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Summary 

The use of Lyapunov's direct nethod in obtaining regions 

of asymtotic stability of non-linear autonomous systems is 

well.knm.,n. 'fhis thesis is an investigation into the optimizat

ion of some function of these systems over different classes 

of Lyapunov functions. 

In Chapter 2 bounds on the transient response of two 

systems are optimized over a subset of quadratic Lyapunov 

functions and numerical \{ol;'k is carried out to compare 

several bounds. 

Zubov's equation is the subject of Chapter 3. The non

uniformity of the series-construction procedure is studied 

analytically and a ne\{ approach is made to the solution of 

the equation by finite difference methods. 

Chapters 4, 5 and 6 have a common theme of optimizing 

the RAS ovel;' a class of Lyapunov functions. Chapter 4 is 

restricted to optimal quadl;'atics \{hich al;'e investigated anal

ytically and numerically, t1vO algorithms being developed. An 

optimal quadratic algorithm and a RAS algorithm are proposed 

in Chapter 5 for high order systems. Extensions are made in 

Chapter 6 to optimal Lyapunov functions of general degree and 

relay control systems and systems of Lure' form are considered. 
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CHAPTER 1 

IHTRODUCTIOl! 



1.1. Discussion 

Chao ter 1 

Introduction 

1 

The c-Iassical idea of stability originated in the 

motion of rigid bodies in mechanics. An equilibri~~ 

was said to be stable if- a body- returned to its 

original position after a small displacement. In 

the last t\,Ienty years this iclea of stability has 

been extended considerably both in depth and scope, 

and powerful tools now exist to treat the stability 

of a large number- of dynamic motions or systems. The 

most striking development has been the direct method 

of LyapurlOv with its many theoretical and applicati ve 

aspects. This thesis is mainly concerned Yli th 

'optimum problems' in the use of so'' Called Lyaplillov 

functions to find estimates of transient response and 

of the domain of attraction of' nonlinear autonomous 

differential equations. 



1.2 ·Preliminaries 

In what f'ollolfS the usual notations f'or vectors 

and matrices in n-dimensional Euclidean space "ill apply 

throughout (See (14». 

Elements of ~ will be denoted by ~, ~ etc. and 

will be treated as column vectors, al thoue-h lfri tten as 

rows in long hand i.e. 

, x ) 
n 

11-11 is the Euclidean norm defined as 

2 
I xi! 

The elements of matrices A, IT etc. will be denoted by 

a. . and b. j respectively. 
J.,J J., 

En may also be called the statespace or phase space 

depending upon the nature of' ~. For n = 2 we may write 

2£. = (x,y). 

We will be concerned with the vector differential 

equation 

1 .1 .1 

where ~ tEn; t is an independent parameter, usually 

the time; and f. lE.. En, , .. hose components f' i (~, t) are 

functions of xi and t (specifically [. is the map 

[. : ~ x R 4' En, R the real line). 
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The f'orm of 1.1.1 is quite general a,:d it can "be 

considered as a system of n first order equations • 

. The important nth order scalar equation, 

• • • 
( 1 ) ) 

,Y ,y,t 

Wherey·(n) 
:: dn y 

dtn 

is reduci"ble to this form "by defining 

Xi - y 

0 

Xi '" x2 
.. 
~2 '" x3 

*n-1 :: x 
n 

If f in 1.1.1 is independent of' t we have 

x. "'" f (z;) - -

1.2.1. 

1.2.2. 

1.2.3 

an autonomouG s:rste~n with special properties (qee 

later or Zu"bov (1) ). 

If the right hand Side of 1.1.1 is continuous and 

the existencQ. and uniauencss·of solutions is assured 

together with tlleir continuous dene::de::ce on ini tial 

values, f Vlill"be said to "be of class E, f €. E. -. -
Let (1£0' to) be the initial values and let f G. E, then 

define~ (t,1£o ' to) as the solution of 1.1.1, i.e. 

1.2.4. 

The sj.nf(ulRr or eguilibriUlll points of' 1.1.1 are the 

constant solutions ~ (t,1£o,to ) :: Eo or, eQuivalently, 

the solutions x satisfying f' (x,t) = Q. - - -
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By simple transition of' co-ordinateD any singular 

point may be brought to the origin, !;. = O. Hence

forth, Vie assume f (Q,t) = Q and that the oriqin is 

an isolat.eo. singular point (l.e. no othpY' sllch point 

exists in a neighbourhood of ~ = 0). 

Def'ine the (n + 1,) - dimensional space of quanti ties 

(~, t) as the motion space, then a rnoti..2.ll of' 1.1.1 is 

the continuous path formed by the set <,g:(t,~o,to), t). 

A trajectory is the projection of' this path onto the 

phase space and a half' trajectory is a trajectory 

def'ined for some t:> to ( or '0 ~to). 

1.3 BaSic Definitiorcs of Stability in the Sense ·of Lyapunov 

Denote bYR(h) the region R(h): [~/ 1I;!£II~h} , or more 

generally, let the set tee, t) / 1I~J1 ~ h, t~to} 

be denoted by R (h, to). Suppose in n (h, to) 

:k =.£ ~.' t) (;r (g,t) = 0 ~ .£ Co E) 1.3.2 •. 

Then two definitions' are baSic to Lyapunov' s direct method: 

Def. 1 .. 3. t 

The origin of the differential equation (d.e.) 1.3.2. is 

said to be stable if there exists for any E. >0 a numner 

& )o-osuch . tha t. 

11 ~oll .e:: 5 

implies 



Def. 1.3.2 

The origin of the d.e. 1.3.2 is said to be 

~nptotically stabl~ (a.s.) if it is stable 

and there exists a Qo such that for 

1I~011 L bo ,~ • .,. 0 

follows 

lim z (t, ~o, to ) = 0 
t -.:; 00 

If 1.3.3 holds for all ~o E'. En in Def. 1.3.2 

the origin is said to be a.s. in the whole. 

Further definitions are given in Lefshetz (14), 

Zubov (1) etc., including instability definit-

ions. Good critical treatments of these and 

other definitions are given in Hahn (15) and 

Lehnigk (17). 

Finally, the domain of attraction (DOA) of an 

a~s. system 1.3.2 is the set U defined by 

5 

u(to) : t ~o / lim ~(t,~o,to) = 0 ~ 1.3.4. 
t -Jo 00 
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For the autonomous caseU is independent of to. 

1.1~. The AutOlcorr.OUS Case 

The main syster.l in the following chapters is system 

1.2.3 namely, 

X = f ex) (:f.(Q} = 0, f € E) 1 .l.~. 1 • 

Tvro forms of 1.4.1, one particular and. one general, are 

the following: 

a) the linear system . 

• 
Z>.. = .A~ 

where A is an n x. n matrix 17hich is said to be stable 

if its eigenvalues, Ai' i=1,n, have negativeJ'eal 

parts. The system is called significant if Re.( A.) :/: 0 
1 

•. 
1.4 • .3 • 

Where E (~) possesses a convergent pOVler· series 

expansion about the origin whose terms are of dcp;ree 

tll0 and greater •. Here, A 2f is called the first 

approximation or linear Dart of 1.4 • .3. A can 'be 

regarded as the Jacobian of f at ,;s = 0, 

A= ()1'(~) 

=f 
Cl f'i: at (),;s ,;s - 0 OXj -r = 1.4.4. 

J 
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1.5. The Theorems of LYRn~~Ov 

The second mc;thod of' Lyapunov attempts to determine 

the sta"cili ty of' the equilibrium. ':li thout prior kno';{-

ledge of: the solutiona of: differential equations. It 

introduces the idea of a certain function called a 

. Lyapunov function which possesses properties analogous 

to those of' the total e·nergy of' a dissip ative 

dynamic system. The energy in the latter is positive 

and non-increasing near a stable eQ.uj.librium. 

Formally, let V (x) be a continuous scalar function 

defined in some region Reh) and possessing continuous 

first partial derivatives. Then the following 

definitions and theorems are pertinent to the autono-

mous system 1 .1~.1 (See Hahn (15) for general case of 

system 1.3.2} 

DeL 1.5.1. 
c 

The fWlction V (x) is uositive (negative) definite 

if' in some region R(h1), 

V (x) ~ 0 

V (z) ~ 0 

and V (£1) 

and V (0) 

positive (negative) semi-definite. 

o. If 

::: o. it is· 

V (~) is called strictly nositive definite if 

V (~)~ 0 for .2f ,/, o' , , and radiallY 

wlbounded if . J'2i1l _ 00 implies V(x)~ 00 

If in scrne R(h)/V(~) is positive definite and its total 

• • T. 
derivative V, \7here V =vV !(2S-). 

n 

= .I 
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is negative semi-definite, it is called a Ly"munov 

flL'lction (LP) for system 1. )(.1. 

Theorem 1.5.1. 

The eQuilibrium of syste[fl 1.1\.1. is 

(a) stable if there exists a Lyapunov :!:'unction and 

(b) a.s. if vex) is positive definite and ~ is 

negative definite with respect to 1.4.1. 

Theore: .. 1.5.2. (Barbashin(18) ) 

The eCJ.uilibriwn of 1.4.1 is a.s. if 

(a) V (}) is positive definite and 

(b) V is negative semi-definite and does not vRnish 

identfually on any non-trivial trajectory of 1.L>.1. 

These two theorems are IlUrely local in character and 

give little information as to the size of the actual 

stabili ty regions. In this respect the fol1o':Jing 

theorem is of great practical importance. 

Theorem 1.5.3. (Lefshetz (14) ) 

Trajectories of 1.4.1 '{Ihich start from a region 

* D containing the orizin vlill be a. s. if there exists 

a function V (2:) with the properties: 

(a) Vex) is positive def. in D, 

(b) V with respect to system 1.4.1 is at least 

neg. semi-definite, 

(c) V (x) ~ 0 on any trajectory of 1.L! .• 1 in D 

except x '" 0, 
.-"-----~- .. -

trajpctory is on00rigin~ting ~rom some initial 



(et) 'V v (;1(;) f ° in D except for lS =0 0, 

(e) one of the lcv,,1 surfaces V =: conGtan.t bounds D. 

Let V(lS) == c be a. level surface lJouncUn3' a region D, 

D: t lS / V(Z;) .G c, c .:::,. 0 1 
Henceforth, the region Drnax bounded by the surface 

V (lS) =: Cmax -, y{here Cmax- denotes the largest c ::"01' 

which properties (a) to (e) hold, viill be called the 

reP-ion of as:,tTlrntotJcal1v st8.oili t;v (RAS) o:f the 
a 

L~unov function V (lS) for the system 1.4.1. 

If this HAS is u~,c·ounde(1 then 1.L~.1 is a.8. in the 

vrhole. 

From Theorem A1.1 vre see that the level Vex) surfaceiJ 

will be cl08ed and hence bOUllded in some neighbour2:ood 

of t~le origin. 

Theorem 1.5.1:_. (Linear Case) 

The linear system 1.4.2 is a. s. iff A is a stabili tJ' 

matrix. 

Theorem 1.D~. 

The orisin of 1.1+.2 is a.s. if£" ther-e exists a positive 

definite s~7ITeetric matrix P Yihich is the Ul1i'lUe solution 

of the Lyapunov matrix equation_ 

if P + PA == - Q 

for any pOsitive definite symmetric Q. 

(The theorem also holds vri th P and Q 

matrices). 

1. 5.1. 

p.d. her-mitian 

9 
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Theorem 1.5.6 

If the stability of the first approximation of 1.4.3 

is significant then the stability behaviour' of the 

linear part (1.4.2) and the co;nplete system (1.4.3) 

are the 88..1."'":1.8. 

For less restrictive conditions on g C~S) in 1.4.3. 

see Hahn (15) or Lehnigk: (17). A comprehensive 

tpeatment of. the matrix equation 1.5.1 is given by 

Barnett (20) • 

. 1.6". A PrRctical R.:\S For the Autonomous Caze 

Let A "be a stnbilit;;r m2tr:~.x ill s;/stel:: 1.h.3. Then a 

general class of Lyapunov functions fOl) ti1is syteff';' cell 

"be generated. ac, fol101"1S. Let V (2S) be of the form 

'1' 
= ~ p ~ 1.6.1. 

where P is a unique solution of 1. 5.1. fer some 

positive definite Q and \7here Vo (::) can "be expav'led. 

as a Taylor series with terms of degree three and 

greater. Sir .. cc 

• 'T' T T 
V = -z: Q 2S ... 2x 10 g c,:::) -fo 'SZVo (2S) (A ~ + ,;:;(;~)) 

1.6.2 

"b~T the ascl.U:1ptions on £. (~ 8.nd Vo and the l)rOperties 

of' Quadratic forrng, f[ ~ 0 in R(h) for 6 #. 0 and 11 small. 

We have 

Theore:;.:. 1. h .1 

1.6.3 

Then the :2 ... '-8 indicated ay the LyaIJUl10V function (Ll!') 

V (~) of 1.6.1 i3 .si veri "bZ,r D "there 

1.6.:' .• 
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and ,.,here 

Cmin = minV(;s), x t: E 
- v 

1.6.lf. 

Appendix 1 (Al) gives some useful definitions on the 

closed contours of Lyapunov functions. 

1.7. Hotivation 

Two main problems are inherent in using Lyapunov methods 

to find regions of a.s. of autonomous differential 

equations, 

(a) the construction of a suitable LF, 

(b) the determination of the RAS indicated by that LF. 

Nany methods exist to solve (a) (see Tait (37) and 

Brockett (38) for bibliographies). Some "ere developed 

for a specific form of differential equation, others were 

more general. He,d t (2) has developed computer algorithms 

for their construction and compared their HAS's. 

The main motivation of this thesis has been that whereas 

a great deal of research has centred on constructing LF's 

little attention has been paid to finding the 'best' LF of 

a given class. Here, 'best' need not be interpreted solely 

in terms of the HAS but also in terms of the transient 

response or some other function of the system. 

Emphasis has therefore been placed on finding 'optimum 

results' where possible and in showing ,-{hat properties if 

any, these 'optimal Lyapunov functions' possess. 

Some attention has been centred on finding analytic results 

for simple specific cases, which have given a lead to the 

development of numerical algorithms needed to study more 

complex cases. 

L-_______________________________________________________ .--



12 
1.8 Contents of Chapters and Backp;round Haterial 

l-lany authors, including Kalman and Bertram (16), 

Vogt (19), Zubov (1) and Wiberg (23), have used the fact 

that if V(~) is a Lyapunov function for the autonomous 

system 1.4.3 (or the more general system 1.3.2) giving 

• 
asymptotic stability, then minimizing the expression (-V/V), 

• 
~ = min (-V/V) 

:!!:€.R (h) 

for some sufficiently small region R(h), implies the ine'lu-

ality 

-1 
The quantity ~ may be interpreted as the largest time-

constant over the region R(h) of the phase space and is 

therefore a figure of merit of the system. 

In Chapter 2 we extend some work of ,Tiberg (23) and 

maximize ~ over a sub-class of quadratic Lyapunov functions 

(,vith given R(h» for the system 1.4.3 and the more general 

system 

• 
~ = A~ + G(~,t)~ + ~(t) (A stable) 

An optimizing condition is found when A. is in companion 

·form (CF) with real eigenvalues and some useful bounds are 

proposed, the latter being tested by numerical work. Some 

numerical "ork is also conducted in determining whether 

some bounds of Vogt (19) are useful in locating the real 

parts of the eigenvalues of A. 

In Chapter 3 we consider Zubov's (1) partial different-

ial equation (PDE) for the autonomous system 1.4.3, 

n 

I 
i=l 

~ f. = -4(1 - V) 
i ~ 

A wealth of numerical experienco on the application of its 



solution by the series procedure (mainly by He,<Tit (2), 

Hargolis and Voe;t (h), Rao and De Sarker (5), and Yu and 

Vonc;suriya (6)) has sho,= that the RAS' s of the high 

dogree LF's are of'ten inferior to those of lmver degree. 

No analytic study of' this non-uniformity has yet been 

attempted. 

In the first part of this chapter a system showing 

thi.s non-uniformity is investigated analytically and an 

important question emerges concerning ttIe rljgion of' 

convergence of the series-Lyapunov function. In the second 

part we look at an alternative Hay of' solving the PDE by 

finite-difference methods. By using polar co-ordinates an 

initial value problem results and solution by a Crank-

Nicholson-type difference scheme is possible. Numerical 

examples show that the solution breaks do"n near the DOA 

boundary. Some other methods are also considered. 

