E^{n}$, whose components $f_{i}(\underline{x}, t)$ are functions of x_{i} and t (specifically $£$ is the map $\mathrm{f}: \mathrm{E}^{\mathrm{n}} \times \mathrm{R} \rightarrow \mathrm{E}^{\mathrm{n}}, \mathrm{R}$ the real line).

The form of 1.1 .1 is quite general and it can be considered as a systen of n first order equations. The important $n t h$ order scaiar equation,

$$
\left.y^{(n)}=x^{(n-1)}, y^{(n-2)}, \cdots, y^{(1)}, y, t\right)
$$

where

$$
y^{2}(n)=\frac{d^{n} y}{d t^{n}}
$$

is reducible to this form by defining

$$
\begin{aligned}
& x_{1}=y \\
& \dot{x}_{1}=x_{2} \\
& \ddot{x}_{2}=x_{3} \\
& \dot{x}_{n-1}=x_{n} \\
& \dot{x}_{n}=f^{\prime}\left(x_{n}, x_{n-1}, \cdots, x_{1}, t\right)
\end{aligned}
$$

If f in 1.1 .1 is independent of t we have

$$
\underline{\underline{x}}=\underline{\underline{f}}(\underline{x})
$$

an autonornous system with special properties (Ṣee later or Zubov (1)).

If the right hand side of 1.1 .1 is continuous and the existence and uniqueness of solutions is assured together with their continuous dependence on initial values, $£$ will be said to be of class $\mathbb{E}, f \in E$. Let $\left(x_{0}, t_{0}\right)$ be the initial values and let $f \in \mathbb{E}$, then define $\underline{z}\left(t, x_{Q}, t_{0}\right)$ as the solution of 1.1 .1 , i.e.

$$
\frac{d z}{d t}\left(t, \underline{x}_{0}, t_{0}\right)=\underline{f}\left(\underline{z}\left(t, \underline{x}_{0}, t_{0}\right), t\right) \quad 1.2 .4
$$

with z $\left(t_{0}, x_{0}, t_{0}\right)=x_{0}$
The singular or equilibrium points of 1.1 .1 are the constant solutions $\underset{Z}{ }\left(t, \underline{X} 0, t_{0}\right)=\underline{x} 0$ or, equivalently, the solutions x satisfying $f(x, t)=0$.

By simple transition of coordinates any singular point may be brought to the origin, $\underline{x}=0$. Henceforth, we assume $\underline{f}(\underline{Q}, t)=0$ and that the origin is an isolated singular point (i.e. no other such point exists in a neighbourhood of $x=0$). Define the $(n+1)$ - dimensional space of quantities (\underline{x}, t) as the motion space, then a motion of 1.1 .1 is the continuous path formed by the set $\left(\underline{z}\left(t, \underline{x}_{0}, t_{0}\right), t\right)$. A trajectory is the projection of this path onto the phase space and a half trajectory is a trajectory defined for some $t \geqq t_{0}$ (or $t \leqq t_{0}$).

1.3. Basic Definitions of Stability in the Sense of Lyapunov

 Denote by $R(h)$ the region $R(h):\{\underline{x} /\|x\| \leq h\}$, or more generally, let the set $\left\{(\underline{x}, t) /\|x\| \leq h, t \geq t_{0}\right\}$ be denoted by $R\left(h, t_{0}\right)$. Suppose in $R\left(h, t_{0}\right)$$$
\underline{\underline{x}}=\underline{f}(\underline{x}, t) \quad(\underline{f}(\underline{0}, t)=0, \underline{E}) \quad \text { 1.3.2. }
$$

Then two definitions are basic to Lyapunov's direct method: Def. 1.3.1

The origin of the differential equation (doe.) 1.3.2. is said to be stable if there exists for any $\epsilon>0$ a number סyosuch that.

$$
\|\underline{x} ㅇ\|<\delta
$$

implies
$\left\|\underline{Z}\left(t, \underline{X}_{0}, t_{0}\right)\right\|<\epsilon, \forall t \geq t_{0}$

Def. 1.3.2

The origin of the d.e. 1.3 .2 is said to be asymptotically stable (a.s.) if it is stable and there exists a. δ_{0} such that for

$$
\|\underline{x} 0\|<\delta_{0} \quad, \quad \delta_{0}>0
$$

follows

$$
\lim _{t \rightarrow \infty}\left(t, \underline{x} 0, t_{0}\right)=0 \quad 1.3 .3
$$

If 1.3.3 holds for all $\mathrm{x}_{\mathrm{O}} \in \mathrm{E}^{\mathrm{n}}$ in Def. 1.3.2 the origin is said to be a.s. in the whole. Further definitions are given in Lefshetz (14), Zubov (1) etc., including instability definitions. Good critical treatments of these and other definitions are given in Hahn (15) and Lehnigk (17).

Finally, the domain of attraction (DOA) of an
a.s. system 1.3 .2 is the set U defined by

$$
u\left(t_{0}\right)=\left\{x_{0} / \lim _{t \rightarrow \infty}^{z}\left(t_{\infty} \underline{x}_{0}, t_{0}\right)=0\right\} \quad \text { 1.3.4. }
$$

For the autonomous cased is independent of t_{0}. 1.4. The Autonomous Case

The main system in the following chapters is system 1.2 .3 namely,

$$
\dot{\underline{x}}=\underline{f}(\underline{x}) \quad(\underline{f}(0)=0, \underline{f} \in \mathbb{D}) \quad 1.4 .1
$$

Two forms of 1.4.1, one particular and one general, are the following:
a) the linear system.

$$
\underline{x}=A \underline{x}
$$

$$
1.4 .2 .
$$

where A is an $n x$ matrix wich is said to be stable if its eigenvalues, $\lambda_{i}, i=1, n$, have negative real parts. The system is callea siznificant if $\operatorname{Re}\left(\lambda_{i}\right) \neq 0$
b) The system

$$
\dot{x}=A \underline{x}+g(\underline{x})=\underline{I}(\underline{x})
$$

$$
1.4 .3
$$

where $g(\underline{x})$ possesses a convergent pover series expansion about the origin whose terms are of degree two and greater. Here, A x is calied the first approximation or linear part of 1.4.3. A can be regarded as the Jacobian of f at $\underline{x}=0$,

$$
A=\frac{\partial f(\underline{x})}{\partial \underline{x}} \left\lvert\, \underline{x}=0 \quad=\left\{\left.\frac{\partial f_{f}}{\partial x_{j}^{t}} \right\rvert\, \underline{x}=0\right\}\right. \text { 1.4.4. }
$$

1.5. The Theorems of Lyapunov

The second method of Lyapunov attempts to determine the ataioility of the equilibrium without prior kno:iledge of the solutions of differential equations. It introduces the idea of a certain function called a Lyapunov function which possesses properties analogous to those of the total energy of a dissipative dynamic systen. The energy in the latter is positive and non-increasinc near a stable equilibrium. Formally, let $V(x)$ be a continuous scalar function defined in some region $R(h)$ and possessing continuous first partial derivatives. Then the following definitions and theorems are pertinent to the autonomous system 1.4.1 (See Hahn (15) for general case of system 1.3.2)

Def. 1.5.1.
The function $V(\underline{x})$ is positive (negative) definite if in some region $R\left(h_{1}\right)$,

$$
\begin{aligned}
& V(\underline{x})>0 .(<0) \text { and } V(\underline{0})=0 . \text { If } \\
& V(\underline{x}) \geq 0 \quad(\leq 0) \text { and } V(\underline{0})=0 . \text { it is }
\end{aligned}
$$

positive (negative) semi-derinite.
$V(x)$ is called strictly nositive definitc if
$V(\underline{x})>0$ for $x \in E^{n}, x \neq 0$; and radialily
unpounded if $\quad\|x\| \rightarrow \infty$ implies. $V(\underline{x}) \rightarrow \infty$. If in sone $R(h), V(x)$ is positive definite and its total derivative \dot{V}, where $\dot{V}=\nabla V^{\top} \underline{f}^{\prime}(\underline{x})=\sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} f_{i}(\underline{x})$,
is negative semi-definite, it is called a Lyapunov function (LF) for system 1.1.1.

Theorem 1.5.1.
The equilibrium of system 1.4.1. is
(a) stable if there exists a Lyapunov function and
(b) a.s. if $V(\underline{x})$ is positive definite and \dot{V} is negative definite with respect to 1.4.1.

Theorer 1.5.2. (Barbasinin(18))
The equilibrium of 1.4 .1 is a.s. if
(a) $V(x)$ is positive definite and
(b) \dot{V} is negative semi-definite and does not venish identically on any non-trivial trajectory of 1.4.1. These two theorems are purely local in character and give little information as to the size of the actual stability regions. In this respect the following theorem is of great practical importance.

Theorem 1.5.3. (Lefshetz (14))
Trajectories of 1.4 .1 which start from a region
D containing the origin will be a.s. if there exists a function $V(\underline{x})$ with the properties:
(a) $V(\underline{x})$ is positive def. in D,
(b) $\dot{\mathrm{V}}$ with respect to system 1.4.1 is at least nez. semi-definite,
(c) $\dot{V}(x) \neq 0$ on any trajectory of 1.4 .1 in D excent $x=0$,

* (An a.s. trajectory is one originating from some initial $\underline{x}_{0} \in D$, an RAS)
(d) $\nabla V(\underline{x}) \neq 0$ in D except for $x=0$, (e) one of the Ievel surfaces $\mathrm{V}=$ constant bounds D . Let $V(\underline{x})=c$ be a Level surface bounding a region D, $D:\{\underline{x} / V(\underline{x})<c, c=0\}$
Henceforth, the region $I_{\max }$ bounded by the surface $V(\underline{x})=C_{\text {max }}$, where $C_{m a x}$ denotes the largest c for which proporties (a) to (e) hold, will be called the region of asymototically stability (RAS) of the a
Iyfpunov function $V(\underline{X})$ for the system 1.4.1. If this RAS is unbounded then 1.4 .1 is a.s. in the ymole.

From Theorem A1.1 we see that the level V(x) surfaces will be cjosed and hence bounded in some neighbourlood of the origin.
Theorem 1.5.4. (Linear Case)
The linear system 1.4 .2 is a.s. iff A is a stability matrix.

Theorer 1.5.5.
The origin of 1.4 .2 is a.s. iff there exists a positive definite symatric matrix P which is the unique solution of the Iyapunov matrix equation.

$$
A^{T} P+P A=-Q
$$

for any positive definite symnetric Q.
(The theorem also holds with P and $Q \quad p . d$ hermitian matrices).

Theorem 1.5.6

If the stability of the first approximation of 1.4 .3
is significant then the stability behaviour of the linear part (1.4.2) and the complete system (1.4.3) are the same.

For less restrictive conditions on $g(\underline{x})$ in 1.4.3. see Hahn (15) or Lehnigk (17). A comprehensive treatment of the matrix equation 1.5 .1 is given by Barnett (20).

1.6. A Practical 2 SS For the Autonomous Case

Let A be a stability matrex in syster. 1.4.3. Then a general class of Iyapunov functions for this syteri can be generated as follows. Let $V(\underline{x})$ be of the form

$$
V(\underline{x})=\underline{x}^{T} P \underline{x}+V_{0}(\underline{x}) \quad 1.6 .1
$$

where P is a unique solution of 1. 5.1. for some positive derinite Q and there $V_{0}(x)$ can be exparcied. as a Taylor series with terms of degree three and greater. Since

$$
\dot{V}=-\underline{x}^{T} Q \underline{x}+2 \underline{x}^{T} P \underline{g}(\underline{x})+\underline{V_{0}(\underline{x})^{T}(A \underline{x}+Z(\underline{x}))} \begin{aligned}
& 1.6 .2
\end{aligned}
$$

by the ascumptions on $Z(X)$ and V_{0} and the properties of quadratic forms, $\forall<0$ in $R(h)$ for $x \neq 0$ and h mall. We have
Theoren 1.6.1
Let E_{V} be the set

$$
E_{V}:\{\underline{X} / \forall(\underline{x})=0, \underline{x} \neq 0\} \quad 1.6 .3
$$

Then the EAS inaicated by the Iyapunov function (Iip) $V(\underline{x})$ of 1.6 .1 is siven $D y$ where

$$
D:\{x / v(x)<0 \min \} \quad 1.6 .3
$$

and where

$$
C_{\text {min }}=\operatorname{minv}(\underline{x}), \quad \underline{x} \in E_{v} \quad 1.6 .4
$$

Appendix 1 (A1) gives some useful definitions on the closed contours of Lyapunov functions.

1.7. Motivation

Two main problems are inherent in using Lyapunov methods to find regions of a.s. of autonomous differential equations,
(a) the construction of a suitable LF, (b) the determination of the RAS indicated by that LF. Many methods exist to solve (a) (see Tait (37) and

- Brockett (38) for bibliographies). Some were developed for a specific form of differential equation, others were more general. Hewit (2) has developed computer algorithms for their construction and compared their RAS's. The main motivation of this thesis has been that whereas a great deal of research has centred on constructing LF's little attention has been paid to finding the 'best' LF of a given class. Here, 'best' need not be interpreted solely in terms of the RAS but also in terms of the transient response or some other function of the system. Emphasis has therefore been placed on findine 'optimum results' where possible and in showing what properties if any, these 'optimal Lyapunov functions' possess. Some attention has been centred on finding analytic results for simple specific cases, which have given a lead to the development of numerical algorithms needed to study more complex cases.

Many authors, including Kalman and Bertram (16), Vogt (19), Zubov (1) and Wiberg (23), have used the fact that if $V(\underline{x})$ is a Lyapunov function for the autonomous system 1.4.3 (or the more general system 1.3.2) giving asymptotic stability, then minimizing the expression ($-\stackrel{\rightharpoonup}{\mathrm{V}} / \mathrm{V}$),

$$
\alpha=\min _{\underline{x} \in R(h)}(-\dot{V} / v)
$$

for some sufficiently small region $R(h)$, implies the inequality

$$
v(\underline{x}(t)) \leqslant e^{-\alpha t} v(\underline{x}(0))
$$

The quantity α^{-1} may be interpreted as the largest timeconstant over the region $R(h)$ of the phase space and is therefore a figure of merit of the system.

In Chapter 2 we extend some work of Wiberg (23) and maximize α over a sub-class of quadratic Lyapunov functions (with given $R(h)$) for the system 1.4.3 and the more general system

$$
\underline{\dot{x}}=A \underline{x}+G(\underline{x}, t) \underline{x}+\underline{u}(t) \quad(A \operatorname{stab} 1 e)
$$

An optimizing condition is found when A is in companion form (CF) with real eigenvalues and some useful bounds are proposed, the latter being tested by numerical work. Some numerical work is also conducted in determining whether some bounds of Vogt (19) are useful in locating the real parts of the eigenvalues of A.

In Chapter 3 we consider Zubov's (1) partial differential equation (PDE) for the autonomous system 1.4.3,

$$
\sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} f_{i}=-\phi(1-V)
$$

solution by the series procedure (mainly by Hewit (2), Margolis and Vogt (4), Rao and De Sarker (5), and Yu and Vongsuriya (6)) has shown that the RAS's of the high degree LF's are often inferior to those of lower degree. No analytic study of this non-uniformity has yet been attempted.

In the first part of this chapter a system showing this non-uniformity is investigated analytically and an important question emerges concerning the ragion of convergence of the series-J.yapunov function. In the second part we look at an alternative vay of solving the PDE by finite-difference methods. By using polar co-ordinates an initial value problem results and solution by a Crank-Nicholson-type difference scheme is possible. Numerical examples show that the solution breaks down near the DOA boundary. Some other methods are also considered.

Chapters 4, 5 and 6 have a common theme in that for the system of the form 1.4 .3 , and also for relay systems in chapter 6, the problem of maximizing the RAS over a class of Lyapunov functions is considered. The stated problem is

```
\(\max _{a} p(a), \quad \underline{a} \in C \quad 1.8 .1\)
```

where C is a parameter class determining the LF and ρ (a) is a measure of the size of the RAS

$$
v(\underline{x}, \underline{a})<v_{m}(\underline{a}) \quad 1.8 .2
$$

where

$$
v_{m}(\underline{a})=\min _{\underline{x}} V(\underline{x}, a) \quad 1.8 .3
$$

subject to

$$
\dot{\mathrm{v}}(\underline{x}, \underline{a})=0, \underline{x} \neq 0 \quad 1.8 .4
$$

The main difficulty is the RAS determination of finding V_{m} in 1.8.2. Research on the subject is divided into two main camps of either treating 1.8 .3 analytically as an equality-constrained optimization problem, or geonetrically, as a tangency between two hypersurfaces, $V(\underline{x}, \underline{a})=V_{m}(\underline{a})$ and $\dot{V}(\underline{x}, \underline{a})=0$. Rodden (3) gave a method for the latter which Hewit (2) has improved and applied to some second order systems. Hewit (2) has used the method to optimize the average radius of the RAS for a number of LF's determined by his construction procedures for the methods of Zubov, Szegö, Ingwerson and Krasovski.

Advocates of the equality-optimization approach have. been in the main Szegö (52), Geiss (50, 51), Julich (57), Muddle (58) and Lapidus and Berger (49). They all use the penalty function method. For instance, Geiss, Julich and Szegö use either

$$
F_{1}=V+K \dot{v}^{2} /\|x\|^{2}
$$

or

$$
\mathrm{F}_{2}=\mathrm{V}+K \dot{\mathrm{~V}}^{2}
$$

and for increasing K minimize F_{1} or F_{2} via some powerful minimization technique such as Davidon -Fletcher-Powell (60), thus reducing 1.8 .3 to a sequence of unconstrained minimizations which hopefully converge to the constrained minima (Fiacco and McCormick (59) discuss convergence). Once V has been chosen therefore, the problem is taken out of the realm of Lyapunov theory and into that of non-linear optimization where new powerful algorithms can be applied. Variations
are the choice of penalty function and the minimization method.

In Chapter 4 the class of Lyapunov functions is that of quadratics, $V=\underline{x}^{T} P$, with P determined through the matrix equation 1.5 .1 for Q p.d. Due to the complexity of the RAS determination, analytic results in aplyinc problem 1.8.1 to various systems have been scarce. Geiss (50) found an optimal quadratic for a second order Duffing equation but the example gives little insight into the nature of the problem. It is surprising that the numerical algorithms developed so far for maximizing ρ (a) for a given LF are based on little understanding of the relationship between the optimal RAS boundary, $V=V_{m}$ say, and its constraint contour, $\dot{V}=0$. (Wilson (61) gives a topological account of the V-contours but the constraint contour is not investi. gated). In Chapter 4 five systems are studied analytically as far as possible through the Lagrange equations. Although only two optimal quadratics are obtained, sufficient insight is gained on which to base a numerical investigation. An efficient and accurate algorithm is developed for RAS determination for a restricted class of second order systems, and optimal quadratics are found via Powell's (33) conjugate gradient algorithm for a number of systems. Extension to higher order systems is made. The analytic and confirming numerical results exhibit an 'equal tangency property', namely, that for many systems a subset of quadratics exist such that their RAS boundaries have at least two points of contact (not radially symmetric) with their constraint contours, $\dot{\mathrm{V}}(\underline{x})=0$.

In Chapter 5 two algorithms are proposed. The first is an optimal quadratic algorithm based on an idea of

Davidson and Kurak (47) who reduce the optimum quadratic problem to one of a constrained optimization which they solve via use of Rosenbrock's (32) method. The proposed algorithm takes into account the work of Chapters 2 and 4 and replaces Rosenbrock's hill-climber by a variation of the Complex method of Box (55). A comparison is made between the two methods for 2 second order and 4 third order systems, showing the proposed method is superior.

The second algorithm incorporates some features of the previous algorithm and determines the precise RAS for a quadratic LF via a special penalty function of Miele (62) (reference is made to one of the four authors) which is minimized by the Fletcher Powell (60) method of conjugate directions: The drawback of many penalty function methods noteably those of Julich (57) and Lapidus (49) - is that no automatic method is proposed to find the 'global' minimum. An exception is that of Geiss (50) who encloses a possible RAS boundary, $\underline{x}^{T} P_{\underline{x}}=V_{m}$, with an n-dimensional box inside which $\dot{\mathrm{V}}$ is determined at random points. However the method is time consumming. The proposed method finds the 'glogal' minimum of the penalty function automatically and has good convergence.

Chapter 6 is an extension of Chapter 4 in that the optimal properties of general Lyapunov functions are investigated. The work is divided into three sections which correspond to the three different systems considered; the ceneral autonomous system 1.4 .3 , a relay control system and a system of Lure' form.

The problem in 1.8 .1 of maximizing p (a) for a LF of degree mv

$$
V=\sum_{i=2}^{m y} v_{i} \quad\left(v_{i} \text { poly. of deg. i) } \quad 1.8 .5\right.
$$

has been considered by Szegö (52) and Hewit (2) and others. However, due to the number of independent parameters involved for a LF of degree mv $(2+(m v+5)(m v-2) / 2)$ little numerical experience has resulted, even on comparing their RAS's. Szegö (52) proposed solving the RAS problem of 1.8 .3 and 1.8 .4 via a penalty function approach using the Fletcher-Powell (60) minimization routine. He then maximizes r, the distance of the nearest point of the RAS boundary, $V=V_{m}$, to the origin, over the co-efficients of the V_{i} terms by Powell's (33) method. Disappointingly, only an optimal quadratic is obtained and that for a simple example where a global search for the minimum in 1.8 .3 is not required. In Chapter 6 the problem is investigated fully via Rodden's (3) method and Nelder and Mead (34) Simplex optimization on $\rho($ a $)$ (average radius). The 2 mth degree LF of the form

$$
\mathrm{v}_{2 \mathrm{~m}}=\prod_{\mathrm{k}=1}^{\mathrm{m}} \underline{x}^{T} \mathrm{P}_{\mathrm{k}} \underline{x}
$$

is also considered. The optimal RAS's are compared and a multiple tangency phenomenon is exhibited for a number of second order systems.

In the following section we extend some work of Weissenberger $(48,66)$ for the relay system

$$
\dot{x}=A \underline{x}+b \operatorname{sen} \sigma, \quad \sigma=\underline{a}^{T} \underline{x}
$$

who showed that under certain conditions LF's of the forms:

$$
\text { a) } v=\underline{x}^{T} P \underline{x}+\left|\underline{d}^{T} \underline{x}\right|
$$

and

$$
\text { b) } v=\sum_{i=1}^{m}\left|c_{i}^{T} x\right|
$$

could be used. A number of second order systems are studied numerically for LF (a) showing 'equal tangency properties'. Using this property an optimum RAS is found analytically for LF (b).

In the final section a connection between the work of Walker and McClamroch (73) and that of Veissenberger (72) is found concerning an optimal quadratic for the lure' system

$$
\dot{\mathrm{x}}=\mathrm{A} \underline{x}+\underline{\mathrm{b}} \operatorname{sgn} \sigma, \quad \sigma=\underline{c}^{\mathrm{T}} \underline{x}
$$

where the sector condition

$$
0<f(\sigma) / \sigma<K
$$

is satisfied only for some region $\sigma_{2} \leqslant \sigma \leqslant \sigma_{1}$. Some extensions are considered.

The computing times given in this thesis are all in terms of mill/secs. (ICL 1905) and serve only as a comparison, all other conditions being equal. All programs were written in FORTRAN 4 and only a listing of the optimal quadratic algorithm of $C 5^{*}$ is included. Several programs were written using graph plotter routines to trace the required Lyapunov contours, points on which were joined by straight line segments. Diagrams and tables are included in the text for continuity, whereas the figures appear at the back of each chapter and, as far as is convenient, in numbered order.

CHAPTER 2

OPTIMAL BOUNDS ON THE RESPONSE OF NON-LINEAR STABLE SYSTEMS.

Chanter 2

Optima1. Bounds On The Response of Non-linear Stable Systems.

2.1 Introduction

In the design of a control system it is useful to predict a conservative bound on the response of the system, which takes into account noise and perturbation effects, or to predict a crude approximation to the domain of attraction.

Consider the two systems

$$
\begin{aligned}
\dot{x} & =A x+G(\underline{x}, t) \underline{x}+\underline{u}(t) \\
& =\underline{x}(\underline{x}, t) \quad 2 \cdot 1 \cdot 1
\end{aligned}
$$

and

$$
\dot{\underline{x}}=A \underline{x}+g(\underline{x}) \quad 2.1 .2
$$

with A stable.
In the former $G x$ is regarded as the non-linear or perturbation term and y the input to the system; both are assumed to be bounded,

$$
\begin{array}{llll}
\|u(t)\| \leq c_{1}, & \forall & t & 2.1 .3 \\
\|G(x, t)\| \leq c_{o}, & \forall & t & 2.1 .4
\end{array}
$$

We assume that no real y exists such that $A+G(y, t)=0$ inside some $R(h)$, then the origin will be an isolated singularity. System 2.1 .2 is that of 1.4.3.

$$
\begin{aligned}
& \text { For both systems choose the LF } \\
& \qquad V=x^{T} \mathrm{P}_{\mathrm{x}}
\end{aligned}
$$

where p solves

$$
A^{T} P+P A=-Q \quad 2.1 .6
$$

and where Q and hence p mag be general positive definite symmetric matrices. Then for 2.1.1

$$
\dot{V}=-\underline{x}^{T} O \underline{x}+2\left(\underline{x}^{T} G(\underline{x}, t)+\underline{u}^{T}(t)\right) P \underline{x} \quad 2 \cdot 1 \cdot 7
$$

and for 2.1.2

$$
\dot{V}=-\underline{x}^{T} Q \underline{x}+2 \underline{x}^{T} P_{g}(\underline{x}) \underline{x} \quad 2.1 .8
$$

Following Kalman and Bertram (16) we use several matrix inequalities and the Schwartz inequality to give, respectively

$$
\dot{V} \leq\left(-\eta+2 c_{0} \sqrt{\mu}\right) v+2 c_{1} \sqrt{M(P) V}
$$

and

$$
\dot{V} \leq(-\pi+2 \mu\|g(x)\| /\|x\|) v \quad 2,1,10
$$

Here $\lambda(A)$ denotes an eigenvalue of $A, M(A)=\max \operatorname{Re} \lambda(A)$ and $m(A)=\min \operatorname{Re} \lambda(A)$. Also

$$
n=\min _{\underline{\underline{x}} \neq 0} \frac{x^{T} Q \underline{x}}{\underline{x}^{T} P \underline{x}}
$$

and

$$
\mu=\mu(P)=M(P) / m(P) \text {. It can be shown that (16) }
$$

$$
\Pi=m\left(p^{-1} Q\right)
$$

Changing the variable in 2.1 .9 to \sqrt{v}, by dividing by \sqrt{V}, and assuming $\|g\| \leq c_{2}\|x\|$, (c_{2} constant) the two equations 2.1.9/2.1.10 can be integrated to give the bounds

$$
\sqrt{V(t)} \leq \sqrt{v}(0) \exp (-\alpha t)+\frac{c}{\alpha} 1 M(P)(1-\exp (-\alpha t))
$$

and

$$
v(t) \leq v(0) \exp (-\beta t) \quad 2.1 .14
$$

where

$$
\alpha=\pi / 2-\sqrt{\mu_{c_{0}}}=\sqrt{\mu}\left(\frac{n}{2 \sqrt{\mu}}-c_{0}\right)
$$

and

$$
\beta=\pi / 2-\mu_{c_{2}}=\mu\left(\frac{n}{2 \mu}-c_{2}\right) \quad 2.1 .16
$$

> Finally, by use of the inequality $\|\underline{x}\|^{2} m(P) \leq \underline{x}^{T} P \underline{x} \leq M(P)\|x\|^{2}$
the two bounds in $V(t)$ above give respectively

$$
\|\underline{x}(t)\| \leq \sqrt{\mu}\left(\|\underline{x}(0)\| \exp (-\alpha t)+\frac{c}{\alpha}_{1}(1-\exp (-\alpha t))\right)
$$

$$
2.1 .18
$$

and

$$
\|\underline{x}(t)\| \leq \sqrt{\mu}\|\underline{x}(0)\| \exp (-\beta t)
$$

which imply, if $\alpha>0, \beta>0$, that

$$
\|\underline{x}(t)\| \leq \sqrt{\mu} \max \left(\|\underline{x}(0)\|, c_{1} / \alpha\right) \quad 2.1 .20
$$

and

$$
\|\underline{x}(t)\| \leq \sqrt{\mu \| \underline{x}}(0) \|
$$

(Note for brevity we have written $\underline{x}(t) \fallingdotseq \underline{z}\left(t, x_{0}, t_{0}\right)$, $t_{0}=0$ from 1.2.4). The above work follows that of Wiberg (23) with some corrections, namely the bound 2.1.18. A crude RAS from the bounds is given in A3. We add that if c_{o} is given á priori too larce, α may be negative which destroys the bound; but if $\underline{G}(\underline{x}, t) \rightarrow 0$ as $\|x\| \rightarrow 0$ then the bound 2.1 .18 will always hold in some region $R(h)$ for sufficiently small h.

Generally, α^{-1} and β^{-1} behave as time constants for the respective systems in some region $R(h)$, where c_{o} and c_{2} are considered fixed. As μ and η are complex functions of Q, obtaining the analyytic maximum of α or β is difficult and we resort to the following sub-optimum in each case:
a) $\max \eta$ over \bar{Q} then
b) minimize μ over a subspace of \bar{Q},
where \bar{Q} is the space of p.d.s. matrices.
Problem (a) was first solved by Lewis and Tausky (24). Problem (b) arises because Q and P giving the
maximum η are not unique, and is the main content of this chapter.

Section 2.2 generalizes some previous work of Wiberg (23). The results of the remaining sections are believed to be new.

2.2 The Optinum

Assume A has linear elementary divisors (21), i.e there exists a transformation matrix S such that $S^{-1} A S=C$ 2.2 .1
where C is a diagonal matrix of eigenvalues of A and the columns of $S, s_{i}, i=1, n$, are their eigenvectors chosen so that $\left\|\underline{s}_{i}\right\|=1$, all i.

Select P as

$$
P=\left((S D)(S D)^{*}\right)^{-1}=(S D)^{*}(S D)^{-1}
$$

where $*$ denotes conjugate transpose and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots\right.$, d_{n}) is an arbitrary diagonal matrix with $\mathrm{d}_{\mathrm{i}} \neq 0$. Then P is a p.d. hermitian matrix and substitution into 2.1 .6 yields

$$
Q=-(S D)^{-*}\left(C+C^{*}\right)(S D)^{-1} \quad 2.2 .3
$$

which is also p.d. hermitian (p.d.h.) and not necessarily real. Then

$$
\begin{array}{rlr}
\lambda\left(p^{-1} Q\right) & =-\lambda\left[(S D)\left(C+C^{*}\right)(S D)^{-1}\right] \\
& =-\lambda\left(C+C^{*}\right) & 2.2 .4 \\
m\left(p^{-1} Q\right) & =\eta=-2 M(A) & \\
M\left(p^{-1} Q\right) & =-2 m(A) &
\end{array}
$$

and

Vogt (19) has shown that for P and Q satisfying 2.1.6 we have the inequalities

$$
\begin{array}{ll}
2 M(A) \leq-m\left(P^{-1} Q\right) & 2.2 .6 \\
2 m(A) \geq-M\left(P^{-1} Q\right) & 2.2 .7
\end{array}
$$

the former showing that Π in 2.2 .5 is the maximur possible. Statement 2.2 .4 shows with suitable ordering of eigenvalues that $\lambda\left(P^{-1} Q\right)=-2 R e \lambda(A)$.

For a more complete statement consider a result of Barnett (20) who showed that if A is stable, then given a p.d. Q,

$$
A=P^{-1}\left(R-\frac{1}{2} Q\right) \quad 2.2 .8
$$

where p solves 2.1.6 and R is a skew-symmetric matrix found from 2.2.8, but which also solves

$$
\mathrm{A}^{\mathrm{T}_{\mathrm{R}}+\mathrm{RA}=\frac{1}{2}\left(\mathrm{~A}^{T_{Q}}-\mathrm{QA}\right) \quad 2.2 .9}
$$

He gave the bound

$$
\left|\beta_{j}\right| \leq M\left(i P^{-1} S\right) \quad(i=\sqrt{-1}) \quad 2.2 .10
$$

where $\lambda_{j}(A)=\alpha_{j}+i \beta_{j}, j=1, \ldots, \pi$.
It easily follows from 2.2 .8 and the P in 2.2.2 that

$$
2 \lambda\left(\mathrm{P}^{-1} \mathrm{R}\right)=\lambda\left(\mathrm{C}-\mathrm{c}^{*}\right)=2 \operatorname{Im} \lambda(\mathrm{~A})
$$

showing that equality also holds in 2.2.10. Infact with suitable ordering of eigenvalues

$$
\lambda(\mathrm{A})=\lambda\left(\mathrm{P}^{-1} \mathrm{~S}\right)-\frac{1}{2} \lambda\left(\mathrm{P}^{-1} \mathrm{Q}\right)
$$

Finally, if A is real, P in 2.2 .2 may be taken real. For the \underline{s}_{i} appear, if complex, in conjugate pairs. Suppose \underline{s}_{i} and \underline{S}_{j} are such a pair, then choose $d_{i}=d_{j}$. Then \exists asymmetric permutation matrix $T(30)$ (i.e. $T^{T}=T^{-1}=T$) such that

$$
\overline{S D}=S D T
$$

then

$$
\begin{aligned}
\mathrm{SD}^{\mathrm{T}} & =(S D)^{*}=T(S D)^{T} \quad \text { and } \\
\mathrm{P}^{-1} & =(S D)(S D)^{*} \\
& =(S D) \mathrm{T}(S D)^{\mathrm{T}}
\end{aligned}
$$

Hence P^{-1}, and thus P, are symmetric and thus real.

2.3 The Minimum Condition Number, (p)

The matrix P in 2.2 .2 contains essentially $n-1$
arbitrary parameters to a multiplicative constant. Regarding μ as a function of P and thus D, problem (b) is restated as

$$
\min _{D} \mu(P)
$$

$$
2.3 \cdot 1
$$

 is related to the condition number $K(X)$ of a general matrix X defined as (Bauer (22))

$$
K(x)=\|x\|\|x-1\|
$$

where $\|x\|=\sup _{x \neq 0}\|x x\| /\|x\|$ 2.3 .7
$=\left(M\left(x^{*} X\right)\right)^{\frac{1}{2}}$ 2.3 .3

For Hermitian $X, \mu(x)=K(X)$ and for P in 2.2 .2

$$
\begin{align*}
K(P)=K(P-1) & =K\left((S D)(S D)^{*}\right) \\
& =K\left((S D)^{*}(S D)\right) \\
& =K^{2}(S D)
\end{align*}
$$

Thus $\min _{D} \mu(P)=\min _{D} K^{2}(S D)$
Now define $|X|$ as the matrix whose i, j th element is $\left|X_{i, j}\right|$. Such a matrix is called non-negative. We say X has checkerboard sign distributions (CSD) if matrices \mathbb{E}_{1} and \mathbb{E}_{2} exist such that $S=E_{1}|S| E_{2}$ with $\left|E_{1}\right|=\left|E_{2}\right|=I$. We shall need the following theorem due to Bauer (22).

Theorem 2.3

For the matrix norm $\|\cdot\|$ in 2.3 .8

$$
\min _{D} K(S D) \leq\||S| \mid s-1\|
$$

with equality holding if both S and S^{-1} have CSD. This theorem gives a useful bound on the minimum in 2.3.10

2.4 A Conjecture of Wiberg (23)

Wiberg conjectured that $\mu(P)$ is minimized if $D=I$ (i.e $\left\|s_{i}\right\|=1$). Although this is true for $n=2$ it is false for $n>2$.

Choose $A=S^{-1} C S$ where

$$
s=\left[\begin{array}{ccc}
1, & 1 / \sqrt{2}, & 1 / \sqrt{6} \\
0, & 1 / \sqrt{2}, & 2 / \sqrt{6} \\
0, & 0, & 1 / \sqrt{6}
\end{array}\right] \quad C=\operatorname{diag}(-1,-2,-3)
$$

With $D=I, \mu(P)=K^{2}(S D)=39.52$
Now

$$
S^{-1}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & \sqrt{2} & -2 \sqrt{2} \\
0 & 0 & \sqrt{6}
\end{array}\right]
$$

Since both S and S^{-1} have CSD, by Theorem 2.3

$$
\begin{aligned}
\min K(S D) & =\left\||S|\left|S^{-1}\right|\right\| \\
& =(3+\sqrt{10})
\end{aligned}
$$

Then $\mu(P)=K^{2}(S D)=(3+\sqrt{10})^{2}=37.974$
which disproves the conjecture.

2.5 An Optimum Class of Matrices

The diagonal matrix D giving the upper bound in 2.3.11 is given in A3 and would appear a better choice than $D=I$. A natural question is what form must A have in 2.1 .1 and 2.1 .2 so that S has CSD. We have:

Theorem 2.5
If A is a stable matrix in compaion form with diistinct real eigenvalues then S and S^{-1} may be chosen to have CSD.

Proof

For Ain companion form (CF)

$$
A=\left[\begin{array}{cccccccc}
0 & 1 & 0 & \cdot & \cdot & \cdot & \cdot & 0 \\
0 & 0 & 1 & \cdot & \cdot & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & & & & \ddots & \cdot \\
\cdot & \cdot & \cdot & & & & & 0 \\
0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot & 1 \\
-a_{n}-a_{n-1} & \cdot & \cdot & \cdot & \cdot & -a_{1}
\end{array}\right] 2.5 .1
$$

with $\lambda_{i}(A)=-\alpha_{i}<0, i=1, \ldots n$, we choose $S=v_{n}$ (and disregard unit columns for convenience) where V_{n} is the Van der Monde matrix (30)

$$
\mathrm{v}_{\mathrm{n}}=\left[\begin{array}{cccccccc}
1 & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\lambda_{1} & \lambda_{2} & \cdot & \cdot & \cdot & \cdot & \cdot & \lambda_{\mathrm{n}} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdot & \cdot & \cdot & \cdot & \cdot & \lambda_{n}^{2} \\
\cdot & \cdot \\
\cdot & \vdots & & & & & \cdot \\
\cdots & \cdot & \cdot & \cdot & \cdot & \cdot & \\
\lambda_{1}^{n-1} \lambda_{2}^{n-1} & & & & & \lambda_{n}^{n-1}
\end{array}\right] \quad 2.5 .2
$$

V_{n} is clearly CSD.i.e,

$$
E_{1} v_{n}=\left|v_{n}\right|
$$

$$
2 \cdot 5 \cdot 3
$$

with $E_{1}=\operatorname{diag}\left(1,-1,1, \ldots,(-1)^{n-1}\right)$
To show that V_{n}^{-1} iss SD let σ_{m}, where

$$
\begin{array}{rlr}
\sigma_{m} & =\sigma_{m}\left(y_{1}, y_{2}, \cdots, y_{n}\right) \quad 1 \leq m \leq n \\
& =\sum y_{v_{1}} y_{v_{2}} \cdots y_{v_{n}} \\
\sigma_{0} & =1
\end{array}
$$

be the $m^{\text {th }}$ elementary symmetric function of any n variables $y_{i}(30)$, e.g. $\sigma_{1}=\sum^{n} y_{i}$ and $\sigma_{n}=\prod^{n} y_{i}$. Also define

$$
\sigma_{m}^{p}=\sigma_{m}^{p}\left(y_{1}, y_{2}, \ldots y_{p-1}, y_{p+1}, \ldots y_{n}\right)
$$

as the $m^{\text {th }}$ elementary symmetric function of the y_{i} with y_{p} missing. Then the $i, j^{\text {th }}$ element of $v_{n}^{-1}, v_{i j}^{-1}$, is given
by (28)

$$
v_{i j}^{-1}=(-1)^{j-1} \frac{\sigma_{n-j}^{i}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)}{\prod_{k \neq j}^{n}\left(\lambda_{K}-\lambda_{i}\right)} \quad 2.5 .5
$$

Numerically stable formulae exist to invert V_{n} (39)
Assume that $0<\alpha_{1}<\alpha_{2} \quad \ldots<\alpha_{n}$ and let

$$
r_{i}=\prod_{j=1}^{i=1}\left(\alpha_{i}-\alpha_{j}\right) \prod_{j=i+1}^{i}\left(\alpha_{j}-\alpha_{i}\right)>0
$$

Then in terms of α_{i}, V_{n}^{-1} may be written

$$
v_{n}^{-1}=R Q
$$

with $R=\operatorname{diag}\left(\frac{1}{r_{1}},-\frac{1}{r_{2}}, \cdots, \frac{(-1)^{n-1}}{r_{n}}\right)$
and

$$
Q=\left[\begin{array}{ccccc}
\sigma_{n-1}^{1} & \sigma_{n-2}^{1} & \cdots & \cdots & \sigma_{1}^{1} \\
\sigma_{n-1}^{2} & \sigma_{n-2}^{2} & & & \sigma_{1}^{2} \\
1 \\
\cdot & \cdot & \cdots & & \cdot \\
\cdots & \cdots & & \vdots & 1 \\
\sigma_{n-1}^{n} & \sigma_{n-2}^{n} & \cdots & \cdots & \sigma_{1}^{n} \\
1
\end{array}\right] \quad 2.5 .8
$$

with $q_{i, j}=\sigma_{n-j}^{i}\left(\alpha_{1}, \ldots, \alpha_{n}\right)>0$. Clearly, all elements of Q are nonnegative and

$$
v_{n}^{-1}=E_{1}\left|v_{n}^{-1}\right|=\mid E_{1} R Q
$$

with E_{1} from 2.5.4. Hence the theorem is proved.
In general the CSD property does not hold. It is not satisfied, for example, when A is in CF with complex $\lambda(A)$. In such cases one resorts to a nonlinear programming technique to minimize μ (section 2.8) or chooses some upper bound such as that of Bauer, 2.3.11. In this respect some simple bounds can be found.

2.6 Bounds on $\mu(p)$

The best bound found by the author was from a result of Marcus and Haynsworth (27). They showed,

$$
K(p)=\mu(p) \leqslant \frac{1+\sqrt{1-D_{1}}}{1-\sqrt{1-D_{1}}} \quad 2.6 .1
$$

where

$$
D_{1}=d(p) /\left(\frac{t(p)}{n}\right)^{n}
$$

and $d(P), t(P)$ are the determinant and trace of P respectively. Let

$$
F(P)=\frac{1+\sqrt{1-D_{1}}}{1-\sqrt{1-D_{1}}}
$$

then in general $F(P) \notin F\left(P^{-1}\right)$ and two bounds are possible in 2.6.1. Using the arithmetic-geometric mean inequality (2.6.12), each bound is minimized, for the choice of p in 2.2.2, when $D=I$ and $d_{i}=\left\|r_{i}\right\|$ respectively and we have

$$
\mu\left(P^{-1}\right) \leqslant F\left(P^{-1}\right) \quad 2.6 .4
$$

and

$$
\mu(P) \leq F(P)
$$

where

$$
\begin{aligned}
\mathrm{D}_{1}\left(\mathrm{P}^{-1}\right) & =|\mathrm{d}(\mathrm{~s})|^{2} / \prod_{i=1}^{n} \|\left.\underline{s}_{i}\right|^{2} \\
& =|\mathrm{d}(\mathrm{~s})|^{2}
\end{aligned}
$$

$$
2.6 .6
$$

and

$$
D_{1}(P)=\left(\left.\operatorname{ld}(s)\right|^{2} \prod_{i=1}^{n}\left\|r_{i}\right\|^{2}\right)^{-1} \quad 2.6 .7
$$

Here $\underline{x}_{j}=$ row i of S^{-1}.
The only difficult calculation in 2.6 .6 or 2.6 .7
is $d(S)$. Simplification arises with A in CF for then

$$
\begin{aligned}
& d\left(v_{n}\right)=\prod_{i<j}\left(\lambda_{j}-\lambda_{i}\right) \text { and } \\
& D_{1}\left(P^{-1}\right)=\prod_{i<j}\left(\left|\lambda_{j}-\lambda_{i}\right|^{2}\right) \prod_{j=1}^{n}\left(\sum_{j=1}^{n}\left|\lambda_{i}\right| 2(j-1)\right) 2.6 .8
\end{aligned}
$$

$$
D_{1}(P)=\prod_{i<j}\left|\lambda_{j}-\lambda_{i}\right|^{2} / \prod_{i=1}^{n}\left(\sum_{j=1}^{n}\left|\sigma_{n-j}^{i}\right|^{2}\right) \quad 2.6 .9
$$

(The latter follows because in $2.5 .7|d(R)|=\left|d\left(V_{n}\right)\right|^{-2}$) Note that equality occurs in 2.6 .1 for $n=2$.

A looser bound than 2.6 .1 is proved as follows. Consider P in 2.2 .2 with unit vectors $\underline{s}_{i},\left\|\underline{s}_{i}\right\|=1$, and $D=I$. Then let $u_{i}, i=1, \ldots, n$, be the eigenvectors of $T(T=S * g)$ ordered as $u_{1} \geq u_{2} \geq \ldots \geq u_{n}$. Since $\mu(P)=K(T)$,

$$
K(T)=\frac{u_{1}}{u_{n}}
$$

If u is any eigenvalue of T, by Gershgorin's Theorem (30)

$$
\left|u-\left|s_{i}^{*} s_{i}\right|\right|=|u-1| \leq p_{i}, i=1, n
$$

where

Then

$$
p_{i}=\sum_{j \neq i}^{n}\left|t_{i, j}\right|=\sum_{j \neq 1}^{n}\left|\underline{s}_{i}^{*} \underline{s}_{j}\right|
$$

$$
u_{1} \leq 1+\max _{i} \rho_{i}=1+\bar{\rho} \quad 2.6 .11
$$

Now

$$
\begin{aligned}
\dot{d}(T) & =\prod_{j=1}^{n} \prod_{u_{i}}{ }_{i=1}^{n=1} \\
& =\left.u_{n}\right|_{j=1} u_{i}
\end{aligned}
$$

Using the Arithmetic-Geometric mean inequality

$$
\left(\mid T_{u_{i}}\right)^{\frac{1}{n}}=G_{n} \leq A_{n}=\left(\sum_{i}^{n} u_{i}\right) / n \quad 2.6 .12
$$

we have, since $\sum u_{i}=n$,

$$
d(T) \leq u_{n}\left(\frac{n-u_{n}}{n-1}\right)^{n-1}
$$

$$
\leq u_{n}\left(\frac{n}{n-1}\right)^{n-1} \quad 2.6 .13
$$

Substitution of 2.6 .11 and 2.6.13 into 2.6 .10 yields the bound

$$
\mu(p) \leq \frac{1}{T d(S) T^{2}}\left[\frac{n}{n-1}\right]^{n-1}(1+\bar{\rho}) \quad 2.6 .14
$$

used Gershgorin's inequality to obtain

$$
\mu(P) \leq \frac{1+\bar{\rho}}{1-\bar{\rho}}
$$

To show the bound is sometimes invalid consider A and S where

$$
A=-\left[\begin{array}{ccc}
1 & 12 / 5 & 24 / 6 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] \quad S=\left[\begin{array}{lll}
1 & 12 / 13 & 12 / 13 \\
0 & 5 / 13 & 0 \\
0 & 0 & 5 / 13
\end{array}\right]
$$

for which $S^{-1} A S=\operatorname{diag}(-1,-2,-3) \cdot$ Clearly, $\bar{\rho}=24 / 13>1$ and the bound becomes negative.

2.7 Non-uniqueness of P in the Form 2.2.2

The form of P in 2.2.2 which satisfies the condition

$$
\eta=m\left(P^{-1} Q\right)=-2 M(A) \quad 2.7 .1
$$

is not generally unique. We only need consider A stable and in the form

$$
A=\left[\begin{array}{ccc}
-a & 1 & \underline{0} \\
- & 1 & - \\
\hdashline & 1 & \\
0 & 1 & A_{1}
\end{array}\right] \quad 2.7 .2
$$

where A_{1} is $(n-1) X(n-1)$ such that $S_{1}^{-1} A_{1} S_{1}^{-1}=C_{1}$. Let $M(A)=-a, M\left(A_{1}\right)=-a_{1}$ and $m\left(A_{1}\right)=-a_{2} \quad\left(a<a_{1}\right)$. P and Q are of the form

$$
P=\left[\begin{array}{ccc}
1 & 1 & 0 \\
- & 1 & - \\
\hdashline & 1 & - \\
0 & 1 & P_{1}
\end{array}\right] \quad Q=\left[\begin{array}{ccc}
2 a & 1 & 0 \\
-1 & 1 & - \\
0 & 1 & Q_{1}
\end{array}\right]
$$

where $A_{1}^{T} P_{1}+P_{1} A_{1}=-Q_{1}$. Then condition 2.7 .1 is met with $P_{1}^{-1}=\left(S_{1} D_{1}\right)\left(S_{1} D_{1}\right)^{*}$ for which $n(Q)=m\left(P_{1}^{-1} Q_{1}\right)=2 a_{1}$ and
$M\left(P_{1}^{-1} Q_{1}\right)=2 a_{2}$. By varying P_{1} and Q_{1} and noting that η depends continuously on the elements of P_{1}, a P_{1} not generally of the form 2.2 .2 can be folnd such that

$$
2 a<m\left(p_{1}^{-1} Q_{1}\right)<2 a_{1}
$$

Then we still have $m\left(P^{-1} Q\right)=2 a$, if $a<a_{1}$, but p not of the form 2.2.2.

Example

Choose

$$
A=\left[\begin{array}{cccc}
-a & 1 & 0 & 0 \\
\hdashline-1 & - & - & - \\
0 & 1 & 0 & 1 \\
0 & 1 & -1 & -1
\end{array}\right] \quad \lambda=-a,-\frac{1}{2}(1 \mp \sqrt{3} i)
$$

Here, the only real minimizing p_{1}, to a constant factor, is

$$
P_{1}=\sqrt{\frac{4}{5}}\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] \quad, \quad \mu\left(p_{1}\right)=3
$$

but with the choice

$$
P_{1}=\frac{1}{2}\left[\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right]
$$

$M\left(P_{1}^{-1} Q_{1}\right)=1+1 / \sqrt{5}$ and $m\left(P_{1}^{-1} Q_{1}\right)=1-1 / \sqrt{5}$ and 2.7.4 is satisfied if $2 \mathrm{a}<1-1 / \sqrt{ } 5$.

Also

$$
\mu(P)=\frac{\sqrt{5}+1}{\sqrt{5}-1}<3
$$

and this P_{1} gives smaller values of α or β in 2.1.15/16. Thus problem (b) does not necessarily give 'best' suboptima of α or β.

The arbitrariness of the form 2.2 .2 is due to the somewhat non-unique transformation S in 2.2.1. It can generate a subspace of $p . d$ matrices (P) giving the same
value of η. To see this, consider a solution P of 2.1.6, for a given p.d.s Q, in terms of the s_{j} and λ_{i} of A (31)

$$
p=\left(s^{*}\right)^{-1} \mathrm{P}_{1} \mathrm{~s}^{-1}
$$

where

$$
\left(p_{1}\right)_{j}=-s_{i}^{*} \underline{s}_{j} /\left(\bar{\lambda}_{i}+\lambda_{j}\right)
$$

Let $\eta_{p}=m\left(p^{-1} Q\right)$, then p_{0} and Q_{0} also solve 2.1.6, with D arbitrary and diagonal, where $P_{0}=(S D)^{-*} P_{1}(S D)^{-1}$ and $Q_{0}=(S D)^{*}\left(S^{*} Q S\right)(S D)^{-1}$. Further

$$
\mathrm{P}_{0}^{-1} \mathrm{Q}_{0}=(S D) \mathrm{P}_{1}^{-1} \mathrm{~S}^{*} \mathrm{QS}(S D)^{-1}
$$

and due to similarity properties

$$
\begin{aligned}
\lambda\left(P_{o}^{-1} Q_{0}\right) & =\lambda\left(P_{1}^{-1} S^{*} Q S\right)=\lambda\left(S P_{1}^{-1} S^{*} Q\right) \\
& =\lambda\left(P^{-1} Q\right)
\end{aligned}
$$

Then $\eta_{p}=\eta_{p_{0}}$

2.8 Numerical Optimum of the Condition Number

In view of the fact that for $n=2$, the P of the form 2.2.2 which minimizes μ is real, it is reasonable to conjecture that this holds generally. To test the conjecture, Powell's conjugate gradient algorithm (A4) was used to minimize $\mu(p)$ over the N-dimensional space of elements of D, where for
(a) real $\mathrm{P}, \mathrm{N}=\mathrm{n}-\mathrm{k}-1$;
(b) hermitian $P, N=n-1$;
where $\lambda_{j}=r_{j} \mp$ is ${ }_{j}, j=1,2, \ldots, k$
$\lambda_{j}=-r_{j}<0, j=2 k+1, \ldots, n$
are the eigenvalues of A. The bounds 2.3.11, 2.6.4 and 2.6.5 were also calculated.

Table 2.1 shows some results for a number of third and fourth order matrices (A1 to A10). The average number. of function evaluations of $\mu(p)$ for an accuracy of 10^{-3}

TABLE 2.1

MATRIX A $\begin{aligned} & \text { (LAST ROW ONLY } \\ & \text { GIVEN IF A IS IN } \\ & \text { C.F.) } \end{aligned}$	$\begin{aligned} & \text { 息荮 } \\ & \text { 息 } \\ & \text { 安 } \end{aligned}$	$F(P)$	$F\left(P^{-1}\right)$	$\left\\|\|s\| \mid s^{-1}\right\\|$	$\left\{\begin{array}{l} \mathrm{p}=\left(S S^{*}\right)^{-1} \\ \left\\|s_{i}\right\\|=1 \\ \text { (WIBERG) } \end{array}\right.$	MIN $\mu(P)$ P REAL	N	MIN $\mu(\mathrm{P})$	H
$\begin{array}{rrr}-8 & 1 & 5 \\ 4 & -4 & 2 \\ -18 & 5 & 7\end{array}$	A1	$\begin{array}{r} 1208 \\ \times 10^{4} \end{array}$	$\begin{aligned} & .14799 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .19261 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .14435 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .14345 \\ & \times 10^{3} \end{aligned}$	1	$\begin{aligned} & 14345 \\ & \times 10^{3} \end{aligned}$	2
$\lambda=-2 \mp 4 i,-1$									
$\begin{array}{rrr}-33 & -16 & -72 \\ 24 & 10 & 57 \\ 8 & 4 & 17\end{array}$	A2	$\begin{aligned} & .58282 \\ & \times 10^{5} \end{aligned}$	$\begin{aligned} & .17661 \\ & \times \quad 10^{8} \end{aligned}$	$\begin{array}{r} .2789 \\ \times \quad 10^{5} \end{array}$	$\begin{array}{r} 3238 \\ \times \quad 10^{5} \end{array}$	$\begin{aligned} & .26178 \\ & \times 10^{5} \end{aligned}$	2	SAME	2
$\lambda=-1,-2,-3$									
＊ $\begin{array}{rrrr}-4 & -1 & -1 \\ -2 & -4 & -1 \\ 0 & -1 & -4\end{array}$	A3	$\begin{aligned} & .29242 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .21561 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .22456 \\ & \times \quad 10^{3} \end{aligned}$	$\begin{aligned} & .21304 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .200781 \\ & \times 10^{3} \end{aligned}$	2	SAME	2
$\lambda=-3,-3,-6$									
－101，－103，－3	$\mathrm{A}^{4} 4$	$\begin{aligned} & .242 \\ & \times 10^{4} \end{aligned}$	$\begin{array}{r} .3165 \\ \times 10^{3} \end{array}$	$\begin{aligned} & .23774 \\ & \times 10^{3} \end{aligned}$	$\begin{array}{r} 26098 \\ \times 10^{3} \end{array}$	$\begin{aligned} & .231718 \\ & \times 10^{3} \end{aligned}$	1	$\begin{aligned} & .231756 \\ & \times 10^{3} \end{aligned}$	2
$\lambda=-1,-1 \mp 10 i$									
－200，－202，－102	A5	93.085	48.984	50.886	42.269	41.7843	1	41.7854	2
$\lambda=-100,-1 \mp i$									

＊Derogatory

TABLE 2.1 (contd.)

$-4,-10,-10,-5$	A6	$\begin{aligned} & .54903 \\ & \times 10^{7} \end{aligned}$	$\begin{aligned} & .19123 \\ & \times 10^{5} \end{aligned}$	$\begin{aligned} & .37229 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .34319 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .315129 \\ & \times 10^{4} \end{aligned}$	2	$\begin{aligned} & .315984 \\ & \times 10^{4} \end{aligned}$	3
$\lambda=-2,-1,-1 \mp \mathrm{i}$									
-10, -18, -15,-8	$\begin{array}{r} \text { A7 } \\ 84 i \\ \hline \end{array}$	$\begin{aligned} & .485 \\ & \times 10^{3} \end{aligned}$	$\begin{array}{r} .2255 \\ \times 10^{3} \end{array}$	$\begin{aligned} & .20411 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .15029 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .14704 \\ & \times 10^{3} \end{aligned}$	2	$\begin{aligned} & .14704 \\ & \times 10^{3} \end{aligned}$	3
$\lambda=-5.94,-1,-.53271$.									
$-202,-402,-304,-103$	A. 8	$\begin{aligned} & .19598 \\ & \times 10^{5} \end{aligned}$	$\begin{aligned} & .96673 \\ & \times 10^{3} \end{aligned}$	$\begin{aligned} & .44055 \\ & \times 10^{3} \end{aligned}$	$\begin{array}{r} .3453 \\ \times \quad 10^{3} \end{array}$	$\begin{aligned} & .34353 \\ & \times 10^{3} \end{aligned}$	2	$\begin{aligned} & .34354 \\ & \times 10^{3} \end{aligned}$	3
$\lambda=-100,-1,-1 \mp i$									
$-24,-50,-35,-10$	A9	$\begin{aligned} & .13794 \\ & \times 10^{12} \end{aligned}$	$\begin{aligned} & .33835 \\ & \times 10^{8} \end{aligned}$	$\begin{aligned} & .27130 \\ & \times 10^{6} \end{aligned}$	$\begin{aligned} & .35344 \\ & \times 10^{6} \end{aligned}$	$\begin{aligned} & .27130 \\ & \times 10^{6} \end{aligned}$	3	$\begin{aligned} & .27130 \\ & \times 10^{6} \end{aligned}$	3
$\lambda=-1,-2,-3,-4$									
-202,-206,-107,-4	A10		$\begin{aligned} & .63389 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .13486 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .16222 \\ & \times 10^{4} \end{aligned}$	$\begin{aligned} & .12751 \\ & \times 10^{4} \end{aligned}$	1	$\begin{aligned} & .12727 \\ & \times 10^{4} \end{aligned}$	3
$\lambda=-1 \pm 10 i,-1 \mp$									

in the minimum was 54 and 76 for $N=2$ and $N=3$ respectively.

Comparison of the minimum μ for real and complex P indicates that the conjecture may be true; certainly no advantage is gained by minimizing over the higher dimensional space of hermitian P as Wiberg suggests (23).

Of the two bounds $F(P)$ and $F\left(P^{-1}\right)$, the latter gave better results and, except for matrices A_{1}, A_{3}, and A_{5}, both were inferior to Baner's bound. Choosing μ with $D=I$ (Wibetrg) gave some better bounds than that of Bauer (6 against 4), but as shown in theory, the latter gave the exact minimum for matrix A_{9} *

The examples were chosen with differing eigenvalue spreads and, for most, the minima for μ seem quite large. One might therefore expect quite crude estimates of the system response, independant of the non-linear terms in 2.1.1 and 2.1.2.

2.9 C in Jordan Form

When the elementary divisors of A are non-linear the analysis in 2.2 remains the same except that C is now in Jordan form and the relation 2.2 .5 is replaced by (Vogt (19))

$$
-2 M(A)-\epsilon \leq \eta \leq-2 M(A)+\epsilon
$$

with $\epsilon>0$ as small as desired. In theory one has to find the Jordan transformation S. In practice it is simpler to perturb the elements of A slightly, and one can replace A by \bar{A} where $\bar{A}=A-D$ and D a diagonal matrix with sufficiently small positive elements, d_{i}, such that $M(\bar{A})<0$ and the eigenvalues $\lambda(\bar{A})$ are distinct. From
continuity arguments, the optima of η and μ for \bar{A} will differ only slightly from those of A. Sometimes, nonlinear divisors cause little bother since round off errors in computation render the divisors linear (see example A3 Table 2.1).

2.10 Some Numerical Experiments

Prior to the work of this chapter the optimization techniques of Rosenbrock and Powell were applied to determine the minima of the quantities: (a) $s\left(P^{-1} Q\right)$, (b) $\mu(P),(c)-\eta$ and (d) $-\eta^{2}$ / ; the latter being important quantities in 2.1.15 and 2.1.16. The quantity $s\left(P^{-1} Q\right)$ is the spread of $\mathrm{P}^{-1} \mathrm{Q}$,

$$
s\left(P^{-1} Q\right)=M\left(P^{-1} Q\right)-m\left(P^{-1} Q\right)
$$

which is a bound on $M(A)-m(A)$, the spread of Re $\lambda(A)$. An algorithm for minimizing (a) to (d) over p.d.s Q is given in A3. The main motivation was to test the usefulness of the bounds 2.2.6 and 2.2.7 in locatint Re $\lambda(A)$.

Table 2.2 shows some results applied to third order matrices, $u_{i}{ }^{i}=1,3$ being the eigenvalues of $\frac{1}{2} p^{-1} Q$ $\left(u_{1} \leq u_{2} \leq u_{3}\right)$. Here $s\left(P^{-1} Q\right)$ is minimized and average computation time was $110 \mathrm{mill} / \mathrm{sec}($ (I.C.L 1905) for 300 function evaluations (FE) . In each case $Q=I$ initially. The bounds for matrices A_{3}, B_{3} and B_{4} are good whereas for A_{1}, A_{2} and B_{5} there was a tendency for two u_{i} to become equal thus destroying the bound. This was particularly so for conjugate $\lambda(A)$ and suggests some theoretical reason for occuring. In all cases the minimizing Q was non-unique. The results of minimizing quantities (b) to (d) are shown graphically in Fig 2.1 to 2.3 by plotting $h / 2 \mathrm{vs} \mu$ at stases in the minimization. Three matrices (A_{1} to A_{3})

Minimization of $s\left(P^{-1} Q\right)$

$$	NAME OF MATRIX	$\lambda(\mathrm{A})$	$\begin{array}{r} \frac{1}{2} \lambda\left(\mathrm{p}^{-1} \mathrm{Q}\right) \\ \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3} \end{array}$	$\begin{array}{\|c\|} \hline \frac{1}{2} s\left(\mathrm{P}^{-1} \mathrm{Q}\right) \\ 300 \text { FUNCTEION } \\ \text { EVALUATIONS } \\ \hline \end{array}$
$10^{-6}, 0.01002,-.2001$	B1	$-10^{-4},-.1,-.1$.1002,.0998,6×10-6	. 09988
-10 ${ }^{4}, 1110.0,-111.0$	B2	-100.0, -10.0,-1	100.35,10.64,.006	100.35
A3 TABLE 2.1	A3	-6, -3, -3	5.004,3.0042,2.9959	3.0034
A1 "	A1	-2 $\ddagger 4 i,-1$	2.9906,2.4906,.019	2.4716
A2	A2	-1, -2, -3	6.003,2.997, 10^{-4}	3.002
-10 0 0 3 -3 0 2 1 -1	B3	-10, -3, -1	9.9899,3.024,.9957	8.0942
$\begin{array}{ccc} -1 & 0 & -.01 \\ -0.1 & -1 & 0 \\ 0 & -1 & -1 \end{array}$	B4.	$-1.1,-.95 \mp \frac{.053 i}{2}$	1.102,.949,.949	-09153
-200,220,-21	B5	-10 $\ddagger 101,-1$	10.46, 10.46,.089	10.371

are taken from table 2.1.
Consider maximizinc η for A_{3} (Fis 2.3). Initially $\eta=4.8$ and $\mu=1.54$, but after 300 FE 's $\eta=6.00$ and $\mu=4.0 \times 10^{3}$ which give an α inferior to that of Table 2.1. However, assuming c_{0} constant in 2.1.15, initially, $\alpha=\Omega / 2-\sqrt{\mu} c_{0}=2.4-\sqrt{1.54} c_{0}$. Taking values from Table 2.1, $\alpha=3.0-200.78 c$ which is grossly inferior. This casts some doubt on the usefulness of problem (b). The matrix A_{2} causes some lack in convergence as in Table 2.2. The quantity η^{2} / μ determines the size of the crude RAS and optimum values were superior to those calculated from Table 2.1.

Finally, the use of the algorithm seems infeasible in locating the spread $M(A)-m(A)$ by minimizing $s\left(P^{-1} Q\right)$, due to high computing time (100 times greater for $\mathrm{n}=3$ than straight calculation of $\lambda(A))$ and the lack of convergence to the minima.

A: $\min (-n)$
B: $\min \left(-\eta^{2} / \mu\right)$
C: $\min \left[M\left(P^{-1} Q\right)-m\left(P^{-1} Q\right)\right]$
Di $\min \mu(P)$

CHAPTER 3 .

THE DEMMTINATION CW STASIIITY DEGIONS BY
ZUBOV' $\operatorname{SAPROMCH}$

Chanter 3

The Determination of Stability Resions by Zubov's aprroach

3.1 Introduction

Although applicable to the theory of aynamic systems in general, the work of Zubov (1) has shown greatest use in the detemmination of regions of asymptotic stability (RAS) of autonomous non-linear differential equations. It reduces the choice of a Lyapunov function to the solution of a partial differential equation (pDE), the exact solution of which determines the precise D.O.A.
3.2 The Hain Theorem

Consider tie autononous differential equation (d.e.)

$$
\underline{\dot{x}}=\underline{f}(\underline{x})
$$

$$
3.2 .1
$$

where $£(\underline{O})=0$ and $\pm \in E, \quad x \in E^{n}$ and where $\underline{x}=0$ is an asymptotically stable equilibriun point. Then the core of Zubov's treatment lies in the following theorem (1).

Theorem 3.1.
Let U be an open region containing the oricin and U itis closure.

Then a necessary and sufficient conition for U to be the comain of attraction (DCA) of system 3.2.1. is the existence of two functions $W(x)$ and $\Psi(\underline{x})$ with the properties:
a) W (\underline{x}) is defined and continuousin U
b) $\psi(\underline{x})$ is positive definite and continuous in E^{n}
c) $0<W(\underline{x})<1$ for $\underline{x} \in U, \underline{x} \neq 0$
d) if $y \in B(B \equiv \bar{U}-U)$ then $\lim N(\underline{x})=1$ $x \rightarrow Y$
and if $\|\underline{x}\| \rightarrow \infty$ for $\underline{x} \in U, \lim W(\underline{x})=1$ $\| x$ x $\| \rightarrow \infty$
e) $\frac{d W}{d t}=\stackrel{+}{W}=\sum_{i=1}^{n} \frac{\partial N_{i}}{\partial x_{i}} f_{i}=-\psi(\underline{x})(1-W(\underline{x}))\left(1+\| \|^{2}\right)^{\frac{1}{2}}$

By assuming the f_{i} terms are bounded the factor $\left(1+\|\mathbb{\|}\|^{2}\right)^{\frac{1}{2}}$ in (e) may be removed giving the main PDE $\dot{W}(\underline{x})=\sum_{i=1}^{n} \frac{\partial W}{\partial x_{i}} \cdot f_{i}=-\phi(\underline{x})(1-W(\underline{x}))$ 3.2 .2
where W satisfies (c), which we call the regular equation.

By defining another pod. function

$$
V(\underline{x})=-\ln (1-W(\underline{x}))
$$

3.2.2 may be transformed into

$$
\dot{\mathrm{V}}=\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}} f_{i}=-\phi(\underline{x})
$$

which we call the modified equation. The solutions W and V of 3.2 .2 and 3.2 .3 for arbitrary $\phi(\underline{x})$ then give for the boundary of the D.O.A., B, either of the sets

$$
W(\underline{x})=1 .
$$

or

$$
v(\underline{x})=\infty
$$

$$
3.2 .5
$$

In what follows we concentrate on 3.2 .3 for convenience (P.D.E. 3.2.2 can be treated similarly).

3.3. The Construction Procedure

We make the followins assumptions:
(a) the components of I may be expanded as convercent power series about $x=0$.
i.e.

$$
f_{i}(x)=\sum a\left(i_{1}, i_{2}, \ldots, i_{n}\right)_{x_{1}}^{i_{1}} x_{2}{ }^{i_{2}} \ldots x_{n}{ }_{n}
$$

(b) the linear part is asymptotically stable.

In all but the simplest cases the analytic solution for V of 3.2 .3 is impossible. Consequently, Zubov pronosed the following procedure.
Express V and ϕ as power series of arbitrary dogree m and I respectively, and write

where V_{i}, ϕ_{i} are homogeneous polynomials of degree i and \oint_{2} is positive definite.
Substitute these series for V, ϕ and f into 3.2 .3 and equate coefficients of like-powers. There then results a set of simultaneous equations for the coefficients of the powers of the V_{i} terms, which may be solved successively for those of V_{2}, V_{3}, onwards. since ϕ_{2} is p.d. V_{2} is by (b) above and temmination of the series 3.3 .5 for any finite m will result in an m - th degree Lyapunov function (2). An RAS, with. bouncary $V^{m}=C_{m}$, can then be obtained with recourse
to Theorem 1.6.1.
A wealth of experience on the determination of stability regions, (2) - (6), has shown that the series procedure may be non-uniformiy convergent in that higher degree Iyanunov functions can result in inferior R AS 's. It is difficult to show why or how this happens in general, but the following example throws some light on the issue.

3.4 An Example (Zubov)

The system is

$$
\begin{aligned}
& \dot{x}=-x+2 x^{2} y \\
& \dot{y}=-y
\end{aligned}
$$

whose D.O.A. is $x y<1$
Write 3.3.5 as

$$
v^{m}(x, y)=\sum_{i=2}^{m} \sum_{j=1}^{i+1} a_{i j} x_{y}^{i-j+1}=\sum_{i=2}^{j-1} v_{i}
$$

and choose

$$
\phi=2\left(x^{2}+y^{2}\right)
$$

3.4.2.