Chapters h, 5 and 6 have a common theme in that for 

the ·systeITl of the form 1.h.3, and also for relay systems 

in chapter 6, the problem of' maximizing the RAS over a 

class of Lyapunov functions is considered. The stated 

problem is 

maxp C~J , 
.e, 

1.8.1 

"here C is a parameter class determining the LF andp(.e,) 

is a measure of the size of the RAS 

Vm(.e,) = min V(~,.e,) 

2S 

1.8.2 

1.8.3 
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subject to 

• 
V(~,~) = 0, ~ f- 0 1.8.4 

The main dif'f'iculty is the RAS determination of' 

f'inding V in 1.8.2. Research on the subject is divided 
m 

into two main camps of either treating 1.8.3 analytically 

as an equality-constrained optimization problem, or 

geometrically, as a tangency beh,een h,o hypersurf'aces, 

• 
V(~,~) = Vm(~) and V(~,~) = O. Rodden (3) gave a method 

f'or the latter which Hewit (2) has improved and applied to 

some second order systems. Hewit'(2) has used the method to 

optimize the average radius of' the RAS f'or a number of' LP's 

determined by his construction procedures f'or the methods 

of' Zubov, Szeg6", Ingwerson and Krasovski. 

Advocates of' the equality-optimization approach have, 

been in the main Szeg6 (52), Geiss (50, 51), Julich (57), 

Muddle (58) and Lapidus and Berger (119). They all use the 

penalty f'unction method. For instance, Geiss, Julich and 

Szego use either 

• 2 2 
= V + ICV / /12S11 

or 

and f'or increasing IC minimize F1 or F2 via some powerf'ul 

minimization technique such as Davidon-Fletcher-Po,,,ell (60), 

thus reducing 1.8.3 to a sequence of' unconstrained minimiz-

'ations "hich hopefully converge to the constrained minima 

(Fiacco and HcCormick (59) discuss convergence). Once V has 

been chosen theref'ore, the problem is taken out of' the realm 

of' Lyapunov theory and into that of' non-linear optimization 

where new pOHerful algorithms can be applied. Variations 
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are the choice of penalty function and the minimization 

method. 

In Chapter l~ the class of' Lyapunov functions is that 

of'-quadratics, V = xTp2£. with P determined throuah the 

matrix equation 1.5.1 for Q p.d. Due to the complexity of 

the RAS determination, analytic results in a;Jplyinc; problem 

1.8.1 to various systems have been scarce, Geiss (50) found 

an optimal quadratic for a second order Duffing equation 

but the example gives little insight into the nature of the 

probl~m, It is surprising that the numerical algorithms 

developed so far for maximizing p(!:,.} f'or a c;iven LF are 

based on little understanding of the relationship behreen 

the optimal RAS boundary, V = Y
m 

say, and its .££!lstraint 
, 

contour, Y = O. (Vilson (61) gives a topological account of' 

the V-contours but the constraint contour is not investi-

gated). In Chapter 4 five systems are studied analytically 

as far as possible through the Lagrange equations. Although 

only two optimal quadratics are obtained, sufficient insight 

is gained on which to base a numerical investigation. An 

efficient and accurate algorithm is developed for RAS 

determination for a restricted class of' second order systems, 

and optimal quadratics are found via Po,{ell's (33) conjugate 

gradient algorithm f'or a number of systems. Extension to 

higher order systems is made. The analytic and confirming 

numerical results exhibit an 'equal tangency proyerty', 

namely, that for many systems a subset of quadratics exist 

such that their RAS boundaries have at least bfO points of 

contact (not radially symmetric) with their constraint 

• 
contours, Y(2£) = O. 

In Chapter 5 t,;o algorithms are proposed. The first 

is an optimal quadratic alaorithm based on an idea of' 



Davidson and Kurak (47) Hho reduce the optimum quadratic 

problem to one of a constrained optimization Hhich they 

solve via use of Rosenbrocl<' s (32) method. The proposed 

16 

algorithm talces into account the '{Crk of Chapters 2 and 4 

and replaces Rosenbrock's hill-climber by a variation of 

the Complex method of Box (.5.5). A compa·.lCiso:!"'. is made 

bet,.,een the hio methods for 2. second oord"T and 4- third order 

systems, showing the proposed method is superior. 

The second algorithm incorporates some features of 

the previous algorithm and determines the precise RAS for a 

quadratic LF via a special penalty function of Hiele (62) 

(reference is made to one of the four authors) Hhich is 

minimized by the Fletcher Po"ell (60) method of conjugate 

directions. The draHback of many penalty function methods -

noteably those of Julich (57) and Lapidus (49) - is that no 

automatic method is proposed to find the 'global' minimum. 

An exception is that of Geiss (50) '''ho encloses a possible 

T 
RAS boundary, ~ p~ ~ 

• 

v , with an n-dimensional box inside 
m 

'''hich V is determined at random points. HOHever the method' 

is time consumming. The proposed method finds the 'gloqal' 

minimum of the penalty function automatically and has good 

convergence. 

Chapter 6 is an extension of Chapter 4 in that the 

optimal properties of general Lyapunov functions are 

investigated. The work is divided into three sections "Thich 

correspond to the three different systems considered; the 

ceneral autonomous system 1.4.3, a relay control system and 

a system of Lure' form. 

The problem in 1.8.1 of maximizingp(~J for a LF of 

degree mv 
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1.8.5 

has been considered by Szego (52) and Hewit (2) and others. 

However, due to the number of independent parameters 

involved for a LF 01' dee-ree mv (2 + (mv + 5){mv - 2)/2) 

little numerical experience has resulted, eVen on comparing 

their RAS's. Sze"o (52) proposed solving the HAS problem 

of 1.8.3 and 1.8.4 via a penalty function approach using 

the Fletcher-Po~"ell (60) minimization routine. He then 

maximizes r, the distance of the nearest point of the ~,S 

boundary, V = V , to the origin, over the co-efficients of 
DJ 

the V. terms by Po~vell' s (33) method. Disappointingly, only 
J. 

an optimal quadratic is obtained and that for a simple 

example "here a global search for the minimum in 1.8.3 is not 

required. In Chapter 6 the problem is investigated fully 

via nOdden's (3) method and Nelder and Head (34) Simplex 

optimization onro(i!!J (average radius). The 2mth degree LF of" 

the form 

V
2m 

= 

is also considered. The optimal nAS's are compared and a 

multiple tan"ency phenomenon is exhibited for a number of 

second order systems. 

In the follo\.;ing section ",e extend some ",ork of 

1-Teissenberger (48, 66) for the relay system 

• 
as = A2f. + .!? s gn 0" , 

",ho sho",ed that under certain conditions LF's of the forms: 

T T 
a) V = as Pas + Id asl 
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and 

b) V =L 
i=1 

T 
Ic.x I 
-1.-

could be used. A number of' second order systems are studied 

numerically for LF (a) shOl,ing 'equal tangency properties'. 

Using this property an optimum RAS is found analytically for 

LF (b). 

In the final section a connection bet"een the "ork of' 

ifalker and HcClamroch (73) and that of lieissenberger (72) is 

found concerning an optimal quadratic for the Lure' syst8m 

• 
as = ~. + hsgn () , (J= 

'ihere the sector condition 

is satisf'ied only f'or some region () 2 6: 0 f.<i"1. SOme extensions 

are considered. 

The computing times given in this thesis are all in 

terms of mill/secs. (ICL 1905) and serve only as a comparison, 

all other conditions being equal. All programs "ere "ritten 

in FORTRA.J."I 4 and only a listing of the optimal quadratic 

al(;,orithm of' C5*is included. Several programs "ere 'iritten· 

usin(;' graph plotter routines to trace the required Lyapunov 

contours, points on 1.hich "ere joined by straight line 

segments. Diagrams and tables are included in the text :for 

continuity, "hereas the f'iffUres appear at the back of' each 

chapter and, as f'ar as is convenient, in numbered order. 

* Chapter 5 



CHAPTJtR 2 

OPTIMAL BOUNDS ON THE RESPONSE OF 

NON_LINEAR STABLE SYSTEHS. 
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Chanter 2 

Ontimal Bounds On The Hcsnonse Of Non-linear Stable Systems. 

2.1 Introduction 

In the design, of a control system it is useful to 

predict a conservative bound on the response of the 

system, ,.,hich takes into account noise and perturbation 

effects, or to predict a crude approximation to the 

'. 

domain of attraction. 

Consider the tw'o systems 

• 
A2£ + G(;:s,t);:s + ~(t) ;:s = 2.1 .1 

= .:r(;:s,t) (f ~ E) 
and 

• A;:s + .€I: (;:s) ;:s = 2.1.2 

vIi th A stable. 

In the former Gx is regarded as the non-linear or 

perturbation term and !l the input to the system; both 

are assumed to be bounded, 

1Il.l.( t)1I < c l' 

IIG(;:s,t~1 <: co' 

t 

t 2.1.4 

1Ve assume that no real ::z:: exists such that 

A + G(::z::,t) = 0 inside some R(h), then the origin will 

be an isolated singularity.System 2.1.2 is that of 

1.4.3. 

For both systems choose the LF 

T 
V = x Px 

where P solves 

T 
A P + PA = -Q 

2.1.5 

2.1.6 

and "here Q and hence P may: be general posi ti ve de:fini ta" 

symmetric matrices. Then for 2.1.1 
"' 
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• T T T 
V = -~ Q~ + 2(~ G(~,t) + ~ (t))p~ 

and for 2.1.2 

• T T 
V = -~ ~ + 2~ Pg(~)~ 2.1.8 

Follolfing Kalman and Bertram (16) we use several matrix 

inequalities and the Schwartz inequality to eive, 

respectively 

• 
V< (-\1 + 2coJ)I)V + 2C1h!(p)V 

. and 

2.1.10 v::s-(-n 

Here A(A) denotes an eigenvalue of' A, H(A) = max Re. I-(A) 

and m(A) = min Re A(A). Also 

n = 2.1.11 

and 

)J =,M(p) = N(P)/m(P). It can be shown that (16) 

n = m(p-1Q). 

Changing the variable in 2.1.9 to lV, by dividing 

by W, and assuming 1I!.j\l ===- c211J£1I, (C2 constant) the hiO 

equations 2.1.9/2.1.10 can be integrated to give the 

bounds 

JV( t) <::: JV( 0 ) exp ( - Clt) + .£1 H (p) ( 1 - exp ( - Clt ) ) 
0\ 

2.1.13 

and 

V(t) <: V(O)exp(-,Bt) 

lfhere 

cA = "/2 :.. ,r,Mc - -&U(~ - Co) 
0 2.1.1.5 

and 

f> = 11j-z -)J. c 2 - fA (I\. -
?-fA 

C;tl 2.1.16 



Finally, by use of the inequality 

2 T 
U2S.11 m(P):=; 2S. P2S. ~ H(P) 11281 2 2.1.17 

the two bounds in V(t) above give respoctively 

112S.(t)IIO<::: J}A(II2S.(O)lIexp(-cl.t) + £1(1-exp(- OIt») 
0<. 

and 

112S.( t)1I 0<::: .J):A112S.(0)1I exp(-f3t) 2.1.19 

,,,hi ch imply, if CI>O, 1»0, that 

and 

2.1.21 

(Note for brevity we have written 2S.(t) '= ~(t,2S.o,to)' 

to = 0 from 1.2. A). The above work follm"s that of' 

lfiberg (23) ,dth some corrections, namely the bound 

2.,1.18. A crude RAS f'rom the bounds is given in A3. He 

, 
add that if' Co is given a priori too large, ~may be 

.21 

nega ti ve which destroys the bound; but if' g(2S., t) --'> 0 as 

IIxll--" 0 then the bound 2.1.18 ,dll always hold in some 

region R(h) f'or suff'iciently small h. 

Generally, ~-1 andp-1 behave as time constants for 

the respective systems in some region R(h), where Co and 

c
2 

are considered f'ixed. As? and ~ are complex f'unctions 

of' Q, obtaining the ana~ytic maximum of' ct or p is 

dif'f'icul t and we resort to the f'ollm1ing sub-optimum in 

each case: 

a) max ~ over Q then 

b) minimize? over a subspace of' Q, 

where Q is the space of' p.d.s. matrices. 
5 

Problem (a) '{BS f'irst solved by Lewis and Taus~,;:y 

(2h). Problem (b) arises because Q and P giving the 
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maximum 11 are not unique, and is the main content of' this 

chapter. 

Section 2.2 s-eneralizes some previo!,ts "orl{ of 1,iber g 

(23). The results of' the remaining sections are believed 

to be ne\{. 

2.2 The Optimum 

Assume A has linear elementary divisors (21), 

i.e there exists a transformation matrix S such that 

S-1 AS = C 2.2.1 

"here C is a diagonal matrix of eigenvalues of A and the 

columns of'S, .§.i, i = 1, n, are their eigenvectors chosen 

so that lI.§.ill = 1, all i. 

Select P as 

P = «SD)(SD)*)-1 = (SD)-*(SD)-1 

2.2.2 

"here * denotes conjugate transpose andD = diag(d1 ,d2 , •• 

• • • • • • • ,dn ) is an arbi trary diagonal matrix ,·d th d i ;6 O. 

Then P is a p.d. hermitian matrix and sUbstitution into 

2.1.6 yields 

Q = -(SD)-*(C + C*)(SD)-1 2.2.3 

which is also p.d. hermitian (p.d.h.) and not necessarily 

real. Then 

and 

A(p- 1Q) = - >,[(SD) (C + C*) (SD)-1 ] 

= - ~(C + C*) 

m(p-1 Q) = ~ = -2H(A) 

M(p-1 Q) = -2m(A) 

2.2.4 

2.2.5 

Vogt (19) has sho,m that for P and Q satisfying 2.1.6 we 

have the inequalities 

2H(A) < _m(p-1 Q) 

2m(A) ::. _M(p-1 Q) 

2.2.6 

2.2.7 
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. the :former showing that n in 2.2.5 is the maximum possible. 

Statement 2.2.4 shm{s ,dth suitable ordering o:f 

eigenvalues that ~(p-1Q) = -2Re ~(A). 

For a more complete statement consider a result o:f 

Barnett (20) "ho showed that i:f A is stable, then given a 

p.d. Q, 

2.2.8 

where P solves 2.1.6 and H is a skew-symmetric matrix 

:found :from 2.2.8, but which also solves 

2.2.9 

He gave the bound 

2.2.10 

It easily i'ollol{S i'rom 2.2.8 and the P in 2.2.2 that 

2A(p-1H)= "(C - C*) = 2ImA(A) 

showing that equali ty al s 0 holds in 2.2. 10. In:fac t ,d th 

suitable ordering o:f eigenvalues 

Finally, i:f A is real, P in 2.2.2 may be taken real. For 

the ~ appear, i:f complex, in conjugate pairs. Suppose ~i 

and ~j are such a pair, then choose d i '" d
j

• Then 3 a,sy~,,~e-t;'iC! 

permutation matrix T (30) (i.e. TT = T-1 = T) such that 

mr = sm 
then snr '" (sn)* = T(Sn)T and 

p-1 = (Sn)(SD)* 

= (SD)T(Sn)T 

Hence p-1, and thus P, are symmetric and thus real. 
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2.) The Ninimum Condition Number, (p) 

The matrix P in 2.2.2 contains essentially n-1 

arbitrary parameters to a multiplicative constant. Hegarding 

~as a function of P and thus D, problem (b) is restated as 

min JA(p) 
D 

2.).1 

This quantity p is called the P-condition number of P and 

is related to the condition number K(X) of a general matrix 

X defined as (Bauer (22) ). 

K(X) = IIxlI IIx- 111 2.).6 

where IIxlI =: 
~8 11~\I / Il:sll 2.).7 

=: (N(X-*X) )~- 2.).8 

For Hermitian X,}A(X) =: K(X) and for P in 2.2.2 

K(P) = K(p-1) = K«Sn)(sn)*) 

= K( (sn)*(sn» 

=: l(2(SD) 

Thus min p.(p) = min l(2(SD) 
D n 

Now define lXl as the matrix whose i,j th element is 1Xi,jl. 

Such a matrix is called non-negative. lie say X has 

ohecl~.Fboard sign distributions (csn) if matrices El and E
Z 

exist suohthat S = El ISI E2 ,dth IE'l' = IE21·:= I. 1ve shall 

need the follol"ing theorem due to Bauer (22). 

Theorem 2.3 

leor the ma.ll'lX. norm 11'11 in .z·5·g 

min l(SD)~ IIlslls-1111 
D 

2.).11 

lvi th equality holding if both Sand S-l have CSD. 

This theorem gives a useful bound on the minimum in 

2.).10. 
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2.4 A Conjecture of Wiberg (23) 

Wiberg conjectured that pep) is minimized if D = I 

(i.e IIs;)1 = 1). Although this is true for n = 2 it is 

false for n > 2. 

Choose A = S-1CS "here 

1 , 1/ .[2, 1/16 

s = 0, 1/ \f2, 2/ .f6 C = diag (-1, -2, -3) 

0, 0 , 1/[6 

With D= I, ,u(p) = K2(SD) = 39.52 

No,., 

1 -1 1 

S-1 = o J2 -2 [2 

o o [6 

Since both S and S-1 have CSD, by Theorem 2.3 

min K(SD) = IIlsl Is-11 JI 
D 

= (3 + .Ji 0) 

Then }A(p) = l(2(SD) = (3 + J10 )2 = .:.17.274 

',hich disproves the conJecture. 

2.5 An Optimum Class of Hatrices 

The diagonal matrix D giving the upper bound in 

2.3.11 is given in A3 and would appear a better choice 

than D = I. A natural question is ,·,hat :form must A have 

in 2.1.1 and 2.1.2 so that S has CSD. lie have: 

Theorem 2.5 

If A is a stable matrix in compmion . form with 

d£stinct real eigenvalues then Sand S-1 may be chos~n to 

have CSD. 



Proof 

For Ain .companion form (CF) 

o 1 o • • • • o 

A = o 0 1 • • • • o 

• • • • 

• • • 

o 0 0 • • • 

• • • 

with Ai(A) = _OIi < O,i = 1, ••• n, ,,re choose S = Vn 

(and disregard unit columns for convenience) ... here Vn 

the Van der Honde matrix (30 ) 

1 1 • • • • • 1 

V = A1 "2 • • • An 2.5.2 n 

'j,2 'j,2 
• • • • • ~2 

1 2 n 

• • • • • • • • 

• • 

• • • • 

An-1~n';'1 
1 . 

>.n-1 
n 

V is clearly CSD . i. e. n 

E
1

V
n = IVnl 2.5.3 

with El = diag(l, -1 , 1 , · . . . , (-1 )n-1) 2.5. li 

To sho,,. that V~l is'~SD let d'm ,,,here. 

= q;;:(Yl' 

= [y Y 
vI v2 

" = 1 o 

• •• 

• • • lS:msn 
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is 

be the mth elementary symmetric function of any n 

and ()n =TIYi' Also define 

variables 

(30) I 

• • • • • • Y ) n 

as the mth elementary symmetric function of the Yi ",ith 

yp missing. Then the i,jth element of V;;' 1 , v~~, is given 



by (28) 

= (-1 )j- 1cr: (X, ~2' ••• 111 1 

, >n) 

Numerically stable formulae exist to invert V 
n 

Assume that 0 'S 0\1 <: 0\2 ••• <O(n and let 

r, :;IT(OI' - ",,)11(0;, - Cl,) > 0 
~ J=: ~ J J=i+l J ~ 

Then in terms of O(i' y~ 1 may be 1{ri tten 

y-l = RQ 
n 

wi th R = diag(l , _:1., •• " 
r

l 
r

2 

and 

(1"1 1 
a"n_2 n-1 

Q .. l = 11" n-l O"n_2 

, 

n 1'1 
O"n_l tJn _2 

1 
,er 1 1 

• • • 
"'" 0"1 1 

1 

1 

11 
a"'1 1 
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2.5.8 

ldth q. " = c;i ,(0.
1

' ••• 
1.,J n-J , Cl ) > o. Clearly, all elements 

n 

of Q are non-negative and 

V~l = Ell v;;,ll = IE11RQ 

with El i'rom 2.5.4. Hence the theorem is proved. 

In general the CSD property does not hold. It is not 

satisfied, for exaljple, when A is in CF ,;ith complex A(A). 

In such cases one resorts to a non-linear programming 

technique to minimize pA (section 2.8) or chooses some 

upper bound such as that of Bauer, 2.3.11. In this respect 

some simple bounds can be found. 
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2.6 Bounds on .M(p) 

The best bound found by the author "/as from a result 

of Harcus and Hayns"orth (27). '.Phey sho"ed. 

where 

K (p) =.M (p) &;1 + J1 - D 1 

1 - J1 - D 
1 

2.6.1 

2.6.2 

and d(P), t(p) are the determinant and tr~ce of P 

respectively. Let 

F ( P ) = 1 + ~1 - D 1 

1 - 41 - D1 

then in general F(P) I F(p-1) and two bounds are possible 

in 2.6.1. Using the arithmetic-geometric mean inequality 

(2.6.12), each bound is minimized, for the choice of P 

in 2.2.2, "hen D == I and d i .., IIr~t respectively and ',e have 

2.6.4 

and 

)..,\(p) < F(P) 

where 
n 

= /d(s)1 2/ Tli(§.II 2 
1-' J: 

= Id(S)1 2 2.6.6 

and 
n 1 

D,(P) = (ld(S)1 2LTU1:iIl2 )- 2.6.7 

Here 1:
i 

= row i of S-1. 

The only difficult calculation in 2.6.6 or 2.6.7 

is d(S). Simplification arises ,,,ith A in CF for then 



D1 (P) =nl~. _~.I2/0(f\i .1 2 ) 
l<J J :1. ~.il f.I n- J 

(The latter f'ollo\-1s because in 2.5.7 Id(R)1 

Note that equality occur-s in 2.6.1 f.or n == 2. 

A looser bound than 2.6.1 is proved as f'ollows. 

Consider P in 2.2.2 \dth unit vectors ~i' "~i" = 1, and 

D= I. Then let u., i = 1, ••• • n t be the oigenvectors 
:1. 

of' T (T = 5*8) ordered as u
1 
~ u

2 
>- ••• 

Since )l(p) = K(T), 

K(T) = u, 
u 
~ 

>u • 
n 

2.6.10 
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If' u is any eigenvalue of T, by Gershgorin's Theorem (30) 

where 

;Oi = fit. .1 ll-i :1., J 

Then 2.6.11 

d(T) 

Using the mean inequality 

\-1e have, 

(fu.)/n 2.6.12 
1 :1. 

since [uo = n, 
:1. 

d(T) ~ u (n - un)n - 1 
n n _ 1 

2.6.13 

Substitution of 2.6.11 and 2.6.13 into 2.6.10 yields the 

bound 

.M( p) :S 1 [n] n - 1 (1 + p) 
/d(s)1 2 

n - 1 
2.6.14 

An invalid bound was obtained by lViberg (23) \-1ho 
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used Gershgorin's inequality to obtain 

-
fl(p) cC 1 +;:> 2.6.15 

1 - P 

To show the bound is sometimes invalid consider A and 5 

l/here 

1 12/5 24/6 1 12/1.3 12/1.3 

A = - 0 2 0 5 = 0 5/1.3 0 

0 0 .3 0 0 5/1.3 

for 
. -1 

diag(-l, -2, -.3) • Cle;"'rly, ;.. 24/13 >1 wh~ch 5 A5 = = 
and the bound becomes neRative. 

2.7 Non-unigueness of P in the Form 2.2.2 

The form of P in 2.2.2 '/hich satisfies the condition 

is not generally unique. 1,'e only lleed consider· A stable 

and in the form 

-a '. 0 

A = - - -

( ) () -1 -1 
where A, is n - 1 X n - 1 such that 5, ~5, = C" 

Let M(A) = -a, M(A, ) = -a
1 

and m(A , ) = -a
2 

(a <a, ). 

P and Q are of the form 

1 o 2a 

p = Q = 

Q Q 

where 
T 

AI
P , + P , A1 = -Q" Then condition 2.7.1 is met ,d th . 

= (5 , D, )(5 , D, )* for 



H(p~lQ,) = 2a2 , By varying P
1 

and Q, and noting that If 

depends continuously on the elements o~ Pt' a P, not 

generally o~ the ~orm 2,2,2 can be ~o~nd such that 

3' 

2a ~ m(p;1 Q1 ) < 2a12.7.4 

Then we still have m(p-1Q) = 2a, i~ a <at' but P not o~ 

the ~orm 2.2.2. 

Example 

Choose 

-a 0 0 

A = - - - - - - -a, -H' 
0 0 1 

I 
'0 I -1 -1 

Here, the only real minimizing Pt' to a constant 

~actor, is 

, 

but with the choice 

P1 = 1 [~ :J 
M(p~1Q1) = 1 + 1/J5 and m(p~lQ1) = 1 - 1/J5 and 2.7.4 

is satis~ied i~ 2a < 1 - 1/J5, 

Also 

)J.( p) = 45 + 1 < 3 

J5 - 1 
and this P

1 
gives smaller values o~ ~ or ~ in 2,1.15/,6, 

Thus problem (b) does not necessarily give 'best' sub-

optima o~ ~ or f:> • 

The arbitrariness of the form 2.2.2 is due to the 

somewhat non-unique trans~ormation S in 2,2.1, It can 

generate a subspace o~ p,d matrices (p) giving the same 



32 

value of~. To see this, consider a solution P of 2.1.6, 

for a given p.d.s Q, in terms of the ~i and Ai of A (31) 

where 

(Pl~J -.§l:i *Q~/ni + A) 2.7.6· 

Letr; = m(p-1 Q), then P and Q also solve 2.1.6, ,.,ith D 
p 0 0 

arbi trary and diagonal, ,{here Po = (SD) -*p 1 (SD) -1 and 

Q = (SD)*(S*QS)(SD)-l. Further 
o 

p-1Q = (SD)p1-1S*QS(SD)-1 
o 0 

and due to similarity properties 

,,(p~1Qo) = A(p~lS*QS) = A(Sp~1S*Q) 

= A(P- 1Q) 

Then n 
p 

2.8 Numerical Optimum of the Condition Number 

In view of the fact that for n = 2, the P of the 

form 2.2.2 which minimizes fAis real, it is reasonable to 

conjecture that this holds generally. To test the conject-

ure, Powell's conjugate gradient algorithm (A4) was used 

to minimize M(P) over the N-dimensional space of elements 

of D, where for 

where 

(a) real P, N = n-k-l; 

(b) hermitian P, N = n-1; 

Aj = r. + is
j

, j = 1 , 2, 
J • • • 

Aj = -r. <. 0, j = 2k+l, • • • J 

, k 

, n 

are the eigenvalues of A. The bounds 2.3.11, 2.6.4 and 

2.6.5 were also calculated. 

Table 2~1 shows some results for a number of third 

and fourth order matrices (A1 to Al0). The average number. 

of function evaluations ofA~(P) for an accuracy of 10-3 



MATRIX A 
(LAST ROW ONLY "" >< 

F(P) 0 H 
GIVEN IF A IS IN ~ 

C.F.) ~ 
E-< 

;1 
Z 

-8 1 5 -.1208 
4 -4 2 A1 x 10

4 
-18 5 7 

A -- -2 + 4i -1 

-J3 -16 -72 .58282 
24 10 57 A2 

x 105 
8 4 17 

A= -1 -2 -1 

* 
-4 -1 -1 .29242 
-2 -4 -1 AJ x 10

4 
0 -1 -4 

A= -1 -1 -6 

,242 
-101, -10J, -:J 

A4 x 10
4 

A = -1, -1 :;: 10i 

-200, -202, ·102 
A5 93.085 

A= -lOO, -1 :;: i 

* DeroGutory 

TABLE 2,1 

p=(SS. )-1 
F( p-l) III si 1 s-11

\1 IIs£, .. 1 
-

(\fIBERG) 

,14799 .19261 .14435 

x 10J x 10J x 103 

.17661 .2789 .3238 

x 10
8 

x 105 x 105 

,21561 ,22456 .21304 

x 10J x 103 . x103 

.3165 ,2J774 .26098 

x 103 x 103 x 103 

48.984 50,886 42,269 

MIN ,.u(p) 
N. 

P REAL 

.14345 

x 103 1 

.26178 

x 105 2 

.200781 

x 103 2 

.2J1718 

x 103 1 

41.7843 
1 

}fIN J.A (p) 

.14345 

x 103 

SANE 

SAHE 

.231756 

x 103 

111.78511 

N: 

2 

2 

2 

2 

2 

w 
w 



TABLE 2.1 (contd.) 

.54903 .19123 .37229 .34319 .315129 2 .315984 
3 

:le 107 x 105 I . 
:le 104 

104 
x 104 -4,-10,-10,-5 A6 x 10 f 

X 
I 

A -2,-l,-1+i 

.485 .2255 .20411 .15029 .14704 
2 .1/}704 

3 -10,-18,-15,-8 A7 x 103 x 103 x 103 
:le 103 

:le 103 x 103 

A-~5.94,-1,-.532;1. 84i 

.19598 .96673 . .44055 .3453 .34353 2 .34354 
3 ~202,-402,-304,-103 AS 

:le 105 
:le 103 x 103 

:le 103 
x 103 x 103 

A= -100,-1,-1+1 

.13794 .33835 .27130 • 353lflf .271)0 
3 

.27130 
3 -21},-50,-)5,-10 

A9 
:le 1012 

x 108 
:le 106 

:le 106 
:le 106 

:le 106 

A= -1,-2,-3,-4 

.7066 .63389 .13486 .16222 .12751 1 .1271f7 
3 ~202,-206,-107,-1} Al0 

x 106 
:le 104 

x 104 
x 104 x 101} x 104 

A= -1+10i,-1+i 



in the minimu," was 5h and 76 for N = 2 and N '" 3 

respectively. 

Comparison of the minimum).A for real and complex 

P indicates that the conjecture may be true; certainly 

no advantage is gained by minimizing over the higher 

dimensional space o£ hermitian p as Wiberg suggests (23). 

Of the hvo bounds F(P) and F(p-1), the latter gave 

better results and, except for matrices A
1

, A
3

, and A
5

, 

both ,,,ere inferior to Batter's bound. Choosing.M ,,,i th 

D = I (1fibe:IJ.g) gave some better bounds than that of Bauer 

(6 against 4), but as sho,m in theory, the latter gave 

the exact minimum for matrix A
9

, 

The examples were chosen ,;i th differing eigenvalue 

spreads and, for most, the minima for # seem quite large, 

One might therefore expect quite crude estimates of the 

system response, independant of the non-linear terms in 

2.1.1 and 2.1.2, 

2.9 C in Jordan Form 

lfuen the elementary divisors of A are non-linear 

the analysis in 2.2 remains the same except that C is no,,, 

in Jordan form and the relation 2.2.5 is replaced by 

(Vogt (19» 

wi th €. > 0 as small as desired. In theory one has to find 

the Jordan transformation S, In practice it is simpler to 

perturb the elements of A sliGhtly, and one can replace 

A by X ,,,here X '" A - D and D a diagonal matrix ,d th 

sufficiently small positive elements, d., such that 
~ 

}l(X) < 0 and the eigenvalues "Ct) are distinct. From 
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continui ty arc;uments, the optima of I( and)J. for A will 

differ only slightly from those of A. Sometimes, non-

,36 

linear divisors cause little bother since round off errors 

in computation render the divisors linear (see example A,3 

Table 2.1). 

2.10 Some Numerical Experiments 

Prior to the ,,·ork of this chapter the optimization 

techniques of Rosenbroclc and Po,.e1l were applied· to 

determine the minima of the quantit:ies: (a) S(p- 1Q), 

(b)jJ,(P), (c) -~ and (d) _t12~Al the latter being important 

quantities in 2.1.15 and 2.1,16. The quantity S(p-
1Q) is 

the spread of p-1 Q, 

S(p-1 Q) = M(p-1 Q) _ m(p-1Q) 

which is a bound on H(A) - m(A), the spread of He J.(A). An 

algorithm for minimizing (a) to (d) over p.d.s Q is given 

in A,3. The main motivation was to test the usefulness of 

the bounds 2.2.6 and 2.2.7 in locating ne.}.(A). 

Table 2.2 shows some results applied to third order 

matrices, ui,i = l,3being the.eigenvalues of tp-lq 

(u
1 

'" u 2 '" U,3)' Here S(p-1 Q ) is minimized and average 

computation time was 110 mill/sec (I.C.L 1905) for ,300 

function evaluations (l"E). In each case Q = I initially. 

The bounds for matrices A,3' B,3 and B4 are good ,.hereas for 

A
1

, A2 and B
5

there was a tendency for two u
i 

to become 

equal thus destroying the bound. This was particularly so 

for conjugate A(A) and suggests some theoretical reason 

for occurillg. In all cases the minimizing Q was non-unique. 