Then substitution into 3.2.3. Gives
or

$$
\frac{\partial v^{m}}{\partial x}\left(-x+2 x^{2} y\right)+\frac{\partial v^{m}}{\partial y}(-y)=-2\left(x^{2}+y^{2}\right)
$$

$$
-\sum_{i=2}^{m} i v_{i}+2 x^{2} y \sum_{i=2}^{m} \frac{\partial v_{i}}{\partial x}=-2\left(x^{2}+y^{2}\right) \text { 3.4.3. }
$$

Equating coeffts.of like powers and putting $u=x y$ gives the $2 m$-th does. Iyapunov Function (LF),

$$
v^{2 \mathrm{~m}}=\mathrm{y}^{2}+\mathrm{x}^{2}\left(1+u+u^{2} \cdot+u^{m-1}\right) \quad \text { 3.4.4 }
$$

Assuming $|u|<1$, and taking the limit, actually gives the analytic solution

$$
\mathrm{v}=\mathrm{y}^{2}+\frac{\mathrm{x}^{2}}{1-\mathrm{xy}}
$$

However numerical calculation of the RAS's for various m by the method of Rodden (3) gives the RAS boundarios in Fis. 3.1 . ($m=51$ was near to the overflow value of m in computation).

The average radius (1.14) for $m=50$ is slightly smaller than that for the quadratic (1.24), and the procedure is highly non-uniform. Considering the stability boundaries for m odid and m even seperately, we appear to have uniform convergence in each case, those for m odd being superior. Analysing the example further indicates why this should happen. For $m=2$ and $m=4$ analytic calculations give the following RAS boundaries and tangency points,

$$
v^{4}=y^{2}+x^{2}(1+u)=\frac{4 \sqrt{3}}{9}
$$

with Tan. pts, $\mp\left(-\sqrt{\frac{2}{\sqrt{3}}}, \sqrt{\frac{2}{3 \sqrt{3}}}\right)$
and

$$
v^{8}=y^{2}+x^{2}\left(1+u+u^{2}+u^{3}\right)=\cdot 93913.4 .7
$$

with Tan. pts. $\mp(-1.0642,-068486)$

These are also the largest closed contours and \mathbb{N}, the gradient of V, vanishes at the respective tangency points.

We now show that for any even m there are points where $Z v^{2 m}(x)=0$ for $u>-1$, and that the RAS boundaries lie inside $|u|<1$ 。

From 3.4.4 the gradient vanishes when

$$
\frac{\partial V^{2 m}}{\partial x}=V_{x}^{2 m}=x(2 P(u)+Q(u))=0 \quad 3.4 .8
$$

and

$$
\frac{\partial v^{2 m}}{\partial y}=v_{y}^{2 m}=2 u+x^{4} Q(u)=0
$$

where

$$
P(u)=\left(1-u^{m}\right) /(1-u)>0, u>-1 \quad 3.4 \cdot 10
$$

and

$$
Q(u)=1+2 u+3 u^{2} \ldots+(m-1) u^{m-2}
$$

Clearly $\exists \mathrm{a} u,-1<u<0$, such that

$$
\begin{aligned}
F(u) & =2 P(u)+Q(u)=0 \\
& =2+3 u+4 u^{2}+\ldots+(m+1) u^{m-1}
\end{aligned}
$$

since $F(0)=2$ and $F(-1)<0$.
If $F(\bar{u})=0$ then 3.4 .11 implies by 3.4 .10 that

$$
Q(\bar{u})=-2 P(\bar{u})<0
$$

Then with $u=\bar{u}$, equation 3.4 .9 will vanish for some $x=\bar{x} \neq 0$ because this implies

$$
\bar{x}^{4}=\frac{-2 \bar{u}}{Q(\bar{u})}=\frac{\bar{u}^{2}}{P(\bar{u})}>0
$$

Thus, \exists at least two radially symmetric points where

$$
\nabla V=0, \text { namely } \mp(\bar{x}, \bar{u} / \bar{x})
$$

Let $V^{2 m}(x, y)=C_{n}$ be the Largest closed RAs boundary. Then it lies in $u>-1$. For otherwise \exists two distinct pts., $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ say, in common with $x y=-1$ and this boundary. By 3.4.4, at these points.

$$
v^{2 m}\left(x_{1}, y_{1}\right)=y_{1}^{2}=v^{2 m}\left(x_{2}, y_{2}\right)=y_{2}^{2}
$$

then $y_{1}=y_{2} \Rightarrow x_{1}=x_{2}$, a contradiction. Finally the boundary lies inside $u<1$ since this is the D.O.A.

Consider now m odd. Summing the geometric series in the u terms in 3.4 .4 gives

$$
v^{2 m}=y^{2}+x^{2}\left(1-u^{m}\right) /(1-u) \quad 3 \cdot 4 \cdot 12
$$

the contours of which will always be closed since it is p. d. and badially unvounded. Hence there is no restriction to the convergence of the RAS. to the DOA for increasing in odd. Coment

Let R be the region of convergence of the series 3.5.5 with partial sum V^{m}. We have show an example where $R(|u|<1)$ is a subset of the DOA, where some truncations (meven) always give inferior RAS's, and where others (m odd) give better ones but converge gowly to the DOA ($m=51$, still poor?). We ask ' is convergence of the RAS to the DOA always non-uniform if $R \subset U$?' No answer has yet been forthcoming.
3.5. Direct Numerical Solution of the P.D.E.

Due to the non-minomity of the Zubov procedure and the infeasibility of solving the series solution for large $n(2)$, even though formulation is possible (7), it seems reasonable to look for other methods of solving 3.2.3. In this section we consider solving the P.D.E. by a finite difference method. We restrict the problem to two dimensions.

Write system 3.2.1. as

$$
\begin{aligned}
& \dot{x}=f(x, y) \\
& \dot{y}=g(x, y)
\end{aligned}
$$

3.5 .1.

Then we write the P.D.E.'s 3.2 .2 and 3.2 .3 as one equation.

$$
\frac{\partial V}{\partial X} f+\frac{\partial V}{\partial V} g=-\phi+[\phi V] \quad 3.5 .2
$$

where[] is included for 3.2 .2 only, the regular equation.

From a classification point of view, 3.5 .2 is a
linear PDE solvable by the method of characteristics (8).
Unfortunately this leads us back to the solution of the system trajectories.

Consequently, we express 3.5.2 in polar coordinates

$$
\frac{\partial V}{\partial r} \cdot F(r, \theta)+\frac{\partial V}{\partial \theta} \cdot G(r, \theta)=-\phi+[\phi V]
$$

3.5 .2

$$
\text { Where } \begin{aligned}
F & =(r \cos \theta+g \sin \theta) \\
G & =\frac{1}{r}(\xi \cos \theta-r \sin \theta)
\end{aligned}
$$

Consider the mesh in Diag. 1.
where

$$
\begin{aligned}
& r_{i}=i n, i=1,2, \ldots \\
& \theta_{j}=(j-1) k, j=1, \ldots N+1 \\
& k=2 \pi / N, \theta_{1}=\theta_{i}+1 \\
& \text { and } V_{i, j}=V(i n,(j-1) k)
\end{aligned}
$$

Diag. 1

Choosing $\phi=\lambda\left(a x^{2}+2 b x y+c y^{2}\right)$ and making the approximations about the mesh point (io, $j+\frac{1}{2}$)

$$
\left(\frac{\partial v}{\partial r}\right) \bumpeq \frac{1}{2 h}\left(\left(v_{i+1, j}+v_{i+1, j+1}\right)-\left(v_{i, j}+v_{i, j+1}\right)\right)+o(h, k)
$$

$$
\left(\frac{\partial V}{\partial \theta}\right) \bumpeq \frac{1}{2 i k}\left(\left(v_{i, j+1}+v_{i+1, j+1}\right)-\left(v_{i, j}+v_{i+1, j}\right)\right)+o(k, h)
$$

substitution into $3.5 \cdot 3$ gives the following CrankNicholson type difference equations (9) on neglecting second order terms in h and k,

$$
v_{i+1, j^{a}}+v_{i+1, j+1} b_{j}=c_{j} \quad{ }_{j}=1, \ldots, N^{3.5 .6}
$$

where $\quad v_{N+1}=v_{1}$
and

$$
\begin{aligned}
& a_{j}=F-p G-z \\
& b_{j}=F+p G-z \\
& c_{j}=V_{i, j}\left(b_{j}+[2 z]\right)+V_{i, j+1}\left(a_{j}+[2 z]\right)-4 z \\
& p=h / k, \quad z=n \phi / 2
\end{aligned}
$$

The terms in [1 are zero for the modified en. (ϕ, F and G are evaluated at ($i+\frac{1}{2}, j+\frac{1}{2}$) in 3.5.7 and 3.5.8). since $\mathrm{v}(0,0)=0$, we can assume

$$
v\left(r_{1}, \theta_{j}\right)=v(h, j k)=\epsilon, j=1, \ldots, N 3.5 .10
$$

for initial conditions ($\epsilon>0$,small), or, make

$$
v(h, j k)=v_{2}(h, j k) \quad j=1, \ldots, N
$$

V_{2} being obtained from the series 3.3.5.
We have an initial value problem (9) and by writing 3.5 .6 as a linear system of equations

$$
A V_{i+1}=\underline{c}
$$

where $\underline{c}=\left(c_{1}, c_{2}, \quad, c_{N}\right)$,

$$
V_{i+1}=\left(v_{i+1,1}, \ldots \ldots \ldots v_{i+1, N}\right)
$$

and A anil x il coefficient matric, an efficient computer algorithm results for their solution (A2).

3.6 Numerical Examples

The following examples show features of the method.

Biannle 3.6.1

The systern is.

$$
\begin{aligned}
z & =-x+y+x\left(x^{2}+y^{2}\right) \\
\dot{y} & =-y-x+y\left(x^{2}+y^{2}\right) \\
\text { With } \phi & =2 x^{2}, \mathrm{~N}=100, \mathrm{~h}=.0125, \mathrm{r}_{1}=.25
\end{aligned}
$$

solution of the rezular equation gave $V=1.0000$ for all mesh points on $r=1.0$. The analytic solution is $V=r^{2}$ giving $r^{2}=1.0$. for B. With ϕ changèd to $\phi=10 x^{2}+y^{2}, V=1.0000$ again on ($1 \cdot 0, e_{j}$). Constructing the V contours shows they are no longer concentric circles as above but ellipses, approaching $r^{2}=1$ as $r \rightarrow 1$. Fig. 3.2 shows variation of V with θ for fized r. Note how the numerical solution of V becones negative for $r>1$, indicating that the analytic solution is not defined for such r.

Exarnie 3.62.
A Van der pol equation.
$\dot{x}=y$
$\dot{y}=-x-y+x^{2} y$
Fig. 3.5 shovs attempted constructions of some V contours from mesh values, for the regular equation, with $h=.0125$,
$r_{1}=: 25, \phi=r^{2}$, and $N=100$. Singularitios
occured at the DOi Doundary, B, as in 3.6.1, witin V
taking on large negative values ($\rightarrow-\infty$)
Choice of nesh mas important since
$r=y=0$ for $\theta=0$. If $\theta_{j+\frac{1}{2}}=0$ for some j, the method breaks down.

Examye 3.5 .3
The sustem i.s 3.4.1.With $\phi=2\left(x^{2}+2 x y+2 y^{2}\right)$
and initially $v\left(r_{1}, \theta\right)=v_{2}=\phi / 2, h=.0125$
$r_{1} \doteq \cdot 25$ and $N=100$, errors between the numerical
and analytic results were less than 10^{-4} for the resular equation, for $r<1$. 375. As $r \rightarrow 1 \cdot l_{\text {, }}$ the $V_{i}, \dot{\prime} \rightarrow-\infty$ renderinc computed values useless. The reason is found in the analytic solution,
$V=1-e^{-\left(y^{2}+x^{2} /(1-x y)\right)}$
since $V \rightarrow-\infty$ as $X Y \rightarrow 1+:$
Fig. 3.3 shows a construction of the V contours, while Fig. 3.4, the variation of V along a ray to B for various λ

Gomment

If numerical values are correct the mesh points at which $V_{i, j}<1$ lie in U, the DOA. Unfortunately the method breaks down near the DOA bouncary and the values at such mesh points, $V_{i, j}$, are such that $V_{i, j} \rightarrow-\infty$. The accuracy of other points where $V_{i, j}<1$ is then decreased.

Suitable choice of λ is also a problem. Large values of λ means $\mathrm{V} \rightarrow 1$ quickiy (Analytically, if V solves $\hat{V}=-\phi$ then $\hat{V}=\lambda \mathrm{V}$ solves $\dot{\hat{V}}=-\lambda \phi)$ and conversely for λ mall (irig. 3.4). inumerically, a criterion such as

$$
0<1-v_{i, j}<10^{-t}
$$

gives a point 'near' D. In generaj t will depend on λ. Einally, we add that other differerce schemes for solving 3.5 .3 have given similar results.

3.7 Recent Methods

It is pertineat in view of section 3.6 to mention other metnods of solving Zubov's PDE 3.2.2/3.2.3. Eumand and Sarlos (1960) (10), treat 3.2.3 and syster 3.2.1 as two differential equations. Usinc Lie series, the two equations in question,

$$
\begin{array}{ll}
\dot{x}=\tilde{x}(x) & 3.7 .1 \\
\dot{v}=-\phi(x) & 3.7 .2
\end{array}
$$

with $\phi \mathrm{p} . \mathrm{dof} .$, are integrated with reverse time fron an initial point $x(0)$ near the origin (typically $\mathrm{V}(\mathrm{x}(0))=0.0$) until $\mathrm{V}>\mathrm{K}$, where K is a large positive number (e.c. $K=20$). Hopefuily the final point $x(t)$ is near \mathbb{D}. The proceduro is repeated for a series of initial points until i is traced out. Eommenit and Li (1972) (13) have extended the method and fit an alsebraic curve to the final set of points by a pattern classification alcorithre.

Troch (1972) (12), with computation efficiency in mind,intecrates system 3.7.1. and 3.7.2 by analosue computer. The termination criterion $V>K$ determines a point on E nad a more accurate dicital computation integrates a trajectory inuogi this point. The trajectory (or a series of such) will trace out B .

Comrent

From limited computer experience we found Burnand/ Sarios's method suffered from two drawbacks:
a) althouch accurate, cormputer time was high for the Lie series computation,
b) caiculation of the recursive terms (10) in the Lie series was infeasible for complex r.r.s. of 3.7.1.

As a criticism of both methods we ask, is the additional solution of 3.7 .2 really necessary since the criterion $V>k$ (or $\cdot 1-W<\epsilon$, where $W=1-0^{-V}$) is scmewnat arbitrary as a criterion for 'nearness' to B ? The non Iyapunov method of Davidson and Cowan (1969) (11), restricted to $n=2$, gives a partial answer. For their criterion triey use the function

$$
V\left(\underline{X}\left(t_{0}\right)\right)=\| \underline{X}\left(t_{0}\|-\| \underline{X}\left(t_{0}+T\right) \|\right.
$$

where T is the pericuic time (for Iimit cycle) or an upper bound (for nodal type systens). Equation 3.7.1 is intecrated by a fourth orcer Runce Kutta formula and
a point satisfying $V(\underline{x}(t))=0$ determines
a point on $P(13)$.
Finally, it is questionable wether any of the ajove
methods are useful for $n>2$ in view of the computation time involved.

System: $\left\{\begin{array}{l}\dot{x}=-x+y+x\left(x^{2}+y^{2}\right) \\ \dot{y}=-x-y+y\left(x^{2}+y^{2}\right)\end{array}\right.$
FIG. $3 . ?$
$V_{\text {ariatton of }} V$ along ray $\theta=41^{\circ} 40^{\circ}$ for Various λ.
REGULAR PD $\frac{d v}{d t}=-\phi(1-v)$
SYSTEM:

$$
\begin{aligned}
& \dot{x}=-x+2 x^{2} y \\
& \dot{y}=-y
\end{aligned}
$$

FIG. 3.4

FIG 3.5

FIg. 3.3

CHAPTER 4

OPTIMAL QUADRATIC LYAPUNOV FUNCTIONS

CHAPTER 4

Optimal Quadratic Lyapunov Functions

4.1 Introduction

We will be concerned with the autonomous system 1.4 .5 namely,

$$
\dot{\underline{x}}=A \underline{x}+E(\underline{x})
$$

where A is stable and g is expandable as a power series with terms of at least degree two in x_{i}, the coefficients of x.

A quadratic LF for 4.1.1, $V(\underline{x})=X^{T} P_{x}$, is determined via Theorem 1.6.1 whose RAS is given by

$$
\underline{x}^{T} P \underline{x}<V_{m}
$$

$$
4.1 .2
$$

where

$$
V_{m}=\min _{x} V(\underline{x}) \text { with } \underline{x} \in E_{V} \quad 4.1 \cdot 3
$$

Here

$$
E_{V}:\left(x / \dot{v}=-x^{T} Q \underline{x}+2 x^{T} P g(x)=0, x \neq 0\right)
$$

and Q is any p.d.s. matrix such that

$$
A^{T} P+P A=-Q
$$

$$
4.1 .5
$$

Let $\rho(V)$ be a measure of the size of the RAS, 4.1.2. Then a problem inherent in this chapter is to maximize $\rho(V)$ over the class of quadratic LF's,
$\max _{Q} \rho(V) \quad 4.1 .6$
subject to
$Q>0(Q \mathrm{p} . \mathrm{d} . \mathrm{s})$
(ρ will be some function of P and thus $Q ; \rho=\rho(P)=\rho(Q)$) The two usual choices of ρ are the generalized volume, which for an ellipsoidal region is

$$
\rho(P)=\pi v_{m}^{n / 2 / \alpha(P)^{\frac{1}{2}},} \quad 4.1 .8
$$

and the numerical average radius

$$
\rho(p)=\left(\sum_{i=1}^{N} \sum_{i}\right) / \mathbb{N}
$$

where the y_{i} are points (usually equally spaced) lying on the RAS boundary, i.e, $V\left(y_{i}\right)=V_{m}$. (For a general LF we have $\rho(v)=\int_{S} w(\underline{x}) d v$, a general volume measure with S the RAS, $w(\underline{x})$ a weighting factor and $d v$ a volume element).

The optimum problem of 4.1.6. is highly nonlinear due to the associated RAS determination and researchers have therefore concentrated on the numerical side of its solution. The works of Weissenberger (48), Geiss (51), Szego (52) and Lapidus (49) have this emphasis and depend upon the formulation of 4.1 .3 as variants of the constrained minimization problem

$$
\min _{\underset{x}{x}=0} v(x)=v_{m} \quad 4.1 .10
$$

subject to

$$
\dot{\mathrm{V}}(\underline{x})=0
$$

They chose various numerical optimization techniques to solve the problem.

The following sections of this chapter fill a need
in that for various systems either an optimal quadratic is found analytically or some useful RAS is determined. Some new properties are found which are confirmed to hold for general and higher order systems by efficient numerical algorithms.

4.2 Examnles on the Determination of Optimal Quadratics and

 Simple RAS'sIt is well known that necessary conditions for a solution of the constrained problem 4.1 . 10 are the $(n+1)$ Lagrange equations in the coefficients x_{i} and the Lagrange multiplier λ

$$
\nabla \mathrm{V}(\underline{x})+\begin{array}{rll}
\lambda \underline{\mathrm{V}}(\underline{x}) & =0 & 4.2 .1 \\
\dot{v}(\underline{x}) & =0 & 4.2 .2
\end{array}
$$

Geometrically, if \underline{x}^{*} and λ^{*} satisfy these equations then $\nabla V\left(\underline{x}^{*}\right)=-\lambda^{*} \nabla \dot{V}\left(\underline{x}^{*}\right)$, which implies that the contours $V(\underline{x})=V\left(\underline{x}^{*}\right)$ and $\dot{V}(\underline{x})=0$ are 'tangential' at $x=x^{*}$. Consequently, 4.2.1 will be called the tangency equation and x^{*} a tangency point. Of all such $x^{*}, x^{*} \neq 0$, we require the one minimizing V on 4.2.2., i.e. the global minimum. This will be called the valid tangency point (In some cases no valid tangency exists e.g. $\hat{\nabla}<0, \underline{x} \neq 0$; then ρ is unbounded and E^{n} the DOA) The equations 4.2 .1 and 4.2 .2 also hold for a general LF but valid tangency points may exist for which $\nabla V\left(\underline{x}^{*}\right)=0$.

Analytically, 4.2.1. implies the $n-1$ independent equations

$$
\frac{v_{x_{1}}}{\dot{v}_{x_{1}}}=\frac{v_{x_{2}}}{\dot{v}_{x_{2}}}=\cdot \frac{v_{x_{n}}}{\dot{v}_{x_{n}}}
$$

with

$$
v_{x_{1}}=\frac{\partial v}{\partial x_{1}}
$$

For descriptive convenience we call the contour $\dot{V}(\underline{x})=0, \underline{x} \neq 0$, (i.e. E_{V}) the constraint contour and as its
components we use the intuitive definition as the subsets of E_{V} which form continuous connected curves $(n=2)$ or surfaces $(n=3)$. If two components of E_{V} are radially symmetric (RS) we will call this one RS component and likewise for tangency points. In the examples which follow we choose p as the volume (or area) measure.

Exomple 4.2 .1
Consider the system from Zubov (1) in 3.4.1, namely,

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+2 x_{1}^{2} x_{2} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

$$
S 1
$$

with DOA $x_{1} x_{2}<1$. Any p. d. quadratic is a LF for this system so let $V=a x_{1}{ }^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$ with $a>0, a c-b^{2}>0$. Then 4.2 .2 gives

$$
\dot{v}=2\left(-v+2 x_{1}^{2} x_{2}\left(a x_{1}+b x_{2}\right)\right)=0 \quad 4.2 .4
$$

and after some manipulation 4.2 .3 gives

$$
x_{1}^{2}-3 \frac{c x_{1} x_{2}^{2}}{2}-2 \frac{b c}{a} x_{2}^{3}=0
$$

$$
4.2 .5
$$

Let $u=x_{1} / x_{2}$, then dividing 4.2 .5 by $x_{2}{ }^{3}$ gives the tangency equation

$$
u^{3}-3 \frac{c u}{a}-2 \frac{b c}{a^{2}}=0
$$

It is well known that the standard cubic $u^{3}+p u^{+} q=0$ has real roots if $p<0$ and $4 p^{3}+27 q^{2}<0$. In this case they are given by

$$
u=x_{1} / x_{2}=2 \sqrt{\frac{c}{a}} \cos (1)
$$

Where $1=\frac{1}{3} \cos ^{-1}(z), \quad l=\frac{1}{3}\left(2 \pi+\cos ^{-1}(z)\right)$
with $z=b / \sqrt{a c}$. Substituting 4.28into 424 gives

$$
\bar{x}_{2}^{2}=(\mathrm{a} / \mathrm{c})^{\frac{1}{2}} \frac{z\left(4 \cos ^{2}(1)+4 z \cos (1)+1\right)}{8 \cos ^{2}(1)(2 \cos (1)+z)}
$$

and thus

$$
V_{m}=\frac{(a c)^{\frac{1}{2}}\left(4 \cos ^{2}(1)+4 z \cos (1)+1\right)^{2}}{8 \cos ^{2}(1)(2 \cos (1)+z)}
$$

The area $\rho(v)=\rho(a, b, c)$ of the RAS is

$$
\rho=\frac{\pi}{8} \frac{\left(4 \cos ^{2}(1)+4 z \cos (1)+1\right)^{2}}{\sqrt{1-z^{2}} \cos ^{2}(1)(2 \cos (1)+z)}
$$

which, interestingly, is a function of one parameter, z.
For p.d. V we require $|z|<1$ and $a>0$. Given such a z, by varying a, b and c to satisfy $z=b /(a c)^{\frac{1}{2}}$, an infinite number of quadratics exist all giving the same area for p. Since this is true for the optimizing z, z^{*} say, the optimal quadratic is in this sense non unique. It can be shown that $z^{*}=1 / \sqrt{2}$ giving $\rho=4 \pi$.

By inspection of 4.2 .4 the lines $x_{1}=0, x_{2}=0$ and $a x_{1}+b x_{2}=0$ separate the phase space into regions where RS components for E_{V} lie. Further, we have for
a) $z \leq 0,1 \mathrm{RS}$ component and one tangency point.
b) $z>0,2$ RS components and 2 tangency points. (See Fig. 4.1). Also ρ is small for $z<0$ and increases to 4π with increasing z until $z=z^{*}$, thereafter decreasing. The valid tangency point for $0<z 4 / \sqrt{2}$ lies on a RS component in $x_{1} x_{2}>0$, whereas for $\frac{1}{\sqrt{2}}<z<1$, on a RS component in $x_{1} x_{2}<0$, When $z=z^{*}=1 / \sqrt{2}$ we have the important property that two valid tangency points exist and thus an optimal quadratic boundary $V=V_{m}$ touches both $R S$ components.

There are an infinitenumber of such boundaries satisfying $\sqrt{2} b=\sqrt{a c}$. Which, in the limit, sweep out an open region. Fig. 4.2 shows some of these together with two loci obtained by eliminating the variable quantity $(a / c)^{\frac{1}{2}}$ between 4.2 .8 and 4.2 .9 giving a locus of tangency points as

$$
x_{1} x_{2}=\frac{\left(4 \cos ^{2}(1)+4 z \cos (1)+1\right)}{\cos (1)(2 \cos (1)+z)} \quad 4.2 .12
$$

For $z=z^{*}$, the two ${ }^{\text {ralid }}$ values of 1 are $I_{1}=\pi / 12$ and $l_{2}=7 \pi / 12$ which give the loci $x_{1} x_{2}=\sqrt{3}-1$ and $x_{1} x_{2}=-(\sqrt{3}+1)$ respectively. Since a quadratic RAS is a convex region an estimate of the DOA is given by points satisfyingxix $x_{2}-\sqrt{3}-1$
and $x_{1} x_{2}<\sqrt{3}-1$. A better estimate are the loci of extreme points on the major and minor axes given by $\left(R_{1} \cos \theta_{1}, R_{1} \sin \theta_{1}\right)$ and $\left(R_{2} \cos \theta_{2}, R_{2} \sin \theta_{2}\right)$ where for $b>0$ $R_{1}=\sqrt{\frac{2}{b^{3}}\left(2 b^{2}+1+\sqrt{1+4 b^{2}}\right)}, \quad R_{2}=\sqrt{\frac{2}{b^{3}}\left(2 b^{2}+1-\sqrt{1+4 b^{2}}\right)}$ and $\theta_{1}=(\pi+a) / 2, \quad \theta_{2}=a / 2, \quad a=\tan ^{-1}\left(2 b /\left(1-2 b^{2}\right)\right)$

A System of Special Form

A simple quadratic RAS may be determined for a second order system of the form 4.1.1. with $g(\underline{x})$ an homogeneous polynomial and A of the form

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-\alpha & -\beta
\end{array}\right] \quad \text { with } \beta^{2}-4 \alpha<0 \quad(\alpha, \beta>0)
$$

For then a p.d.s. P exists such that $\mathbb{A} P+P A=-\lambda_{P}$, namely, to a constant factor

$$
P=\left[\begin{array}{cc}
\alpha & \beta / 2 \\
\beta / 2 & 1
\end{array}\right], \lambda=\beta
$$

Equations 4.2 .2 and the tangency equation then give

$$
\dot{v}=-\lambda V+2 \underline{x}^{T} \mathbb{g}(\underline{x})
$$

and

$$
\frac{v_{x_{1}}}{v_{x_{2}}}=\frac{\left(x^{T} P_{g}\right) x_{1}}{\left(x^{T} P_{2}\right) x_{2}} \quad 4.2 .15
$$

The significance is that 4.2 .15 reduces to an homogeneous polynomial in x_{1} and x_{2} as in 4.2 .5 with reduction to a polynomial in $\left(\frac{x}{x_{2}}\right)$. Its roots determine straight lines as in 4.2.8, and tangency points exist where such lines intersect the constraint contour, $\dot{\mathrm{V}}=0$. An example is the Van der Pol equation:

Example 4.2.2.

The system may be written

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\epsilon\left(1-x_{1}^{2}\right) x_{2}-x_{1}
\end{aligned}
$$

Its DOA isalimit cycle region depending upon $\epsilon>0$. Choosing P in $4.2 .13,4.2 .14$ and 4.2 .15 reduce to

$$
\bar{x}_{1}^{2} x_{2}\left(x_{1}+2 x_{2}\right)-\left(x_{1} 2+\epsilon x_{1} x_{2}+x_{2}^{2}\right)=0 \quad 4.2 .16
$$

and

$$
\epsilon x_{1}^{3}+x_{1}^{2} x_{2}\left(4-\epsilon^{2}\right)-3 \epsilon x_{1} x_{2}^{2}-4 x_{2}^{3}=0 \quad 4.2 .17
$$

where $V=x_{1}{ }^{2}+E x_{1} x_{2}+x_{2}{ }^{2}$. Substituting $z=x_{1} / x_{2}+\frac{R}{3}$
($R=4 / \in-\epsilon$) in 4.2.17 gives the standard cubic

$$
z^{3}+p z+q=0
$$

For real roots $4 p^{3}+27 q^{2}<0$ which hoids when $\epsilon<2$ (here $\beta^{2}-4 \alpha=\epsilon^{2}-4$). The roots are given as

$$
x_{1}=x_{2}\left(2 \cos (I) \sqrt{9+R^{2}}-R\right) / 3
$$

Where $I=\frac{T}{3} \cos ^{-1}(T)$ or $I=\frac{1}{3}\left(2 \pi \mp \cos ^{-1}(T)\right)$
and $T=-\frac{\left(2 R^{3}-27 \epsilon\right)}{2\left(9+R^{2}\right)^{3 / 2}}$
It appears there are 2 RS components of E_{V} for a given ϵ and only two possible RS tangency points (or values of 1). Substitution of $4 \cdot 2.18$ into 4.2 .16 gives at tangency

$$
V_{m}=\frac{\left(d^{2}+\epsilon d+1\right)^{2}}{d(\epsilon d+2)}
$$

with $d=\frac{1}{3}\left(2 \cos (1)\left(9+R^{2}\right)^{\frac{1}{2}}-R\right)$. Valid values of 1 must give $d(\epsilon d+2)>0$. When $\epsilon=.1$, for example, two values of I are $57^{\circ} 44^{\prime}$ and $62^{\circ} 1^{\prime \prime}$ giving $V_{m}=1.74$, the valid boundary value, and $V_{m}=2.14$ respectively.

The optimum quadratic is impossible to obtain analytically and is found numerically. (See fig. 4.5(a) and 4.5(b)).

The RAS is a reasonable estimate of the DOA.

Example 4.2.3.

Another practical example is the Duffing equation

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\alpha x_{1}-\beta x_{2}+\epsilon x_{1} 3
\end{aligned}
$$

with $\alpha, \beta_{1} \epsilon>0$. The singular points are $P_{1}(0,0)$ and P_{2} $\left(\sqrt{\frac{\alpha}{\epsilon}}, 0\right), P_{3}\left(-\sqrt{\frac{\alpha}{\epsilon}}, 0\right)$.

Consider the particular case $\alpha=\beta=\epsilon=1.0$. By choosing

$$
Q=2\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

in 4.1.5. With Q p.d a general quadratic LF is found to be

$$
V=R x_{1}^{2}+2 a x_{1} x_{2}+(a+c) x_{2}^{2}
$$

with $R=2(a-b)+c$. The constraint and tangency equateions give
$\dot{V}=2\left[-\left(a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}\right)+x_{1}^{3}\left(a x_{1}+x_{2}(a+c)\right)\right]=0.4 .2 .20$
and

$$
\begin{aligned}
& -2\left[x_{1} 2\left(R b-a^{2}\right)+x_{1} x_{2}(R c-a(a+c))+x_{2}^{2}(a c-b(a+c))\right] \\
& +x_{1} 2\left[x_{1}^{2}\left(R(a+c)-4 a^{2}\right)-x_{1} x_{2} 6 a(a+c)-3 x_{2}^{2}(a+c)^{2}\right]=0
\end{aligned}
$$

$$
4.2 .21
$$

As a first estimate, 4.2 .14 and 4.2 .15 give us, with $V=x_{1}{ }^{2}+x_{1} x_{2}+x_{2}^{2}$,

$$
\dot{v}=-v+x_{1} 3\left(x_{1}+2 x_{2}\right)
$$

and

$$
x_{2}\left(x_{1}+x_{2}\right)=0
$$

The only RS tangency point corresponds to $x_{2}=0$ in the latter i.e. $\mp(1.0,0)$. It gives as RAS $V<1$, with $p=$ $2 \pi / \sqrt{3}$.

Trying various values of a, b, and c and solving 4.2 .20 and 4.2.21 for the RS tangency points - which involves the real roots of a 4 th degree polynomial - it is found that (a) only one RS component of E_{V} and one RS tangency point exists and that $(b) \rho(P)$ increases when $a=$ const, and b, $\mathrm{c} \rightarrow \mathrm{o}$. In the limit 4.2 .20 and 4.2 .21 give with $V=a\left(2 x_{1} 2+2 x_{1} x_{2}+x_{2}^{2}\right)$,

$$
\dot{\nabla}=a x_{1}^{2}\left(x_{1}^{2}+x_{1} x_{2}-1\right)=0 \quad 4.2 .24
$$

and

$$
a^{2}\left[2 x_{1}\left(x_{1}+x_{2}\right)-x_{1}^{2}\left(2 x_{1}^{2}+6 x_{1} x_{2}+3 x_{2}^{2}\right)\right]=0
$$

Clearly, $x_{1}=0$ is not a trajectory of the system except for $\underline{\underline{x}}=0$.

Thus theorem 1.5.3. may be used to give an RAS. From 4.2.24 $x_{2}=\frac{1-x_{1}^{2}}{x_{1}}$ and use in the last equation gives $\mp(1,0)$ as the valid RS tangency point with $\rho(P)=2 \pi$ and With RAS boundary $2 x_{1}{ }^{2}+2 x_{1} x_{2}+x_{2}^{2}=2.0$. (Numerical work confirms that this is the unicue ontimal boundary). Fig. 4.3 shows the boundary in relation to its constraint contour.

The example gives as an optimizing Q

$$
Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

which is p.s.d. Using the same Q a simple RAS boundary is easily obtained for the general case of system $S 3$ as

$$
v=x_{1}^{2}\left(\alpha+\beta^{2}\right)+2 x_{1} x_{2}+x_{2}^{2}=\frac{2 \beta \alpha}{\epsilon}
$$

with $p=2 \alpha \Pi \beta / \epsilon$. Thus we see that increasing β, the damping coefficient, will increase the area of stability, as will decreasing ϵ the forcing term coefficient.

Example 4.2.4 (The n-Dimensional Case)

System S. 3 is a particular case of the n-dimensional system,

$$
\underline{\underline{x}}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdot & \cdot & 0 \\
0 & 0 & 1 & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
& & & & & \\
-a_{1}-a_{2}-a_{3} & \cdot & \cdot & -a_{n}
\end{array}\right] \underline{x}+\epsilon\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0 \\
x_{1}^{3}
\end{array}\right]
$$

with A stable. A RAS is obtained by solving 4.1.5. With $Q=\underline{e}_{1} \underline{e}_{1}^{T}$ where $e_{1}=(1,0,0, \ldots, 0)$. It can be shown (see Lefshetz (43)) that P is p. d. if the matrix $C=\left(e_{1}, A^{T} \underline{e}_{1}, \ldots ., A^{n-1} \underline{e}_{1}\right)$ has rank n.