The results of minimizing quantities (b) to (d) are 

shown graI'hically in Fig 2.1 to 2.,3 by :>lotting 1?;2 vsM 

at stages in the minimization. Three matrices (A
1 

to A,3) 
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A NANE OF 

(LAST nOlf GIVEN IF MATRIX 
A IN CF (2.5.1)) 

-6 Bl 
10 ,0.01002,-.2001 

4 
B2 

~10 ,1110.0,-111.0 

A3 TABLE 2.1 A3 

Al 11 Al 

A2 11 A2 

-10 0 0 

3 -3 0 B3 

2 1 -1 . 

-1 0 -.01 

-0.1 -1 0 B4 

0 -1 -1 

-200,220,-21 B5 

TAN$ 2.2 

. 1 
Minimization o~ s(p- Q) 

~(A) 
-t ~(p-l Q) 

u 1 ' u 2 ' u
3 

-4 
-10 , -.1, -.1 6 -6 1002,.0998, xl0 

-100.0,-10.0,-1 00.35,10.64,.006 

-6, -3, -3 >.004,3. 0042,2.9959 

-2 + 4i, -1 ~.9906,2.4906,.019 

-1 , -2, -3 P -4 .003,2.997,10 

-10, -3, -1 p.9899,3. 024,.9957 

-.05 
-1.1,-,95+ 3i 

2 1.102,.949,.949 

-10 - 101, -1 10 .1~6. 10. h6.J... 089 + 

-ts(p-1 Q) 

300 FUNCT:K:ON 
EVALUATIONl 

.09988 

100.35 

3.0034 

2.4716 

3.002 

8.0942 

'09153 

10.JZl 



are taken from table 2.1. 

Consider maximizinG t? for A3 (Fig 2.3). Initially 

I{= 1f.8 and ).\ = 1.54 , but after 300 FE's '? '" 6.00 and 

.,0.: /}.o X 103 \fhich give an ~ inferior to that of 

Table 2.1. Ho"ever, assuming c constant in 2.1.15, 
o 

38 

initially, Cl. = 11/2 - .JjJ. c = 2.4 - J1.54c • Taldng values 
o 0 

from Table 2.1, cl = 3.0 - 200.78c \fhich is grossly 
o 

inferior. This casts some doubt on the usefulness of 

problem (b). The matrix A
2
causes some lack in converge11ce 

as in Table 2.2. The quantity ~/M determines the size 

of the crude HAS and optimum values \fere superior to 

those calculateti from Table 2.1. 

Finally, the use of the algorithm seems infeasible 

in locating the spread H(A) - meA} by minimizing S(p-1 Q), 

due to high computing time (100 times greater for n = 3 

than straight calculation of A(A)) and the lack of 

convergence to the minima. 
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CHAPTER 3. 

THE DBT~~}?J.:li't~._TIOH CF STA~.~:IJIITY T(}~GIONS BY 

ZU130V t G .;\P?I:_OACH 



The Determination of 8t,,1)::'li ty Rr::.&.i=n 

by Zubov's apnroacn 

3.1 Intrgduction 

AI though a;.J:91icab1e to the theory of dynamic SYSkr.13 

in gcner'al, the '.vork of· Zubov (1) han shovrn zr~eatect 

use in the determination of regiom; of' asyr"ptotic 
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sta1)ili ty (RAS) of autonoLlous nOIl-J.inear cLiffoerential 

eCJ.uations. It reduces the choice of a L~Ta:"Junov function 

to the solution of a partial differential eQuation (PD~), 

the exact solution of \'!hich cletermines the precise T'. ("I .\ 

D. u • ..":". 

Consider t::e autonoraous differ(mtial equation (d. e. ) 

3.2.1. 

vlhere f (09) = 0 and f ~ E, 

and Vlhere 2S. = 0 is an as;wnptotically stable 

equilibrium point. Then the core of Zubov's treat;o'lent 

lies in the following theorem (1). 

Theorem'i.1. 

Let U be an open region containing the ori5in and 11 its 

closure. 

Then a necessary and SUfficient con'iition for U to be 

the domain of attraction (DOA) of systeu 3.2.1. is the 

eXistence of triO functions i'I (1,.) and ~ (:l!;,) with the 

propGrties: 

a) ·il (:;0;) in defined and continuous in U 

b)~) (~J is posi ti ve definite and contil1l.1ous in En 



c) 0 ..::.w(~) L.. 1 :for ~ 

d) if' ~ .. B (B '" U - U) 

and i:f 1I~1I~ o:>:for ~ 

e) Qli 
dt 

€. u, ~F 0 

then lim W'C~J = 1 

~-)- :z. 
(:. U , Hm 1'(~) = 1 

1I~1I -'> 00 

By assuming the fi terms are bounded the :factor 

t 
(1 + 11£112) in (e) may be removed giving the main PDE 

• n 

If(~) = L 
i=l 

,,,here W satisfies (c), which lYe call the regular 

equation. 

By defininG" another p.d. :function 

V(~) = - ln (1 - 1i(~)) 

3.2.2 may be transformad into 

• n "bV • 
V = L ~ f. = - ~(~) 3.2.3 

i=l k ~ 

~ 

lYhich lYe call the modified equation. The solutions 1, 
and V of 3.2.2 and 3.2.3 for arbi trary ~ (~) then gi va 

for the boundary of the D.O.A., B, either of the sets 

3.2.4 

or 

In "'hat :follolYS lYe concentrate on 3.2.3 :for convenience 

(P.D.E. 3.2.2 can be treated similarly). 



3.3. ''1'he Construction Procedure 

We J;)al:e the following assumptions: 

(a) t~ne C o::lponents of f may oe expanded as conver,:;snt 

power series about x = o. 

i.e. 

(b) the linear part is asymptotically stable. 

In all but t:1C simplest caseG' the analytic Golution for 

V of 3.2.3 is impossrole. ConseQuently, Zubov pro,'oserl 

the following procedure. 

ExpresG V and ~ as pov/er' series of arbitrary dcgree 

m and 1. respectively, and vrrite 

vm = V2 "" V3 ,~ + Vm 3.3.5 
1 

~" = ~2 'I- ~3 + +~l 3.3.6 

where Vi' ~ i are homogeneous polynomi ~lS of degree i ancl 

~ 2 is posi ti ve definite. 

Substitute these series for V, ~ and f into 3.2.3 and 

eQuate coefficients of like-powers. There then results 

a set of simul ta:,eous eQuations for the coefficients 

of the powers of the Vi terJ;)s, which may be solved 

successively for those of V2 , V
3

, onwards. Since ~ 2 

, is p.d. V2 is by (b) above and termination of the 

series ,;;.3.5 for any finite m ,7ill result in an 

m - th degree L:lapilllOv function (2). All RAS, Ylith, 

bounuary Vi! = C , can then be obtained VIi th recourse 
m 
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to Theorem 1.6.1. 

A vleal th of experience on the cietermination ot' 

stability regions, (2) - (6), has Sh01'm that the 

series procedure may be non-uniformly convergent 

in that higher' degree Lyapu..YlO\T fli.J."'1ctj.or:~ 0:an. r'es~lt 

in inferior R AS's. It is difficult to show why 

or ha;"! this happens in general, but the fol10'.':ing 

example thrOW6 some light on the iosue. 

3.1~ An Exa,nn1e (Zubov) 

The system is 

k == - x + 2x2
y 

• 
y ::: -ye 

whose n.a.A. is xy< 

Write 3.3.5 

VU(x,y) 

and choose 

as 

=. :> m 
J.~ 

1 

3.4.1 . 

i-j+1 j-1 III 

x y == L 
1=2 

Then substitution into ).2.3. gives 

or· 

( 
2 . 2 

== -2 x + y ) 

2 2 
'" -2(x +y ) 

Equatj.ng coeffts.of l11;:e POViers' and putting u=xy 

gives. the 2m-th dcg. Lyapunov F1.Ulction (LF), 
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,. 

m-1) , ';- u 

Assuming tut < 1, and taking the limit, actually 

gives the analytic solution 

V :: y2 + x 2 

1-xy 

However numerical calculation of the RAS's for various 

m by the method of Rodden (3) gives the RA3 boundaries 

in Pig. 3.1. (m: 51 was near to the overflow value 

of m in computation). 

The aVC1'age radius (1.11.) for m: 50 is slightly 

smaner than that for the quad"atic (1. 2~.), and the 

procedure is highly non-uniform. Considering the 

stabili ty boundaries for m odd 8.nd m even seperately, 

"we ap))ear to have uniform convergence in each case, 

those for m odd being superior. Analysing the example 

further· indicates why this should hapTlen. 

For m :: 2 and m = 4 analytic calculations give the 

following RAS boundaries and tangency pOints, 

v4 :: y2 + x
2 

(1 + u) ." 4-.[3 

9 

with Tan. pts. ii ( - J 2 ,. J 2 _ ) 

.[3 3.f3 
and 

8 2 2 2 3 
V : y ;- X (1 + u + u +u ) = • 93913 

3.4.7 

with Tan. pts. :; (-1.061).2,-°68486) 
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These are also the largest clo~~ contours and gy, 

the gradient of V, vanishes at the respective tangency 

points. 

lfe nOl., sho" that :for any even m there are points ,.,here 

ntr
2m (2!;) = 0" > 1 ::1.-' i or u -, and that the RAS boundaries 

lie inside lul ~ 1. 

From 3.4.4 the gradient vanishes when 

v
2m = x(2P(u) + Q(u» = 0 
x 

and 

f;2m -0 

,.,here 

p(u) = (1 - u
m

)/(1 - u) >0 ,U>-1 

and 

( ) 2 ( ) m-2 Q u = 1 + 2u + 3u ••• + m - 1 u • 

Clearly 3 a u, -1 ..: u "' 0, such that 

F(u) = 2P(u) + Q(u) = 0 

2 = 2 + 3u + 4u + ••• 

since F(O) = 2 and F(-l) ~ 0 

( ) 
m-1 

+ m + 1 u 

I:f F(u) = 0 then 3.4.11 implies by 3.4.10 that 

Q(u) = -2P(u) ~ 0 

3.4.8 

3.lf.10 

3.4.11 

Then ,vith u = U, ,equation 3.4.9 \vill vanish :for some 

because this implies 

-4 -2ii 
x = = 

-2 
u 

Q(ii) p(u) 
'>- 0 

Thus, :3 at least hvo radially symmetric points \;here 

~ = 0, namely + (x, u/x). 

If 5 



Let V
2m 

(x,y) == C pe tlle largest cloGed. RAG 
f:l 

bounrlary. Then it lies in u'7 -1 • For otherwise 

] tv/o distinct pts., (Xi'Y1)' (x2 'Y2) say, in 

COHlElon with xy '" -1 and this poundary. By 3.tj..L~, 

at these pOir,ts. 

V
2m

(X1 'Y1) = Y1
2 

= V
2m 

(x2'Y2) = Y2
2 

then Y1 "'- Y2* Xi == x 2 ' a contradiction. 

Finally the boundary lies inside u '~1 since 

this is the D.O.A. 

Consider nO'."l m odd. Summing tr..e geometric sepies 

in the U terms in 3.1 •• 4 gives 

V2m == y 2 + x 2 (1 _ U m) / (1-u) 3.lt.12 

the contours of which will aLvays pe closed since 

it is p. d. and :tJadially, unbounded. Hence there 

is no restriction to the convergence of the RASo 

to the DOA for increaSing In odd. 

ConJ;1:ent 

Let R be the region of eonvel'gence of the series 

3.5.5 with partial SlL"rl VU. We have sho\m an example 

where R ( IUl ..( 1) is a subset of the DOA, where 

some trul"lCations ( m even) always give inferior RAS's, 

and where otherG ( m odd) give better ones put 

converge p]only to the DOA ( m = 51, still poor?). 

We ask ' is convergence of the RAS to the DOA always 

7' 
non-uniform if R C U. No answer has yet bee:l forth-

coming. 
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-- ---------------------------------------------------

3.5. Direct NurlleY'icaJ. SOJ.Uti011 of: the F.D.B. 

Due to Ue non-~mifoI';ni ty of the Zubov procedure 

a~d the infeasioilit.y of solving the series soluticn 

fop lar'gc n(2), even though formu1ation in possible 

(7), it seems reasona-ole to 1001: for other methocls 

of solving 3.203. In this section we consider 

solving the P.D.E. by a finite difference method. 

We rest:rict the problem to hiO dimensions. 

Write system 3.2.1. as 
• 
x = f ( X,y ) 

• 3.5.1 . 
y :: g ( X,y) 

Then we vn.1ite the F.D.E. '8 3.2.2 and 3.2.3 as on~·.' 

equation. 

oV c-+ __ c:, 
L) -;;'" 

+ 3.5.2. 

Vlhere[ ]. is included for 3.2.2 only, the reguJar 

e<;tuation. 

From a classification pOint of Vie\7, 3.5.2 is a 

linear PDE solvable by the method of cha:racteristics (8). 

Unfortunate1y this leads us bac}e to the solution of' 

the system trajectories. 

Consequently, VIe express 3.5.2 in polar co.-ordinates 

l>V . F ( r, e ) 
~. 

+ W.G{r,8) -;e 

where F =( f cOs e + g sin e) 

G == ~ ( g co s e - f sine ) 
r 

3.5.2 



Consider the mesh in Diag. 1. 

where 

r i = ih, i = 1,2, .. 

·ej = (j-1)l:, j=1, .,11 + 1 

k::2lT/N, 61= e· 
I; + 1 

andV .. ==V (ih, (j-1)k) 
~,J 

Dia$!",. 1 

'(i,j ) 
\ \ 

\ \ 

/' 
V=o·o 

y 

, 
e==O{) 

r --'>-

48 



Choosine; ~ = A(ax
2 

+ 2bxy + cy2)' and makine- the 

approximations about the mesh point (i + ~-, j + ~-) 

( ~):::l: 2h1 « V . 1 . + V. + 1 . 1) - ( V . . + V. . 1)) + 0 (hi \9 
or . ~+,J ~ ,J+ ~,.J ~,J+ 

(-'0/-8)01\. 2.1 «V> ,. + V .•.•.• ) - (V .. + V. 1 .)) + O(lc,h) 
\ v le J..,J~I J..T, ,J ..... I ~,J ~+ ,J 

substi tution into 3.5.3 e;i ves the follo,.,ing Cranl(-

Nicholson type difference equations (9) on neglecting 

second order terms in hand k, 

V' 1 .0.. +V'+1 j+1 b . 
~+ • J J ~, J 3.5.6 

j=1, ••• ,N 

"here VN+1 = V1 

and 

a. = F - pG - z 3.5.7 
J 

b
j = F + pG - z 3.5.8 

C j = Vi,/bj + [2z]) + Vi ,j+1(a
j 

+ [2z]) - Ifz 

3.5.9 

p = h/k, z = h~/2 

. The terms in C 1 are zero for the modified eqn. (~,F· 

and G are evaluated at (i+t, j+t) i;" 3.5.7 and 3.5.8). 

Since V(O,O) = 0, we can assume 

for ini tialcondi tions (E:.70)small), or, make 

jt::1, ••• ,N 

V
2 

being obtained from the series 3.3.5. 

We have an initial value problem (9) and by "riting 

3.5.6 as a linear system of equations 

AV. 1 = C 
~+ -



where E. = (c l' °2 , 

V. (V 
-l + 1'::: i+1 ,1' •••••••• Vi+1 ,N) 

. and A. :>:tl.l'T X N coefficient matric, an efficient 

computer algorithm results for t~eir solution (A2), 

3.6 Nllificrical E;:mJDles 

The folloyring examples show features of the method .• 

Exaraole ').6.1 

The system is. 

(x
2 

-x + Y + x 

y ::: -y - X + Y (x
2 

+ 

With ~ ::: 2r~ N _ 100, h ::: .0125, Vi ::: .25 

solution of the regular equation gave V:: 1.0000 

for all mesh pOints on r e 1.0. T11e analytj.c 

1 t · . V 2.. 2 1 0 f- B so u lon u) ::: r gl vlng r ::: •• or •. 

changed to ~ ::: 
2 2 

to:x: + y ,V::: 1.0000 again on 

(1.0;~j)' Constructing the V contours shows they 

are no lon.r:;er concentric c i.rcles as above but ellipses, 

approaching r2 ::: 1 as r ---+ 1. Fig. 3.2 shows variat:'on 
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of V \7ith e for fixed r. ~ hOV1 the nuraerical solution 

of V beCOl:1eS negative for r :> 1 , indicatinc; that tLe 

analytiC solution is not defined for such r. 

EX8.DU1 e 'o6::!.. 