For this $A, C=I$ and hence P is p.d. (Smith (53) gives a method for the determination of the $p_{i j}$)

Consider the case for $n=3$ where for A stable the following Routh-Hurwitz conditions must hold (17)

$$
a_{3}>0, a_{3} a_{2}-a_{1}>0, a_{1}>0
$$

For the moment put $\epsilon=1.0$ then the required P is

$$
P=\left[\begin{array}{ccc}
a_{1} d+a_{2} & a_{2} d & 1 \\
\cdot & \frac{d\left(a_{3}^{3}+a_{1}\right)}{a_{3}^{2}} & d \\
\cdot & \cdot & \frac{d}{a_{3}}
\end{array}{\frac{1}{2} a_{1}, d=\frac{a_{3}^{2}}{\left(a_{3} a_{2}-a_{1}\right)}>0}_{4.2 .26}>\right.
$$

With $V=\underline{x}^{T} P \underline{x}$ the constraint equation is

$$
\dot{v}=-x_{1}^{2}\left(1-\frac{1}{a_{1}}\left(x_{1}^{2}+d x_{1} x_{2}+\frac{d}{a_{3}} x_{1} x_{3}\right)\right)=0
$$

Of the tangency equations, the equation

$$
\frac{\mathrm{v}_{\mathrm{x}_{2}}}{\mathrm{v}_{\mathrm{x}_{3}}}=\frac{\dot{\mathrm{v}}_{\mathrm{x}_{2}}}{\dot{\mathrm{v}}_{\mathrm{x}_{3}}}
$$

gives $x_{2}=-a_{3} x_{1}$. The other equation

$$
\frac{\mathrm{v}_{\mathrm{x}_{1}}}{\mathrm{v}_{\mathrm{x}_{2}}}=\frac{\dot{\mathrm{v}}_{\mathrm{x}_{1}}}{\dot{\mathrm{v}}_{\mathrm{x}_{2}}}
$$

is more complex. However since $\dot{\mathrm{V}}$ in 4.2 .27 is nonvanishing on a non-trivial trajectory of the system, the only component of interest is

$$
\left.x_{3}=\frac{a_{3}}{d} \frac{\left(a_{1}\right.}{x_{1}}-x_{1}-d x_{2}\right)
$$

Substituting the latter and the result of 4.2 .28 into 4.2 .29 we easily obtain an equation in x_{1} only, reducing to $x_{1}^{4}=a_{1}\left(a_{3} a_{2}-a_{1}\right)$. Thus the valid RS tangency point is. $\bar{\mp}$, where

$$
\begin{aligned}
& \bar{x}_{1}=\left(a_{1}\left(a_{3} a_{2}-a_{1}\right)\right)^{\frac{1}{4}} \\
& \bar{x}_{2}=-a_{3} \bar{x}_{1} \\
& \bar{x}_{3}=\frac{\bar{x}_{1}^{3}}{a_{1} a_{3}}\left(a_{1}+\bar{x}_{1} 2\left(a_{3}-1\right)\right)
\end{aligned}
$$

Also $V_{m}=\left(a_{1} / d\right)^{\frac{1}{2}}$ and since $d(P)=\left(\frac{d a_{1}}{a_{3}^{2}}\right)^{2} \frac{1}{8 a_{1}^{3}}$,
the determinant of P,

$$
\rho(P)=\pi 2 \sqrt{2} \quad a_{3}{ }^{2}\left(\frac{a_{1}^{5}}{d^{7}}\right)^{\frac{1}{4}}
$$

For any ϵ an RAS is obtained with recourse to the following theorem which holds when $g(\underline{x})=\epsilon_{\mathbb{I}_{\mathrm{k}}}(\underline{x})$, with g_{k} homogeneous of degree k.

Theorem 4.1.

If $V=\underline{X}_{\underline{T}} P \underline{x}=V_{m}$ is a quadratic boundary for 4.1.1 which has a tan. pt. at $\underline{x}=\underline{x}^{*}$ for $\epsilon=1.0$, then for any $\epsilon>0,4.1 .1$. has a tangency point $x=x^{*} / \epsilon^{\frac{1}{k-T}}$ which lies on the boundary $v=v_{m} / \epsilon^{\frac{2}{k-1}}$.

Proof:
For system 4.1.1 with $g=\varepsilon_{m_{k}}$ we have

$$
\dot{V}\left(\underline{x} / \varepsilon^{\left(\frac{1}{k-1}\right)}=\frac{1}{\varepsilon^{\left(\frac{2}{k-1}\right)}\left(-\underline{x}^{T} Q \underline{x}+2 \varepsilon^{\left(\frac{k}{k-1}\right)} \underline{x}^{T} P_{m_{k}}\left(\underline{x} / \varepsilon^{\frac{1}{k-1}}\right)\right.}\right.
$$

and since $g_{k}(x)$ is of degree k

$$
\dot{V}\left(x / \varepsilon^{\left(\frac{1}{k-1}\right)}=\frac{1}{\varepsilon^{\left(\frac{2}{k-1}\right)}} \dot{v}(\underline{x})\right.
$$

$$
4.2 .29 a
$$

Let $\underline{W}(\underline{x})=\underline{\nabla} V(\underline{x})+\lambda \underline{\underline{V}}(\underline{x})$, then

$$
\begin{aligned}
\underline{W}\left(\underline{x} / \frac{1}{\varepsilon^{k-1}}\right)= & \frac{1}{\left.\varepsilon^{\left(\frac{1}{k-1}\right.}\right)}\left[P \underline{x}+\lambda\left(-Q \underline{x}+\varepsilon^{\left(\frac{k}{k-1}\right)_{P_{k}}\left(\underline{x} / \varepsilon^{\left(\frac{1}{k-1}\right)}\right)}\right.\right. \\
& \left.+\varepsilon J^{T}\left(\varepsilon_{k}\left(\underline{x} / \varepsilon^{\left(\frac{1}{k-1}\right.}\right) I_{x}\right)\right]
\end{aligned}
$$

Since $\left.J f_{M_{k}}(\underline{x})\right)$, the Jacobian of $\AA_{l c}$, is of degree $k-1$ we have

$$
W\left(x / \varepsilon^{\left(\frac{1}{k-1}\right)}=\frac{1}{\left.\varepsilon^{\left(\frac{1}{k-1}\right.}\right)^{-}(x)}\right.
$$

$$
4.2 .29 b
$$

Hence if $\underline{W}(\underline{x})=0$ and $\dot{V}(\underline{x})=0$ are satisfied for $\varepsilon=1, \underline{x}=\underline{x}^{*}$ and some $\lambda=\lambda^{*}$, they are satisfied for all $\varepsilon>0$.

For the example above only one tangency point exists for $\varepsilon>0$ and thus occurs at $x=\bar{\mp} \bar{x} / \sqrt{\varepsilon}$.

Example 4.2 .5

As a final example consider a generalization of system S1

$$
\left.\begin{array}{rl}
\dot{x}_{1} & =-x_{1}+\varepsilon\left(x_{1}\right)\left(x_{2}\right)_{2} x_{2}
\end{array}\right) \cdot\left(\cdot\left(x_{n}^{i_{n}}\right)=-x_{1}+g_{1}\right)
$$

with $i_{1}>1$. Consider a simple quadratic $L F$

$$
v=x^{T} D \underline{x}=\sum_{j=1}^{n} x_{j}{ }^{2} a_{j}, a_{j}>0
$$

The constraint and tangency equations reduce to

$$
\dot{\mathrm{V}}=2\left(-\mathrm{V}+\mathrm{d}_{1} \in \mathrm{x}_{1} \mathrm{~g}_{1}\right)=0
$$

and the ($n-1$) equations

$$
x_{j}^{2}=\frac{a_{1} x_{1} 2}{\left(1+i_{1}\right)}\left\{\frac{i_{j}}{a_{j}}\right\} \quad j=2, \quad, n
$$

Substitution of 4.2 .31 into 4.2 .30 gives an eqn, in x_{1} from which the tangency points follow. Then V_{m} is given as.

$$
\left.\nabla_{m}=a_{1}\left[\sum_{j=1}^{n}\left(\frac{d_{j}}{d_{1}}\right)^{i}\right]_{j}\right]^{\left(\sum_{j=1}^{\left.i_{j}-1\right)}\right.} \cdot k
$$

where

$$
\begin{aligned}
& K=\frac{\left(1+\sum_{j=1}^{n} i_{j}\right)}{\left(1+i_{1}\right)}\left[\frac{\left(1+\sum_{j=1}^{n} i_{j}\right)\left(1+i_{1}\right)^{\left(\frac{1}{2} \sum_{j=2^{n}}^{n} i_{j}-1\right)}}{\epsilon \prod_{j=2}^{n}\left(i_{j}\right)^{i_{j} / 2}}\right]^{m} \\
& m=2 /\left(\sum_{j=1}^{n} i_{j}-1\right)
\end{aligned}
$$

and for the volume $\rho(D)=$
$n / 2$

The example shows that for some choices of the i_{j} the volume becomes unbounded. For, select

$$
n=2, \quad i_{1}=2, \quad i_{2}=2, \quad \epsilon=2
$$

The system is

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+2 x_{1}{ }^{2} x_{2}^{2} \\
& \dot{x}_{2}=-x_{2}
\end{aligned}
$$

and $V=K d_{1}\left(\frac{d_{2}}{d_{1}}\right)^{2 / 3}$ with $\rho=\pi K\left(\frac{d_{2}}{d_{1}}\right)^{1 / 6}$
Put $d_{1}=1.0$ and let $d_{2} \rightarrow \infty$; then $\rho \rightarrow \infty$ but the quadratic boundary is of poor shape approaching the straight line $x_{2}=0$. The actual DOA is $x_{1} 2_{2}<3 / 2$.
The system $S 5$ is useful for test purposes since its DOA is always an open region given by

$$
\bar{x}_{1}^{i_{1}-1} x_{2}^{i_{2}} \cdot x_{n}^{i_{n}}\left(i_{1}-1\right)+\left(1-\sum_{1}^{n} i_{j}\right)<0
$$

4.3 Numerical Determination of A RAS and an Ontimal Quadratic

Clearly, finding the optimum RAS for a given class of LF's even as simple as quadratics is difficult analytically. In view of the work in the previous section a more comprehensive study of second order systems is needed to investigate the relationship between the optimum quadratic boundary, the number of valid tangency points and the components of the constraint contour. Consequentlys a special algorithm, both efficient and accurate, was developed to study the restrictive class of system

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}\right)=f_{1}+f_{2}+\cdots+f_{n f} \\
& \dot{x}_{2}=g\left(x_{1}, x_{2}\right)=g_{1}+g_{2}+\cdots+g_{n f}
\end{aligned}
$$

$$
4.3 .1
$$

where f_{i}, g_{i} are homogeneous of degree i in x_{1}, x_{2} and the linear part is assumed stable. The algorithm considers a general LF of the usual form

$$
V\left(x_{1}, x_{2}\right)=V_{2}+V_{3}+\quad \cdot \quad+V_{\mathrm{Inv}} 4.3 .2
$$

where $\quad V_{i}=\sum_{j=1}^{i+1} a_{i j} x_{1}^{i-j+1} x_{2}^{j-1}, V_{2}=x^{T} P$ and P solves 4.1.5. Consider V and \dot{V} in polar coordinates (r, θ) then

$$
v(r, \theta)=\sum_{i=2}^{m v} \psi_{i}(\theta) r^{i}
$$

where
and

$$
\Psi_{i}(\theta)=\sum_{j=1}^{i+1} a_{i j} \cos (\theta)^{i+j-1} \sin (\theta)^{j-1}
$$

$$
\left.\dot{V}=r^{2} \sum_{i=2}^{m} \phi_{i}(\theta)\right)_{r}^{i-2}, m=m_{V}-n f-1
$$

Where for
$i \leqslant \operatorname{mv}, \phi_{i}=\sum_{j=1}^{\min (i-1, n f)}\left(\frac{\partial v_{i+1-j}}{\partial x_{1}} \cdot f_{j}+\frac{\left.\partial v_{i+1-j} \cdot g_{j}\right)}{\partial x_{2}}\right.$
$i>m v, \phi_{i}=\sum_{j=i+1-m v}^{\min (i-1, n f)}\left(\frac{\partial V_{i+1-j} \cdot f_{j}}{\partial x_{1}}+\frac{\partial V_{i+1-j}}{\partial x_{2}} \cdot g_{j}\right)$
where for example $f_{j}=f_{j}(\cos \theta, \sin \theta)$ and
$\frac{\partial V_{j}}{\partial x_{1}}=\sum_{j=1}^{i} a_{i j}(i+1-j) \cos (\theta)^{i-j i n}(\theta)^{j-1}$
$\frac{\partial V_{j}}{\partial x_{2}}=\sum_{j=2}^{i+1} a_{i j}(j-1) \cos (\theta)^{i+1-j} \sin (\theta)^{j-2}$
These equations hold by comparing like povers of r. Given θ, a point on the contour $\dot{V}=0$ is then found by solving, via 4.3.5, an algebraic equation of degree m-2 in r for the root of smallest magnitude, \bar{F} say. At the point $(\bar{r}, \theta), V=V(\bar{r}, \theta)$ and $\dot{V}(\bar{r}, \theta)=0$. Thus the problem 4.1 . 10 reduces to
where

$$
\begin{array}{cl}
\min V(\bar{F}, \theta) \\
\sum_{i=2}^{m} \phi_{i}(\theta) \bar{r}^{i-2}=0 & 4.3 .9
\end{array}
$$

Henceforth we restrict 4.3 .1 and 4.3.2 such that $m=m v+n f-1 \leq 6$ so that 4.3.10 is at most a polynomial of degree 4 in \bar{F} (Note $\phi_{2}, \psi_{2} \neq 0, \forall \theta$ for Q positive definite) We now describe the main subalgorithms:

Root Finding Algorithm

Solution of 4.3 .10 for $i t s$ roots $r_{i}(i=1, m-2)$ is possible by iterative techniques (Froberg (8)) but for $m \leq 6$ all roots are obtainable analytically; those of third and fourth degree being solved by Cardans and Descarte's method respectively (see Froberg (8)).

When searching along the constraint contour $(\dot{V}=0$) for tangency it is necessary to keep successive solutions of 4.3 .10 on the same component. This is done by finding the root of smallest magnitude, \bar{r}, of the same sign as the previous root, r_{0} say. It is also convenient to replace a large or complex root by some upper bound, Rmax say. Thus $\left|r_{j}\right|>\operatorname{Rmax}$ for some θ indicates that no point on $\dot{V}=0$ lies along the ray (r, θ) except $r=0$.

Similar considerations apply when solving

$$
\sum_{2}^{m v} \psi_{i} r^{i}=c
$$

for a point on $V=$ constant say.
A general flow diagram is indicated in Fig. 4.12 where IV is an indicator set to or 1 and \in a small number testing the leading coefficient of 4.3 .10 for zero value. (typically $\epsilon=10^{-6}$).

Direct Search Algorithm

Problem 4.3 .9 can now be regarded as finding the minimum of a scalar function $V(\theta)=V(\bar{r}(\theta), \theta)$. Starting from some initial point $\left(r_{0}, \theta_{0}\right)$ on $\dot{V}=0$, a sequence of values θ_{j} is determined. Let $V_{j}=V\left(\theta_{j}\right)=V\left(\bar{F}_{j}, \theta_{j}\right)$
and s1 be a suitable step length. Then Fig. 4.13 gives the flow diagram which derives 3 values of $\theta_{;}, \theta_{1}<\theta_{2}<\theta_{3}$, which bracket θ^{*}, the value giving a relative minimum of $V(\theta)$, V^{*} say. A predicted minimum at θ_{m} is found via a well known quadratic fit (see I.C.I monograph (41)) procedure, which can be repeated on the best three values of $\theta_{m}, \theta_{1}, \theta_{2}, \theta_{3}$ that bracket the minimun (not now equally spaced). Convergence is obtained when either a) $\left|\theta_{m}-\vec{\theta}_{m}\right|<10^{-t}$, where θ_{m} and $\vec{\theta}_{m}$ are sucessive predicted minima of θ^{*} or b) the number of repetitions exceeds some integer. I say; whichever comes first (typically $I=5$ and $t=3$). Finally, an upperbound is placed on the step length sf of Smax which if exceeded restarts the initial search for the bracketing values. (Smax $=.15 \mathrm{rad}$. is suitable).

Algorithm for RAS Determination

The main steps in finding a RAS for the LF 4.3 .2 are as follows:
(a) with $s=\pi / N$ ($N=10$ say) let $\dot{\theta}_{j}=j s, j=0,1, \ldots, N$. Determine $\min _{j} V\left(\theta_{j}\right)$ $=\min _{j} V\left(\bar{r}_{j}, \theta_{j}\right)$ and let θ^{*} be the minimizing θ_{j}. If all $\left|r_{j}\right| \geq$ Rmax increase N and repeat (a) otherwise (b).
(b) with $\theta_{0}=\theta^{*}\left(\dot{V}\left(\bar{F}^{*}, \theta^{*}\right)=0.0\right)$ find the nearest θ_{m} via the direct'search algorithm. Then $\left(\vec{r}_{m}, \theta_{m}\right)$ is a tangency point and $V=V\left(\bar{r}_{m}, \theta_{m}\right)=V_{m}$ a possible RAS boundary.

Choose a conservative boundary (since tan. pt. not exact) of $V=V\left(r, \theta_{m}\right)=\bar{V}_{m}$ with $r=\bar{r}_{m}(1-\gamma)$
($\gamma=.01$ in practice). Test tan. pt. via step (c).
(c) Select $s_{1}=2 \pi / / 1 . \quad$ For $\theta_{j}=\theta_{m}+j s_{1}, j=1$, - ,N1, find \bar{r}_{j} the volid root of $\sum_{i=2}^{\text {inv }} \psi_{i}\left(\theta_{j}\right) r^{i}=\bar{V}_{m} \quad$ Calculate $\dot{V}_{j}=\dot{V}\left(\bar{r}_{j}, \theta_{j}\right)$. If for some $j, \dot{V}_{j-1}<0$ but $\dot{V}_{j}>0.0$ tangency is invalid; put $\theta^{*}=\theta_{j}$ and repeat (b). Otherwise (d).
(d) Find $\rho(V)$, plot contours of $V=V_{m}$ or $\dot{V}=0$ if required.
Step (a) insures a valid initial point on $\dot{\mathrm{V}}=0$ near the origin and (c) insures a valid tangency (typically, $\mathrm{N} 1=50$). Also the search in (c) is reduced if the smallest root of opposite sign to \bar{r}_{j} is found, then $s_{1}=\Pi / N 1$ with $N 1=25$ say. The algorithm, called REGION, was programmed in FORTRAN IV and determines RAS's of quite general LF's.

Optimal Quadratic Algorithm

Algorithm REGION, in conjuction with Powell's conjugate gradient algorithm (33), was used to obtain optimal quadratics for system 4.3.1. The constraint on Q (Q p.d.) was avoided by maximizing ρ over an upper triangular matrix L s.t. $Q=L^{T} I+\epsilon I, \epsilon>0$.

Thus

$$
L=\left[\begin{array}{ll}
1 & t_{1} \\
0 & t_{2}
\end{array}\right], \quad Q=\left[\begin{array}{ll}
1 & t_{1} \\
t_{1} & t_{1}^{2}+t_{2}^{2}
\end{array}\right] \geqslant 0
$$

Considered as a function of t_{1} and $t_{2}, \rho\left(t_{1}, t_{2}\right)$ was found by REGION for any (t_{1}, t_{2}) which was a function value input to Powell's routine. Fig. 4.14 shows the interaction of the various routines.
4.4. Numerical Results

In view of Example 4.2.1, and the results that follow we make the following definition w.r.t. measure $\rho(\mathrm{V})$.

Def 4.4

An asymptotically stable system has property A w.r.t. an optimal quadratic ($O Q$) and its (RS) constraint contour if a) at least two valid (RS) tangency points exist or b) only one (RS) valld tangency point exists, there being only one tangency point for any general quadratic. (Note, an $O Q$ having two RS tangency points but only one RS valid tangency point would not satisfy property A).

System S1, satisfying (a), and S3, satisfying (b) with $\alpha=\beta=\epsilon=1.0$, were shown to have this property. In what follows the property will hold to a certain accuracy in that if \underline{x}_{1} is valid tangency point and $x 2$ any other then the property holds if

$$
\frac{\left|v\left(x_{1}\right)-V\left(x_{2}\right)\right|}{V\left(x_{1}\right)}<\epsilon \quad\left(\epsilon=10^{-3} \text { say }\right)
$$

In order to generate systems with say k components of E_{V}, and thus k possible tangency points, consider the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\alpha x_{1}-\beta x_{2}+f_{k}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

(f_{k} homog. deg. k). Then E_{V} consists of points (r, θ) where
$r^{(k-1)}=\frac{y^{T} Q y}{2\left(p_{21} y_{1}+p_{22} y_{2}\right) f_{k}}=\frac{G(\theta)}{F\left(y_{1}, y_{2}\right)}$
$\left(p_{i j}\right.$, elements of $\left.p\right)$
with $y_{1}=\cos \theta, y_{2}=\sin \theta \cdot$ Clearly, F may be factored
as $F=b \prod_{j=1}^{K+1}\left(y_{2}-a_{j} y_{1}\right) ;$ and by suitable choice of a_{j}
(real or conj. complex) the lines $y_{2}=a_{j} y 1$ partition E^{2} into regions in which either 1, 2, . . , k or $k+1$ (RS) components of E_{V} lie for k odd (even).

System 56 (Davies (44))

$$
\begin{align*}
& \dot{x}_{1}=6 x_{2}-2 x_{2}^{2} \tag{56}\\
& \dot{x}_{2}=10 x_{1}-x_{2}+4 x_{1}^{2}+2 x_{1} x_{2}+4 x_{2}^{2}
\end{align*}
$$

The singular points are $P_{1}(0,0)$ and $P_{2}(0,2,5)$. The DOA is a limit cycle region, $\left(x_{1}-.5\right)^{2}+x_{2}{ }^{2}<1.0$

For any quadratic the system has one component of E_{V} but Fig. 4.4. shows an initial quadratic with one valid tangency and the unique $O Q$ with two. The $O Q$ gives a poor RAS.

System S2 (Van der Pol)

Consider Example 4.2.2, with $\epsilon=1.0$. Fig. 4.5(a) shows the $O Q$ boundary in relation to the two RS components of E_{V}. The $O Q$ is unique with two valid tangency points.

Fig. 4.5(b) shows the variation of the $O Q$ with ϵ. Its RAS increases both in area and elongation and reflects the change in the DOA. Property A held in all cases.

System S7

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}-4 x_{2}+\frac{1}{4}\left(x_{2}-\cdot 5 x_{1}\right)\left(x_{2}-2 x_{1}\right)\left(x_{2}+2 x_{1}\right) \\
& \left(x_{2}+x_{1}\right)
\end{aligned}
$$

The singular points are $P_{1}(0,0), P_{2}(\sqrt[3]{2}, 0)$
the latter beingasaddle point .
For a general quadratic E_{V} may have 5 components and the valid tangency alternates between two of these near the optimum. The $O Q^{\prime}$ s obtained via Powell for different initial $\left(t_{1}, t_{2}\right)$, varied considerably. Three supposedly OQ's are shown in Fig. 4.6. Each has two valid tangency points so we might suspect a non-unique optimum, as for system S1. However, consider Fig. 4.7 which shows the contours of $\rho(\rho=$ av radius $)$ in the $t_{1}-t_{2} p$ lane. There exists an equal tangency curve - shown $A B$ - such that any point lying on it produces a quadratic with two valid tangency points. Infact the three quadratics V_{1}, V_{2} and V_{3} in Fig. 4.6 correspond to the points P_{1}, P_{2}, P_{3} on this curve - tangerfey occurring on component s for points near and above $A B$ and on T for points below $A B$.

The reason for the bad convergence of Powell is the 'sharp corners' of the ρ - contours on $A B$. For then the assumption that ρ may be approximated by a quadratic,
on which Powell is based, breaks down with a consequent loss in search direction.

In part, this expiains some results of Bream (45) who showed the inferiority of Powell compared to the simplex method of Nelder and Mead (46) when optimizing ρ for Zubov functions obtained from series 3.2.3. For higher degree LF's this lack of convergence would be even more prominent.

The Simplex method, not relying on gradients or quadratic fits, still retains a flexible search direction even when $A B$ is reached.

System 57 also exhibits a problem when using any optimization routine. Consider Fig. 4.7. with a poor initial guess, C say. Searching along the gradient or coordinate directions in turn, we arrive at E or C_{1} on $A B$. Further improvement is only made by moving along $A B$ in an oscillatory fashion. As the valid tangency alternates between component S and T, repeated use of step (c) is needed in algorithm REGION. This increases computer time.

In contrast to S7, Fig. 4.8 shows the ρ-contours for the Van der Pol system. Again, the equal tangerrcy curve is present - AB - but Powell's method has little difficulty in reaching the optimum since the contours are quite smooth and $A B$ is almost parallel to the t_{2} axis.

System S8

A system giving 3 components for E_{V} is

$$
\begin{align*}
& \dot{x}_{1}=-2 x_{1}+x_{1} x_{2} \\
& \dot{x}_{2}=-x_{2}+x_{1} x_{2} \tag{S8}
\end{align*}
$$

with singular points $P_{1}(0,0)$ and $P_{2}(1,2)$. Fig. 4.9 shows three quadratic boundaries with their associated constraint contours, while Fig. 4.10, the ρ-contours ($\rho=$ area). In the latter V_{1} corresponds to the initial point $I(1,1)$; V_{2} to the point $J(\cdot 206,1 \cdot 0)$, the point reached after searching along $t_{2}=1.0$; and V_{3} to the point $0(\cdot 233, \cdot 449)$, the optimal point. The fact that I and J lie on different sides of $A B$ is illustrated in Fig. 4.10 where V_{1} and V_{2} have valid tangency on different components. The point 0 lies on $A B$ and 'property A ' holds. (Note, there are quad.ratics which have valid tangency with the third component, but these have small area).

System 59

Consider a more general system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-2 x_{1}-3 x_{2}+\frac{x_{2}^{2}}{4}+\frac{x_{1}^{2} x_{2}}{4} \\
& +x_{2}^{2}\left(x_{1}^{2}+x_{2}^{2}\right) / 4 \\
& +\left(x_{2}-x_{1} / 2\right)^{2}\left(x_{2}-4 x_{1}\right)\left(x_{2}+\cdot 5 x_{1}\right)
\end{aligned}
$$

For a general quadratic LF there exists 5 components of the constraint contour of which only two are of interest near the optimum. Fig. 4.11 shows an initial quadratic, V_{i}, with one valid tangency point and the optimum, V_{0}, with two.

Comment

Many other second order examples have shown similar results. Certainly, the examples shown here have indicated that property A is quite general and that it holds forpchosen as the average radius or the area.

4.5. Optimal Quadratics for a Restricted Class of High Order Systems

The optimal quadratic algorithm previously outlined can be generalized to the class of systems

$$
\dot{\underline{x}}=A x+g_{2}+g_{3}+\cdots+g_{n f} \quad 4.5 .1
$$

with $n_{f} \leq 5$, by using the general polar coordinate system in $\left(r, \theta_{1}, \theta_{2}, \quad, \theta_{n-1}\right)$ defined as

$$
\begin{aligned}
x_{1}= & r c_{1} c_{2} \quad \cdot \quad \cdot c_{n-1} \\
x_{2}= & r c_{1} c_{2} \quad \cdot \quad \cdot c_{n-2} s_{n-1} \\
& \cdot \\
& \cdot \\
x_{i}= & r c_{1} c_{2} \quad \cdot \quad \cdots c_{n-1} s_{n-i-1} \\
& \cdot \\
x_{n}= & r s_{1}
\end{aligned}
$$

where $c_{i}=\cos \left(\theta_{j}\right), s_{i}=\sin \left(\theta_{i}\right)$ and $r=\|x\|$. Let $y_{i}=x_{i} / x, i=1$, , n. Then given $\theta_{i}(i=1, \cdot, n-1)$, X is determined, and a point x on the RAS boundary, $x^{T} P_{\underline{x}}=V_{m}$, or the constraint surfa ce, $\dot{V}=0$, is found by calculating

$$
r=\left(V_{m} / y^{T} P_{y}\right)^{\frac{1}{2}} \quad 4.5 .3
$$

or by solving the polynominal in r

$$
\sum_{i=1}^{n_{f}} \phi_{i}(y) r^{i-1}=0 \quad 4.5 .4
$$

where $\phi_{1}=-\mathbb{L}^{T} Q_{y}$ and $\phi_{i}=2 X^{T P} g_{i}(y), i>1$.
The root of smallest magnitude with a given sign of 4.5.4, \bar{F} say, is found by using the ROOTV algorithm and forms the basis of a new algorithm for RAS determination, called DNREG.

For RAS and tangency point determination the problem of minimizing V on the constraint contour is replaced by

$$
\min _{y} \quad V(\bar{r}, y) \quad 4.5 .5
$$

with \bar{r} the required root of 4.5.4. The minimization is over the $n-1$ variables of θ_{i} and for this Powell's $\|_{\text {method }}^{(33)}$ was used, replacing the direct search method mentioned previously. The OQ was determined by maximizing ρ by the Simplex Method of Nelder and Mead (46) over the m - dimensional space of the elements of the upper triangular matrix L, with $Q=L^{T}+\in I$ and $m=n(n+1) / 2-1$.

The algorithm was especially developed to study third order systems but is easily extended to $n>3$. In this case the steps for DNREG are those of REGION except that (a) and (c) are now 2-dimensional searches:
a) Let $s_{1}=\pi / 2 \mathrm{~N}_{1}$
(N1 $=5$ say)
$s_{2}=2 \pi / N_{2}$
(N2 = 15 say)

With $y=y\left(\theta_{1}, \theta_{2}\right)$, let

$$
\begin{aligned}
V_{i, j} & =\sum\left(i s_{1}, j s_{2}\right) \\
i & =0,1, \cdot, N 1 \\
j & =0,1, \cdot, N 2
\end{aligned}
$$

and determine $\min _{i, j} V\left(Y_{i, j}\right)=V\left(\bar{r}_{i, j}, Y_{1, j}\right)$ with X^{*} the
minimizing $X_{i, j}$. If all $\left|\bar{r}_{i, j}\right| \geq$ Rmax increase $N 1$ and N2 and repeat (a) until some $\left|\vec{r}_{i, j}\right|<$ Rmax. Otherwise step (b).
(c) Tangency is valid if $\max _{\underline{X}} \dot{V}<0$ on $V(\underline{x})=V_{m}$. Let $Y:\left(y_{1}, y_{2}\right.$, .,$\left.\underline{Y} n\right)$ be a set of unit vectors, determined as in 4.5 .6 but with a finer mesh (N1 $=15$, N2 $=50$ say with $N=16 \times 51$). Determine

$$
\dot{V}_{M}=\max _{j}\left[\dot{V}\left[\bar{\Psi}\left(\frac{v_{m}}{\Sigma_{j}^{T} \mathrm{P}_{Y_{j}}}\right)^{\frac{1}{2}} \Psi_{j}\right]\right] \quad 4.5 .7
$$

If $\dot{V}_{M}<0$ go to (X) otherwise let y^{*} be the maximizing X_{j} and repeat step (b).

The unit vectors were stored through the Simplex maximization, and also, step (a) was only used for the initial quadratic. the initial y for the Powell routine being that obtained from the tangency point of the previous quadratic.

The flow diagram of Fig. 4.15 shows how the complete OQ routine was divided into subroutines for FORTRAN IV Programing.

An initial L determines an initial point of the simplex (a set ofm+1points in m-space) written $\quad \mathrm{p}_{1}=\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right.$, -., t_{m}) where
$L=\left[\begin{array}{lll}t_{1} & t_{2} & t_{4} \\ 0 & t_{3} & t_{5} \\ 0 & 0 & 1.0\end{array}\right] \quad\left(t_{6}=1.0, m=5\right)$
The remaining m points of the simplex were

$$
\begin{gathered}
p_{j+1}=\left(t_{1}, t_{2}, \cdots, t_{j-1}, t_{j}+h, t_{j+1}, \ldots t_{m}\right) \\
j=1, \ldots, m
\end{gathered}
$$

with ha parameter.
In the following examples only 3 iterations (30 function evaluations of \vec{r}) of Powells method were needed for step (b).
4.6. Numerical Results

System S10

The third arder

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3} \tag{S10}\\
& \dot{x}_{3}=-x_{1}\left(1+x_{1}^{2}\right)-2 x_{2}-x_{3}\left(1-x_{3}^{2}\right)
\end{align*}
$$

For a general quadratic, $x^{T} P_{x}=V$, there appears to be two RS tangency points and two RS components of Ev, which lie in E^{3} for which

$$
\left(p_{31} x_{1}+p_{32} x_{2}+p_{33} x_{3}\right)\left(x_{3}-x_{1}\right)>0
$$

With $h=3$ and $N=616$ the initial quadratic boundary, with $Q=I$, was

$$
2 \cdot 5 x_{1}^{2}+5 x_{1} x_{2}+x_{1} x_{3}+3 x_{1} x_{3}+5 x_{2}^{2}+2 x_{3}^{2}=.4675
$$

with $\rho=\cdot 32799$ (Vol:) and valid tangency

$$
\mp(\cdot 005,-\cdot 004, \cdot 523)
$$

After 61 evaluations of ρ the best boundary was $x^{\top} \bar{P} x=.847$ with $\rho=\cdot 842$ and tangency $\mp(\cdot 7145,-\cdot 345,-\cdot 367)$, with

$$
\bar{p}=\left[\begin{array}{ccc}
2.144 & 2.232 & .47 \\
\cdot & 4.56 & 1.14 \\
\cdot & \cdot & 2.06
\end{array}\right] \quad \text { 4.6.1. }
$$

The other tan. pt. $\mp(-.062,-.091, .682)$ gave a boundary close to this of $V=\boldsymbol{8 5 6}$.

In general it was found difficult to obtain the $O Q$ accurately due to the high dimension of the problem and the approximations involved. However, the example shows property A is present. Firstly, Fig. 4.16 shows sections of the initial and best quadratics in relation to their constraint contours and DOA's. The section through $x_{3}=.3677$ shows the extra point of contact of $V=V_{m}$ with E_{V} for the OQ. Secondly, Fig. 4.17 shows hov valid tangency alternates between the two possible tangency points as the maximization of ρ progresses, and indicates an equal tangency surface. The RAS is a good estimate of the DOA.

System S11 (Davidson (47))
A system possessing a limit cycle is the following:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3} \\
& \dot{x}_{3}=-.915 x_{1}+x_{2}\left(1-.915 x_{1}^{2}\right)-x_{3}
\end{aligned}
$$

Again there are two possible RS tangency points for a general quadratic, and two RS components of E_{V}. With $\mathrm{h}=.1, \mathrm{~N}=616$ and an initial P of $\mathrm{P}=\left(\mathrm{SS}^{*}\right)^{-1}$ (Eqn. 2.2.2) the RAS boundary was:

$$
\begin{array}{r}
24 \cdot 2 x_{1}^{2}-26 \cdot 4 x_{1} x_{2}+26 \cdot 4 x_{1} x_{3}+25 \cdot 8 x_{2}^{2}-27 \cdot 6 x_{2} x_{3} \\
+27 x_{3}^{2}=2 \cdot 07
\end{array}
$$

with $\rho=.105$ and tan. pt. $\mp(\cdot 249, \cdot 171,-\cdot 223)$. After 90 evaluations of ρ the best $O Q$ boundary was $x^{T} P_{x}=4.4856$ with $\rho=.767$ and

$$
P=\left[\begin{array}{ccc}
18.1 & -15.86 & 1.88 \\
\cdot & 31.94 & -16.59 \\
\cdot & . & 17.19
\end{array}\right] \quad \begin{aligned}
& \\
& \tan . p t . \\
& \mp(.376, .271, \ldots .241)
\end{aligned}
$$

 is indistinguishable, graphically, from the OQ. Fig. 4.18 shows sections through the initial and best boundaries and constraint contours. Those through $x_{3}=.158$ and $x_{3}=.241$, parallel to the $x_{1}-x_{2}$ plane, show the closeness of the $O Q$ boundary to its two components of E_{V}. In Fig. 4.19 the oscillatory effect of the valid tangency is shown again.

System S12

A syster giving one RS tan. pt. is

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3} \tag{S12}\\
& \dot{x}_{3}=-x_{1}-2 x_{2}-x_{3}+x_{1}^{3}
\end{align*}
$$

Which is of the form Sl. Using P in 4.2 .26 gives the RAS boundary

$$
\begin{aligned}
& 3 x_{1}^{2}+4 x_{1} x_{2}+2 x_{1} x_{3}+2 x_{2}^{2}+2 x_{2} x_{3}+2 x_{3}^{2}=2.0 \\
& \text { With } \rho=0.86 \text { \& tan. } \mathrm{pt} \cdot \bar{i}(1,-1,1) \text {, with } h=\cdot 1, \\
& N=616 \text { and } Q=I, \text { initially, the best quadratic gave } \rho=
\end{aligned}
$$ 17:5 after 100 pevaluations. Due to the single tangency, convergence to the optimum was rapid. The best boundary was

$$
\begin{array}{r}
89 \cdot 4 x_{1}^{2}+96 \cdot 9 x_{1} x_{2}+63 x_{1} x_{3}+89 x_{2}^{2}+48 \cdot 9 x_{1} x_{3}+52 x_{3}^{2} \\
=85 \cdot 45
\end{array}
$$

with tan. pt. $\mp(1.162,-.437, .0953)$

Comments

Computation times for the 3 examples were 1000, 4000 and 1800 secs. respectively (ICL1905), an average function (p) evaluation being 16,67 and 18 secs respectively.

Comparison of computation times for second and third order system depends upon the degree and complexity of the system considered and on the values of N1 and N in step (c) of the algorithms. A two fold increase in $N 1$ (with increase in accuracy) may often double computing time. For the second order case with $N 1=30$ an average evaluation took 1 sec , whereas 5 sec . for $\mathrm{N} 1=50$.

Generally a compromise must be made between computing time and accuracy of the valid tangency point. For high order systems the validification of the latter via step (c) seems a big drawback, especially so near the optimum due to the oscillatory effect of the valid tangency and repetition of this step.

 $V=0.625 x_{1}^{2}+2.0 x_{1} x_{2}+2 x_{2}^{2}=.288, Y=4 x_{1}^{2}-2.0 x_{1} x_{2}+x_{2}^{2}=1.24$

RAS Boundaries and Constanint Contours (zubov EXfle.)

FIG 4.3

FIG. 4.4

$F I G .4 .5(a)$

SYSTEM SB
FIG 4.9

FIG. 4.12 (CONTD.)

FIG. 4.12 (CONTD.)

Fig 4.15

SYSTEM SID
V_{i}, V_{0} INITIAL AND FINAL RES BOUNDARIES

FIG 4.19

PTS. $0, x$ DETERMINED BY R. GUTTA.

SYSTEM SII Yi, 在 I IITIAL AMD FIMAL RAS BOUNDARIES

CHAPTER 5

COMPUTATIONAL METHODS FOR OPTIMAL

QUADRATIC AND RAS DETERMINATION

FOR GENERAL NON $-L I N E A R ~ S Y S T E M S$.

Chapter ${ }_{2}$

Computational Methods For Dptimal Quadratic and RAS Determination For General Non-linear Systems.

5.1 Introduction

In this chapter two algorithms are proposed. The
first is a method for optimal quadratic determination
which does not rely on penalty functions as in Geiss (51) or tangency between hypersurfaces as in Rodden (3). It is somewhat heuristic and is based on an idea of Davidson and Kurak (47) who have developed a method which uses the special properties of a quadratic. The second is a method which determines an RAS for a general quadratic Lyapanov function via a penalty function approach. It autonatically finds the valid tangency point to a desired accuracy.

5.2 An Optimal Quadratic Algorithm

Development
The method deals with the system

$$
\underline{x}=\underline{f}(\underline{x}) \quad(\underline{f} \in E) \quad 5.2 .1
$$

Let A be the Jacobian of $f(\underline{x})$ at $x=0$, assumed stable. Then as in chapter 4 the class of quadratic LF's is determined as $V=x^{T} P$, where P solves the matrix equation $A^{T} P+P A=-Q$ for p.d.s. Q. By Theorem 1.5 .3 the region W given by $W:(x / \underline{X} P x<c)$, is a stability region for c sufficiently small, the RAS corresponding to $c_{\text {max }}$. Replacing P by P / c the boundary of V may be written more conveniently as

$$
\underline{x}^{T} P \underline{x}=1
$$

which bounds the volume

$$
\rho=\pi / \sqrt{d}(P) \quad 5.2 .3
$$

The $O Q$ problem with respect to ρ is then formulated as

$$
\min d(P)=\prod_{i=1}^{n} \lambda_{i}(P) \quad 5 \cdot 2.4
$$

subject to the constraints

$$
\begin{array}{ll}
\text { (1) } \mathrm{P} \text { positive def. symmetric } & 5.2 .5 \\
\text { (2) } \underline{\mathrm{f}}^{\mathrm{T}}(\mathrm{x}) \mathrm{Px}<0, \forall \underset{\mathrm{x}}{\mathrm{x}} \in \mathrm{~W}, & 5.2 .6
\end{array}
$$

with W now, $W:\left(x / x P_{x}<1, x \neq 0\right)$. (Note we have assumed $\|\underline{f}\|=\rightarrow 0$ as $\|\underline{x}\| \rightarrow 0)$.

Essentially, ρ is optimized over the p.d.s matrices(P) while constraint (2) ensures that the boundary $x^{T} P_{x}=1$ is a stability boundary. The main problems are then, the choice of optimization technique and the evaluation of the constraints in (1) and (2).

Constraint Bvaluation

Since any p.d. P is expressible as $P=L^{T}$ where L, $d(L) \neq 0$, is an upper triangular matrix, constraint (1) is avoided by optimizing ρ over L. Constraint (2) can be replaced by

$$
\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{p})<0
$$

where

$$
\stackrel{\rightharpoonup}{V}_{M}(p)=\max _{x} f(x)^{T} p_{x}, \quad x \in W \quad 5.2 .8
$$

In order to evaluate the latter the following approximation is made : store pre-determined unit vectors, $Y_{j}, j=1,2, \ldots, N_{n}$, which ideally cut a closed surface
($\underline{x}^{T} P_{\underline{x}}=1$ or $\underline{x}^{T} \underline{x}=1$ say) at equally spaced points. A point on the surface $\underline{x}^{T} P_{\underline{x}}=1$ is then given by

$$
\frac{Y_{j}}{\left\|Y_{j}\right\|}=\frac{Y_{j}}{\sqrt{Y_{j}^{\top} Y_{j}}} ; j=1, \ldots, N_{n}
$$

Hence

$$
\left.\underbrace{T} P_{\underline{x}}\right|_{x \in W}=\frac{K}{K_{f}}\left[L_{\underline{f}}\left(\frac{K_{y_{i}}}{K_{f}\left\|\Sigma_{j}\right\|}\right]^{T} \frac{L_{y_{j}}}{\left\|\underline{Y}_{j}\right\|}\right.
$$

$$
\begin{aligned}
j & =1, \ldots, N_{n} \\
K & =1 ; 2, \ldots
\end{aligned}
$$

where K_{f} is the number of grid points occuring along the straight line between $x=0$ and $y_{j} /\left\|y_{j}\right\|$. Although $K_{f}=5$ was chosen by Davidson (see later), it was found sufficient only to evaluate \dot{V} on the surface $\underline{x}^{T} \underline{P}_{\underline{x}}=1 \quad\left(K_{f}=1\right)$, mainly because of the starting procedure that follows. In short, the problem is now

$$
\min _{L} d(L) \quad(i . e, \max \rho) \quad 5.2 .9
$$

subject to

$$
\dot{V}_{M}(L)=\max _{j=1, \ldots, N_{n}}\left[L \underline{L}\left(y_{j} /\left\|L y_{j}\right\|\right)\right]^{T} \frac{L_{y_{j}}}{\left\|L_{y_{j}}\right\|}<0
$$

$$
5.2 .10
$$

provided the initial boundary, $\|L \underline{x}\|^{2}=1$, is a stability boundary. (The situation $d(L)=0$ is rarely encountered, but $P=L^{T} L+\epsilon I$ can always replace constraint (1)). The main points of the algorithm are as follows :
(a) Choice of Minimization Routine

Box's (55) Complex method is used to minimize d(L) subject to $\dot{\mathrm{V}}_{\mathrm{M}(\mathrm{L})}<0$, and the variation used is given in A4. The method is simple to program and often works well for non-convex constraints.
(b) Initial L

In the absence of any other quadratic a natural choice is to choose $Q=I$ and solve

$$
A^{T} P_{1}+P_{1} A=-Q
$$

for P_{1}. For many practical systems this often leads to an initial boundary, $\underline{x}^{T} p_{1} \underline{x}=\epsilon>0$, being extremely eccentric which implies that the components of $\dot{\mathrm{V}}=0$ are usually long thin surfaces. The approximation in 5.2.10 is then only accurate with an extremely fine mesh and computation time is excessive. In this case the choice $P_{1}=\left(S S^{*}\right)^{-1}$ is made from 2.2 .2 where S has unit column vectors.
(c) Initial Boundary

If P_{1} is factored as $P_{1}=L_{1} T_{1}$ then

$$
\underline{x}^{T} P_{1} \underline{x}=\left\|L_{1} \underline{x}\right\|^{2}=I_{0} \quad\left(I_{0}=10^{-5} \text { say }\right)
$$

5.2 .12
gives a stability boundary $(\dot{\mathrm{V}}<0$ for $\|x\|<\epsilon, \epsilon$ small). The vectors $\frac{y_{j}}{}$ are calculated and stored in $y_{j}\left(j=1,2, \ldots, N_{n}\right)$. A one-dimensional search is now made on 1 , starting with $1=1_{0}$, so as to, increase the initial boundary in 5.2.12 :

$$
\max (1)
$$

$$
\dot{V}_{M}(1)=\max _{j=1, \ldots, N_{n}}\left[L_{1} f\left(\sqrt{1} y_{j}\right)\right]^{T_{L} Y_{j}}<0
$$

In practice a simple bisection method was adequate for maximizing 1 such that if finally 1_{2} and l_{3} are bracketing values $-\dot{\mathrm{V}}_{\mathrm{VI}}\left(1_{2}\right)<0$ and $\dot{\mathrm{V}}_{\mathrm{M}}\left(1_{3}\right)>0$ - and

$$
\left|\frac{1_{3}-1_{2}}{1_{2}}\right|<\text { er } \quad 5.2 .14
$$

the required 1 was obtained.
In detail the steps are :
(1) put $1_{1}=1_{0}\left(\right.$ if $\dot{V}_{M}\left(1_{0}\right)>0$ reduce 1_{o} further) and with suitable s put $1_{2}=1_{1}+s$
(2) If $\dot{\mathrm{V}}_{\mathrm{M}}\left(1_{2}\right)<0, s=2 \mathrm{~s}, 1_{1}=1_{2}$ and $I_{2}=1_{1}+s$ are made and (2) is repeated until $\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{I}_{2}\right)>0$ (If $s>s_{\text {max }}$, an upper bound, repeat (1) with larger s)
(3) then select $s=s / 2, I_{3}=1_{1}+s$ and if $\dot{\mathrm{V}}_{\mathrm{M}}\left(1_{3}\right)<0$ put $1_{1}=1_{3}$, otherwise $1_{2}=1_{3}$. Repeat (3) until 5.2.14 is satisfied. (Typically, $s=.1, s_{\max }=10.0$, er $=.3$; the latter being sufficiently large to give a good initial complex). The final boundary is $\underline{x}^{T} P_{\underline{x}}=1_{2}$ or $\underline{x}^{T} P_{x}=1.0$ with $p=p_{1} / 1_{2}\left(I_{2}\right.$ corresponds to 1_{1} in step (3))
(d) Choice of Unit Vectors
(1) A simple choice is the set of vectors from the origin to equally spaced points on the unit n-sphere via polar coordinates in 4.5.1.
(2) For highly eccentric surfaces it is advisable to transform $\underline{x}^{T} P_{1} x=1$ to $\sum \lambda_{i} z_{i}^{2}=1$ via an orthogonal transformation $x=T \underline{Z}\left(T^{T}=T^{-1}\right)$ with $T=$

$$
\left(\underline{z}_{1}, \underline{z}_{2}, \ldots, \underline{z}_{n}\right)
$$

and ${\underset{z}{i}}_{z_{i}}^{T} \underline{Z}_{i}=1$. Form an n-dimensional box with axes along \underline{z}_{i} and sides of lengths $2 / \sqrt{\lambda_{i}\left(P_{1}\right)}$. Divide its surface into an equally spaced mesh, then the points give the required vectors when normalized. (Note that the initial vectors need not necessarily be unit vectors).
(e) Initial Complex

The initial boundary, $x^{T} P_{x}=1,(i n(c))$ gives an initial feasible point

$$
p_{0}=\left(t_{1}, t_{2}, \ldots, t_{m}\right)
$$

where $m=n(n+1) / 2-$ the number of elements of $L, \quad P=L^{T} L$ and L is written as

$$
L=\left[\begin{array}{cccccc}
t_{1} & t_{2} & t_{4} & \cdots & \cdots & t_{m-n+1} \\
0 & t_{3} & t_{5} & \cdots & \cdots & \cdots \\
0 & 0 & t_{6} & \bullet & \cdots & \cdots \\
\bullet & \bullet & \bullet & \bullet & \bullet & \cdots \\
\bullet & \cdots & \bullet & \bullet & \cdots & \cdots \\
0 & 0 & 0 & \bullet & \cdots & t_{m}
\end{array}\right]
$$

A complex of $2 m+1$ points is used, the remaining 2m feasible points being obtained in the following way. :

Introduce an $m \times 2 m$ matrix D, partitioned as $D:\left(I_{m}, D_{1}\right)=\left(\underline{d}_{1}, \underline{d}_{2}, \cdots, \underline{d}_{2 m}\right)$ with I the $m \times m$ unit matrix and D_{1} a matrix whose columns, \underline{d}_{i} $(i=m+1, \ldots, 2 m)$ have random elements of zeros or ones. Let $s_{0}=h \max _{i}\left|t_{i}\right|$, then a tentative $j^{\text {th }}$ feasible point, $\mathcal{P}_{\mathbf{j}}(\mathrm{j}=1, \ldots, 2 \mathrm{~m})$, is determined as

$$
p_{j}=p_{o}+\underline{d}_{j} s, \quad s=s_{o}
$$

If $\dot{V}_{M}\left(p_{j}\right)<0$ from 5.2.10, the point p_{j} is 'feasible' and is accepted, but if $\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{p}_{\mathrm{j}}\right) \geq 0$ we find $\dot{V}_{M}\left(p_{j}^{*}\right)=\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{p}_{\mathrm{o}}-\mathrm{d}_{\mathrm{j}} \mathrm{s}\right)$. If $\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{p}_{\mathrm{j}}^{*}\right)<0, \mathrm{p}_{\mathrm{j}}^{*}$ is accepted, otherwise s is halved and the process repeated until a feasible point is found or until $s<.01 \mathrm{~h}$, say, when the complex is deemed too small ($h=.2$ was found practical).

It was found that when er was made too small in obtaining the initial boundary, either the resulting initial complex was also very small or that function values at points p_{j} were much less than that at p_{0}. The idea of Box (55) and others of generating random : and possibly large p_{j}, was impractical due to the presence of the equal tangency surface (c.f. Chapter 4). A point lying on a line drawn between two feasible points on opposite sides of this surface was usually infeasible (no matter how close the points).
(f) Other Features

The unit vectors need only span a half space of $\mathrm{E}^{\mathrm{n}}, \mathrm{x}_{3}>0$ say, for then 5.2 .10 is evaluated as
 $5 \cdot 2 \cdot 15$

A quick routine is used to calculate Lx, the resulting vector being stored in x, thus

$$
x_{i}=\sum_{j=i}^{n} 1_{i j} x_{j}
$$

Also if $\underline{f}(-\underline{x})=-\underline{f}(\underline{x})$ computation of $\dot{V}_{M}(L)$ is
halved due to radial symmetry of the contour $\dot{\mathrm{V}}(\underline{x})=0$.

On exit from the Complex minimization the final boundary, $\underline{x}^{T} P_{\underline{x}}=1$, is an approximation to the RAS boundary, $x^{T} P_{x}=V_{M}$. The former boundary is then either verified by using a finer mesh to calculate $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{L})$ or the exact RAS is obtained by an algorithm such as that in section 5.4 .

The number of calculations required to evaluate 5.2.15 is effectively $N_{n}\left(\frac{3}{2} n^{2}+n\left(2 c_{1}+11 / 2\right)\right)$ with c_{1} the averace number of calculations to evaluate each f_{i}. Assuming $N_{n}=c^{n}$ the approximate constraint and optimal quadratic computation time for large n will vary as $c^{n}\left(\frac{n^{2} 3}{2}+2 c_{1} n\right)$ and $\frac{K_{1} n^{2} c^{n}}{2}\left(\frac{3 n^{2}}{2}+2 c_{1} n\right)$ respectively, the optimization being over $m\left(n^{2} / 2\right)$ parameters (in practice $5<c>10$) .

The algorithm has been programmed in Fortran IV and Fig's 5.1 and 5.2 show flow diagrams for the master and connecting segments. (A listing is given in A5).

Summary of Algorithm
For completeness we sumarize the main steps of the new algorithm along side those of Davidson and Kurak's in which

$$
\begin{aligned}
& \dot{V}_{M}(P)=\max _{j=1, \ldots, N_{n}}{\underset{ }{T}\left(\frac{K y_{j}}{K_{f} \sqrt{Y_{j}^{T} Y_{Y}}}\right) P_{j}} \\
& K=1, \ldots, K_{f}
\end{aligned}
$$

(1) Evaluate

$$
\begin{aligned}
& \text { te } A=\left.\frac{\partial \underline{x}}{\partial \underline{x}}\right|_{\underline{x}=0} \quad \text { and solve } \\
& A^{T} P_{1}+P_{1} A=-Q \text { for } P_{1} \text { with }
\end{aligned}
$$

a) $Q=I$

or

b) Choose $P_{1}=\left(S S^{*}\right)^{-1}$
(2) Starting with $1=1_{0}\left(=10^{-5}\right.$ say) \max (1) subject to

$$
\begin{aligned}
& \dot{\mathrm{V}}_{\mathrm{M}}(1)<0 \\
& (5.2 .13)
\end{aligned}
$$

by bisection method (in(c) This gives $\underline{x}^{T} P_{\underline{x}}=1$ $P=P_{1} / I_{2}=L_{1}^{T} L_{1} / I_{2}$
(3)
$\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{P}_{1} / 1\right)<0$
(5.2.16)
by Rosenbrock (in A4) This gives $\underline{x}^{T} \bar{P}_{\underline{x}}=1$ with $\bar{p}=p_{1} / I_{\text {max }}$
Starting with this $\overline{\mathrm{P}}$ min $M(\mathbb{P})$ subject to $m(\vec{P})>0$
and $\dot{\mathrm{V}}_{\mathrm{M}}(\overline{\mathrm{P}})<0(5.2 .16)$
(4) Starting with $L=L_{1} / \sqrt{1} 2$ $\min d(L) \quad(\max \rho)$
subject to $1_{i i} \neq 0$
and $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{L})<0$
by the Complex
a) $Q=I$

Starting with $\mathrm{P}=\overline{\mathrm{P}}$ $\min \prod \lambda_{1}(p)$
subject to $m(P)>0$
and $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{p})<0$
by Rosenbrock ($\mathrm{K}_{\mathrm{f}}=5$)
optimization routine (A4)
(5) Verify $\dot{V}<0$ in W : ($x^{\top} \underline{x}^{P} \underline{x}<1$, $\underset{\sim}{x} \neq 0$) by evaluating a) $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{L})$ with fine mesh \quad a) $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{P})$ with fine mesh

오

b) exact RAS (Section 5.4)

Steps (3) and (4) of Davidson's al riorithm require the evaluation of the eigenvalues of P (Jacobi's method used).

5.3 Numerical Results

Table 5.1 shows details of a comparison of the new method with that of Davidson for the following systems : System S13 (Yu(6))

Consider the following equations for a synchronous cenerator

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\mathrm{R}-D \mathrm{x}_{2} \tag{S13}
\end{align*}
$$

where $D=0.0372+0.152 \cos \left(2 x_{1}+1.774^{4} 4\right)$
and

$$
\begin{aligned}
R & =\sin \left(x_{1}+.8872\right)-\sin (.8872) \\
& -.1291\left(\sin \left(2 x_{1}+1.7744\right)-\sin (1.7744)\right)
\end{aligned}
$$

With $Q=I, I_{0}=10^{-5}$ and $\mathbb{N}_{2}=30$ the initial boundary was expanded to

$$
24.71 x_{1}^{2}+1.4524 x_{1} x_{2}+36.1 x_{2}^{2}=1.1
$$

Fig 5.3 shows property A is present with the final boundary

$$
11.477 x_{1}^{2}+.928 x_{1} x_{2}+17.02 x_{2}^{2}=1.0
$$

having two noints of contact with its constraint contour. The RAS is not a good estimate of the DOA. System S14 (Hewit (2))

The system is a variation of a surge-tank system found in Hewit (2)

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{1}\left(1-a\left(2+x_{1}\right)\right) /\left(1+x_{1}\right)^{2} \\
-\frac{a}{b} x_{2}^{2}-\frac{b}{a} x_{2}\left(\frac{2 a}{b}\left(1+x_{1}\right)-1\right) /\left(1+x_{1}\right)^{2} \\
a=.2, \quad b=.075
\end{gathered}
$$

Fig 5.4 shows the $O Q$ boundary has not two but three points of contact with its constraint contour, the initial quadratic having only one. (i.e the $O Q$ has 3 valid tan.pts).

TABLE 5.1

A system having a fixed constraint contour, $\underline{x}^{T} \underline{B}^{x}=1$, is

$$
\dot{\underline{x}}=-\underline{x}+\left(\underline{x}^{T} B \underline{x}\right) \underline{x}
$$

with DOA, $\underline{x}^{T} B \underline{x}<1$. We have chosen

$$
B=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

Step (3) of Davidson's algorithm is redundant since $P=I$ with $Q=2 I$ and Table 5.1 exhibits the poor convergence of the algorithm. In fact the new algorithm was found superior to the latter for all third order systems tried.

A reason for the inferiority of Davidson was the lack of convergence of Rosenbrock's routine on the constrained problem. As the volume increased it was found that values of P were reached, exhibiting an equal tangency surface, where a large amount of time was spent by the search directions oscillating between the boundary zones, determined by Rosenbrock's penalty function (Appendix 4), and the feasible region $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{P})<0$. (Box (55) has noted this phenomenon).

The new Complex method gave better convergence although it seemed to stick near the optimum. Closer inspection showed that the vector y_{j}, giving $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{L})$, alternated between two or more places on the constraint contour. After restarting the procedure a final volume of $\rho=3.07$ was obtained with

$$
P=\left[\begin{array}{rrr}
1.035 & 1.028 & -0.009 \\
1.028 & 2.025 & 0.992 \\
-0.009 & 0.992 & 2.003
\end{array}\right]
$$

(For the $O Q$ boundary, $x^{T} B \underline{x}=1, \rho=\pi$).

The system is that of $S 4$ (Chapter 4) with $a_{1}=1$, $a_{2}=2$ and $a_{3}=3$. Again the new method is superior. The best volume achieved by the third order algorithn of chapter 4 was $\rho=68.01$ which is superior to the results in Table 5.1.

System 11 (c4)
For this system a lack of convergence was found for both methods which was attributed to the presence of the equal tangency surface, with two $R S$ components of the constraint contour. For the new algoritm, whatever the initial L_{1} (or P_{1}), a point near this surface was obtained which tended to shrink the complex of points so that further prosress was poor.

Step (3) of Davidson's method'of minimizing $M(\bar{P})$, originally intended to make the initial boundary less eccentric and give a good starting P for the final minimization of step (4), proved unsatisfactory. In many cases the procedure gave a smaller starting volume. Infact, Davidson (4) gives the $O Q$ boundary as

$$
\underline{x}^{T} P_{\underline{x}}=\underline{x}^{T}\left[\begin{array}{ccc}
12.5 & -8.1 & 3.0 \\
\cdot & 20.8 & -8.5 \\
\cdot & \cdot & 13.4
\end{array}\right]=1.0
$$

which is incorrect (the RAS for this p satisfies $x^{T} P_{x}<10^{-4}$) and results from the poor initial P from step (3). We note that the boundary $\underline{x}^{T} P_{\underline{x}}=1$ can be made less eccentric, more effectively, by minimizing $\mu(P)=M(P) / m(P)$, but in so doing the corresponding Q may approach a positive semidefinite matrix with an invalid LF. However, a system where the procedure is useful is the following approximation to a relay system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\tanh \left(100\left(x_{1}+x_{2}\right)\right)+x_{2}
\end{aligned}
$$

with

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-101 & -99
\end{array}\right]
$$

The initial (expanded) boundary for $Q=I$ is

$$
\underline{x}^{T}\left[\begin{array}{cc}
1.005 & 0.0049 \\
0 & 0.00504
\end{array}\right] \underline{x}=2.55 \times 10^{-5}
$$

which is very eccentric. After 970 constraint evaluations of $\dot{\mathrm{V}}_{\mathrm{M}}(\overline{\mathrm{P}})$ in minimizing $\mathrm{M}(\mathbb{P})$ we have

$$
\overrightarrow{\mathbf{p}}=\left[\begin{array}{cc}
4.96 & 1.30 \\
\cdot & 2.42
\end{array}\right]
$$

However the choice $P=\left(S S^{*}\right)^{-1}$ gives

$$
P=\left[\begin{array}{ll}
1.516 & .5413 \\
.5413 & .4844
\end{array}\right]
$$

which is a good initial estimate of the optimal P wi.th boundary

$$
\underline{x}^{T}\left[\begin{array}{cc}
4.81 & 1.33 \\
\cdot & 2.41
\end{array}\right] \underline{x}=1.0
$$

System S17 (Rao (5))
As a final example consider the system of a synchronous machine swinging against an infinite busbar

$$
\begin{aligned}
& \dot{x}_{1}= x_{2} \\
& \dot{x}_{2}=28.61-84.99\left(b+x_{3}\right) \sin \left(x_{1}+a\right) \\
&+21.53 \sin 2\left(x_{1}+a\right) \\
& \dot{x}_{3}=0.36-0.621\left(b+x_{3}\right)+.421 \cos \left(x_{1}+a\right)
\end{aligned}
$$

The quantities a and b result from a shift of origin (solutions of $\dot{x}_{1}=\dot{x}_{2}=\dot{x}_{3}=0$) and Rao gives $a=0.478$
$b=1.18$ for the stable singularity. As seen in Table 5.1 convergence is very slow and no reasonable $O Q$ has been obtained. Two important points however, are raised : (a) that an accuracy of 10^{-3} in determining a and b is insufficient, giving an invalid boundary for $1_{0}=10^{-5}$ when infact the boundary is valid and
(b) that spurious quadratics were obtained with $\mathrm{N}_{3}=370$ due to inadequate mesh size, the $\dot{\mathrm{V}}=0$ contours being long thin surfaces.

The defects were remedied by more exact calculation of a and $b(a=.4779930, b=1.1816655)$ and the choice $N_{n}=1240$, with large increase in computing time. Sections of the best quadratic boundary through the co-ordinate planes and the tangency point $(0.0327,0.0229,-.0483)$ are shown in Fig 5.5 The RAS is poor.

Comment
The application of the algorithms described certainly shows that property A and $i t s$ associated tangency surface are present for varied practical systems and can cause problems in convergence to the $O Q$. For hish order systems the latter also suffers from the high dimensional problem of calculating $\dot{V}_{M}(L)$ and the storage of the unit vectors. (Geiss (51) has taken 24 min. for one RAS determination for a satellite problem with $n=9$ and $m=45$).

5.4 A Method For Quadratic RAS Determination For High Order

Systerns
Given the system 5.2.1 the problem of determining a RAS for a quadratic, $V=\underline{x}^{T}$ 조, has been formulated as the constrained problem (c4)

$$
\begin{array}{ll}
\min V(\underline{x}), x \in E_{v} & 5.4 .1 \\
E_{v}:(\dot{V}=0, x \neq 0) & 5.4 .2
\end{array}
$$

When using a penalty function (PF) approach two main points must be considered :

1) ensuring that the $P F$, or sequence of $P F^{\prime} s$, approach a local minimum of 5.4.1 excluding the trivial solution $\underline{x}=0 ;$
2) ensuring that, if the minimum point is not a valid tangency point, a sequence of decreasing minima is obtained which eventually give the global minimum, and thus the valid tangency point.

To satisfy these criteria an algorithm has been developed, the main points of which are the following :
(a) Choice of Initial LF

Unless a particular RAS is required P is chosen as $P=\left(S S^{*}\right)^{-1}$
(b) Initial Starting Point of Minimization

A good initial starting point, \underline{x}_{0}, for the PF minimization is found by storing unit vectors as in the Complex algorithm and then expanding the boundary in 5.2.12 until 5.214 is satisfied to a given accuracy (er $=.1$ say). The vector y_{j} giving the maximum value of \dot{V} on $\underline{x}^{T} \underline{x}=1_{2}$ is then taken as \underline{x}_{0}.
(c) Choice of Penalty Function and Minimization Routine

To avoid the trivial solution $x=0$ the constraint in 5.4.2 is posed as

$$
e(\underline{x})=\dot{V}(\underline{x}) / v^{z}=0 \quad(z=1 \text { or } 2) \quad 5.4 .3
$$

Then a PF from Miele (62) is chosen as

$$
\begin{aligned}
W(\underline{x}) & =v(\underline{x})+\lambda e(\underline{x})+K e^{2}(\underline{x}) \\
& =R(\underline{x}, \lambda)+K e^{2}(\underline{x})
\end{aligned}
$$

where $\lambda_{\text {is essentially }}$ an approximation to the Lagrange multiplier and $K>0$ a penalty constant.

Starting with $x=\underline{x}_{0}, W$ is minimized for several cycles by the algorithm of Fletcher and Powell (60, 64) of conjugate directions, where a 'cycle' consists of n iterations of the latter with K and $\lambda_{\text {kept constant. }}$ After each cycle λ and K are updated and convergence is obtained when the conditions

$$
|e|<\epsilon
$$

and

$$
\|\nabla R(x, \lambda)\|<\epsilon
$$

are satisfied (typically $\epsilon=10^{-4}$). If however NC, the number of cycles, exceeds some upper bound (NC $>$ NIT say) the minimization is termed a failure and another initial \underline{x}_{0} is sought (see A4 for updating of λ and K and Fletcher-Powell routine).

Since the Fletcher-Powell routine requires gradients of W we assume $J(\underline{f})$, the Jacobian of $£$, can be suitably calculated. Then for $z=1$

$$
\nabla \mathbb{Z}=\underline{\nabla} V+\underline{\nabla} e(\lambda+2 K e)
$$

where $Z \mathrm{e}=\frac{1}{\mathrm{~V}} 2(\mathrm{VZ} \dot{\mathrm{V}}-\dot{\mathrm{V}} \mathrm{VV})$
and

$$
\nabla \dot{V}=2\left(P_{\underline{E}}(\underline{x})+J(\underline{f})^{\top} P_{\underline{x}}\right)
$$

Prior to the minimization, scale factors for x, V and e are derived ($x s c_{i}$, vsc and esc) such that at the initial point $x=x_{0}$ the scaled values ($\left.x_{i} / x s c_{i}, V / v s c, e / e s c\right)$ give W and its first and second derivatives approximately unit magnitude (Haarhoff and Buys (65)). In this case K may be chosen relatively small and often kept constant throughout the minimization ($K=20$ is suitable).
(d) Validification of Tangency Point

For convergence let $\underline{x}=\overline{\underline{x}}$ be the minimizing value of the PF for the last cycle. Since $\dot{V}(\underline{\underline{x}})<0_{\text {may not }}$ be satisfied 프 is repeatedly multiplied by a scalar γ, close to one, until $\dot{\mathrm{V}}\left(\gamma^{\mathrm{j}} \underline{\underline{x}}\right)<0$ for some $j\left(e . g \gamma=1-10^{-4}\right)$. This gives $\underline{x}_{\mathrm{m}}=\gamma^{j} \overline{\underline{x}}$ as a modified tangency point and a possible stability boundary of

$$
\underline{x}^{T} P \underline{x}=x_{m}^{\top} P_{\mathrm{x}}=\mathrm{v}_{\mathrm{m}} \quad 5.4 .7
$$

The validity of the latter is tested by evaluating $\dot{V}_{M}(L)$ in 5.2.15 with a fine mesh. If $\dot{V}_{M}(L)>0$ the maximizing vector giving $\dot{V}_{M}(L)$ is found, \underline{z} say, and the interval ($0,1.0$) is successively halved until bracketing numbers E_{1} and E_{2} are found satisfying $0<\mathrm{E}_{1}<\mathrm{E}_{2}<1.0$ such that

$$
\left|\frac{v\left(\mathbb{E}_{2} Z\right)-v\left(E_{1} Z\right)}{v\left(E_{2} Z\right)}\right|<.1
$$

where $\bar{v}\left(E_{1} z\right)<0$ and $\dot{V}\left(E_{2} z\right)>0$. The vector $\underline{x}_{0}=E_{1} \underline{Z}$ determines a new starting point for the penalty function and the minimization is repeated.

Since Vm in 5.4.7 decreases for successive tangency points obtained, the method converges to a valid RAS boundary. However, if it is suspected that two tangency points exist giving almost the same boundary in 5.4.7, then either both of these must be found or an extremely fine mesh is required to evaluate $\dot{\mathrm{V}}_{\mathrm{M}}(\mathrm{L})$.

Comment

A slightly quicker, but less useful, initial point x_{0} in (b) may be obtained by expanding the sphere $x^{T} x=1$ instead of the boundary $\underline{x}^{T} P_{\underline{x}}=1$.

The choice of PF in 5.4.4 is not arbitrary. Infact that of Miele was compared to one of Fletcher and Lill (63). They use a PF which has a stationary point at a solution of the constrained problem thus avoiding a sequential approach. With suitable q they minimize

$$
W=V-e\left[\frac{a^{\mathrm{T}}-\mathrm{b}}{\frac{a}{}^{\mathrm{a}}-\mathrm{a}}\right]+\frac{q}{2} \frac{e^{2}}{\left(\underline{a}^{\mathrm{T}} \underline{a}\right)} \quad 5.4 .8
$$

with $\underline{a}=\nabla e$ and $\underline{b}=\nabla V$. The second term is here a continuous approximation to the Lagrange multiplier. However, with limited experience the method was not as good as Miele's.

Fig 5.6 gives a general flow diagram for the algorithn which was prograruned in Fortran IV. Table 5.2 shows some typical features when applied to the system S1, for a simple quadratic, and S11 for the best quadratic of Chapter 4, the latter showing the effect of two tancency points. Computation time seems large but this is due to the chosen values of $N_{n}, N_{2}=31$ and $N_{3}=160$, for the initial boundary. ($N_{2}=10$ and $N_{3}=50$ would suffice, although giving a worse startine point x_{0}).