A Van dcr Pal equation. 

*: = y 

• = -:le- - Y + x
2 

y y 

Fig. 3.5 S;10\7S attempted constructions 0:' some V contours 

from mesh 'values, for t::e regular"eQ..uation, v::ith h =.012:3, 



and H = 100. Sil1[;ularitiC'G 

QC cured at the DO.ti ooun0.nr:,r, B, e~.3 in 3.6.1, ~~:i tll V 

ta}:in[; on 1arse ncS3tive values C."4 -ctJ) 

~ = y = 0 . for e = o. If' e. l' ::: 0 for so~ne j, 
J+~~ 

the 1'1ethoc1 "breaks dO\7n. 

The S",stCl:J j.B 3.4.1.With ~::: 2(x:2 + 2x:y + 2y2) 
, 

and initially v(r1 ,e) =. V
2 

=?/2, h ::: '0125 

r 1 ~ • 25 an cl N ::: 100, errors bcb';ce::1 the nUluc:rical 

and analytic _I, 
results ucrc less than 10 ~ for the 

regular CCluation, for r<1· 375 .. As r~1·l~, the 

V..l, . -....:..~ - co rendcrinc coml)utec1 values useless. ~ J 

The reason is found in the analytic solution, 

Siince V ~ - 00 as Xy --->- 1+ 

Fig. 3.3 shows a construction of the V contours, 

while Fig. 3.4, the variation of V along a ray to B 

for various )., 

Comll1ent· 

If numerical values are correct the mesh pOints at 

which Vi,j < 1 lie in U, the DOA. Unfortunately 

the method breaks down near the DOA bour:.clary and the 

values at such mesh pOints, V .. ,are such that V. ~-,>-Co. 
1,J, 1,J 

The accuracy of other pOints Where V. . < 1 is then 
. 1,J 

decreased. 
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Sui table c}ooice of A is also a problem. Large 

values of A means "1;4-1 oJ,Iickly (Analytically, if V 

solves ~ := - ~ the!! V := AV 

and conversely for A small (Pig.3.1-i-). 

Ih.hTlellically, a cri tericn such as 

-t 
0<:'1 - Vi,j < 10 

gi ves a point t near' D. Ix: cenera1 t VIiIJ.. G.cIJCnd. 011 A . 

EinallJ", "{re adc1 that other clifferer.:.ce scherncs for 

" ' ~, .,. 5 - 1 . '. l l~ SO.L. VlIlb .J. ..J lD.Ve gl yen Slml ... ar resu liS. 

It'i8 pertinent in vie1\' 0:: sec"!;ion 3.6 to r.1ention 

t ' ~., ~ ", nb' ',"[',1;' 3 2 2/7 2 ~ o ner r.1e l.r.flCCL8 01. SC..L vlng LJU ov S .L-..'.JL.I • • .J •.• :}. 

bll'nancl and Sa.rlos (196G) (10), treat 3.2.3 and 

syster;'. 3.2.1 as t '.'iO cUfferential equations. Using 

Lie 8sriec t the two equati0118 in (Ic.eotion, 

• ." (2;) 3.7.1 E '" "" • 

• 
~ (z) V := -. 3.7.2. 

wi th 4 p. clef., are integrated. \vi tll reverse. time 

frolil an initial poir ... t E (0) near the' origin (t;)'})ico.ll:l 

V(;;(O)) := 0.0) until V> K, ';rnel'e ?: is a large pos: tive 

nlmicer (e.g. 1,.,:= 20). Hopefully the fir,al pOint ;l!;(t) 

is near D. The proceclure is repeated for a sCllies of' 

init.ial points "C.ntil B iD tr'aced out. 

Kormanik and Li (1972) (13) have e:(tenclea. the method 

and fit an algebraic curYe to thc'final set of points 

by G pattern c'lassifica ticYl algori th.!r~. 
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Troch (1972) (12), Yfith com.:iutati'on cf'f'ic-iency 

in l;1ind,integratcs s~rstcrt~ 3.7.1. and 3.7.2 b::r 

analo,Sue com::;.uter. 'I'he tcr;.i1nn.tion cri tCJ:'ioY'J. V> K 

c.etcr'nline::', n. point on B ~~rJ.d. a mo~e accurate o.igi tal 

point. 1.'11e trnjeetor-y ( or a series of' such) 1'ti11 

trace out D. 

Com:~~(-:n+, 

From lind teu c-omputer exr'erience \7e found Burnand/ 

Sar10s 's method suffered fl~Olll trio drav/backs: 

a) 0.1 thou;;h accurate, COrllputcl' time \'ias )ligh for 

the Lie series ccmputation, 

b) ca:'culatiOl1 of the recu-rnivc terr.u3 (10) in the 

Lie series ':'ias infeasible for cO:';J:lle;c 1'. t" S. of 

As a criticism of llOtll m,ethods \7e ask,i8 the acWitional 

solution of 3.7.2 really necessary since the criterion 

I -V' 
V> k \ or "1 -w <E , rihere '.v == 1-0 ) is saner:hat arbitrary 

as a critorion fo!' '21eo.rnoss' to B? The non LyapUllOV 

method of Davidson and Cowan (1969) (11), restrictec. to 

n = 2 , gives· a partial ar:swcr. For tllcir cpi terion tl~C;:l 

use the f;.mcticll 

v (2£ (to) == 1I,;s(to of T)II 

17hcrc T is the pCl-'i0U.i.C time (for lirr~it cycle) or an 

upper bound (for nodal type systems)" EQ.uatiC!l 3.7.1 

is inteGrated by a fourth order Runge Kutta i'orm'J.la and 



a pOint satisfying V(.!f(t)) = 0 determines 

a ~oint on 3(13). 

Finally, it is QU':;8tioDable ~;!l-.:cthCl'l 811;:/ of the above 

rn,etl~cciG are useful for ii> 2 in view of the· COf:1puto.tlon 

time involved. 
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CHAPTlm 4 

OPTI}UL QUADRATIC LYAPUNOV FUNCTIONS 



CHAPI'ER 4 

Optima1 Ouadratic Lyanunov Functions 

4.1 Introduction 

we will be concerned with the autonomous system 1.4.5 

namely, 

4.1.1 

where A is stable and ,g is expandable as a power series 

with terms o~ at least degree two in xi' the coe~ricients 

o~ A. 
T 

A quadratic LF ror 4.1.1, V(~) = Z PAl is determined via 

Theorem 1.6.1 whose RAS is given by 

where 

Here 

1P2£ <Vm 

Vm = min V(Z) with Z~Ev 
,l!; 

• T ,T I 

Ev : (yv= -Z ~ + :q:, P,g(A)=o, ,ll;';;o) 

and Q is any p.d.s. matrix such that 

ATp+PA = -Q 

Let~(V) be a measure o~ the size o~' the RAS, 4.1.2. 

4.1.2 

4.1.3 

4.1.4 

4.1.B 

Then a problem inherent in this chapter is to maximi~e~(V) 

over the class o~ quadratic LF's, 

4.1.6 

subject to 

Q>o (Q p.d.sJ 4.1.7 

~f'Wil1 be some function of P and thus Q; f =f(P}=f'CQ,» 

The two usual choices o~;o arc the generaliz.ed volume, 

which ror an ellipsoidal region is 
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4.1.8 

and the numerical average radius 

to (p) = 4.1.9 

where the ~i are points (usually equally spaced) lying on 

the MS boundary. i.e. V(Zi)=Vm• (For a general LF we 

haveto (V) = S w(2£)dv, a general volume measure with S the 
s 

RAS , w(~) a weighting ractor and dv a volume element). 

The optimum problem or 4.1.6. is highly nonlinear due 

to the associated RAS determination and researchers have 

thererore concentrated on the numerical side of its 

solution. The works or Weissenberger (48), Geiss (51). 

Szego (52) and Lapidus (49) have this emphasis and depend 

upon the rormulation of 4.1.3 as variants or the con

strained minimization problem 

subject to 

min V(A) = Vm 
71=0 

4.1 .10 

4.1 .11 

They chose various numerical optimization techniques to 

solve the problem. 

The rollowing sections or this chapter rill a need 

in that ror various systems either an optimal quad-

ratic is round analytically or some userul RAS is deter-

mined. Some new properties are round which are conrirmed 

to hold ror general and higher order systems by efficient 

numerical algorithms. 
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4.2 Examples on the Determination o~ Optimal Quadratics and 

Simple RAS's 

It is well Imown that necessary condi tions ~or a 

solution o~ the constrained problem 4.1.10 are the (n+1) 

Lagrange equations in the coe~~icients Xi and the 

Lagrange mul tiplier A 

ll.vW + A2"i(~) =0 

v(~) =0 

Geometrically, if' land A~ satis~y these equations then 

"Y...V(x'~) = -I( '1 V(x'), which implies that the contours 

~ . * 
V(~)=V(~· ) and V (~)=O are 'tangential~ at ~=~~ Con-

sequently, 4.2.1 will be called the tangency eauation and 

z.* a tangency pOint. Of' all such x*. x:~ ~o, we re quire 

the one minimizing V on 4.2.2 •• i.e. the global minimum. 

This will be called the valid tangency 120int 

cases no valid tangency exists e.g. ~o:::o, ~"'o; 

unbounded and En the DOA) The equations 4.2.1 

(In some 

then f is 

and 4.2.2 

also hold ~or a general LF but valid tangency 120ints may 

exist ~or which '1 V (x'~) =0. 

Analytically, 4.2.1, imp lie s the n-1 independent 

equations 

with 

VX1 = VX2 -
..-- ..---
V

X1 
VX2 

= aV 
~i 

• • 

For descriptive convenience we call the contour 

• 

4.2.3 

V(~)=O, ~~o, (i.e. Ev) the constraint con~ and as its 
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component~ we use the intui ti'1:~ def'ini tion as the subsets 

of' Ev which f'orm continuous connected curves (n=2) or 

surf'aces (n=3). If' two components of' Ev are radially 

symmetric (RS) Vie will call this one RS COl!lPolliill.1i. and like-

wise f'or tangency points. In the examples which f'ollow 

we choose I' as the volume (or area) measure. 

Consider the system f'rom Zubov (1) 

Xi = -xi + 2 X12X2 

in 3.4.1, namoly, 

81 

*2 = -x2 

Any p.d. quadratic is a LF f'or this 

system so let V= ax12+ 2bX1x2+cX22 with a>o, ac-b2>o. 

Then 4.2.2 gives 

and af'ter s9me manipulation 4.2.3 gives 

x 1
2 - 3 exi x 2

2 - 2 be X23 = 0 
. it ii"2 

Le t u = x., /x2 ' then dividing !j .• 2.5 by x 23 give s the 

tangency equation 

u3 - 3 £.l! 
a 

- 2 bc 
~ 

= 0 

4.2.4 

4.2.5 

It is well known that the standard cubic u3+pu+q=O has ~£l 

roots if'J?"-o and L~'p3 + 27q2 ;.( O. In this cll-se they are given 

by 

u = X1/X 2 =1i: cos(l) 

,,,,here 1 = -$ coJ(z), l-} (2Tf+ cos-1 (z» 

4-.2.8 
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with z = b/ rac. Substituting 4.2.8into 4.2.4gives 

xl = (a/c)! z (L~cos2(1) +4zcos(1)+1) 

8cos 2(1) (~c08(1) +z) 

and thus 

Vm = (ac)tr (4cos2(1) + 4ZC08(1) +1)2 

8 cos2(l) (2c08(l) + z) 

The area,P(V) =;o(a,b,c) 01' the RAS is 

P = 1T(4cos2(l) + 4zcos(1) +1 )2 

8 J1_Z2 cos2(1) (2cos(1) + z) 

4.2.9 

4.2.10 

which, interestingly, is a !'Unction 01' one parameter, z. 

For p.d. V we require IZI<1 and a)o. Given such a z, 

by varying a, band c to satis1'y z=b/(ac)!, an infinite 

number 01' quadratics exist all giving the same area 1'01' f> • 

Since this is tx:u,e 1'01' the optimizing z, z .. , say, the optimal 

quadratic is in this sense ll2ll-unigue. 

that z·~ = 1/~2 giving f> = 4Tr. 

It can be shown 

By inspection 01' 4.2.4 the lines x1=o, X2=0 and 

aX1+ bX2=0 separate the phase space into regions where RS 

components 1'01' Ev lie. Further, we have 1'01' 

a) z,,;o, 

b) z>o, 

1 RS component and one tangency point. 

2 RS. comppnents and 2 tangency pOints. 

(See Fig. 4.1). Also p is small 1'01' z~o and increases to 

41T with increasing z until z=z'~, therea1'ter decreasing. 

The valid tangency point 1'01' o~z.:j/ J2 lies on a RS 

component in x1x2~o, whereas 1'01' J: "z~1, on a RS component 

in x
1

x2,'::0, When z=z*=1/[2 we have the important property 

that two v~id tangency points exist and thus an optimal 

quadratic boundary V.Vm touches both RS components. 
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Thel"e are an inf'ini -renumber of' such boundaries satisf'ying 

which, in the limit, sweep out an open 

region. Fig. 4.2 shoVls some of' these together with two 

loci obtained by eliminating the variable quantity (a/c)t 

between 4.2.8 and 4.2.9 giving a locus of' tangency points 

as 

x1x2 '" (Lfcos2(1) + 4zcos(1) + 1) 

cos(l) (2coS(1)+z) 

4.2.12 

Yollid 
For Z = z'~, the twoAvalues of' 1 are 11= 11/12 and 12= 71T/12 

which give the loci xi X2= 13 -1 and xi X2 =..( 13+1) re- . 

spectively. Since a quadratic RAS is a convex region an 

. estimate of' the DOll is given by pOints satisf'yingX1X2~-lJ-l 

A better estimate are the loci 

. of extreme points on the major and minor axes given by 

(R1cosS1, R1sine1) and 

R =)2 (2b
2

+1+h+4b
2

), 

1 bJ 

(R2cos62. R2sin62) where f'or b > 0 

R2 = j?:'J(2b
2

+1- ~1+4b2) 
b 1 2 

and 01 = (TT+ Cl) /2, e~= a/2, a = tan- (2b/(1-2b » 

A System of' Special Form 

A simple quadratic RAS may be determined f'or a second 

order system of' the f'orm 4.1.1. with g(e) an homogeneous 

pOlynomial and A of' the f'orm 

A = L: _; J wi th ~2 - 4 Cl 4. 0 (01. ,{3 > 0) 

that Ip+PA= -AP, For then a p.d.s. P exists such 

namely, to a constant f'actor 

p = [
0\ f3/2 ] 

M2 1 

, 4.2.13 

L-______________________ ~__________________ . __ 
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Equations 4.2.2 and the tangency equation then give 

and 

• 
v = -Av + 2 xTp g(2£) 

(~Tp£:)X1 

(2£Tpg)X2 

4.2.14 

4.2.15 

The Eill!ill.£?~ is that 1+.2.15 reduces to an homogeneous 

polynomial in xi and x2 as in 4.2.5 with reduction to a 

polynomial in (~). Its roots determine straight lines 

as in 4.2.8, a..rldXtangency points exist where such' lines 

• 
intersect the constraint contour, V = o. An example is 

the Van del' Pol equation: 

Example 4.2,2, 

The system may be written 

~1 = x2 

• (. 2). 
x2 = - El-xl x2-x1 . 

82 

Its DOA isalimit cycle region depending upon E>o. 

ChoOSing P in 4.2.13, 4.2.14 and 4.2.15 reduce to 

x12,c2 ( xi + 2x2) - (x1 2 + EX1x2 + X22) = 0 4.2.16 

and 

4.2.17 

Substituting z= :q/x2."" R 
3 

(R= 4"e - Eo) in 4.2.17 gives the standard cubic 

z3 + pz + q = 0 

"-Por real roots 4p3 + 27q.<!.:o which holds when e.:2 (here 

132 _ 40( = ",2-4). The roots are given as 



Xi = x2 (2 cOS(1)J9 +R2 ";R)/3 

where 1 = ! cos-1 (T) or 1 = t (2fT+ cos-1 (T) r 
and ~ = - (2R3 - 2Z~t 

2(9 + R2)3/2 

4.2.18 

It appears there are 2 RS comp~>nents of' Ev f'or a given EO and 

only two possible RS tangency pOints (or values of' 1) • 

. Substitution of' 4. 2,18 into 4.2.16 gives at tangency 

Vm = (d2 +Ed + 1)2 

d(~d t2) 

with d = * (2 cos (1)(9+R2)t - R). Valid values of' 1 must 

give d(Ed + 2)':>0. WhenE:= .1. f'or example,two values of' 

1 are 57
044' and 62

0
16' giVing Vm = 1.74, the valid 

boundary value. and Vm = 2.14 respectively. 