[^0]
Master Segment for High Order Optimal Quadratic Algorithm

SUbroutine Division of HIGH ORDER OPTIMAL QUADRATIC ALGORITHM

FIG. 5.2

\qquad

SYSTEM SI 4

FIG. 5.4

$\underline{x}_{1}-x_{2} P_{\text {LANE }}$

$x_{1}-x_{3}$ PLANE

$x_{2}-x_{3}$ Pane
SECTION THROw $X_{3}=-.0483 / / t_{G} X_{1}-X_{2}$ PLANE

Flow Diag. For Quadratic RAS Determination
A_{1}

CHAPTER 6

GENERAL OPTIMAL LYAPUNOV FUNCTIONS
FOR NON-LINEAR SYSTEMS INCLUDING
THOSE OF LURE' FORM AND RELAY CONTROL SYSTEMS.

Chapter 6

6.1 High Degree Lyamunov Functions for Autonomus Non-Linear

 Systems.
Introduction

A natural extension of a quadratic LF for the stable system of form 4.1.1 in Chapter 4, namely,

$$
\underline{x}=A \underline{x}+g(\underline{x})
$$

is the LF of degree mv,

$$
v=v_{2}+v_{3}+\ldots+v_{m v}
$$

where V_{i} is a homogeneous polynomial of degree i and V_{2}, $v_{2}=\underline{x}^{T} P_{x}$, is itself a LF for the system. For second order systems we write

$$
v=\sum_{i=2}^{m v} \sum_{j=1}^{i+1} v_{i j} x_{1}^{i-j+1} x_{2}^{j-1}
$$

which involves to a multiplicative constant $m=2+(m v+5)(m v-2) / 2$ parameters, $v_{i j}$, which is large for $m v \geq 5(m \geq 17)$.

A less obvious class is the product of quadratics

$$
v_{2 \dot{m v}}=\prod_{k=1}^{m v} x^{T} P_{k} x
$$

$$
6.1 .4
$$

where the p_{k} are p.d.s. matrices which solve

$$
A^{T} P_{k}+P_{k} A=-Q_{k} \quad(k=1, \ldots, m v)
$$

for p.d.s. Q_{k}. This LF has the simplicity of the quadratic and only $m=2 m v$ parameters need determining.
. Two questions are apparent:
a) How do the optimal RAS'S for high degree LF's compare with those of the quadratic?
b) Are any 'equal tangency phenomena' present such as property A for optimal quadratics?

In order to give answers one must resort to numerical means as the RAS problem is intractable analytically. Henceforth we discuss some of the numerical features in determining the optimal LF's.

RAS Determination and Optimization Methods
The RAS problem in 4.1 .10 and 4.1 .11 of minimizing V on the constraint $\dot{V}=0$ is more involved for a general LF of the form 6.1.3 and can cause difficulty with numerical methods. The latter can be attributed to the fact that (a) \bar{V} may vanish at a relative minimum and contact between the boundary $V=V_{m}$ and the constraint contour is not smooth, (b) the contours of V and $\dot{V}=0$ may have several components and (c) V may not be p.d. in E^{n}. (Note (a), (b) and (c) are not unrelated and also that points satisfying $Z V(\underline{x})=0$ give tangency points)

Given the LF 6.1.3 a RAS was obtained for a second order system via Hewit's (2) version of Rodden's method (3). In essence the main features are:
(1) a search for the constraint contour by spiralling out from the origin until a point x_{1} is reached s.t. $\dot{\mathrm{V}}\left(\mathrm{x}_{1}\right)>0$, followed by an accurate location of the constraint at x_{2} say.
(2) A step is taken along a vector tangential to $\dot{V}=0$ at \underline{x}_{2} in a direction of decreasing V followed by a search along $\bar{\nabla} \dot{V}$ to relocate the constraint. This is repeated until tangency, and a possible stability boundary is found.
(3) Steps along this tentative stability boundary, $V=c$, are made and $\dot{\mathrm{V}}(\underline{x})$ is evaluated at each step. If $\dot{\mathrm{V}}(\underline{x})>0$ the
previous tangency point is invalid, and having relocated the constraint, step (2) is repeated. Unless the method breaks down a conservative RAS is obtained of $V=c<V_{m}$ and its average radius is found.

To determine the optimal LF of 6.1 .3 with respect to the numerical average radius p, the Nelder and Mead (4,6) simplex method was used. The optimization was over the m parameters

$$
\begin{aligned}
t_{1}, t_{2} \text { and } v_{i j}, i & =3, \ldots, m v \\
j & =1, \cdots, i+1
\end{aligned}
$$

where t_{1} and t_{2} determine Q as $Q=L^{T} L+\epsilon I$, and P solves the matrix equation 4.1 .5 , the latter ensuring 6.1 .3 is a LF for 6.1.1. In the numerical results which follow Rodden's method continually broke down for higher degree LF's due to difficulties (a) to (c) mentioned above and necessary features were incorporated:
a) an upper bound on points, x_{i} say, which search the constraint contour in step $(2),\left\|x_{i}\right\|>R_{\max }$,
b) a test for $V\left(x_{i}\right)>V_{\max }$ at tangency,
c) a test for a pt. x_{2} lying on $V=c$ (stability boundary), of $\left\|x_{2}\right\|>R_{\max }$ (i.e a test for an open boundary),
d) a test to discover whether step (2) of Rodden's method was repeatedly converging to the same tangency point. If any of the bounds in (a) to (c) vere satisfied the RAS function value of p for Nelder \& Mead was penalized (i.e $\rho=$ average radius $=-10$ say). In case (d) the best tangency point out of three was found.

The LF in 6.1.4 was investigated for the restricted class of systems of C 4 such that, with minor modifications, the 2 nd order optimal quadratic algorithm could be used. The optimization of ρ, the average radius, was over the $2 m v$
values

$$
t_{k 1}, \dot{t}_{k 2} \quad ; \quad k=1, \mathrm{mv}
$$

where $Q_{k}=L_{k} L_{k}+\epsilon I>0$ and

$$
L_{k}=\left[\begin{array}{ll}
1 & t_{k 1} \\
0 & t_{k 2}
\end{array}\right]
$$

As for the quadratic, a boundary $V=c$ is easily traced out for if Y is any vector then $V(a y)=c$ where

$$
a=\left(c / \prod_{k=1}^{m y} y_{k} y\right)^{\frac{1}{2 n v}}
$$

This fact also means that the complex algorithm of C5 can' be extended to this LF to study high order systems, the average radius being easily obtained from the evaluation of $\dot{\mathrm{V}}_{\mathrm{M}}\left(\mathrm{L}_{\mathrm{k}}\right)$. in 5.2.15.
$\underline{\text { Numerical Examples of Optimal LF's for } V_{m v}=\prod_{k=1}^{m v} x_{k}^{T} P_{k} x^{x}}$

In the examples that follow the average number of function evaluations of ρ by Powell's conjufate direction algorithm for the LF's of degree 2,4 and 6 were respectively 70, 140 and 220, giving an accuracy of 10^{-2} or more for the optimum ρ (average radius). The latter was calculated from 80 points on the boundary $V=V_{m}$.

Table 6.1 shows a comparison of ρ for 4 systems taken from C4. Some marked improvement exists for systems S1, S2 and 57 where the DOA's are radially symmetric, but for 56 the difference between the optimal ρ for V_{2} and V_{6} is poor.

It was important in the optimization of ρ for V_{4} and V_{6} not to choose all initial $\mathrm{L}_{\mathrm{k}}(\mathrm{k}=1,3)$ equal $\quad\left(\mathrm{L}_{\mathrm{k}}=I\right.$ say or $L_{k}=L_{o}$ where L_{o} gives the optimal quadratic.) This
latter choice usually corresponded to a local minimum Where the Powell optimization tended to stick due to the two valid tan. pts. of the $O Q$ (Note the RAS's of $V^{m}(\underline{x})$ and $V(x)$ are the same).

Fig. 6.1 shows the relationship between the optimal boundaries of V_{2}, V_{4} and V_{6} and their constraint contours for system $S 1$. For the $4^{\text {th }}$ degree LF there are 2 valid $R S$ tangency points and 3 RS constraint components, whereas for the $6^{\text {th }}$ degree the numbers are 2 and 4 respectively. As for the quadratic case, these optimal LF's were non-unique. From numerical evidence it seems highly probable that at the exact optima for V_{4} and V_{6} there are 3 and 4 RS valid tangency points respectively. Interestingly, the non-convex shapes of the higher degree boundaries resemble those of the DOA more clearly.

Similar considerations apply to the corresponding boundaries for system 57 , shown in Fig. 6.2, with an equal tangency property holding for V_{4} and V_{6} with two RS valid tangency points and 3 and 5 RS constraint components respectively. (There is almost a third point of contact of. $V_{6}=V_{m}$ with $\dot{V}_{6}=0$). All the optimal boundaries pass through the singular point $(1,2)$ of system $S 7$.

TABLE 6.1

SYSTEM	P $=$ AVERAGE RADIUS		
	$\mathrm{m}=2$	$\mathrm{m}=4$	$m=6$
	v_{2}	V_{4}	v_{6}
$\begin{gathered} \mathrm{S} 1 \\ (\mathrm{ZUBOV}) \end{gathered}$	1.883	2.219	2.292
$\begin{gathered} \mathrm{S} 2 \\ (\mathrm{VAN} . \mathrm{POL}) \end{gathered}$	1.44	1.51	1.57
S6 (DAVIES)	0.1857	0.1873	0.1874
S7	2.52	2.75	3.21

Numerical Examples of Optimal LF's For V in Series Form (6.1.3).

An obvious initial choice for the coefficients $v_{i j}$ in 6.1.3 for $\mathrm{mv}>2$ is
a) for $V_{m v}$ select as initial values for

$$
\begin{aligned}
& \mathrm{v}_{\mathbf{i j}}, \quad \mathbf{i}=2, \ldots, \mathrm{mv}-1 \\
& \mathrm{j}=1, \ldots, \mathrm{i}+1
\end{aligned}
$$

those of the optimal LF of degree mv-1 and
b) put $v_{\mathrm{mvj}}=0.0, j=1, \ldots, \mathrm{mv}+1$
or c) put $v_{\operatorname{mvj}} \neq 0.0$, " "
The choice of a) and b) was unsatisfactory since the optimization started on an equal tangency surface and convergence was poor. Although the other choice is better a) and c), arbitrarily selectins all coefficients of the same magnitude proved as good.

For convenience we write the LF in 6.1 .3 as $V_{2,3, \ldots, m v}$, then Figures 6.3 to 6.6 show the behaviour of the optimal LF's with respect to the following systems:

System S2 (Van clor Po1)

Since the DOA for the system is radially symmetric it was reasonable to choose the LF accordingly and so the forms $V_{2}, V_{2,4}$ and $V_{2,4,6}$ were investigated for which $m=2,7$ and 14 respectively. The Simplex optimization was terminated when either the difference between function values of the simplex were less than 10^{-3} in magnitude or When I, the number of function evaluations exceeded an upper bound $I_{\text {MAX }}$, the latter beine 50,190 and 290 for the respective cases.

For the LF $V_{2,4}$ convergence was obtained in 184 function evaluations (FE's) but not without many of the brealkdowns of Rodden ((a) to (d)), this being the case for the following systems as well. Valid tangency alternated between 3 distinct RS points near the optimum and is reflected in Fig. 6.3 where the optimal boundary has 3 RS valid tangency points in contact with its constraint contour, the latter having 2 RS components which are unlike those of the quadratic.

For the LF $V_{2,4,6}$ convergence was very poor in that p tended to stick to a value near the optimum, which was in part due to the high dimension of the space of parameters $a_{i j}(m=14)$ for which the Simplex method becomes inefficient. However, after several restarts an accurate optimum was obtained and Fig. 6.3 shows that the optimal boundary, on which 3 valid RS tangency points lie, gives a good RAS
both in shape and size. The corresponding table shows the large computing time for $V_{2,4,6^{\circ}}$

System S18

Consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{2} \tag{S18}\\
& \dot{x}_{2}=-x_{1}\left(1-x_{1}^{2}\right)-x_{2}\left(1-x_{2}^{2}\right)
\end{align*}
$$

with singular points $(0,0)$ and $\mp(1,0)$.
Investigating the same LF's shows the situation is somewhat different, since for all LF's, only one RS constraint component exists near the origin and the respective optimal boundaries all have two RS points of contact with the latter (Fig. 6.4). As for the previous system the average radius of the $6^{\text {th }}$ degree LF is only fractionally better than that of the $4^{\text {th }}$ and the RAS's are poor compared to the DOA.

System 519

A system with a non-symmetric DOA is.

$$
\begin{equation*}
\dot{x}_{1}=x_{2} \tag{S19}
\end{equation*}
$$

$$
\dot{x}_{2}=-x_{1}\left(1+x_{2}\right)-x_{2}\left(1-x_{2}^{2}\right)
$$

In this case the $L F^{i}{ }^{\prime} V_{2}, V_{2,3}$ and $V_{2,3,4}$ were investigated. Fig. 6.5 shows the optimal boundaries of the $3^{\text {rd }}$ and $4^{\text {th }}$ degree curves having 3 points of contact with their constraint contours (the non-optinal ones having one or two). Their respective RAS's have the usual failing for systems with open DOA's, being very poor.

System S13 (Yu (6))
The system is that in 5.3 and caused some difficulty in convergence of the average radius to the optimum for $\mathrm{V}_{2,3,4}$. This is shown in FiE. 6.6 where although the optimal boundary for $V_{2,3}$ has almost 3 points of contact with its constraint contour, that of $\mathrm{V}_{2,3,4}$ has one. Also, due to continued breakdown of the Rodden method (mainly tangency points giving open boundaries), the latter required $6000 \mathrm{mill} / \mathrm{sec}$ for 59 FE 's after restarting near the optimum. However, some marked improvement is shown in the RAS.

Comment

It is evident that high degree optimal LF's do in some cases give much improved RAS's (systems S1, S7, S2, S19), but the equal tangency phenomenon which is also present and contributes to lack of convergence, thereby making computing time excessive, offsets this advantare.

All systems studied had two or more valid tangency points for the optimal LF's of degree greater than two. The direct relationship between the number of tangency points and valid tangency points is complicated by the multiple components of both the $\mathrm{V}_{\mathrm{mv}}=$ const. and $\dot{\mathrm{V}}_{\mathrm{mv}}=0$ contours. Dependihg on the system, the number of tancुency points, valid tangency points and constraint components tend to increase with mv.

6.2 Optimum Lyamunov Functions For Relay Control Systems

Introduction

The application of Lyapunov's direct method to differential equations with discontinuous right hand sides has been studied in particular by Alimov (69), Ansonov (63) and Weissenberger $(48,66)$. In this section we shall extend some work of the latter and consider the relay system

$$
\dot{\underline{x}}=\mathrm{Ax}+\underline{\mathrm{b}} \sin \sigma, \quad \sigma=\underline{d}^{T} \underline{x} \quad 6.2 .1
$$

where

$$
\operatorname{sgn} \sigma=\left\{\begin{array}{l}
+1, \sigma>0 \\
\epsilon, \sigma=0,-1 \leq \epsilon \leq 1 \\
-1, \sigma<0
\end{array}\right.
$$

We assume, as for most practical systems, that

$$
\underline{d}^{T} \underline{b}<0 \quad 6.2 .3
$$

which implies two types of motion: regular switching in which trajectories in $\sigma>0$ connect on $\sigma=0$ with trajectories in $\sigma<0$, and sliding, in which segments of the trajectories lie in the space $\sigma(\underline{x})=0$. A complete discussion of these motions is given in reference (48) and we mention that the main definitions and theorems - including Theorem 1.5.3 - of Lyapunov's direct method are applicable to relay systems provided the stability of the two motions are treated separately.

For regular switching the motion is described by 6.2.1, while for sliding, which occurs for $\left|\underline{d}^{T} A x\right|<\left|\underline{d}^{T} \underline{b}\right|$ on $\underline{d}^{\mathrm{T}} \underline{x}=0$, by the linear system

$$
\underline{x}=\bar{A} \underline{x}
$$

$$
6.2 .4
$$

where

$$
\bar{A}=\left(I-\frac{\underline{b} \underline{d}^{T}}{\underline{d}^{T} \underline{b}}\right) A \quad 6.2 .5
$$

By considering an orthogonal transformation from x to y via

$$
y=G \underline{x} \quad\left(G^{T}=G^{-1}\right) \quad 6.2 .6
$$

such that y_{n} is normal to the sliding plane, $\sigma=0$ i.e

$$
(0,0, \ldots, 0,1)=G d /\|\underline{d}\|
$$

the system 6.2 .4 may be written

$$
\dot{y}=G \bar{A} G^{T} y
$$

Further, since $\dot{y}_{n}=0$, by defining a new vector \underline{z} as $\underline{z}=\left(y_{1}, y_{2}, \cdots, y_{n-1}\right)$, we obtain

$$
\underline{\dot{z}}=\mathrm{A}^{\prime} \underline{\mathrm{z}}
$$

where A^{\prime} is the $(n-1) x(n-1)$ matrix obtained by deleting the last row and column of $G \bar{A} G^{T}$.

Two candidates for a LF for 6.2.1 are
a) the piecerise quadratic LF

$$
\begin{align*}
V & =x^{T} P x+\int_{0}^{\sigma} \operatorname{sgn} s d s \\
& =x^{T} P_{x}+\left|d^{T} \underline{\underline{x}}\right|
\end{align*}
$$

for which $\dot{V}=\underline{x}^{T} \underline{Q} \underline{x}+\underline{K}^{T} x \sin \sigma+\underline{d}^{T} \underline{b}$
where $\quad Q=A^{T} P+P A$
and $\quad \underline{K}=A^{T} \underline{d}+2 P \underline{b}$
(By 6.2.3 V >0 and $\dot{\mathrm{V}}<0$ for some $R(h)$, h small, $\sigma \neq 0$). Here Weissenberger has shown that V is a LF for 6.2.1 iff the symmetric P has the property

$$
A^{\prime} T_{P^{\prime}}+P^{\prime} A^{\prime}=-Q^{\prime}<O^{\prime}
$$

where A^{\prime} is from 6.2 .8 and P^{\prime} is formed by deleting the last row and column of GPGT. Here, V may still be a LF even though P is indefinite and/or A is unstable.
b) the piecewise linear LF

$$
v=\sum_{i=1}^{m}\left|c_{i}^{T} x\right|
$$

originally used by Rosenbrock (70), where for $6.2 .1{c_{i}}=\underline{d}$ for some i and, to ensure V is p.d. the vectors ϱ_{j} span E^{n}. The contours of $V=$ constant are composed of at most 2^{m} hyperplanes whose normals satisfy

$$
\underline{n}_{j}=\sum_{i=1}^{m}{ }^{\mathrm{F}} \underline{c}_{i}, \quad j=2, \ldots, 2^{\mathrm{m}}
$$

Then since 6.2.1 is linear for $\sigma>0$, by Rosenbrock's analysis, if

$$
\stackrel{.}{x}_{\underline{n}_{i}} \leq 0 \quad 6.2 .13
$$

at each vertex of the face whose normal is n_{i}, for all faces of $V=c$, then $V<c$ is an estimate of the RAS provided 6.2 .13 also holds for sliding.

The Piecewise Quadratic LF

An RAS determination for the LF 6.2 .9 is essentially the same as in 6.1 of minimizing V on the constraint contour $\dot{\mathrm{V}}=0$ from 6.2.10, where in the plane $\sigma=0$ the latter is discontinuous and given by

$$
\dot{v}=\underline{x}^{T} \underline{x}+\underline{x} \underline{x}+\underline{d}^{T} \underline{b}=0
$$

Weissenberger (48) has given a second order example where he optimizes the area of the RAS for LF 6.2.9. He produces
an optimal boundary having 2 RS points of contact with its constraint, but goes no further. Here we explore the situation more fully.

Since points on $\dot{V}=0$ are easily determined by solving a quadratic, the second order algorithm of Chapter 4 is amain applicable. The major modification in RAS determination is the replacement of the one-dimensional search routine using, continuity for quadratic fits, by the method of search by Golden Section (56). This is due to the two types of tangency which occur:
a) a smooth tangency at which V and $\dot{V}=0$ are continuous and
b) a corner tangency lying on $\sigma=0$ where the contours of $\dot{\mathrm{V}}=0$ may 'jump' discontinuously.

The optimization of the area of the RAS was made over the space of the elements of $p\left(p_{11}, p_{12}, p_{22}\right)$ subject to 6.2.11.

Numerical Examples

System $\$ 20$
A relay system having a limit cycle is

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+x_{2}-\operatorname{sgn}\left(x_{1}+x_{2}\right)
\end{aligned}
$$

$$
\mathrm{S} 20
$$

Optimization of the RAS area by Powell's method showed a marked oscillatory effect of the valid tangency point between a corner and a smooth tangency. Fig. 6.7 shows an initial LF boundary

$$
2 x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+\left|x_{1}+x_{2}\right|=1.705
$$

(with $\rho=2.094$) with one smooth RS valid tangency and the best LF boundary

$$
1.589 x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+\left|x_{1}+x_{2}\right|=1.953
$$

with a corner and a smooth RS valid tangency point, ($\rho=2.73$). In this case the constraint contours are closed.

That one equal tangency surface exists, similar to the curve in the $O Q$ case (C4), is seen in Fig. 6.8a and 6.8 b where the actual area contours have been plotted through sections of the 3 dim. space of elements of p parallel to the $p_{11}-p_{22}$ plane for $p_{12}=0.0$ and $p_{12}=-.5$ respectively (Shown $A B$). Values of P giving smooth tangency lie above surface $A B$, the optimal P lying on the section of AB in Fig. 6.8b.

System S21

An example showing a marked discontinuity of $\dot{\mathrm{V}}$ on $\sigma=0$ is

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-2 x_{1}+x_{2}-2 \operatorname{sgn}\left(2 x_{1}+x_{2}\right)
\end{aligned}
$$

Fiğ. 6.9 shows the initial LF used in the previous example with one valid RS corner tangency point, and again the optimal LF with the two types of valid tangency. The RAS boundary is

$$
\begin{array}{r}
3.544 x_{1}^{2}-0.8707 x_{1} x_{2}+1.0 x_{2}^{2}+\left|2 x_{1}+x_{2}\right|=3.9941 \\
(\rho=4.17)
\end{array}
$$

Convergence was degraded once Powellis method hit the equal tangency surface and various initial $\mathrm{P}^{\text {'s }}$ were tried to get the optimum.

System S22

A case rhere the optinum piecevise quadratic LF approaches a piecewise linear LF is the following

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{1}-\operatorname{sgn}\left(x_{1}+2 x_{2}\right)
\end{aligned}
$$

Fig. 6. 10 shows an initial.LF $(P=I)$ compared to the optimum in which the $\dot{V}=0$ constraint forms part of the RAS boundary, $V=V_{m}$. The latter caused difficulty since the precise tangency at the optimum was not clear. (A check was made to see if \underline{x}_{1} was the valid tangency where $\left.\nabla V\left(x_{1}\right)=0\right)$. Comment

Weissenberger uses a gradient method to optimize the RAS volume for 3 rd order systems. The complex method of $C 5$ could also be applied, with better convergence properties.

The examples given here certainly show that the equal tangency pronerty of optimal LF's is not restricted to continuous systems.

The Piecewise Linear LF

Weissenberger (66) gives an analytic expression for the optimal piecewise quadratic LF of 6.2 .9 for the system

$$
\begin{aligned}
\stackrel{x}{x}=\left[\begin{array}{ll}
0 & 1 \\
p_{1} & p_{2}
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] \operatorname{sgn} \sigma & 6.2 .14 \\
& \sigma=d_{1} x_{1}+d_{2} x_{2}, p_{1}>0
\end{aligned}
$$

We show here that a good RAS boundary for the piecewise linear Lf of 6.2 .12 can be obtained by assuming an'equal tangency property' for the optimum LF.

Consider the LF

$$
V=\left|c^{T} x\right|+\underline{d}^{T} x \mid
$$

and assume sliding for 6.2.14 is ass., ie.

$$
d_{1}, d_{2}>0
$$

Then without loss of generality the situation is shown in Diag. 6.1 with a contour, $V=\alpha=$ cont., having vertices a, b and c of interest in $\sigma>0$ (by symmetry the analysis is considered for $\sigma>0$ only) and normals

$$
\begin{aligned}
& \underline{n}_{1}=\underline{d}+c \\
& \underline{n}_{2}=\underline{d}-\underline{c}
\end{aligned}
$$

DIAG 6.1

For $V=\alpha$ to be a stability boundary we require

$$
\underline{n}_{i}^{T} \underline{x} \leqslant 0 \quad i=1,2
$$

at the vertices a, b and c, or,

$$
\left.\begin{array}{l}
\underline{n}_{2}^{T} x_{a}^{*} \leq 0 \\
\underline{n}_{2}^{T} x_{b}^{*} \leq 0 \\
\underline{n}_{1}^{T} x_{b} \leq 0 \\
\underline{n}_{1}^{T} x_{c} \leq 0
\end{array}\right\}
$$

and also for sliding, which on $\sigma=0$ gives

$$
\dot{\mathrm{V}}=\underline{n}_{2}^{\mathrm{r}^{*}}=-c^{\mathrm{T}} \mathrm{x}=-\frac{x_{2}}{\mathrm{~d}_{2}}\left(\mathrm{~d}_{2} c_{1}-\mathrm{d}_{1} c_{2}\right) \quad \text { for } x_{2}>0
$$

and $\dot{V}=\underline{n}_{1}^{T^{*}}=-\underline{n}_{2}^{T^{*}}$
for $\mathrm{x}_{2}<0$.
Hence we require

$$
d_{2} c_{1}-d_{1} c_{2}>0
$$

which also implies V p.d. For local stability we also require $\underline{n}_{i}^{T} \underline{b}<0$ which gives

$$
\mathrm{c}_{2}+\mathrm{d}_{2}>0 \quad \text { and } \quad \mathrm{d}_{2}-\mathrm{c}_{2}>0 \quad 6.2 .18
$$

Let M and I be unit vectors to vertices a and b and $z t$ and t the respective distances

$$
\begin{gather*}
\left(\underline{x}_{a}=z t M_{1} x_{b}=t \underline{I}, x_{c}=-\underline{x}_{a}\right) \text { then } \\
t=\frac{\|c\| \alpha}{\left(d_{2} c_{1}-c_{2} d_{1}\right)}
\end{gather*}
$$

and the area of $V<\alpha$ is $\rho=t \alpha /\|\underline{c}\|$ or

$$
\rho=\left(\frac{t}{\|c\|}\right)^{2}\left(d_{2} c_{1}-d_{1} c_{2}\right) \quad 6.2 .19 b
$$

The RAS is determined by the maximum α satisfying 6.2.16, or equivalently, by the minimum of the $t(>0)$ giving equality in all 4 relations of 6.2.16. The 4 values of t are respectively
$\frac{\underline{n}_{2}^{T} \underline{b}}{z_{n}^{T} A M}, \frac{-\underline{n}_{2}^{T} \underline{b}}{n_{2}^{T} A \underline{T}}, \frac{\underline{n}_{1}^{T} \underline{b}}{\underline{n}_{1}^{T} A I}, \& \frac{\underline{n}_{1}^{T} \underline{b}}{\underline{n}_{1}^{T} A M} \quad 6.2 .20$
where $z=\|\underline{d}\| /\|\underline{c}\|$.
As the boundary $V=\alpha$ is expanded its vertices will have a first contact with the $\dot{\mathrm{V}}=0$ constraint - in this case two RS straight lines found in regions A_{1} and B_{1}. (Diag. 6.1). In view of the equal tangency properties which usually hold for optimum LF's we assume that the optimum boundary in this case will touch $\dot{V}=0$ at all vertices (and thus $\dot{\mathrm{V}}=0$ on all sides of the boundary). For $\dot{V}=0$ along bc we require the last two terms in 6.2.20 to be equal i.e

$$
\frac{-\underline{n}_{1}^{\mathrm{T}} \mathrm{~b}}{\underline{n}_{1}^{\mathrm{T}} \mathrm{AI}}=\frac{\underline{n}_{1}^{\mathrm{T}} \underline{b}}{\mathrm{zn}_{1}^{\mathrm{T}} \mathrm{AM}}
$$

which gives

$$
\left(d_{1}+c_{1}\right)^{2}-p_{1}\left(d_{2}+c_{2}\right)^{2}+p_{2}\left(d_{1}+c_{1}\right)\left(d_{2}+c_{2}\right)=0
$$

or

$$
u^{2}+p_{2} u-p_{1}=0
$$

with $u=\left(c_{1}+d_{1}\right) /\left(c_{2}+d_{2}\right)$.
Let $r=p_{2} / 2-\sqrt{p_{2}^{2} / 4+p_{1}}<0$ be the negative of one root of 6.2.22, then c_{1} and c_{2} must satisfy

$$
c_{1}+r c_{2}=-\left(r d_{2}+d_{1}\right)
$$

in order that 6.2 .21 holds (the other root gives $c_{1}, c_{2}<0$). The RAS boundary for such c_{1}, c_{2} is determined as

$$
v=\left(\frac{\mathrm{t}}{\|\underline{c}\|}\right)\left(d_{2} c_{1}-c_{2} d_{1}\right)
$$

from 6.2.19, where, from the substitution of 6.2 .23 into 6.2 .21 , we have

$$
\frac{t}{\|\underline{c}\|}=1 /\left(p_{1} d_{2}-p_{2} d_{1}+d_{1} r\right) \quad 6.2 .24
$$

Using the fact that

$$
c_{1} d_{2}-c_{2} d_{1}=-\left(d_{2}+c_{2}\right)\left(r d_{2}+d_{1}\right)
$$

and

$$
\frac{p_{1}\left(d_{1}+r d_{2}\right)=p_{1} d_{2}-p_{2} d_{1}+d_{1} r}{r}
$$

from 6.2.23, substitution of 6.2 .24 into $6.2 .19 b$ gives the area in terms of c_{2} as

$$
\rho=\frac{-\underline{x}}{p_{1}}\left(c_{2}+d_{2}\right)
$$

The only restriction on c_{2} is from 6.2.18 and ρ is maximized when $c_{2}=d_{2}$ giving the boundary

$$
\left|d_{2} x_{2}-\left(d_{1}+2 r d_{2}\right) x_{1}\right|+\left|d_{1} x_{1}+d_{2} x_{2}\right|=\frac{-2 r d_{2}}{p_{1}}=\rho
$$

(Note the first two terms in 6.2 .20 are both zero, and $\dot{\mathrm{V}}=0$ on ab) Fig. 6.10 shows this boundary for system S 22 , and is the optimum (Veissenberger (66)).

6.3 Finite Regions of Attraction For The Problem of Lure'

Introduction

We shall be concerned with the system of Lure' form

$$
\dot{\underline{x}}=A \underline{x}+\underline{b} f(\sigma)
$$

$$
\sigma=\underline{c}^{T} \underline{x}, \text { A stable, }
$$

where $f(\sigma)$ is a continuous non-1inear function which may leave the sector

$$
\left.\begin{array}{rl}
0<f(\sigma) / \sigma & <\mathrm{K}, \sigma \neq 0 \\
\mathrm{f}(0) & =0
\end{array}\right\} \quad 6.3 .2
$$

at some $\sigma \leqslant \sigma_{1}<0$ and/or $\sigma \geqq \sigma_{2}>0$, but satisfies 6.3 .2 for $\sigma_{2} \leqslant \sigma \leqslant \sigma_{1}$. The latter restrictions often occur in practical systems where $f(\sigma)$ is unknown for large σ. Even with these restrictions a region of attraction exists if the Popov condition

$$
\operatorname{Re}(1+i \omega q) G(i \omega)+\frac{1}{\mathrm{~K}}>0, \quad \forall \omega \geqslant 0 \quad 6.3 .3
$$

holds for some real q where

$$
G(s)=c^{T}(A-s I)^{-1} \underline{b}
$$

and A is stable (Aizerman and Gantmacher (71)). The stanclard LF associated with this problem is

$$
V=x^{T} P x+\int_{0}^{\sigma} f(s) d s
$$

with p p.d. If such a LF can be found which proves g.a.s. for 6.3.2 without restriction, then with restriction, $\mathrm{V}<\mathrm{V}_{\mathrm{m}}$ will be a region of attraction if it lies in $\sigma_{2} \leqslant \sigma \leqslant \sigma_{1}$. The largest boundary $V=V_{m}$ will be tangential to $\sigma=\sigma_{1}$ or $\sigma=\sigma_{2}$ and thus

$$
V=V_{m}=\min _{i} M_{i}
$$

where

$$
M_{i}=\sigma_{i}^{2} / \underline{c}^{T} p^{-1} \underline{c}+q \int_{0}^{\sigma_{j}} f(s) d s
$$

An Ontimal Quadratic For The Infinite Sector

For $q=0$ and $K=\infty$ a quadratic $V=x^{T} P_{x}$ (if it exists)
giving $\dot{V} \leqslant 0$ without restriction on f in 6.3 .2 is given by

$$
\mathrm{P} \underline{\mathrm{~b}}=-\underline{\mathrm{c}} / 2 \quad 6.3 .8
$$

and

$$
A^{T} P+P A=-Q \leq 0
$$

(Then $\dot{V}=-\underline{x}^{T} \underline{Q} \underline{x}-\sigma f(\sigma) \leqslant 0$.) Weissenberger (72) has proposed the optimization of the volume of region 6.3.6,

$$
\rho=\max _{p \in \bar{P}} \pi\left[\frac{\mathrm{v}_{\mathrm{m}}^{\mathrm{n}}}{\mathrm{~d}(\bar{P})}\right]^{\frac{1}{2}}
$$

with $\overline{\mathrm{P}}$: ($\mathrm{F} / 6.3 .8$ and 6.3 .9 satisfied), to obtain the optimal quadratic when the Popov condition holds, ensuring $\overline{\mathrm{P}}$ is non-empty. Walker and McClamroch (73), however, suggest a single LF obtained via the Kalman construction procedure (67). For the general case ($q \neq 0$) the assumptions made are (1) the pairs (Λ, \underline{b}) and (A^{T}, \underline{c}) are completely controllable (see (43)) and (2) the Popov condition holds for some real q with $d(q A+I) \neq 0$. Then a LF of form 6.3 .5 exists where P solves

$$
A^{T} p+P A=-\underline{u} \underline{u}^{T}
$$

and \underline{u} is a real vector determined by writing

$$
\operatorname{Re}(1+i \omega q) G(i \omega)+\frac{1}{K}=\left|\frac{\theta(i \omega)}{d(i \omega I-A)}\right|^{2} \quad 6.3 .12
$$

and setting

$$
\underline{u}^{\mathrm{T}}(\mathrm{sI}-\mathrm{A})^{-1} \underline{\underline{b}}=\int_{\mathrm{Z}}-\theta(\mathrm{s}) / \mathrm{d}(\mathrm{sI}-\mathrm{A}) \quad 6.3 .13
$$

(θ is a real polynomial of degree n and $z=1 / K-q c^{T} \underline{b}$. Kalman chooses roots of $\theta(\omega)$ to have neg. real parts).