The optimum quadratic is impossible to obtain analyti

cally and is f'ound numerically. (See f'ig. 4.5(a) and 

4.5(b» • 

The RAS is a reasonable estimate of' the D~~. 

Example lJ:.2~ 

Another practical example is the Duf'f'ing equation 

• xi :: x2 S3 

X2 :: -"'x1-j3x2 + CX13 

The singular points are Pi (0,0) and P2 

(r~, 0), P3 (-it, 0). 

Consider the particular case cJ.={3=E= 1 .0. By choosing 

b1 
c. 

Q= 

in 4.1.5. with Q p.d a general quadratic LF is f'ound to be 



with R = 2(a-b) + c. The constraint and tangency equat-

and 

-2 [X1 2(Rb-a2) T x1x2(Rc-a(a+c»+x22(ac-b(a+c»] 

+x12 [x1 2(R(a+c )-4a2)-x1x~a(a+c)-3x22(a+c)2 ] = 0 

4.2.21 

As a first estimate. 4.2.14 arid 4.2.15 give us, with 

V = X12+X1 X2+x22, 

and 

4.2.23 

The onl~ RS tangency point corresponds to x2=o in the 

latter i.e. + (1.0.0). 

2Tf/ J3. 

It gives as RAS V<'l.owithf= 

Trying various values of a. b, and c and solving 4.2.20 

and 4.2.21 for the RS tangency pOints - which involves the 

real roots of a 4th degree polynomial - it is found that (a) 

only one RS component of Ev and one RH tangency point 

exists and that(b) f (p) increases when a = const. and 

b, c -70. In the limit 4.2.20 and 4.2.21 give with 

• 
V = UX12(x12+x1X2-1) = 0 

and 
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Clearly, xi = 0 is not a trajectory of' the system ex

cept f'or ti "; O. 

Thus theorem 1.5.3. may be used to give an RAS. 

From 4.2.24 x2 = 1-x12 and use in the last equation gives 

xi 

:;:: (1,0) as the valid R8 tangency point Withf'(P) = 2Tfand 

with MS boundary 2x12 + 2x1x2 + x22 = 2.0. (Nwnerical 

worlc conf'irms that this is the uniaue ol)timal boundary). 

Fig. 4.3 showS the boundary in relation to its constraint 

contour. 

The exam:ple gives as an o:ptimizing Q. 

Q = [~ ~J 
which is p.s.d. Using the same Q a simple RAS boundary 

is easily obtained f'or the general case of' system 83 as 
3/2 

V = Xi 2 
(0/ *fo2) '" 2 x1x2 + x22 = ~ 

Eo 

wi th f = 2o(TT,B/e. Thus we see that increasing,B, the 

damping coef'f'icient, will increase the area of' stability, 

as will decreasing ~the f'orcing term coef'f'icient. 

Example 4~ (The n-Dimensional Case) 

System S3 is a particular case of' the n-dimensional 

system, 

0 , 0 • • 0 1 0 1 

0 0 , 
• • 0 0 

• • • • • • • 

• • • • • • • 
• 
2f.= 2£ + E. 84 

0 

-a,-a2 -a
3 • • -a x 3 

n , 



with A stable. A RAS is obtained by solving 4.1.5. with 
_ T 

Q - £1 £1 where £1 = (1,0,0, ••• ,0). It can be shown (see 

Lershetz (43)) that P 

. ( T 
C = ~. A £1 , •• 

is p.d. ir the matrix 
n-1 

, ATe1 ) has rank n. 

For this A, C = I and hence P is p.d. (Smith (53) 

gives a method ror the determination or the Pij) 

Consider the case ror n = 3 where ror A stable the 

rollowing Routh-Hurwi tz conditions must hold (17) 

For the moment put E. = 1.0 then the re quired P is 

aZd 1 

p '" 
• 

d(a~+a1) d 
1 

z 
Z d -- a} 

a
J 

a
1 

, 
(a

J
a

Z
-a

1
) 

d 

> 

• );...2..26 • 
aJi 

Wi th V = z:,T P z:, the 

V = -x1 2 (1_ 1 
. a

1 

constraint equation is 

(x1 2 + dx1x2 + £ x1 x3)) 
a3 

or the tangency equations, the equation 

The other equation 

• 
VX1 
• 

= 0 4.2.27 

4.2.28 

0 



-- -- -- -- -------------------------------

• is more complex. However since V in 4.2.27 is non-

vanishing on a non-trivial trajectory of the system, the 

onl~ component of interest is 

X3 = a3 (a1 - Xi - dx2) 

d Xi 

Substituting the latter and the result of 4.2.28 into 

h.2.29 we easily obtain an equation in Xi only, reducing 
4 

to Xi = a1(a3 a2 - ~). Thus the valid RS tangency point 

--is + x , where 

(ai (a3 
.1. 

Xi = a2 - a1 »4 

X2 = - a3 Xi 

:&:3 
_ 3 ( 

= Xi u1 - + X1 2 (da3 -1» 

a 1a3 

t 2 
Also Vm = (ai/d) and since d (p) =fda1J ___ 1 

2 Sa3 • a
3 

1 

the determinant of P, 

.5 
;O(p) =TT2J2 al (~ );} 

d7 

For any E an RAS is obtained with becourse to the 

ins theorem Which holds when s(:£)::: E:.e
k 

(2S), with Sk 

homogeneous of degree k. 

Theorem 4.1. 

follow-

If V = if Px = Vm is a quadratic boundary for 4.1.1 

which has a tan. IJt. at 2S = 2S* for E.::: 1 .0, then for any 

e.?,0,[j..1.1. has a tangency pOint 2S = ?:{'/£-J.r which lies on 
2 

the boundary V ::: Vm / e,K':f. 



For system 4.,., with IS. = €..c.:
k 

He have 

1 ( T = - -x Qx 
( 

2 \ - -
t. k_,1 

an.d since IS.k C,,;) is of degree le 

• 
Let ,,(~) == ::ZV(2S) + A2V(~) , then 

(
., ) 

( .. I k-') li 2SJ €. =..1.-, ~x + A( -Qx + 
(-)[- .-

. f. k-l 

'.C (le:,) ] 
+ EJ (fIk (?Y' E. »P2S) 

Since J(fr;k(2S»), the Jacobian of £l:
k

, is of degree k-' we have 

• 
Hence if' .!:L(~) == o and V(2S) = 0 are satisf'ied f'or f. = " 2S == 

and some A= A*, they are satisfied for all £'>0. 

• • • • • • • 

* 2S 

For the example above only one tanccncy point exists for 

£ >- 0 and thi/s occurs at 2S = +?Y'f{. 
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~llple 1f,2.5 

As a final example consider a generalization of system 

Si 

• e(X~J~~2J. xi = - xi + 

• 
x2 = - x2 

• 
• 
• ss .•. 

xn = - xn 

with i1 > 1. Consider a simple quadratic LF 

The constraint and tangency equations reduce to 

• 
V =2 (-V + d1 €,x1 gi) =: 0 

and the (n-1 ) equations 

x 2 =: d1 Xi 2 
ij j 

~ ~ (1 + i1) dj 
j=2, • • n 

Substitution oi' L~.2.31 into 4.2.3Q- gives an eqn. in xi 

from 

as, 

which the tangency pojnts follow. 
1 

Then Vm is given 
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where 

m 

and f'or t he volume ~ (D) :: iTVm 

n/2 

Jfld. 
J 

The example shows that 1'or some choices of' the i
j 

the 

volume becomes unbounded. For, select 

n = 2, i1 = 2, i2 = 2, E. = 2 • 

. Tbe system is 

• 
+ 2x12xi xi = -xi 

• 
x2 :: -x2 

and V = K d1 
d22/3 Ylith ~:: IT K (d2) 1/6 

(d1) d1 

Put d1 :: 1.0 and let d2 --'> 00; then f--'> Cl') but the quad

ratic boundary is 01' lloor sha:pe approaching the straight line 

Tbe actual DOA is xi 2x2 <'3/2. 

Tbe system S5 is usei'ul 1'ortest purposes 

DOA is always an o:pen region given by 

i1-1 i2 
xi )(2· • 

since its 
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4.3 Numerical Determination o~A RAS and an Outimal Quadratic 

Clearly, rinding the optimum RAS ror a given class or 

LF's even as simple as quadratics is difricult analytically. 

In view of the work in the previous section a more com-

prehensive study or second order systems is needed to in-

vestigate the relationship between the optimum quadratic 

boundary, the number of valid tangency points and the COID-

ponents of the constraint contour. Consequently, a 

special algorithm, both er~icient and accurate, Vias de-

veloped to study the restrictive class or system 

• r (Xi' x2) Xi = = r 1 + 1'2 + • • + rnr 

• 
(Xi' X2) x2 = g = ~1 + g2 + • • + !IDf' 

where ri' gi are homogeneous or degree i in x1,x2 and the 

linear part is assumed stable. The algorithm considers 

a general LF of the usual rorm 

where Vi = 

Consider V 

i.('-l i-j +1 j -.l T 
L-aiox1 x 2 , V2=~ p~ and P solves 4.1.5. 

J
O =l J 

where 

and 

.. 
and V in polar coordinates (r,e) then 

V(r, e) 
mv 0 

= L '\> 0 ( e) r~ 
o 2 ~ 
~= 

i+1 i+j-1 0-1 
'Po (8) = [aojcos(9) sin(e)J 
~ j=l ~ 

m 

V =r 2 I>'/e)i-2
, m = mv - nf- 1 

i=2 'l'i' 

where for 

4.3.5 



i6mv'~i 

min(i-1,nf') 

i >mv,.h. =I ('>.V·1 .• f'. + OV"_1 ,.g,) T l. _. V l.+ -J J l.-c -J J 

Ox1 Ox
2 j=i+1-mv 

where i'or example i'j = i'j. (cose-, sine) and 

i 

- = L 
j=1 

i+1 

=L 
j =2 

These equations hold by comparing lilce powers oi'r • 

• 
Given e, a point on the contour V =0 is then i'ound by 

solving, via 4.3.5. an algebraic equation oi' degree m-2 

in r i'or the root oi' smalle st ma!J!li tude. i" say. At the 
• 

point (f,e) 1 V = V (1",6) and V (r"B) = o. 

Thus the problem 4.1.10 reduces to 

where 

m 

min V (1:',6) 
e 

-L 4i(6) 1:'i-2 :: 0 

i=2 

Hencei'orth Vie restrict 4.3.1 and 4.3.2 such that 

ID = mv + nf' -1 66 so that 4.3.10 is at mcst a poly

nomial oi' degree 4 in r (Note ~ 2, ~2 =1= 0, 'tie i'or Cl 

positive def'inite) \7e now describe the main sub-

algorithrl1s: 

4.3.9 

4.3.10 
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Root Finding Algorithm. 

Solution of 4.3.10 for its roots ri (i = 1, m - 2) 

is possible by iterative techniques (Froberg (8» but 

for m = 6 ?Jll-~oot~ are obtainable analytically; those 
I 

of third and fourth degree being solved by Cardans and 

• Descartes method respectively (see Froberg (8» • 

• 
When searching along the constraint contour (V = 0) 

for tangency it is necessary to keep successive solutions 

of 4.3.10 on the same component. This is done by find-

ing the root of smallest magnitude, r, of the same sign 

as the previous root, ro say. It is also convenient to 

replace a large or complex root by some upper bound, Rmax 

say. Thus I r.j I > Rmax for some €I indicate s that no point 

• 
on V = 0 lies alqng the ray (r, e) except r = O. 

Similar considerations apply when solving 

mv 
L \lJ~ri = c 
2 ' T • . . 

for a point on V = constant say. 

A general flow diagram is indicated in Fig. 4.12 where 

IV is. an indicator set to 0 or 1 and e a small number 

testing the leading coefficient of 4.3.10 for zero value. 

( -6) typically G = 1 0 • 

Direct Search AlgoritQm 

Problem L~.3.9 can now be regarded as finding the min-

imum of a scalar function V(S) = V(r(e),e). Starting 

from some initial point (ro ' eo) on V = 0, a sequence of 

values e j is determined. 



and si be a suitable step length. Then Fig. 4.13 gives 

the f'low diagram l'Ihic h der i ve s 3 value s of' e, e 1 .l. e 2 .( e 3' 

which bracket $~', the value giving a relative minimum of' 

V (e), * V say. A :predicted minimum at El m is f'ound via 

a well known quadratic f'it (see I.e.r monograph (41» 

:procedure, which can be re:peated on the best three values 

of' em, 61, 62,193 that bracket the minimum (not now 

equally spaced). Convergence is obtained when either 
- -t _ 

a) I em - em I L1 0 , vlhere em and em are sucessive :pre-

dicted minima of' e~ or b) the number of' repetitions 

exceeds some integerp I say; whichever comes f'irst 

(typically I = 5 and t = 3). Finally, an upper bound is 

:placed on the step length si of' Smax which if' exceeded 

restarts the initial search for the bracketing values, 

(Smax = .15 rad. is suitable). 

Algorithm f'or RAS Determination 

The main steps in f'inding a RAS f'or the LP 4.3.2 are as 

f'olloYls: 

(a) with S = TT;1{ (N = 10 say) let 

e j = jS, j :: 0,1, • , N. Determine min V (e j ) 
j 

= min V (rj. ej) and let e:~ be the min-
j 

imizing e j. 

If' all I rjl ~ Rmax incl'ease N and repeat (a) 

otherwise (b). 

(b) with eo = e::' (v (l' .... , e/) :: 0,0) f'ind the 

nearest9 m via the direct'search algorithm. 

Then erm, e ill) i~ a tanp;enc:r noint and 

V = V (rm, em) = Vm a :possible RAS boundary. 
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Choose a conservative boundary (since tan. pt. 

not exact) of V = V(r, em) = v~ with I' = rm (1-0) 

( '6 = .01 in practice). Test tan. pt. 

via step (c). 

(c) Select s1 = 211';N1. For ej =em +js1, j = 1, 

• ,N1, find rj the valid root of 

• • 
Calculate Vj = V(fj , 9j ). 

• • If f'or some j ,Vj _1 .(obut Vpo.o tangency is 

* invalid; put e = 6 j and repeat (b). Other-

• 
wise (d). 

Find f> (V) , plot contours of V = Vm or V = 0 

if re qui red. 
• 

atep (a) insures a valid initial. point on V = 0 near the 

origin and (c) insures a valid tangency (typically, N1 = 50). 

Also the search in (c) is reduced if the smallest root of 

opposite sign to rj is found, then s1 = TT/N1 with N1 = 25 

say. The algorithm, called REGION, was programmed in 

FORTRAN rr and determines RAS's of quite general LP's. 

Optimal Quadratic Algorithm 

Algorithm REGION, in conjuction with Powell's conjugate 

gradient algorithm (33), was used to obtain optimal quad-

ratics for system 4.3.1. The constraint on Q (Q p.d.) 

was avoided by 

matrix L G. t. 

Thus 

maximi~ing ~over an upper 

'1' 
Q = L L + Eo I, e>o. 

triangular 



Considered as a :function of' t1 and t 2 , ;0 (t1' t2) was 

f'ouna'bY REGION f'or any (t1, t2) which was a:fUnction value 

input to Powell's routine. Fig. 4.14 shows the interaction 

of' the various routines. 

4.4. Numerical Results 

In view of' Example 4.2.1. and the results that f'ollow we 

make the f'ollowing def'ini tion w.r. t. measure;o (V). 

Def' 4.4 

.An asymptotically stable system has property A \V.r.t. 

an optimal quadratic (OQ) and its (RS) constraint contour if' 

a) at least two valid (RS) tangency pOints exist or b) only 

one (RS) valid tangency point exists, there being only one 

tangency point f'or any general quadratic. (~, an OQ 

having two RS tangency points but only one RS valid tan

gency point would not satisf'y property A). 

System Si, satisfying (a), and S3, satisfying (b) with 

cl. =p = E = 1.0, were shown to have this property. In what 

f'ollows the property will hold to a certain accuracy in 

that if' ~1 ls valid tangency point and ~2 any other then 

the property holds if' 

IV(2£1) - V(~2)1 < E. 

V(~1) 
( E. = 10-3 say) 

In order to generate systems with say k components of' 

Ev, and thus k possible tangency pOints, consider the 

system 

77 



• 

• 
X2 = - ooc1 - f3x2 + ;fk(X1, X2) 4.4.1. 