The following relation now holds between the two approaches above:

Theorem 6.1

For $n=2$ the maximizing P in 6.3 .10 is determined via the Kalman construction procedure i.e.6.3.11

With a general A, b and c the proof is long and tedious. However, since it is assumed the pair (A, \underline{b}) is completely controllable a transformation exists (see Lefshetz (43)) transforming 6.3.1 to cononical form without changing the problem. Hence without loss of generality we assume the system

$$
\dot{\dot{x}}=\left[\begin{array}{cc}
0 & 1 \\
-b & -a
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] f(\sigma) \quad 6.3 .14
$$

Here

$$
G(s)=\left(c_{2} s+c_{1}\right) /\left(s^{2}+a s+b\right)
$$

and the relation for θ in 6.3 .12 reduces to

$$
x+\omega^{2} t=\theta(i \omega) \theta(-i \omega)
$$

wi.th $r=c_{1} b>0$ and $t=a c_{2}-c_{1}>0$. The two choices of θ are $\theta(i \omega)=\sqrt{r}+i \omega \sqrt{t}$ and $\theta(j \omega)=\sqrt{r}-i \omega f$. With the former, $\underline{u}=-(\sqrt{x}, \sqrt{t})$ giving

$$
\underline{u u}^{T}=\left[\begin{array}{cc}
r & \sqrt{r} t \\
, & t
\end{array}\right]
$$

It is easy to show that the Q corresponding to the optimal P in 6.3 .10 is just this. For 6.3 .8 implies P of the form

$$
p=\left[\begin{array}{ll}
\alpha & c_{1} / 2 \\
& c_{2} / 2
\end{array}\right] \quad \text { with } d(p)=\left(2 \alpha c_{2}-c_{1}^{2}\right) / 4
$$

and

$$
Q=\left[\begin{array}{cc}
r & -\left(\alpha-\frac{1}{2}\left(a c_{1}+b c_{2}\right)\right) \\
\cdot & t
\end{array}\right]
$$

Hence we require to minimize a subject to Q p.d. or

$$
-\sqrt{r t}<\alpha-\frac{1}{2}\left(a c_{1}+b c_{2}\right)<\sqrt{r t}
$$

Hence the optimal Q is that in 6.3.15.

Interestingly, the P minimizing the area in 6.3.10 corresponds to the other choice of θ.

The result was also shown valid for specific 3 rd order examples and is conjectured to hold for general n.

Variation of ρ with $q(k=\infty)$
The system 6.3.1 will be globally asymptotically stable if the modified frequency response (X vs. Y) with

$$
G(i \omega)=X(\omega)+i Y(\omega) / \omega
$$

lies to the right of the Popov line

$$
x-q Y+\frac{1}{K}=0
$$

for some q in the $X-Y$ plane. A range of such $q, q_{2}<q<q_{1}$ will usually exist and the question arises of whether a search for the q giving the best stability region in 6.3 .6 is profitable, with V obtained via the Kalman construction procedure. We consider 4 second order examples for the infinite sector which give different types of frequency response and range of q.

For system 6.3.14 and LF 6.3.5 the modified frequency response is a convex curve and the Popov lines tangential to it give the range of q. Let $\alpha=a c_{2}-c_{1}$ and $\beta=c_{2} b-c_{1} a$ then the tangency values give

$$
\left.q_{1}=\frac{1}{\beta^{2}}\left(\alpha \beta+2 b c_{1} c_{2}\right)+\sqrt{4 c_{1} c_{2} b+\left(\alpha \beta+c_{1} c_{2} b\right.}\right)
$$

and

$$
q_{2}=\quad \pi \quad-\quad "
$$

The following ranges then hold
Case 1: $\alpha \leqslant 0, \beta>0 ; q_{2}<q<q_{1}$
Case 2: $\alpha \geqslant 0, \beta>0 ; \quad 0 \leq q<q_{1}$
Case 3: $a \leqslant 0, \beta<0 ; q_{2}<q<\infty$
Case 4: $\alpha>0, \beta<0 ; 0 \leqslant q<\infty$

Fig. 6.11 to 6.14 show examples of the 4 cases for $f=\sigma-\sigma^{3} \quad(-1<\sigma<1)$. Evidently, marked increases in the size of stability regions are found for some q and in only one case (Case 3) is the optimum q near one of the extreme points $q=q_{1}$ or $q=q_{2}$ (i.e $q=10^{4}$ in Fig. 6.13).

FIG. 6.1

$$
\frac{V=V_{2}}{2 \text { VALID RS IAN. BIS }}
$$

$$
\frac{V=V_{2}+V_{4}+V_{6}}{3 \text { VALID RS TAN PTS }}
$$

OPTIMAL CONTOURS FOR

$$
\begin{aligned}
& \text { SERIES LE }(6.1 .3) \\
& \text { SYSTEM SO (VAN DER POL, E }=10 \text {) }
\end{aligned}
$$

V	P	NO OF	TIME
$F A D$	FESS	(MUSES	
V_{2}	1.44	70	760
$V_{2,4}$	1.798	184	883
$V_{2,416}$	1.805	290	3050

* Restarted

COMPARISON OE RAS'S WITH DOA

$$
\frac{V=V_{2}}{2 \text { VALID TAM PIS }}
$$

$$
\frac{V=V_{2}+V_{4}+V_{0}}{2 \text { VALID TAN PTS }}
$$

$$
\frac{V=V_{2}+V_{4}}{2 \text { VALIDTAM.PTS. }}
$$

- OPTIMAL CONTOURS FOR SERIES LE (6.13) SYSTEM SI 8

V	0	NO. OF $^{\prime}$ OF	TIME
V_{2}	0.903	70	630
$V_{2,4}$	0.997	136	1024
$V_{2,4,6}$	1.00	288	2592

\qquad

$$
V=V_{2}+V_{3}+V_{4}
$$

3 VALID TAN. PTS.

$$
\frac{V=V_{2}+V_{3}}{3 V_{\text {AL ID }} \text { TAN. PTS. }}
$$

- OPTIMAL CONTOURS FOR SERIES LE $(6.1 .3)$

SYSTEM SIG

V	AX RAD	NO FESS	CMILL/SEO
V_{2}	0.86	40	174
$V_{2, I}$	0.903	101	590
$V_{2,3,4}$	0.951	318	1900

2 VALID TANIPTS.

OPTIMAL CONTOURS OF SERIESLE (6.13)

SYSTEM (Mu) 513

AREA CONTOURS FOR PIECEWISE QUAD RHTIC, SYSTEM SRO (REYLAY)

SECTION THROUGH 'BEST $P^{\prime}\left(P_{12}=-0.5\right)$
\qquad

INITIAL (Vi) \& BEST (Vo) PIECEWISE QUADRATIC, SYSTEM S??
FIG. 6.10

$$
V=x^{\top} P \underline{x}+\int_{0}^{\sigma} f(s) d s=V_{m}
$$

FIG. 6.11

FIG. 6.12

Mad. FREQUENCY RESPONSE

$$
\begin{gathered}
\dot{\underline{x}}=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
-1
\end{array}\right] f(\sigma) \\
f(\sigma)=\sigma-\sigma^{3} \\
\sigma=x_{1}+x_{2}
\end{gathered}
$$

FIG. 6. 14

Conclusions

The continuous theme throughout this thesis has been the search for improved results when applying lyapunov functions to autonomous non-linear systems. We intend here to bring together the main points arising from this search and add some sugsestions for future work.

The problem of improving a crude RAS or an estimate of the transient response of a non-linear system was considered in Chapter 2. For the two forms of system considered the rate at which the trajectories approach the origin can be estimated through quantities α or β where $\alpha=\eta / 2-\sqrt{\mu} c_{0}$ and $\beta=\eta / 2-\mu c_{2}$; where α^{-1} and β^{-1} behave as 'time-constants' of the systêms. The sub-optimum problem of maximizing $\eta\left(\mathrm{m}^{\left.\left(\mathrm{P}^{-1} \mathrm{Q}\right)\right)}\right.$ and then minimizing $\mu(P)(M(P) / m(P))$ over the space of p.d.s.matrices \bar{Q} which results, was solved for a special case where A was in companion form with reai eigenvalues. A conjecture and a bound of Wiberg were also proved invalid.

Although the theory of condition numbers is well established there are a surprisingly small number of useful bounds that are obtainable for $\mu(P)$. The main drawback of the ones proposed, namely, $F(P), F\left(P^{-1}\right)$ and that of 2.6 .14 , is the calculation of $d(s)$, although simplification arises with A in companion form.

The numerical work shows that the procedure of minimizing $\mu(P)\left(P^{-1}=(S D)(S D)^{*}\right)$ over the extended space of hermitian matrices gives no improvenent over that of the real matrices. The results in Table 2.1 show the extra effort in computing the estimates $\left\||s|\left|s^{-1}\right|\right\|$ and $\mu\left(S S^{*}\right)\left(\left\|s_{i}\right\|=1\right)$ may be worthwhile. The evidence in Table 2.2 causes some doubt on the sub-optimum problem as simple choices of P or Q often give larger values of $\alpha \operatorname{or} \beta$.

Although the choice of a quadratic Lyapunov function gives rise to many simplifications in obtaining bounds for the transient response, the optimizations of quantities such as α^{-1} or β^{-1} are essentially independent of the non-linear parts of the system thus giving crude bounds.Unless one considers a very special type of system,LF's incorporating the non-linearity are hard to find.

An analytic solution of the Zubov eqn. in Chapter 3 would give the optimum result in that the exact DOA would be prescribed, $\mathrm{V}<1$ (regular equation). The impossibility of analytic solutions in general has led to the Zubov construction procedure with its non-uniform convergence of the RAS to the DOA. The analytic example given has thrown some light on the reason for this. However, the problex of determining whether the convergence of the RAS to the DOA is always non-uniform when the region of convergence of the power series LF is a subset of the DOA, would appear intractable analytically, and may be so numerically in view of the difficulty in findine the region of convergence.

The breakdown of the difference method near the DOA boundary when solving Zubov's PDE, is disappointing. It is due to the possibility of the analytic solution for V not beins defined outside the DOA (Example 3.6.1 shows that with $\phi=r^{2}$, V is defined everywhere, whereas for $\phi=10 x^{2}+y^{2}$, only in the DOA). The validity of the difference approach is also questionable and breakdowns occur. A nore critical comparison of the methods of Troch, Burnand \& Sarlos and Davidson and Cowan may prove interesting.

In the author's view the work in Chapters 4,526 contain the essential result of this thesis. It has been shown, both from an analytical and numerical standpoint, that given, a class of Lyapunov functions the optimal LF, V say, can have more than one valid tangency point with its constraint contour, $\dot{V}=0$. Although the number of such points depends upon the system considered, for a quadratic LF, the property can be suitably defined as 'property A'. Analytic evidence has shown the intractability of proving that the property A always holds for autonomous systems not asymtotically stable in the whole. However, the numerical evidence gives some overwhelming evidence for such a property. A contrary result has not yet been encountered,

Defining a similar property for higher degree LI's is difficult due to the number of special cases - for example, a system giving only one tangency point for any LF - but the view that multiple valid tangency is a general phenomenon encountered with any class of suitable LF's is certainly supported by the evidence in this thesis.

In the following paragraphs we give the main points of each chapter.

The problen of RAS determination and its associated search for the global minima of a constrained function is a big obstacle in using Lyapunov's direct method. With this in mind Chapter 4 investigates the simplest class of Lyapunov functions,
the quadratics. Even with very simple non-linear second order systems RAS determination is impossible. The systems studied show thjes in detail but in two cases optimal quadratics are obtained, one of which gives a lead to the equal tangency property, property A.

It is hoped that the second and higher order optimal quadratic algorithms will be of use to future researchers. They have certainly shown the existance of property A for a number of second and third order examples where accuracy was needed. Future work would be to compare some of the best optimization methods (e.g Fletcher and Lill, Nelder and Mead, Powell and DCS) on a varied selection of optimal quadratic problems. The degrading of the search directions near an equal. tangency curve as for Powell's method, should affect these other methods to varying degrees. Future optimization algorithms should be chosen or developed on the fact that, although a good direction of search is along the equal tangency curve or surface, the RAS determination for a quadratic corresponding to a point on this curve is also degraded because of the extra effort in verifying the valid tangency point.

An extension of Chapter 4 is the problem of optimizing over the class of quadratic LF's in order to obtain a large region of the origin in which trajectories have a certain exponential stability. For example we maximize the volume inside a boundary $V=V_{m}$ in which also $\dot{V}+2 \lambda V<0\left(2 \lambda<m\left(P^{-1} Q\right)\right)$. The problem is similar to the one of the optimal quadratic and it is easily shown that for system $S 1$ equal tangency exists.

In Chapter 5 the superiority of the 'complex' optimal
quadratic algorithm over that of Davidson and Kurak was mainly due to some unsatisfactory steps in the latter algorithm, namely, solving the constrained problem by Rosenbrocle's hill-climber and
minimizing the eccentricity of the initial stability boundary. The main reason for the latter step was to avoid local minima of the objective function ρ (volume). In our experience local minima were rarely encountered. The main point was that of a bad initial quadratic which in the space of elements of L $\left(P=L^{T} L\right)$ meant that the search for the optirmm engaged an equal tangency surface someway from the optimum with little hope of reaching it.

It would be advantageous to find a large class of systems which for a quadratic LF have only one $R S$ tangency point where the above maladies do not occur. A member is the system 54.

The penalty function approach to the quadratic RAS probiem in Chapter 5 has given good results. Further experience with the penalty function method of Fletcher and Lill (63) for high order systems is required in view of the claims of the method by the authors.

The extensions made in Chapter 6 of obtaining quite general optimal LF's for non-linear systems, including relay systems, give conclusive numerical evidence for the equal tangency phenomenon being a general one, and not solely attributed to quadratics.

The problem of determining optimal LF's in the series form (6.1.3) has numerous pitfalls. Besides those of the quadretic, the 乃reater number of valid tangency points for mv increasing, the possible open nature of the $V_{m v}=$ constant boundaries and the vanishing of \sum_{mv} at tangency, all cause serious problems in RAS determination for mv>2. From a purely mathematical standpoint the question of why multiple valid tangencies occur is striking. As the degree of the LT increases so do the degrees of freedom of its contours, as shown in Figures 6.1 to 6.6 , but the direct relationship between these
contours and those of $\dot{\mathrm{V}}_{\mathrm{mv}}=0$ at tancency, is obscured by the 1. RAS determination. Finding the number of valid tangency points a' priori for a given LF of derree mv and a given system is an unsolved problem. It is hoped that the numerical evidence presented in this thesis has made some contribution to its solution.

By assuming an equal tangency property a useful suboptimun piecewise linear LF has been obtained in Chapter 6 for a second order relay system. Perhaps this idea could be extended to other systems. The proof for general n that the Kalman construction procedure gives the optimal quadratic.would be worthwhile in view of the ease in obtaining the region of attraction.

The numerous practical systems have shown that the optimal RAS of a quadratic often givesa good estimate of the DOA when the latter is radially symnetric, but that in general it is poor, especially for an open DOA (Figures 4.4, 5.3, 5.4, 5.5, 6.4 and 6.5 show this) Hewit (2), after comparing the best RAS's for a number of constructed Lyapunov functions (those of Krasovski , Ingwerson, Zubov and Szegi) concluded that Lyapunov's direct method was unsatisfactory when applying numerical construction procedures to it. The presence of the equal tangency phenomenon for second and high order systems and its associated convergence problems, gives even more evidence against Lyapunov's direct method as a tool for estimating the DOA.

We can conclude from the work in this thesis that the search for optimal results has been profitable and that applications rance from simple autonomous systems to systems of discontinuous right-hand sides. It is hoped that the optimal phenomena shown have contributed to a better understanding of

Lyapunovis direct method.

REFERENCTSS

1. Zubov F.I, Methods of A.M.Lyapunov and Their Applications, Noordhoff Ltd, Gronigen, Netherlands, 1964.
2. Hewit J.R., A Comparison of Numerical Methods in Non-Linear Stability Analysis , Ph.D Thesis, 1968.
3. Rodden J.J., Numerical Applications of Lyapunov Stability Theory , J.A.C.C, Session IX, Paper 2, Stanford University, California, June 1964.
4. Margolis S.G., Vogt W.G., Control Engineering Applications of V.I.Zubov's Construction Procedures for Lyapunov Functions, I.E.E.E, AC-3, 1963, pp104-113.
5. De Sarker A.K, RAO N.D; Zubov's Method and Transient-stability Problems of Power Systems, I.E.E. Proc. Vol 118, pp1035-1040, Aug. 1971 .
6. Yu Y.N and Vongsuriya, Non-Linear Fover System Stebility Study by Lyapunov Function and Zubov's Method , I.E.E.E, Trans. Power App. Syst., Vol PA.S86, pp1480-1485, Dec. 1967.
7. Ferguson D.R, Generation of Zubov's Construction Procedure for Lyapunov Functions , Elec. Letters, Vo1. 6, no.3, Feb. 1970.
8. Froberg C.E., Introduction to Numerical Analysis , AddisonWesley, 1965.
9. Richtmyer R.D. and Morton K.W., Difference Methods for Initial-Value Problems , Interscience Pub., 2nd Ed. 1969.
10. Burnand G., Sarlos G., Determination of the Domain of Stability, J.Math. Anal. Appl., Vo1 23, pp714-722, 1963.
11. Davidson E.J, Cowan K.C., A Computational Method for Determining the Stability Region of a Second-order NonIinear Autonomous System , Int. J. Control, 1969, Vol.9, No.3, pp349-357.
12. Trocin In, The Evaluation of the Domain of Attraction of Non-Linear Control Systems with Hybrid Computing Systéms, Procd. $5^{\text {th }}$ IFAC Cong., Part 4 No. 32.1.
13. Kormanik J, Li C.C, Decision Surface Estimate of Non-linear System Stability Domain by Lie Series Method, JEEE, AC-17, Oct. 1972, pp666-669.
14. La Salle J.P. \& Lefshetz S., Stability by Lyapunov's Direct Method with Applications, Acad. Press New York (1961).
15. Hahn W., Theory and Applications of Lyapunov's Direct Method, Prentice-Hall, 1963.
16. Kalman R. E \& Bertram J.E, Control Synthesis and Design via the Second Method of Lyapunov, Part 1, A.S.M.E, D82, p371, 1960.
17. Lehnigk S.H, Stability Theorems for Linear Notions, PrenticeHall 1966.
18. Barbashin E.A., Introduction to the Theory of Stability, Wolten-iNoordhofx, 1970.
19. Vogt W.G., Transient Response from the Lyapunov Stability Eqn. , Joint Automatic Control Conference, 1965.
20. Barnett S., Solution of some Algebraic Problems Arising in the Theory of Stability and Sensitivity of Systems, with Particulax Reference to the Lyapunov Matrix Equation, Ph.d Thesis (1967) Loughborough University.
21. Barnett $S, 2$ Storey C., Matrix Methods in Stability Theory, Nelson, 1970.
22. Bauer F.I, Optimally Scaled Natrices, Numerische Mathematik S.73-87, 1963.
23. Niberg D. Mi, A Simple Bound for Stable Non-linear Systems with Input, Int. J. Control, Vol.6, No.4, 343-350, 1967.
24. Lewis D.C., Taussky 0 , On the Eigenvalues of The Lyapunov Matrix Operator, J. Math. Phs., 1, 234, 1960.
25. Bass R.K, Control Synthesis \& Optimization, NASA Langley Research Centre, Aug. 1961.
26. Bellman R.E., Stability Theory of Diff. Eqns., New York : McCraw-Hill, 1953, p35.
27. Marcustle Haynsworth E. Bound for the P Condition No. of Matrices with Positive Roots, Nat. B. Stds., 65B, No 1, 1961, 13-14.
28. Gautshi W., On Inverses of Vandermonde 2 Confluent Vandermonde Matrices, Num. Math. 4, 113-123, 1962.
29. Reiss G., Inversion of the Vandermonde Matrix, I.E.E.E, AC-12, p793, 1967.
30. Marcus M., Minc H., A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.
31. I.S. Pace \& S. Barnett, Comparison of Numerical Methods for Solving Lyapunov Matrix Eqns., I.J.C, Vol 15, pp907-915, 1972.
32. Rosenbrock H.H., An Automatic Method For Finding The Greatest or Least Value of a Function, Comp. Jnl., 3, pp175-84, 1960.
33. Powell M.J.D., An Efficient Method of Finding the Minimum of a Function of Several Variables Without Calculating Derivatives, Comp. Jnl., 7, pp155-62, 1964.
34. Nelder J.A., Mead R., A Simplex Method for Function Minimization, Comp. Jnl., 7, pp308-13, 1965.
35. Wilkinson J. H., Solution of Real and Complex Systems of Linear Equations, Num. Math., 8, pp217-234, 1966.
36. Wilkinson J. H., Three Contributions to Handbook Sexies Linear Algebra, Num. Math., 4, pp354-376, 1962.
37. Tait K. P., Stability Properties of DiscreteContinuous Feedback Control Systems With Signal Dependent Sampling, Int. J. Control, Vol 8, No 6, pp591-620, 1968.
38. Brockett R. E., The Status of Stability Theory For Deterministic Systems, I.E.E.E., Trans. Aut. Control, AC-11, 596, 1966.
39. Reiss G. G., Inversion of The Vandermonde Matrix, I.E.E.E., $\mathrm{AC}-12, \mathrm{pp} 793,1967$.
40. Benny L.B., Mathematics for Students of Engineering and Applied Science, Oxford Univ. Press, 1966.
41. Box M. J., Davies D., Swann W.H., Non-Linear Optimization Techniques, I.C.I Monograph No 5, Oliver and Boyd, 1969.
42. Powell M.J.D., A Method for Non-linear Constraints in Minimization Problems, Optimation Symposium, Academic Press, 1968.
43. Lefshetz S., Stability of Non-linear Control Systems, Academic Press, New York, 1965.
44. Davies H. In, Introduction to Non-linear Differential Eqns. \& Integral Eqns., (1962), Dover Pub. Inc.
45. Bream R.C, M Sc. Thesis, Optimal Lyapunov Functions, Loughborough University, 1970 .
46. Nelder J.A \& Mead N., A Simplex Method for Function Minimization, Computer Journal, Vol 7, No.4, Jan 1965.
47. Davidson E.J. K Kurak E.M, A Computational Method for Determining Quadratic Lyapunov Functions for Non-linear Systems, Automatica, Vo1 7, pp627-636, 1971.
48. Weissenberger S., Stability Analysis of Relay Control Systems via the Direct Method of Lyapunov, NASA, CR, 320, 1965.
49. Lapidus L \& Berger A, Stability of High Dimensional Non.1inear Systems using Krasovski's Theorem, A.I.CH.E. Journal 15, 1969, pp171-173.
50. Geiss G.R, Estimation of the DOA, Grunmman Res. Dept., Report RM 3167, Betspase, NY, 1966.
51. Geiss, Coh en and Rothschild : Development of an Algorithm for NL Stability Analysis of an Orbiting Astronomical Abs. Control System, Grunmman R.D, Dep RE-307 1967.
52. Szego G.P, On the Numerical Construction of Lyapunov Functions, IFAC, No.20, pr3-7, June 1969.
53. Smith R.A, Matrix Calculations For Lyapunov Quadratic forms
54. Fletcher R., Function Minimization Without Calculating Derivatives - A Review, Comp. Jnl., 8, pp33-41, 1965.
55. Box M. J., A New Method of Constrained Optimization and a Comparison With Other Methods, Comp. Jnl, 8, pp42-52, 1965.
56. Box M. J., A Comparison of Several Current Optimization Methods, and the use of Transformations in Constrained Problems, Comp. Jnl., 9, pp67-77, 1966.
57. Julich P. M., On Estimating the Region of Asymptotic Stability Using Lyapunov's Method, I.E.E.E., AC-12, pp $787-788,1967$.
58. Muddle R. P., Determination of Stability Boundaries Using Lyapunov Functions and Numerical Optimization, R.A.E. Report No. 67148, 1967.
59. Fiacco A. V. \& McCormick G. p., The Sequential Unconstrained Minimization Technique for Non-Linear Programming, a Primal-Dual Method, Mange. Sci., 10, pp360, 1964.
60. Fletcher R. \& Powell M. J., A Rapidly Convergent Descent Method For Minimization, Compt. Jnl., 6, pp163-68, 1963.
61. Wilson F., The Structure of the Level Surfaces of a Lyapunov Function, Journal Diff. Eqns., 3, pp323-329, 1967.
62. Miele A. - Coßgins G. M., On the Method Of Multipliers for Math. Programming Problems, Jota, 10, No. 1, 1972, pp1-32.
63. Fletcher R. \& Lill S., Proceed. of Non-Linear Programming Symp., Madison, 1970.

> 64. Fletcher R., Certification of Algorithm 251 Function Minimization, Comm. ACM, 9, pp686, 1966.
> 65. Haarhoff P. C. \& Buys J. D., A New Method for the Optimization of a Non-Linear Function Subject to Non-Linear Constraints, Comp. Jn1., Vol 13, 2, ppl73, 1970.
66. Weissenberger S., Piecewise-Quadratic and PiecerviseLinear Lyapunov Functions For Discontinuous Systems, Int. Jnl. Control, 10, No.2, pp171-180, 1969.
67. Kalman R. E., Lyapunov Functions for the Problem of Lure' in Automatic Control, Vol. 49, 2, pp201-205, 1963.
68. Anosov D. V., Stability of the Equilibrium Positions in Relay Systems, Autmn. Remote Control, Vol. 20, 2, pp130-143, 1959.
69. Alimov Y. I., On The Applications of Lyapunov's Direct Method To Differential Equations With Ambiguous Rigint Sides, Aut. Rem. Control, Vol. 22, No. 7, pp713-725.
70. Rosembrock H. H., Some Conditions for the Stability of Nonlinear Tíme-dependent Differential Equations, Jn1. GIAM Control, 2, pp171, 1964.
71. Weissemberger S., Design for Stability Region Maxinization, I.E.E.E., AC-14, pp314-315, 1969.
72. Walker J.A. \& McClamroch N. H. F Finite Regions of Attraction For The Problem of Lure', Int. J. Control, Vol. 6, No.4, pp331-336, 1967.

Appendix 1.

The following definition is important in defining the closed surfaces or contours of a continuous function $V(x)$ in some region $R(h)$. Def. A1. 1

The level surface $V(\underline{x})=c$ (the set of points satisfying $V \equiv c=$ constant) is closed in $R(h)$ if any continuous line from the origin meets this surface in at least one point.

Theorem A1. 1
If $V(x)$ is a p.d. (n.d.) function in $R(h)$ then \exists
a c, such that for $0<c<c_{1} \quad\left(c_{1}<c<0\right)$ the level surfaces $V=c$ are closed.

Theonem A1. 2 (Barbashin (18))
If $V(x)$ is p.d. (n.d.) and radially unbounded i.e.
$\lim V(\underline{x})=\infty(-\infty)$
$\|x\| \rightarrow \infty$
its level surfaces are closed in E^{n}.

Appendix 2
 Solving a Set of Linear Equations

Since we are interested only in the i th stage of the calculation of the $V_{i j}$ we omit the $j^{\text {subscript. }}$ The set of linear equations 4.1. 6 gives ($n=\mathbb{N}$ in C3)

$$
\begin{aligned}
& V_{1} a_{1}+V_{2} b_{1}=c_{1} \\
& v_{2} a_{2}+v_{3} b_{2} \quad=c_{2} \\
& \text { •• • A2. } 1 \\
& v_{n-1} a_{n-1}+v_{n} b_{n-1}=c_{n-1} \\
& V_{1} b_{n} \cdot \quad \cdot+v_{n} a_{n} \quad=c_{n}
\end{aligned}
$$

or

$$
A \underline{V}=\underline{C}
$$

Consider the following two algortthms:
a) starting with ist equation express V_{j} in terms of V_{1} up to the $n-1$. th equation; substition into the last equation then gives

$$
\begin{array}{r}
v_{1}\left(1-(-1)^{n} \prod_{11}^{n} \frac{a_{i}}{b_{i}}\right)=\left(\frac{c_{n}}{b_{n}}-\frac{a_{n} c_{n-1}}{b_{n} b_{n-1}}\right. \\
\quad \frac{+a_{n} a_{n-1} c_{n-2}}{b_{n} b_{n-1} b_{n-2}} \cdot \cdot \cdot \\
\left.(-1)^{n+1} \frac{a_{n} a_{n-1}}{b_{n}} \cdot \cdot \cdot a_{2} c_{1}\right)
\end{array}
$$

If $b_{i} \neq 0 . \&_{1}-(-1)^{n} z \neq 0$ back substation gives

$$
v_{j}==_{b j-1}\left(c_{j-11}-a_{j-1} v_{j-1}\right), j=2, N
$$

where

$$
z=\prod^{n} \frac{a_{j}}{b_{j}}
$$

b) starting with the last equation in $A 2,1$
express V_{j} in terms of V_{1} down to the and equation substition into the 1 st then gives

$$
\begin{aligned}
V_{1 i}\left(1-\frac{(-1)^{n}}{2}\right)= & \left(\frac{c_{1}}{a_{1}}-\frac{b_{1} c_{2}}{a_{1} a_{2}}+\frac{b_{1} b_{2} c_{3}}{a_{1} a_{2} a_{3}}\right. \\
& \left.\ldots(-1)^{n+1} \frac{b_{1} \cdot b_{n-1} c_{n}}{a_{1} a_{2} \cdots a_{n-1} a_{n}}\right)
\end{aligned}
$$

Provided $a_{i} \neq 0 \quad 1-\frac{(-1)^{n}}{2} \neq 0$ back substition gives,

$$
v_{n-j+1}=\frac{1}{a_{n-j}}\left(c_{n-j}-b_{n-j} v_{n-j+2}\right)
$$

$$
v_{N+11}=v_{11}
$$

Thus provided $(A)=\left(\prod_{b_{i}}\right)(z-1) \neq 0$ and with round off errors in view, choose algorithm
(a) if $|z| \leq 1$
and

$$
\text { (b) if }|z|>1
$$

Appendix 3

A Crude R.A.s.

With the assumptions on (x) in 2.1 , the bound
2.1 .19 holds in some region $R(h)$ for which $\beta>0$ i.e.

$$
\|g(x)\| \leq \frac{\eta}{2 \mu}\|x\| \quad A 3.5
$$

It is easily seen that A 3.5 is satisfied for all solutions of 2.1. 2 with

$$
\|\underline{x}(0)\|<h / \sqrt{\mu}
$$

A 3.6
where $h=m_{m_{n}}\|x\| \quad$ for x satisfying $A 3.5$
For then $\left\|\frac{\underline{x}}{\underline{X}}(t)\right\|<h$ by 2.11 .21 which implies: A 3.5 and hence $\beta>0$. When $\underline{u}=0$ and $G(\underline{x}, t)=G(\underline{x})$ in 2.1.1, a possibly sharper estimate can be obtained if $\lim G(x)=0$. The crude R.A.S. is given by A. 3.6 with

$$
h=\min _{\underline{x}}\|\underline{x}\|
$$

for \underline{x} satisfying $\|G(\underline{x})\|=\pi / 2 \sqrt{\mu}$
The Minimizing D (Bauer (22))
The diagonal matrix D giving the bound in 2.3 .11 is determined as follows.

Let

$$
M=\left|s^{*} s\right|\left|\left(s^{*} s\right)^{-1}\right|
$$

and for this non-negative matrix let $e^{\top} Y_{1}$ and \underline{X}_{1} : e be left and right eigenvectors (Perron) of M corresponding to the largest positive eigenvalue of M,

Where $\underline{e}=(1,1, \ldots, 1)$ and Y_{1} and X_{1} are diagonal matrices. Then
$D=Y_{1}{ }^{\frac{1}{2}} X_{1}^{-\frac{1}{2}}$
A 3.9

A Minimization Algorithm

Lat $p_{i j}$ and $q_{i, j}$ be the i, j th elements of P and Q Where Q is any p.d.s. matrix with $m(=n(n+1) / 2)$
elements. The optimization problems are to minimize
(a) $s\left(P^{-1} Q\right)=M\left(P^{-1} Q\right)-m\left(P^{-1} Q\right)$
(b) $\mu(P)$
(c) $-\eta$
(d) $-\eta^{2} / \mu$
over the $\left(m-i_{i}\right)$ dimensional space of elements $q_{i j}$ subject to

$$
Q>0 \text { (positive definite) A } 3.15
$$

Where $A^{T} P+P A=-Q$
A 3.16
(Note one element of Q can be arbitrarily chosen)
The non-linear optimization algorithms of Rosenbrock (32) or Powell (33) are well suited to these problems and standard subroutines are available. (See A4). These routines require an auxiliary routine to evaluate the objective function and in this case the main steps were:
(1) from I, a lower triangular matrix input to the routine, calculate Q via

$$
\begin{equation*}
Q=\mathrm{I}^{\mathrm{T}} \mathrm{~L}+\epsilon \mathrm{I} \tag{A 3.17}
\end{equation*}
$$

which is p.d. for $\epsilon>0$;
(2) Solve A 3.16 for P by the direct method
(20) i.e. solve

耳 $=-\mathrm{q}$ A 3.18
where $_{\text {wi }}=\left(p_{11}, p_{12}, p_{22}, p_{13}, p_{23}, \cdots p_{n n}\right)$
$g=\left(q_{11}, q_{12}, q_{22}, \cdots \ldots \ldots . q_{n n}\right)$
and B the $m \mathrm{x}$ m matrix of coefficients (See Barnett (20));
(3) compute R and R^{-1} where $P=R^{T}$ and R a lower triangular matrix;
(4) compute $M\left(P^{-1} Q\right)=M(T)$ and $\square=m(T)$ where $T=R^{-T} Q R^{-1} \quad\left(T \sim P^{-1} Q\right)$;
(5) For (b) and (d) compute $m(P)$ and $M(P)$. The introduction of L avoids the n implied constraints of A. 3.15 and the minimization is thus over the $m-1$ elements ($\left.I_{i j}, i=2 ; n, j=1,2 \ldots i\right)$ of $L\left(l_{11}=1.05 a y\right)$ (In practice A 3.18 was solved by a Crout iterative method (35) and the eigenvalues of T by the method of Householder (36). The choice of $\epsilon=10^{-10}$ was sufficient in A 3.17.

Appendix 4

The optimization methods used in this thesis concern the programming problem

$$
\min F(\underline{x}) \quad A / 4.1
$$

subject to (a) an equality constraint $e(x)=0$
or (b) an inequality constraint $c(x) \leq 0$
The class of methods used to solve $A 4.1$ depends on the form of F and the constraints. Fletcher (54) and Box (56) give good accounts. The methods of Rosenbrock (32), Powell(33) and Nelder and Mead (34) are well known and standard packages were used written in Fortran IV. We only mention that Rosenbrock deals with the constraint, $c \leq 0$, by introducing an implicit variable $x_{n+1}=c$ which is deemed feasible if

$$
z\left(1-10^{-4}\right) \leq x_{n+1} \leq 210^{-4}
$$

where z is a lower bound for c. Should this not be satisfied but. x_{n+1} lies in one of the boundary zones $z 10^{-4}\left\langle x_{n+1} \leq 0\right.$ or $z \leqslant x_{n+1}<z\left(1-10^{-4}\right)$ a special penalty function is used otherwise the value is termed a failure.

Box's Complex Method For Constraint (b)

A method modifying the Simplex method, it consists of forming a complex - a set of $K(\geqslant n+1)$ independent points $\underline{p}_{j}(j=1, \ldots, K)$, at which F is evaluated. Initially, assume all points are feasible i.e. $c\left(\underline{p}_{j}\right) \leq 0$. Let \mathcal{P}_{h} correspond to F_{h}, the highest value of F in the complex, and \bar{p}_{h} the centroid of points p_{j} excluding p_{h}. Then a stage consists of the following : with $\alpha=\alpha_{0}$ and

$$
p=\bar{p}_{h}+\alpha\left(\bar{p}_{h}-\underline{p}_{h}\right)
$$

(an over-reflection of p_{n} through the centroid) evaluate $F(p)$ and (1) if $c(p)>0, \alpha$ is halved and the calculation repeated until $c(p) \leqslant 0$, then (2) if $F(p)<F_{h}$ is not satisfied α is
again halved until it is. The final values of p and $F(p)$ then replace P_{h} and F_{h} and new values of P_{h} and F_{h} are found with new centroid

$$
\bar{p}_{h}(\text { new })=\bar{p}_{h}(o l d)+\left(p-p_{h}\right) /(K-1)
$$

This completes a stage. The calculation is reneated until arter I stages, $I \geq I_{\max }$ or $\left|F_{n}-F_{\text {lowest }}\right|<\epsilon .\left(\operatorname{In} C 5, \alpha_{0}=1.3\right.$, $K=2 n+1, \epsilon=10^{-4}$) .

Penalty Function Updating

With respect to the penalty function of Miele (62),

$$
W(\underline{x})=R(\underline{x}, \lambda)+K e^{2}(\underline{x})
$$

the following rules are used for the conjugate gradient (DFP) algorithm :
(1) Initially select $\lambda_{=} \lambda_{1}=0, K=K_{1}\left(K_{1}=20\right.$ say $)$
(2) With some initial x_{0} and $H=I$ perform n iterations of DFP on $W(\underline{x})$. Let x^{*} be the final point.
(3) If $\left\|\nabla R\left(\underline{x}^{*}, \lambda_{1}\right)\right\|<\epsilon$ and $\left|e\left(\underline{x}^{*}\right)\right|<\epsilon$ convergence is assumed, otherwise
(4) An updated λ is chosen to minimize $\left\|\underline{Z}\left(\underline{x}^{*}, \lambda_{2}\right)\right\|^{2}$, of the form $\lambda_{2}=\lambda_{1}+2 \gamma_{e}$, which gives

$$
\lambda_{2}=\lambda_{1}-\frac{\nabla e^{T} \nabla R\left(x^{*}, \lambda_{1}\right)}{\|\nabla e\|^{2}}=-\frac{\nabla e^{T} \nabla V}{\|\nabla e\|}
$$

The value of K is either kept constant or a criterion of reducing $\|Z R\|$ and lel at the same rate is employed which gives for the updated K, K_{2};

$$
\begin{aligned}
& K_{2}=\min \left(K_{0}, K_{1}\right) \text { if }|\mathrm{e}| \leq\left\|\square R\left(x^{*}, \lambda_{2}\right)\right\| \\
& K_{2}=\max \left(K_{0}, \beta K_{1}\right) \text { if }|\mathrm{e}|>\left\|\underline{R}\left(x^{*}, \lambda_{2}\right)\right\|
\end{aligned}
$$

where $\beta \geq 1$ and $K_{0}=\left|\lambda_{2} / e\right|$ where the latter makes the order of
the term $K e^{2}$ the same as that of R. Step (2) is now repeated. Fletcher Powell Method (DFP)

When derivatives of A5.1 are available the algorithm determines a sequence of iterates X_{i} and directions \underline{s}_{i} as follows : with some initial p.d.s. $H, H=I$ say, and initial x_{o},

$$
\underline{x}_{i+1}=\underline{x}_{i}+\lambda s_{i}=\underline{x}_{i}+\underline{z}_{i}
$$

where $\underline{s}_{i}=-H_{i} \underline{m}_{i}, \quad g_{i}=\nabla F\left(\underline{x}_{i}\right)$
and λ determines the minimum of F along a line

$$
\left.\frac{\partial F}{\partial \alpha}\left(x_{i}+\alpha \underline{s}_{i}\right)\right|_{\alpha=\lambda}=0 .
$$

Here H_{i} is updated as

$$
H_{i+1}=H_{i}+\frac{\underline{z}_{i}^{T} \underline{z}_{i}}{\underline{z}_{i}^{T} \underline{u}_{i}}-\frac{H_{i} \underline{u}_{i} \underline{u}_{i}^{T} H_{i}}{\underline{u}_{i}^{T} \underline{H}_{i}}
$$

where $\quad \underline{u}_{i}=\mathfrak{g}_{i+1}-\mathfrak{g}_{i}$.
A converted Algol program of Fletcher (64) was used where cubic interpolation is advocated to determine the min. along a Iine. The initial step, $\lambda=s_{1}$, along the latter was restricted to

$$
s_{1}=\frac{0.1\left\|\underline{x}_{0}\right\| \underline{s}_{i}}{\left\|\underline{s}_{i}\right\|}
$$

for the problem in Chapter 5.

Appendix 5

The Complex Optimal Quadratic Al eorithm

The program, designated 4459 , is written in Fortran 4 and flow diagrams are given in Figures 5.1 and 5.2. Access to the ICL library of scientific subroutines is needed to run the program (IPPQRVS, FPDIRHESSF, FPQRHESSE, FPBACK, F4ACSL and F4ROOT1 are from it). The instructions are intended for guidance in running the program.

Input

The sequence of input variables are as follows:

1) N. and LOADQ are set in the Master segment; n being stored in N and LOADQ being of logical value .TRUE. or .FALSE. .
2) The initial complex matrix D is input and stored in array $\operatorname{DEL}(i, j)(j=1,2 n, i=1, n)$
3) The elements of $A, a_{i j}$, are input in array $A(I)$ such that $A(k)$ contains $a_{i j}, k=n(j-1)+i$. (In the Rao system in the listing, $A(k)$ have been calculated in the program for accuracy).

The r.h.s. of the system $f(x)$ are set through subroutine $\operatorname{CALFX}(N, X, F)$ where X and F are one-dim. arrays containing X_{i} and f_{i}. Unit vectors y_{j} are stored in array $Y(i)$ such that the $i^{\text {th }}$ component of y_{j} is contained in $Y(n(j-1)+i)$. They are calculated through a call to $\operatorname{SETUNVEC}(S, N V, N, Y, N X, P)$ where S is the step in θ_{1} and $S / \cos \theta_{2}$ the step in θ_{2} for unit vectors calculated via polar co-ordinates 4.5.1; NV is the number of unit vectors calculated; $N X=N(N+1) / 2$, and the array $P(i)$ contains the initial P such that $p_{i j}(j=1, n, i=1, j)=$ $P(i+j(j-1) / 2)$. If the 'box' method is used S is immaterial and N1, the number of mesh points along a half-edge of the box, is set in SETUNVEC (N1 is set after statement 61. S is set after statement 100 in the master segment).

Output

After some checking output the following sequence is observed:

1) The elements of initial p and Q are output in the order that the $p_{i j}$ are read.
2) After cach evaluation of $\dot{V}_{M}(1)$ the values of $y_{m a x}$, $\dot{V}_{M}(1)$ and 1 are output in order, where $Y_{\max }$ gives $\dot{V}_{M}(1)$.
3) The final $1, I_{2}$, is output (called E) followed by the volume of $x^{T} P_{x}<1_{2}$.
4) Output from the setting up of the initial feasible complex - rows containing $\rho(\mathrm{vol}), \dot{\mathrm{V}}\left(\mathrm{p}_{j}\right)$ and S (initially $2 \max \left|t_{i}\right|$). If no feasible complex is found the words 'Ifeasible simplex'
are output.
5) The complex points $p_{j}(j=1,2 n \div 1)$ are output.
6) After every 10 evaluations of $\dot{V}_{M}(L), y_{\text {max }}, p_{i j}(j=1, n$, $i=1, j), \dot{V}_{M}(L)$ and $-p$ are output. Then $t_{i}(i=1, N X)$ are output on a new line (elements of L). The co-efficients of $y_{\max }$ follow the word 'MAXVDOT'.
```
    MASTFR 11450
    IOGTCAL LO4DO
    COMDIEX SS(4.4),SUN
    NTMENSIOM DFI.(G,12)
    DYMENSIIN T(110),A(1G),XA(1G),REINT(5),X(16),D(10)
    DIMENSINN V(4000)
    nIMENSION INT(G).
    #IMENSION G(14),H(14)
    N=?
    N=3
    NX=(N*(N+1))/2
    NK=2*NX
    NSQ=N*N
    RFAD(1,q)((nFL(I,J),T={,NX),J=1,NK)
    I\capADO=.TRUE.
    IOADO= EAISF
    RFAO(1.9) (A(T).I=1,NSQ)
        1 FORMAT (GF12.5)
        7%=0ns(473)
    71=51N(478)
        AA(9),AA(6),AA(7)=0.
    AA(4)=9
    AA(J)=42.06*C0S(.956)-84.99*1.18*72
    AA(z)=0 421**1
    AA(3)=-AA(3)
    AA(5)=0 80?* *2*22+1.04*Z1*Z1
    AA(5)=-AA(5)
    AA(8)=-544.09*79
    AA(O) =-"621
    DO 83 I=1.NSO
    83 A(1)=AA(1)
    IF(InADO) GO TO }6
C
    DN 10 1=1,NSO
    10 AA(1)=A(1)
    IE(N-2)n.0.40
    T1=(A(1)+A(4))/2.
    72=A(1)*A(4)-A(2)*A(3)
    n=71*24-7?
    n1=EORT(ARS(D))
    IF(0)0.52.52
    FX(1), EX(2) =71
    FY(1)=-n1
    FV(う)=01
    60 In 53
    52 FY(1),Fv(2)=0.
    FX(9)=74-D9
    FX(7)=71+n1
    53 CAL1 FPORVS(N,AA(1),AAA(1),FX(1),FY(1),T(1))
        On TO 48
    40. CONTINIE
    CAII FPOTRHESSF(N,AA(1),INT(1))
        IVS=?
        CALI FPORHESSF (N,AA(1),ITS(1),FX(1),FY(1),AAA(1),IVS)
    CA! FPORVS(N,AA(1),AAA(1), EX(9),EY(9),T(1))
    CALI FDRACK(N,AA(1),AAA(1),EY(1),INT(1))
    4 COMTMNUE
    WRITE(2.44)((AAA(I+N*(J-1)).J=1,N),I=1,N)
    44 FOR:IAT(3F12.5)
\(61 F(A R S(E V(J))-1.0 E-1 n) 0.0 .2\)
nO \(~=1=1 . N\)
\(K=I+N *(1-1)\)
\(3 S S(1, J)=C N P I . X(A A A(K), 0.0)\)
\(J=d+1\)
an in 5
\(200 \quad 1=1, N\)
\(K=I+N *(1-1)\)
\(S S(Y, J)=C M P I X(A A A(K), A A A(K+N))\)
\(4 S S(1, J+1)=C I M D X(A A A(K),-A A A(K+N))\)
\(J=J+?\)
5 IE \((1-N) 6,6.0\)
\(C\)
\(10049 \mathrm{~J}=9, \mathrm{~N}\)
\(S M=0.0\)
\(0047 I=1 . N\)
\(A M D=C A B S(S S(1, J))\)
\(42 S M=S M+A M D * A M D\)
SUN \(=\) CMDIX (SORT (SM), O.O)
DO \(41 \quad I=1, N\)
\(41 \quad S S(1, J)=S S(1, J) / S U N\)
\(W R I T F(7.43)((S S(1, J), J=1, N), I=1, N)\)
43 FORMAT(3(2E12.5))
\(007 J=1, N\)
DO 7 \(1=1\), N
\(\operatorname{sUN}=(0.0,0.0)\)
\(D \cap 8 \quad K=1, N\)
8. SUN=SUN+CONJG(SS (J,K)) \(+S S(I, K)\)
\(K K=i+N *(d-1)\)
WRITF(2.51)SIJN
51-FORMAT ( \(2 F 12.5\) )
\(7 A A A(K K)=R E A L(S U N)\)
\(c\)
INā
DO \(11 \quad K=1\) NSO
\(11-A A(\underline{x})=0.0\)
DO \(19 \mathrm{I}=1 \mathrm{~N}\)
\(12 A A(i+N(Y-1))=1.0\)
CALI FLACSL(AAA,AA,N,NSQ,NSQ,IN,X,D,ID,IT,XA,T,REINT)
DO-13 J=1,N
no 13 1:9.J
\(K=1+(J \star(I-1)) / 2\)
\(13 \mathrm{P}(K i=X(i+N *(I-1))\)
GO TO 6?
61 NSQ \(=N S O\) oNSQ
CALI SETA (N,NSQ,NSQ2,T,A)
\(C\)
READ O MATRIX RY ROWS
\(C \quad D I M O E \quad Q+N\)
READC1.1) (XA(1), I=1, NSQ)
IN=?
CAL' FGACSL(T,XA,NSQ,NSQ2,NSQ,IN,AA,D,ID,IT,Y,AAA,A)
\(\mathrm{K}=0\)
DO x3 \(I=1, N\)
DO 63 J=9, i
\(k=k+1\)
\(63 P(K)=A A(N+(I-1)+J)\)
WRITF(2..65)
65 FORUAT(INX, 1KHINITIAI O. MATRIX) WRITF (2..1) ( (XA (N* (I-1) + 1\(), J=1, I), I=1, N)\)

62 OUNTNIIE
WRITF(?.45)
45 FORMAT (IX,OHINITAL D)
WRTYF (?..44) (R (K), K \(=1, N X)\)
\(x(1)=\operatorname{Snnt}(P(1))\)
no 1द JE?, N
\(k=(1 *(J-1)) / 2+1\)
\(14 x(K)=D(K) / X(1)\)
no is \(1=2, \mathrm{~N}\)
\(K 1=(1 *(1+1)) /\) ?
\(S 1 M=0(K T)\)
\(K 2=(1 *(1-1)) / 2\)
no 15 lé, 1-1
15 SUM \(=S U M-X(K 2+L) * X(\bar{K} 2+L)\)
\(X(K T)=\operatorname{SORT}(S I M)\)
no \(1 \mathrm{~s} \mathrm{~J}=1+1\). N
\(k=(1 *(J-1)) /\) ?
\(S U M=D(1+K)\)
n0 17 1. 1.1-9
17 S \(1 M=S U M-x(L+K 2)+x(L+K)\)
\(16 \times(1+K)=\leq 11 M / X(K 1)\)
WRITF(2.47)(X(1),IE1,NX)
47 FORMAT (9X.9HINITIAL \(X, 3 E 12.5\) )
C
100 CONTINUE
FRI \(=2\)
FR9 \(=3\)
\(s=1\)
\(s=\) ?
CALI SETINVEC(S,NV,N,Y,NX,P)
il=0
F1=1:0F-5
F1=1.0F-10
\(F 1=01\)
\(N N V=N * N V\)
SMAX \(=10^{\circ \prime} 0\)
\(\mathrm{s}=.1\)
109 COMTTNIIE
CAL! VMAXI (N.NV,Y,NNV,X,NX,TI,E1,SMO)
IF (SMM) 20.0.0
F1E 1 *F1
1F(E1-1 0E-10)0.101.109
WRITF (3.21)
21 FORMAT(AX:14HSMALL VOL STOP)
\(7=1 \% 10\)
STOD
\(20 \quad F 2=F 1+S\)
CAI 1 VMAX1 (N,NV,Y,NNV,X,NX,II,EZ,SM2)
IF (sM2i 0.23.23
FI=F?
SMI \(=\) SM2
If (S-SMAX) \(75,25,0\)
WRITF \((?, 24)\) E1
24 FORMAT ( \(9 \times\) 16HVDOT NOT REACHED.E12.5)
STOD
\(25 \mathrm{~s}=2 * \mathrm{~S}\)
GO rn 20
23 CONTINUE
\(\mathrm{s}=\mathrm{S} 17\).
\(27 E 3=F 1+s\)
CAI: VMAXI (N,NV,Y,NNV,X,NX,TI,E3,SM3)
sesis.

1F（SM3i 0．28．28
SM1 \(=S M 3\)
F1＝E3
AO TO 20
\(28 \mathrm{SM} 2=5 \mathrm{M} 3\)
E2EE3
20 \(E=S M 1 / E 1\)
TE（う．＊S／E2－FR1）0．27．27
WRITF（？．46）F？
46 FORYAT（IX．1OHVALIJE OF E．F12．5）
\(N W=1000\)
NWM？ 000
\(E=\operatorname{SORT}(E 1)\)
\(V(N \underset{\sim}{W})=H V\)
\(Y(N L-1)=F\)
\(Y(N,-2)=N\)
\(I V=0\)
CACI CAIF（NX，X，F，M，IV，XM，Y，NW）
\(X \Delta(1)=F\)
WRITF（2．9）F
FF＝I IE
D0 \(81 \quad 1=1 . N X\)
89 T（IT，X（T）＝X（I）＊EE
STD＝． 9
\(V(N L-1)=1\)
\(S T P=0\) ．
DO ЯクI＝ 1 ，NX
\(82 S T P=A M A X 1(S T P, A B S(X(1)))\)
STDE T I STP
C CAL DTS OF NON REGUIAR SIMPLEX
\(K=N X+1\)
IVE？
DO R4 J \(=1\) ．NK
HS日STP
95 NFG \(=0\)
93 NFG＝NEG +1
no \(86 \quad I=1\) ，NX
86 G（I）＝X（i）＋DFL（I．J）＊HS
87 CAL，CAIF \((N X, G, F, M, I V, X M, Y, N W)\)
\(x A(1+1)=F\)
WRITF（2，1）F，XM，HS
IF（XM）85，85，0
IF（NFG－7） \(0,0,94\)
HS EwHS
GO in 9z
94 HSE－HS／7．
1F（STP＊01－HS）95，92，02
\(85-1089 \quad 1=1 . N X\)
\(T(K)=G(\gamma)\)
89 \(K=K+1\)
84．CONTINUF
GO \(\mathrm{r} \cap \mathrm{B} \mathrm{B}\)
92 CONTINUF
WRITE（2．90）
90 FORYAT（ \(1 \times 1\) ．18HINFEASIBLF SIMPLEX）
STOD
\(88 \ldots 2=\bar{K} ?+N X\)
\(N K=N K+1\)
WRITF（？．1）（H（I），I＝1；NX）
WRITF（2．1）（T（I），I＝1，NX＊NK）
\(Y(N i \omega=1)=1.0\)
MF＝500
```

$M F=300$
$M F=1000$
$E D S=A B S(X A(1)) \neq 1.0 E=3$
FPS $=1.0 \mathrm{~F}=4$
FDSEABSiXA(1)) +1.0Em4
NKEうかNX+1
$N P=(N K+9) \star N X$
CALI COMPSIMEX,F,EPS.T,XA,NX,NP,MF,Y,NW,NK)
an Tn 90
STOD
FND

```
SUBROUTINE AMATV(X,NX,B,N)
DTMENSION \(X(N X), B(N)\)
ROUTINE MULTIPLY XB-X UPPER TRIANGULA
\(C\)
BY COLS STORE RFSULT IN B - A VECTOF
\(0071 \square 1 . \mathrm{N}\)
SUM=0.0
nO I: Join
\(K=1+(J *(J-1) / 2)\)
1. \(\operatorname{SUM}=S U M+X(K) * B(J)\)
2 2(IIzSUM
RFTIIRN
END
SUBROUTTNE CALFX(N,X,F)
GIMFNSION X(N),F(N)
Exx(3) +1.181665534
DEX'(9)+"4779929599
ansin(Di
RECns(D)
F(1ixx(j)
F(2)=28 61-84.99*E*A*21. 53*SIN(2.*D)-X(2)*
19.04* \(0 * A * 0.802 * B * B)\)
    \(F(3)=.3\) شの \(.629 * F+.421 * B\)
    RETIIRN
    END
```

 SIBROUTINE COMPSIM(X,F,FPS,D,FP,N,NP,MF,Y,NW,NK)
 DIMFNSION X(N),P(NP),FP(NK)
 DIMENSION Y(NW)
 DIMENSION XS(10)
 1C=10
 NNN=Y(NW-2)
 ADO=9 5
 APO=1.3
 NNEN*NK
 N1:NK
 IVEO
 1SH=0
 M=1
 C. SORT TH(TGHEST)AND II(OWFST)
 35 1F(EP(9)-FD(2))0,0.5
 IHE?
 11日1
 GOTOK
 5. 1H=1
 11.a?
 6 DO7%1=3.N1
 IC(ED(TI-FP(IH))0.0.8
 1F(ED(1)-FP(IL))0.7.7
 11=?
 GO TO 7
 8. TH=1
 7. CONTTNILE
 C TSH=O RFELECTION,FIND CENTROID OF SUBSIMPIEX
 IE(ISH)0.0,30
 XN=NK-{
 50 K1=NN
 DO 0 1=1.N
 K=I
 S=0
 DO 1O J=1,N1
 IF(ImiHIN,90.0
 S=S+D(k)
 10 K=K+N
 K{nk\ +1
 9 P(Ki)=SIXN
 WRITF(2.:71)(P(NN+I),I=1,N)
 71 FORMAT(9X,6E12.5)
 155 K=(YH-1)*N+1
 Y(N(G-3)=1C
 67.VVI
 AD=ADO
 62 AP{ =AD+1
 KO=NN+1
 DO is I=1,N
 X(1)=APq*P(K0)-AP*P(K)
 k=k+1.
 16. }\textrm{K}0=\vec{k}0+
 K=K-N
 CALI CAIF(N,X,F,M,IV,XM,Y,NIS)
 M=M+1
 1F(rv)0.61.0
 IF(XM)69.61,0
 AD=AD/?
 GO T^ 6?
 69 1F(E-FD(IH))64.0.0
 ADAAD/?
    ```
iven
G0 TO 6？
64 CONTTNUF
\(00 \times 5 \quad 1=1\) ，N
\(D(k)=x(i)\)
\(65 k=k+9\)
\(K=K-N\)
FP（iH）日E
ISH＝9
00 Y 035
30 XNaNK－9
IF（IED（IH）\(-F D(I L))=E D S) 100.100 .0\)
IF（M－MF－1）0，100，100
C NEW CFNTROID
\(K 1=(1 H-1) * N+1\)
K2＝NN＋1
DO 66 ini．N
\(D(K))=D(K 2)+(X(1)-P(K 1)) / X N\)
K9＝ K \(^{9}+1\)
66 K \(\geqslant\) घK？+1
1cape＋9
IF（TC．1 \(n) 155.0 .0\)
\(1 \mathrm{C}=0\)
an in 102
D0 \(811=1 . \mathrm{N}\)
\(89 \times S(I) \neq D(N N+i)\)
\(\mathrm{V}=1\)
CAII CAIF（N，XS，FC，M，IV，XMC，Y，NW）
WRITF（？，72）（D（NN＋I），I＝1，N），FC，XMC
72 FORMAT（1X．1HC，3E12．5）
WRTTF（？．73）IH．1L
73 EORMAT（1x．215）
\(\mathrm{K} 1 \mathrm{n}(\mathrm{T}(-1) \times N\)
WRITF（ク＇？）（D（K1＋1），IE1，N），FP（IL）
2 FORMAT（9X，3HXL－6E12．5）
102 CONTHIE
WRITF（？ 3\()(X(1), I=1, N), X M, F\)
3 EORMATMX， 3 HXR＝，6E12．5）
K1． \(\mathrm{k} ?=0\)
DO \(104 \quad i=1\) ，NNN
र2ロख̆
DO 105 IEI，NNN
\(k=1+K 2\)
\(X S(\underline{k})=0\)
D0 \(106 \quad 1=1,1\)
\(106 \times s(k)=x \dot{c}(K)+x(K 1+L) \times x(K 2+L)\)
\(105 k 2=k^{2}+\mathrm{j}\)
104 K1＝※ \(9+1\)
WRITF（2．3）（xS（1），1¥1，N）
तO 10155
K1＝0
DO OM \(1=1\) ，NK
WRITF（2．71）（D（K1－1），I＝1，N），FP（I）
99．K9 \(=\mathrm{K} 9+\mathrm{N}\)
100 COnTTNUF
betilin
FND

SEGMENT，LENGTH G22．NAME COMPSIM
```

 SUAROUTYNE SETUNVEC(S,NV,N,Y,NX,P)
 LOGiCAL SYM
 DIMENSINN \(T(3,3), z(9), W(3), \times x(1 ?)\)
 DIMENSION \(P(N X)\)
 DIMENSISN Y(4000)
 P12a3.14159267*2.0
 D2ab12/4.
 D150.*P2
 IT \(=\mathrm{N}=1\)
 G0 in \((20,30.40,50) .11\)
 $20 \quad 1=1$
r1an.0
$\mathrm{K}=\mathrm{m}$
4. $K=K+N$
$V(k+1) \operatorname{ancs}(T 1)$
$V(K+2)=\operatorname{cin}(T Y)$
T1=T1+S
I=1+1
IF(TG~Di)4,0.0
NVA: 1-1
GO in 50
RFTIIRN
$30 \mathrm{M}=1$
Gn in 61
$k=0$
$T F=D$
Y9=0.0
$1 F=0$
$01=100$
S9=0.0
ve1i=1.n
$V(2) Y(z)=0.0$
9 r2=0 0
$S S E S / C O S(T 1)$
2 T2ar?+ss
$K=K+N$
C2arns (T?)
s?asin(T?)
$y(k+1)=c 2 * C 1$
$v(k+?)=c 2 * C 9$
$y(x+3)$ as 1
$\mathrm{M}=\mathrm{M}+1$
TE(T)-TE)2.0.0
$T F=D 12$
$T 1=T 9+s$
onx̣̂os(T1)
sinsin(Tq)
F $F(T \rightarrow-P う) 1.0 .0$
$N V=M$
$60 \quad 9040$
IF (IFOO.O) IF=M
IFF:IF*N
$N V=M * N$
DO 3 IエI, M-IF
$K \geq N *(1-9)$
$Y(N \ddot{y}+K+\eta)=-V(I F F+K+1)$
$Y(N \ddot{v}+K+j)=-Y(1 F F+K+2)$
$3 V(N \dot{V}+K+\xi)=V(1 F F+K+3)$
NVEう*MनiF
40 CONTINUF

```
    \(C\)

61 CONTINUF
ND． 2000
NPa1000
NP＝1900
ND＝3000
\(N D=4000\)
SYM＝TRUE．
SYMG．FAISE．
N1：15
\(\mathrm{N} 1=5\)
\(\mathrm{N} 9=8\)
NIEK
\(N 1=5\)
N9：10
\(\mathrm{M} 4=4 * \mathrm{~N}\)
\(\mathrm{M} 2 \mathrm{mi} * \mathrm{~N}\)
TVS \(=0\)
NEFS
CA1，F4ROOTI（P，N，1，OF－G，IVS，Z，W，NE，XX，I，N，I，RI，RZ，M2，NX，M4）
Dn \(62 J=1, N\)
Do ap \(1=1, N\)
\(K \propto N+(N=i)+1\)
\(62 T(1,1)=?(K)\)
Busartin（N）／W（1））
\(A=S\) SRT（W（N）／W（2）） XNロN1
N2：N3EN9
S． \(\operatorname{si=1}=1 \times \mathrm{N}\)
S？EA／XN
S3E日IXN
WRITF（2：51）（W（1）．I\＃1，N），A，B．S
WRITE（2：52）NG，N2，N3
52 FORM̈ATジイX．415／）
C
CASE OF CYLNDR．
\(\mathrm{k}=0\)
\(x=01\) ：
n0 \(73 \quad I=1,2\)
DO \(74 \quad \mathrm{~J}=1\) ．N1 +1
xJ＝i＝1
\(y(k+1)=x\)
\(Y(x+2)=X J * s 2\)
\(v(k+3)=0\) ．
\(74 \mathrm{KEK}+\mathrm{N}\)
\(73 \mathrm{x}=9\)
DO \(751=1,2 * N_{1}+1\)
x1－1－1
V（K＋1）＝－1．＋51＊×1
\(y(k+3)=0\) ：
\(y(k+2)=A\)
\(75 \mathrm{~K}=\mathrm{K}+\mathrm{N}\)
\(C \quad\) SIDES OF CLDR．
00 76．KK̄a2，N1
XKEKKㄱ
\(x=-1\)
DO 77 I \(=1,2\)
00．78 J－1，2＊N1＋ 1
xJing
\(Y(x+1)=\dot{x}\)
\(Y(K+7)=-A+S 2 * X J\)
\(x(x+3)\)－\(\subset 3 * x k\)
\(78 k=K+N\)
\(77 \times 1^{\prime \prime}\)
\(x=-4\)
D0 70.J口1.2
Dn \(801=1,2 *\) N \(1+1^{1}\)
x) \(x\) I- 1
\(V(x+1)=-1 .+x 1+s 1\)
\(V(k+p)=x\)
\(V(k+3)=c 3 * x k\)
\(80 \mathrm{KDK}+\mathrm{N}\)
\(79 . X=A\)
76 CONTTNUF
C
TOO \(n F\) GYLNDR.
D0 \(89 \quad 1=1\). 2 * N \(1+1\)
XIEI-1
D0 \(81 \mathrm{~J}=1,2 * \mathrm{~N}_{1}+1\)
x.Ja! 1
\(V(k+1)=-1 .+51 * X 1\)
\(Y(\bar{x}+2)=\sim A+5 ? * X J\)
\(Y(k+3)=A\)
\(81 K \equiv K+N\)
NVEKIN
WRITE(? - 82 )NV.K
82 FORMAT (I/ \(1 \mathrm{X}, 29\) HNO VECTORS AROVE X YPLANE, 15,8HSTORAGE WRITF(2.-51) (Y(J),J\#१,NV*N) IF(NV*NIE,ND)GOTO83
C. FINN UNTT VECTORS AND TRANSFORM
\(830090 \quad 1=1\) NV
\(K \times N+(1 m 1)\)
\(S U M=0\).
no ó \(\mathrm{J}=\mathrm{A}\), N
\(z(j)=Y(i+K)\)
91 sUM=SUM+Z(J)*Z(J)
SUM=1./SQRT(SUM)
DO O? J=1.N
92 \(7(j) \approx 2(i) * S U M\)
DO 03 I. \(=9 . N\)
SUM \(=0\).
DO O\& J=9, N
\(9 \% ~ S U M=S U M+T(L, J) \neq Z(J)\)
93 Y(K+1) \(=\) cum
90 CONTINUE
RETIIRN
50 COHTINUE
59 FORMAT (1 X.0FR.4)
RFTIRN
END

F SEGMENT, LENGTH O99. NAME SETUNVEC

SUBROUTINE VMAX1（N，NV，YONV，X，NX，1I，FE，SM）．
DIMENSINN B（4），C（4），F（4），F2（4）
DIMENSION Y（NNV），X（NX）
If（11．50．9）GOT0 9
C
\(K=N\)
DO 4 I＝9．NV
\(K=K+N\)
no 2 Jaq ．N
2 \(B(j)=Y(i+K)\)
\(C\)
CALI AMATV \((X, N X, B, N)\)
sum＝0． 0

\(3 . S U M=S U M+B(L)+B(L)\)
\(S U M=S Q R T(S U B)\)
DO 4 Jロáon
\(4 Y(J+K)=\bar{V}(J+K) / S U M\)
\(C\)
\(C\)
Q：ESDRT（FF）
\(S M=-1.0560\)
\(K=-N\)
DO 5 1EI．NV
\(K=K+N\)
DO \(K \mathrm{~J}=\mathrm{T} . \mathrm{N}\)
\(B(j)=Y(i+k) * F\)
G C（J）＝－R（A）
CAI：CA！EX（N，B，F）
CALI CAIFX（N．C．F2）
CALI AMATV \(X, N X, B, N)\)
CAL！AMATV（X，NX，F2，N）
CALI AMATV \((X, N X, F, N)\)

\(s 2=0\) ．
DO \(7 \mathrm{LE} \cdot \mathrm{N}\)
S2＊ST－F \(\operatorname{S}(\mathrm{L}) * R(\mathrm{~L})\)
\(7 S 1\) ES \(1+F(1) * B(1)\)
s18う：＊s？
s2』う．＊s）
c
1F（ST－SM）93．93．0
SMOS？
NMEX
A18－1．
13 1F（S1－SM）5，5，0
\(S M=\leq 1\)
NMa
5 CONTINUF
ALaAl＊E
nO \(?\) ？ \(1=1\) N
12 B（Ti＝Y（I）NM）＊AL
WRITF（P．11）（R（I），IE1，N），SM，FE
11．EnRMAT（GF12．5）
TIE
RFTIRN
END

SUBROUTINE VMAXZ（N，NV，Y，NNV，X，NX，SM，E，IC）
DIMENSION Y（NNV），X（NX）
DTMENSION \(B(4), F(4), F Y(4), C(4), C 1(4)\) SMEーグOF60

\section*{\(K \boldsymbol{K m}\)}

DO 4．In1：NV
\(K=K+N\)
Dn？J＝I．N
\(2 B(j)=Y(i+K)\)
\(c\)
CAII AMATV \(X, N X, B, N)\)
\(S U M=0.0\)
DO ₹ LET：N
\(3 S \cup M=S U M+B(L) * B(L)\)
\(S U M=S Q R T(S U M)\)
AI．EF／SUM
DO \(6 J=9, N\)
\(C(J)=Y(I+K) * A L\)
6．C1（i）\(=\mathrm{m}\)（J）
C
CAII CAIFX（N，C，F）
CAL！．CAIFX（N，C1，F1）
CALI AMATV \(X, N X, F, N)\)
CALI AMATV（X，NX，FI，N）
sino． 0
\(52=0\)
DO 5 LET．N
s2ms2mB（1）\(\# F 1(1)\)
\(5 S 1=S 1+F(L) * B(L)\)
IF（AMAXG（S1，S2） \(12,17,0\)
SME？：
RFTIIRN
1215（ST－SM）13．13．0
SMES？
NMョK
\(A 1 M=A I\) ．
13 1F（ভ́9－SM）4，4，0
NMEK
\(A 1 M=A L\)
\(S M=S 1\)
4．CONTTNUE
\(1 F(10=9111,0.0\)
nO \(8 \quad 1=1 . N\)
\(8 C(I)=Y(N M+I) * A L M\)
WRITF（2．7）（C（I），I＝9，N）
7 FORMAT（IX，BHMAXDOTV \(=5 E 17.5\) ）
19 CONTINUE RFTIIRN FND

F SEGMENT，LENGTH \(\quad 276\), NAME VMAX？
```

 SUBROUTINE SFTA(N,NSO,NSOZ,T,A)
 DMENSION T(NSOZ),A(NSO)
 K3=?
 DO j 1п1.NSQ?
 2TCij=0.0
DO 4: Kmi.N
DO L LET!N
K{=NSQ*N* (L-T)
K\=x 3 + 1
DO 1:IEI.N
K2\#NSQ*(1-1)+I+(K-1) *N
1:T(Ki+KDj=A(K3)
IF(1-K)4,0,4
KKan
OO <1=10:N
OO 2 J=9,N
KKMKKC\
K2 ENSQ*(J-1)+1+(K-1)*N
3 T(K1+K?j=T(K1+K2)+A(KK)
4. CONTTNIIE
WRTTE(2"5)(T(1),1\#9,NSQ2)
5 FORMAT(IX.4E12.5)
RETIRN

```
    END
```

SUBROUTINE CALE (NX,X,F,M,IV,XM,Y,NW)
DIMENSION $X(N X), Y(N W)$
$\mathrm{N} \quad \mathrm{V}(\mathrm{NW}-\mathrm{j})$
NVZY(NU?
Eッチ(NW-i)
NNVㅋNWH
IE (iv-9iz.0.2
IC口V(NW-3)
CALI VMAXP (N,NV,Y,NNV,X,NX,XM,E,IC)
$2 \mathrm{~K}-9$
Fax(?)
Dn I1琞: N
$K=K+1$
1 FロF* $\mathrm{X}(\mathrm{K})$
En3491592671F
XNEN
FロF; F** XN
RETCIRN
FND

```
```


[^0]: * SECOND MINIMIZATION