(fk homog. deg. k). Then Ev consists of pOints (I', e) 

where 

-
(P

ij
, elements o:f p), 

with Y1 = cose, Y2 = sine 

as F = b ft (Y2 - aj Y1 )-; 
j=1 

l' . 
ii.Q:/. . G(e) 

=-

Clearly, F may be factored 

and by suitable choice of aj 

(real or conj. complex) the lines Y2 = aj Y1 partition 

E2 into regions in which either 1, 2, •• ,k or k +. 1 

(RS) components ot: Ev lie for k odd (even). 

System 86 (navies (44» 

• 2 
xi = 6x2 - 2x2 

X2 = 1OX1 - x2 + 4xi2 +. 2x1x2 + 4x22 

The singular points are Pi (0,0) and P2(0,2.5). 

86 

The DOA is a limit cycle region, (Xi - .5)2 + x
2

2,1.0 

For any quadratic the system has one component of Ev 

but Fig. 4.4. shoVls an initial quadratic with one valid 

tangency and the uniaue 09, \Vi th two. 

poor RA8. 

System 82 (Van der Poll 

The OQ gives a 

Consider Example 4.2.2. with E = 1.0. Fig. 4.5(a) shows 

the OQ boundary in relation to the two R8 components of 

Ev. The OQ is unique with two valid tangency points. 
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Fig. h.5(b) shows the variation of the OQ with c. Its MS 

increases both in area and elongation and reflects the 

change in the DOA. Property A held in all cases. 

System 87 

8.6 
• 
x2 :: - Xi - 4x2 +- t (X2- .5x1) (X2 - 2x1)(X2 ojo 2x1) 

The singular points are P1 (0,0),P2 (~2,0) 

the latter beingasaddle pOint • 

For a general quadratic Ev may have 5 

(X2 +- Xi) 

components and 

the valid t'angency alternates between two of these near 

the optimum. The OQ's obtained via Powell for different 

initial (t1, t2), varied considerably. Three supposedly 

OQ's are shown in Fig. 4.6. Each has two validtm gency 

paints so we might suspect a non-unique optimum, as for 

system 81. However, consider Fig. 4.7 which shows the 

contours of f (;0 = av radius) in the t1 - t2 plane. 

There exists an equal tangency curve - shown AB - such 

that any point lying on it produces a quadratic with two 

valid tangency poi~. Infact the three quadratics Vi, 

V2 and V3 in Fig. L~.6 correspond to the points Pi, P2, P3 

on this curve - tar~e~cy occurring on component S for 

points near and above AB and on T for points below AB. 

The reason for the bad convergence of Powell is the 

'sharp ,corners' of the f - contours on AB. For then 

the assumption that;o may be ap1?roxlmated by a quadratic, 
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on which Powe11 is based, breaks down with a consequent 

loss in search direction. 

In part, this explains some results of' Bream (45) who 

showed the inf'eriority of' Powe11 compared to the simplex 

method of' Ne1der and Mead (46) v/hen optimizing ;0 f'or 

Zubov functions obtained f'rom series 3.2.3. Por higher 

degree LF's this lack of' convergence would be even more 

prominent. 

The Simplex method, not relying on gradients or quad

ratic f'its, still retains a f'lexib1e search direction even 

when AB is reached. 

System 87 also exhibits a problem when using any 

optimization routine. Consider Fig. 4.7. with a poor 

initial guess, 0 say. Searching along the gradient or 

coordinate directions in turn, we arrive at E or 01 on AB. 

Further improvement is only made by moving along AB in SJl 

oscillatory f'ashion. As the valid tangency alternates 

between compommt S and T, repeated use of' step (c) is 

needed in algorithm REGION. This increases computer 

. time. 

In contrast to S7, Fig. 4.8 shows thefl-contours f'or the 

Van del' Pol system. Again, the equal tangency curve is 

present - f>.B - but Powell t s method has little difficulty 

in reaching the optimum since the contours are quite smooth 

SJld AB is almost parallel to the 

System S8 

A s~'stem giving 3 components f'or Ev is 
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• S8 
X2 = - X:2 -I- xi x2 

with singular points P1(O,O) and P2(i,2). Fig. 4.9 shows 

three quadratic boundaries with their associated constraint 

contours, while Fig, 4.10, the;o -contours (f= area). In 

the latter Vi corresponds to the initial point I (1,1); 

V2 to the point J('206,1'0), the point reached a~ter 

searching along t2 = 1·0; and V3 to the point 0(.233, ,449), 

the. optimal point. The fact that I and J lie on different 

sides of )-B is illustrated in Fig. 4.10 where Vi and V2 

have valid taneency on different components. The lloint 0 

lies on AB and 'propertyA! holds. (Note, there are quad

ratics which have valid tangency with the third component, 

but these have small area). 

System S9 

Consider a more general system 

• 
2x1 - 3x2 + xl + Xi 2x2 -

4 4 89 

+ x22(X1 2 + x22);1J. 

+ (X2 - ~/2)2 (x2 - 4x1) (x2 + .5X1) 

For a general quadratic LF there exists 5 components of 

the constraint contour of which only two are of interest near 

the 0lltimum. Fig. 4.11 shows an initial quadratic, Vi, 

Vii th one valid tangency point and the optimum, V 0' "li th 

two. 

I 



comment 

Many other second order examples have shown similar 

results. Certainly, the examples shown here have in-

dicated that property A is quite general and that it 

holds ro~chosen as the average radius or the area. 

4.8. Optimal Quadratics rOI' a Restricted Class or Hish Order 

Systems 

The optimal quadratic algorithm previously outlined 

. can be generalized to the class or systems 

4.5.1 

with nrs:5, by .using the general polar coordinate system 

X1 = I' c1 c2 • • cn-1 

x2 = I' c1 c2 • • Cn-2 sn._1!. 

• 
4.5.2 

• 

Xi = r c1 c2 • • cn-i sn-i-1 

• 

• 

Xn = r 31 

82 

Let Yi = xiiI', 1 = 1, • ,n. Then given e 1 (1=1, • ,n-1), Z 

is determined, and a pOint ~ on the RAS boundary, 

~T ~ = Vm, or the constraint surra ce , V = 0, is round by 

calculating 



4.5.3 

~ by solving the polynominal in I' 

nf 

~ ti (;Z) 
i-1 

re =0 

Vlhere?1 = - ;l Q;f. and~i = 2;LTp ill. (;Z), i ,.1. 

The root of smallest magnitude with a given sign of 4.5.4, 

~ say, is. found by using the ROOTV algorithm and forms the 

basis of a new algorithm for RAS determination, called 

DN'REG. 

For RAS and tangency point determination the problem 

of minimizing V on the constraint contour is replaceCL by 

min V('i"-,;Z) 
;Z 4.5.5 

with i'the required root of 4.5.L~. The minimization is 
(33) 

over the n-1 vz.riables of e i and for this Powell' s~method 

was used, replacing the direct search method mentioned 

previously. The OQ. was determined by maximizing fJ by 

the Simplex Method of Nelder and Mead (46) over the 
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m - dimensional space of the elements of the upper 

triangular matrix L, with Q. = L'lt + E;:I and m = n(n+1)/2-1. 

The algorithm was especially developed to study third 

order systems but is easily extended to n>3. In this case 

the steps for DNREG are those of REGION except that (a) 

and (0) are noVl 2 - dimenSional searches: 

a) Let Si = "IT /2N1 

82 = 2rvN2 

(Hi = 5 say) 

(N2 = 15 say) 



i = 0,1, • ,Ni 
4.5.6 

j = 0,1, • ,N2 

and determine min V(:l.i J') = V(r~T1:l.i j) with:l.1'f. the 
i,j , ·u' 

minimizing :l.i,j. If all / ri,jl ;,.' Rmax increase N1 and N2 

and repeat (a) until some /ri,j/<Rmax. Otherwise step (b) • 
• 

(c) Tangency is valid if max V<.o on Vex) = Vm. Let 
~ -

Y: (~1' ~2, •• ,In) be a set of unit vectors, determined 

as in 4.5.6 but with a finer mesh (Ni = 15, N2 = 50 say with 

N = 16)(51 ). Det"ermine 

4-.5.7 

• 
If VM4) go to (d) otherwise let :l.;~ be the maximizing :l.j 

and repeat step (b). 

The unit vectors were stored through the Simplex max

imization, and also, step (a) was only used for the initial 

quadratic,. the initial :l. for the POVlell routine being that 

obtained i'rorn the tangency point of the previous quadratic. 

The flow diagram of Fig. 4.15 shoVIS how the complete 

OQ routine was divided into subroutines for FORTRP1{ TV' 

Progranfuilng. 

An initial L determines an initial point of the simplex 

(a set ofm+1 points in m-space) written 

• • ,tm) where 



o 

o o 1.0 
(t6 = 1.0, m = 5) 

4.5.8 

The remaining m points of the simplex were 

j = 1, • • ,m 

with h a parameter. 

In the following examples only 3 iterations (30 , 
function evaluations of r) of Powells method were needed 

for step Cb). 

4.6. Numerical Results 

System Si 0 
. o\'"cte\'" 

The third~system is 

• 
x2 = x3 S10 

x3 = - X1(1+x1
2

) - 2x2 - x3(1-x32) 

For a general,quadratic, xT 
Px = V, ti1ere appears to be 

two RS tangency points and two RS components of Ev, 

which lie in E3 for Which 

With h = .3 and N = 616 the initial quadratic boundary, 

with Q = I, was 

2'5x1
2 + 5x1x2 + x1x3 + 3x1x3 + 5x22 + 2x32 = .4675 

wi th ;0 = • 32799 (Vol,) and valid tangency 



~ ('005, - '004, '523) 
'1' 

A:f'ter 61 evaluations of';o the best boundary was ~ Px = .847 

with ? =: ·842 and tangency "+ ('7145, - '345, - '367), 

with 

2.144 2.232 

p= • 4.6.1 • 

• • 2.06 

The other tan. pt. + (- .062, - '091, ·682) gave a 

boundary close to this of'V = ·856. 

In general it was f'ound dif'ficul t to obtain the OQ 

accurately due to the high dimension of the problem and 

the approximations involved. However, the example shows 

property A is present. Firstly, Fig. 4.16 shows sections 

of the initial and best quadratics in relation to their 

constraint contours and DOA's. The section through 

x3 = ·3677 shows the extra point of' contact of'V =: Vm with 

Ev f'or the OQ. Secondly, Fig. J.r..17 shows how valid tan-

gency alternates between the two possible tangency pOints 

as the maximization of ? progresses, and indicates an 

equal tangency surface. 

the DCA. 

system 811 (Davidson (47») 

The RAS is a good estimate of' 

A system posse ssing a limit cycle is the following: 

S11 • 
X2 = X} 

X} ::: - ·915 Xi +- X2 (1 - .915 Xi2) - x3 
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Again there are two possible RS tangency pOints f'or a 

general quadratic, and two RB components 01: Ev. 

:, -1 
With h = .1, N = 616 and an initial P of' P = (SS) 

(Egn. 2.2.2) the RAS boundary \'/as 

24· 2x1
2 

- 26'4x1X2 + 26'4x1X3 + 25' 8x2
2 

- 27' 6x2X3 

. 2 
+ 27x3 = 2'07 

with fJ= 0105 and tan. pt. '+ (.249,-171, - .223). 

Ai'ter 90 evaluations of' f the best OQ; boundary was 

;z.Tp;z. =: 4·4856 with fJ= '767 and 

18.1 -15.86 1.88 

p = 31.94 -16.59 tan.pt. 
• 

fYl 

;(.376,.271,-.2~1) 
• • 17.19 

The other tan. pt. gives the boundary ~'l'Pe. =: 4;534 which 

is indistinguishable, graphically, !'rom the OQ. Fig. 4.1 8 

shows sections through the initial and best boundaries 

and constraint contours. Those through x3 = .158 and 

x3 =: .241, parallel to the Xi - x2 plane, show the close

ness 01: the OQ boundary to its two components of' Ev. 

In Fig. 4.19 the oscillatory ef'f'ect of' the valid tangency 

is shown again. 

§ystem S12 

A system giving one Ra tan. pt. 1s 

a12 



which is of the form SI •• Using P in L~.2.26 gives the RAG 

boundary 

. 2 
3X1 + 4x1x 2 + 2x1x

3 

Q ~~ __ ~ ~ fA A A\ 
A.J uQ_I.J.. J:ll.I. T \ I, - I, I I • With h = -1, 

N = 616 and Q = I, initially. the best quadratic gave;o = 
17.5 af'ter 100 jl-evaluations. Due to the single tangency, 

convergence to the optimum was rapid. The best boundary 

was 

= 85·45 

with tan. pt. '+ (1.162, - • Lf37 , .0953) 

Q.Qrm:ne nt s 

Computation times for the 3 examples were 1000. 4000 and 

1800 secs. respectively (ICL1905), an average f'unction (f) 

evaluation being 16,67 and 18 secs respectively. 

Comparison of computation times for second and third order 

system depends upon the degree and complexity of the 

system considered and on the values of' Ni and N in step (c) 

of the algorithms. A two fold increase in Ni (Vii th in-

crease in accuracy) may often double computing time. For 

the second order case with Ni = 30 an average evaluation 

took 1 sec. whereas 5 sec. for Ni = 50. 

Generally a compromise must be made between computing 

time and accuracy of the valid tangency point. For high 

order systems the validification of the latter via step 

(c) seems a big drawback. especially so near the optimum 

due to the oscillatory effect of the valid tangency and 

repetition of this step. 
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10'0 

0'0 

SYSTeM 63 
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f=- 2 IT 
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CHAPTER 5 

COHPUTATIONAL HETHODS FOR OPTIHAL 

QUADRATIC AND RAS DETERHINATION 

FOH GENERAL NON-LINEAR SYSTEHS. 



Chapter '5 

Computational Hethods For Dntimal Quadratic and HAS 

Determination For General Non-linear Systems. 

5.1 Jntroduction 

In this chapter hro algorithms are proposed. The 

first is a method for optimal quadratic determination 

'''hi ch does not rely on penalty functions as in Geiss (51) 

or tangency bet,,,een hypersurf'aces as in Rodden (3). It is 

some,,,hat heuristic and is based on an idea o:f Davidson. 

and Kurak (47) ,,.ho have developed a method .. hich uses the 

special properties of a quadratic. The second is a method 

which determines an HAS :for a general quadratic Lyapanov 

:function via a penalty function approach. It automatically 

:finds the valid tangency point to a desired accuracy. 

5.2 An Optimal Quadratic Alf;ori thm 

Development 

The method deals ,d th the system 

5.2.1 

Let A be the Jacobian of' !(~) at ~ = 0, assumed stable. 

Then as in chapter 4 the class o:f quadratic LF's is 

determined as 
T 

V '" ~ p~, ,,.here P solves the matrix equation 

ATp + PA '" -Q f'or p.d.s. Q. By Theorem 1.5.3 the region i{ 

given by If: (~/i!)~ L c) is a stability re(;ion :for c , 

suf'ficiently small, the HAS corresponding to c • Replacing 
max 

P by plc the bounclary of' if may be written more conveniently 

as 
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which bounds the volume 

5.2 • .3 

The OQ problem with respect to f' is then formulated as 

5.2.4 

subject to the constraints 

(1) P posi ti ve def. symmetric 

,vi th 1f no,." 1,: (Y2£P2£ -'. 1, 2£ I 0). (Note we have assumed 

11 fll _ 0 as 112£11 -'r 0). 

Essentially, ? is optimized over the p.d.s matriees(Pj"hile 

constraint (2) ensures that the boundary 2£Tp2£ = 1 is a 

stability b'oundary. The main problems are then, the choice 

of optimization technique and the evaluation of the 

constraints in (1) and (2). 

Constraint Evaluation 

Since any p.d.P is expressible as P = LTL where L, 

d(L) I 0, is an upper triangular matrix, constraint (1) is 

avoided by optimizing? over L. Constraint (2) can be 

replaced by 

where 

In order to evaluate the latter the following approximation 

is made : store 

%j' j = 1, 2, ••• 

pre-determined unit vectors, 

N , ,,.hich ideally cut a closed surface 
n 
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T T 
(2£ P2£ = 1 or 2£ 2£ =' 1 say) at equally spaced points. A point 

on the surface T 
2£ P2£ = 1 is then given by 

Hence 

2:.L = 
II L :E .1/ 

J 
h'f';P:E. 

J J 

j = 1 • 

K = 1 • 

••• 

2. 

j=1, ••• ,"N 
n 

• N 
n 

••• 
K f • 

,.here K
f 

is the number of grid points occurine alone the 

straieht line bet,.een 2£ = 0 and :Ejl IIL:Ejll • Although K
f 

= 5 

was chosen by Davidson (see later). it "'as found sufficient 

• T 
2£ 1'2£ = 1 only to evaluate V on the surface 

mainly because of the starting procedure that follo"IS. In 

short. the problem is now 

subject to 

min d(L) 
L 

max 
j=1 •••• N

n 

provided the initial boundary. 

J
T 

) L:E. 

itl 
.J 

<:: 0 

5.2.10 

2 
IIL2£ 11 = 1. is a stability 

boundary. (The situation d(L)~ 0 is rarely encountered. 

but P = L TL + E:.I can al",ays replace constraint (1). 

The main points of the algorithm are as follows : 
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(a) 2.h£.:Lce of' Ninimization Houtine 

Box's (55) Complex method is used to minimize deL) 

• 
subject to VN(L)<O ,and the variation used is 

given in A4. The method is simple to program and of'ten 

,{orks ,{ell f'or non-convex constraints. 

(b) Initial L 

In the absence of' any other quadratic a natural 

choice is to choose Q = I and solve 

5.2.11 

f'or Pl' For many practical systems this of'ten leads 

to an initial boundary, Eo 70 , being extremely 

• 
eccentric which implies that the components of' V = 0 

are usually long thin surf'aces. The approximation in 

5.2.10 is then only accurate with an extremely f'ine 

mesh and computation time is excessive. In this case 

the choice P
1 

= (SS*)-l is made f'rom 2.2.2 ,{here S 

has unit column vectors. 

(C-) Initial Boundary 

If' P
1 

is f'actored as then 

= 1 o 

• 

(1 
o 

= 10-5 say) 

gives a stability boundary (V < 0 f'or II.!.II <: e.. , E. 

small). The vectors 

in X j (j = 1, 2, ••• 

X· J 

I/LX.11 
J 

are calculated and storod 

, N ). A one-dimensional search 
n 

is now made on 1, starting with 1 = 1 , so as to ! 

o 

increase the initial boundary in 5.2.12 : 

max (1) 5.2.13 

subject to 



In practice a simple bisection method was adequate 

f'or maximizing 1 such that if' f'inally 12 and 13 are 

• • 
bracketing values Va (12) <: 0 and V

N
(13)'" 0 - and 

..; 1 
2 < er 

the required 1 ,vas obtained. 

In detail the steps are : 

• 
(1) put 11 = 10 (if' VH(lo) > 0 reduce 10 f'urther) 

and with suitable s put 12 = 11 + s 

• 
(2) If VH(12) -< 0 , s = 2s, 11=12 and 12=11+s 

• 
are made and (2) is repeated until VU (12) > 

(If's> smax' an upper bound, repeat (1) ,dth 

larger s) 

(3) then select s = s/2, 13 = 11 + s and if' 

• 
Vu(13) < 0 put 11 = 1

3
, otherwise 12 = 1

3
• 

Repeat (3) until 5.2.1l~ is satisf'ied. (Typically, 

s = .1, s = 10.0, er = .3; the latter being 
max 

sufficiently large to give a good initial complex). 
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0 

The final boundary is xTpx 

p = p 1/1
2 

(1.1 (o\1-eS fO ~ d s ~o 

(d) Choice of Unit Vectors 

T 
=: 12 or 2S P2S. = 1.0 ,dth 

11 1(\ stel' (3») 

(1) A simple choice is the set of vectors from the 

origin to equally spaced points on the unit n-sphere 

via polar co-ordinates in 4.5.1. 

(2) For highly eccentric surfaces it is advisable to 

T 
to LA.z~ via orthogonal transf'orm 2S Pl 2S = 1 = 1 an 

J.-J. 

transformation 2S. = T~ (TT = T- 1 ) .d th T = 

(~1 ' z2'''z ) - -n 
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T 
and zi~ = 1. Form an n-dirnensional box Hith axes 

along zi and sides of lengths 2/JA
i

(P1)' Divide 

its surface into an equally spaced mesh, then the 

points give the required vectors .,hen normalized. 

(Note that the initial vectors need not necessarily 

be unit vectors). 

(e) Initial Comnlex 

The initial boundary, ~Tp~ = 1, (in (c)) gives 

an initial feasible point 

, t ) 
m 

'fhere m = n(n + , )/2 - the number of' elements of' 

L, P = LTL and L is Hritten as 

t, t z t4 • • t 
m-n+' 

L = 0 t
J ts • • • 

0 0 t6 • • • 

• • • • • • 

• • • • • • 

0 0 0 • • t 
m 

A complex of 2m + , points is used, the remaining 

2m feasible points being obtained in the follmfing 

way. : 

Introduce an m x 2m matrix D, partitioned as 

m ·x ·m unit matrix and D, a matrix whose columns, !!i 

(i = m+1, ••• , 2m):, have random elements of zeros 

or ones. Let = h max It.1 , 
i :1: 

jth feasible point, Ej (j = 1, 

determined as 

then a tentative 

• • • , 2m), is 
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from 5.2.1°, the point Ej is 

• 
• feasible , and is accepted, but if VH(±lj) '20 

• * • • * * 
find VJtI(Ej) = V}j(Eo - 5!j s). If' VH(Ej ) < 0, Ej 

is accepted, otherwise s is halved and the process 

repeated until a feasible point is found .2E. until 

s < .01h , say, ,~hen the complex is deemed too small 

(h = .2 was found practical). 

It ,.as found that when er was made too small in 

obtaining the initial boundary, either the resulting 

initial complex , .. as also very small or that function 

values at points Ej ,,,ere much less than that at Eo' 

The idea of' Box (55) and others of' generating random 

and poss~b1y large Ej' was impractical due to the 

presence of' the equal tangency surface (c.f'. 

Chapter 4). A point lying on a line drm,n behTeen 

two f'easible points on opposite sides of this 

surf'ace ,~as usually infeasible (no matter hm. close 

the points). 

(f) Other Features 

The unit vectors need only span a half space of 

En, x3~ 0 say, f'or then 5.2.10 is evaluated as 

A quick routine is used to calculate Lx, the 

resulting vector being stored in~, thus 

• 
Also if f(-~) = -f(~) computation of VH(L) is 

halved due to radial symmetry of the contour 
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On exit from the Complex minimization the final 

boundary, T 
~ p~ = 1, is an approximation to the 

RAS boundary, T: 
~ p~ = VM• The former boundary is 

then either verified by using a finer mesh to 

• 
calculate VM(L) or the exact ~\S is obtained by 

an algorithm such as that in section 5.4. 

The number of calculations required to evaluate 
3 2 

5.2.15 is effec.tively N
n
(? + n(2c

1 
+ 11/2)) 

with c 1the average number of calculations to 

evaluate each f .• Assuming N = cn the approximate 
1 n 

constraint and optimal quadratic 

for large n ,dll vary as 
2 

n(!L2. 
c 2 

computation time 

+ 2c
1
n) and 

respectively, the optimization 

being over m (~n2/2) parameters (in practice 

5<c>10). 

The algorithm has been programmed in Fortran IV 

and Fig's 5.1 and 5.2 show flo'i diagrams for the 

master and connecting segments. (A listing is 

gi ven in A 5) • 

Summary of Algorithm 

For oompleteness "e summarize the main steps of the 

ne" algorithm along side those of Davidson and Kl1ralc's in 

which 

5.2.16 



Evaluate A = 

a) Q = I 

-1 
b) Choose P1 = (SS*) 

.Davidson & Kurak 

and· solve 

a) Q = I 

StartinE> with 1 = 1 (= 10-5 say) max (1) subject to 
o 

• 
V}1(l) < 0 

• 
V}!(P 1/1) < 0 

(5.2.13) (5. 2 .16) 

by bisection method (in( c) by Rosenbroclc (in A4) 

This gives xTpx = 1 

T 
P = P1/1 2 = L1L1/12 

. T-
This g~ves 2S P2S = 1 1fith 

j3 = P
1
/1 

max 

StartinE> with this j3 

112 

min M(P) subject to m(il) > 0 

(4) Starting ,,,rUh L = L,I,[l2 

min deL) (maxfl) 

subject to 1 .. F 0 
~~ 

• 
and VH(L) < 0 

by the Complex 

optimization routine (A4) 

• 
and V}!(p) <:: 0 (5.2.16) 

Starting 1fith P = j'l 

min TIt.. (p) 
~ 

subject to m(P) > 0 

• 
and V}!(P) < 0 

by Rosenbrock (K~ = 5) 

(5) Verify V < 0 in W : (25 .lP25 < 1, 25 F 0) by evaluating 

• 
a) VH(L) with 'fine mesh 

• 
a) V}!(p) 1fith fine mesh 

b) exact RAS (Section 5.4) 

Steps (3) and (4) of' Davidson's algorithm require 

the evaluation of' the eigenva1ues of P (Jaoobi'e method 

used) • 



113 

.5.3 Numerical Results 

Table 5.1 shows details of a comparison of the new 

method with that of Davidson for the follO'dng systems: 

System 313 (Yu(6)) 

Consider the follo,dng equations for a synchronous 

generator 

• 

• S13 

where D = 0.0372 + O.152coS(2xl + 1.77hh ) 

and R = sin(xl + .8872) - sin(.8872 ) 

- .1291(sin(2xl + 1.7744) - sin(1.7744» 

lath Q = I, 1.0 = 10-
5 

and l'f2 = 30 the initial boundary 

was expanded to 

Fig 5.3- shows 

2 
11.h77x

l 

property A is present ,d th the final boundary 

2 
+ .928xlx2 + l7.02x2 = 1.0 

having h{o noints of contact ,·dth its constraint contour. 

The RAS is not a good estimate of the DOA. 

System s14 (Hewit (2)) 

The system is a variation of a surge-tank system 

found in llevit (2) 

• 
xl = x

2 

• 
x

l
»/(l + x

l
)2 x

2 = -x (1 - a(2 + 51h 1 
a

2 
2 b 2.a

2 
1)/( 1 2 - - x - -:x: ( b(l + xl) - + xl) b 2 a 2 

a = .2, b = .075 

Fig 5.4 Sh01-1S the 0(1 boundary has not h-lO but three 

points of contact with its constraint contour, the initial 

quadratic having only one. (i.e the OQ has 3 valid tan.pts). 



TABLE 5.1 

D = DAVIDSON & KURAlC f C = NElfCOHPLEX HETHOD 
... •.. - ':'5 - ---- - ----------;:5------

FOR D : h=.2-,1 =10 ,er=O • .3 FOR C : 1 = 10 ,z = -1.0 
o 0 

(A4) 

SYSTEH INITIAJ NITIAL FINAL TINE IN 

P OR Q 
N. 

11: VOL, VOL, 
HILL/SEC. 

1---.l91-----'~-J;- u I-·:I~--~.:~?-- i---~~~-- __ j ___ 2?_~0 ____ _ 
'. c' p=(SS J 370 \ 0.104 0.376 I 900 \ 1900 

114 
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System ill 

A system having a fixed constraint contour, 

T 
e.. Be. = 1, is 

• 
C~?Be.)e. e. = -e. + 815 

with 
T 

1 • 1,e have chosen DOA, e. Be. '"'" 

[ 
1 

:J 
B: = 2 

1 

Step (3) of Davidson's a1gorithm is redundant since P = I 

with Q = 2I and Table 5.1 exhibits the poor convergence 

of the algorithm. In fact the ne,,, algorithm was found 

superior to the latter for all third order systems tried. 

A reason for the inferiority o~ Davidson was the 

lack of convergence of Hosenbrocl~' s routine on the 

constrained problem. As the volume increased it "as found 

that values of P were reached, exhibitinG' an equal tangency 

surface, where a large amount of time was spent by the 

search directions oscillating between the boundary zones, 

determined by Rosenbrock's pena1ty function (Appendix 4), 
• 

and the feasible region VH(p) < O. (Box (55) has noted 

this phenomenon). 

The new Complex method gave better convergence 

a1though it seemed to stick near the optimum. Closer 

• 
inspection showed that the vector Yj' giving VH(L), 

a1ternated betl,een two or more places on the constraint 

contour. After restarting the procedure a final volume of 

;0 = 3.07 was obtained ,d th 

1.035 1.028 -0.00'] 
p = [ 1.028 2.025 0.992 

-0.009 0.992 2.003 

(For the OQ boundary, 
T 

1,1'=11). e. Be. = 



System 516 

The system is that of s4 (Chapter 4) with a
1 

= 1, 

a
2 

= 2 and a
J 

= J. Again the new method is superior. The 

best volume achieved by the third order algorithm of 

chapter 4 "as fJ = 68.01 which is superior to the results 

in Table 5.1. 

System 11 (c4) 

For this system a lack of convergence was found for 

both methods which ~las attributed to the presence of the 

equal tangency surface, lVith two RS components of the 

constraint contour. For the new algoritm, whatever the 
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initial L1 (or P
1
), a point near this surface was obtained 

,,.hich tended to shrink the complex of points so that 

further progress was poor. 

Step (J) of Davidson's method"of minimizing M(P), 

originally intended to make the initial boundary less 

eccentric and give a good starting P for the final 

minimization of step (4), proved unsatisfactory. In many 

cases the procedure gave a smaller starting volume. Infact, 

Davidson (4) gives the OQ boundary as 

12.5 -8.1 

"j T T 
20.8 -8.5 1 .0 2S, P2S, = 2S, • = 

• • 1J • 

( 
T _11 ) 

"hich is incorrect the RAS for this P satisfies 2S P2S < 10 

and results from the poor initial P from step (3). We note 

t.ha t the boundary 
T 

2S. P2S. = 1 can be made less eccentriC, 

more effectively, by minimizing }-\(p) = H(P)/m(P), but in so 

doing the corresponding Q may approach a positive semi-

definite matrix with an invalid LF. Ho,,,ever, a system ,,,here 

the procedure is useful is the following approximation to a 

relay system 
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• 

• 
x

2 
= -tanh(100(X

1 
+ x

2
) + x

2 

with 

The initial (expanded) boundary for Q = I is 

0.0049~ 25. = 2.55 X 10-5 

0.0050 

which is very eccentric. After 970 constraint eva].uations 

• 
of VH(p) in minimizing N(l') we have 

[4.~6 1.3
0J P = 

2.42 

However the choice P = (55*)-1 eives 

[1.5
16 .541

J p ::. 

.5413 .4844 

which is a good initial estimate of the optimal P with 

boundary 

T t·~l 1. 33] 
25 25 = 1.0 

2.41 

Sxstem 51 1 {Rao (5)) 

As a final example consider the system of a synchron-

ous machine swinging against an infinite busbar 

• 
517 

• 
x 2 = 28.61 - 84.99(b + x

3
)sin(x

1 
+ a) 

+ 21.53sin2(xl + a) 

The quantities a and b result from a shift of origin 

• • • 
(solutions of xl = x 2 = x

J 
= 0) and Rao gives a = 0.478 
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b = 1.18 for the stable singularity. As seen in Table 5.1 

convergence is very slow and no reasonable OQ has been 

obtained. 'r'Iw important points hOl{ever, are raised : 

(a) that an accuracy of 10- J in determining a and b is 

insufficient, giving an invalid boundary for I = 10-5 
o 

when infact the boundary is valid and 

(b) that spurious quadratics were obtained ,.ith N
J 

~ J70 

• 
due to inadequate mesh size, the V = 0 contours being 

long thin surfaces. 

The defects were remedied by more exacu calculation of a 

and b (a = .47799JO, b = 1.1816655) and the choice N = 1240, 
n 

with large increase in computing time. Sections of the best 

quadratic boundary through the co-ordinate planes and the 

tangency point (0.0327, 0.0229. -.0483) are sho"lm in Fig 5.5 

The RAS.is poor. 

Comment 

The application of the.algorithms described certainly 

shows that property A and its associated tangency surface 

are present for varied practical systems and can cause 

problems in convergence to the OQ. For high order systems 

the latter also suffers from the high dimensional problem 

• 
of calculating VH(L) and the storaee of the unit vectors. 

(Geiss (51) has taken 24 min. for ~ RAS determination 

for a satellite problem with n = 9 and m = 45). 



5.4 A Hethod For CNadratic HAS Determination For Hi"h Order 

§ysterns 

Given the system 5.2.1 the: problem o~ determining 

T 
a RAS ~or a quadratic, V = 2S P2S, has been ~ormu1ated as 

the constrained problem (Cl~) 

min V(2£) , 2£ e. E 
v 

• 
E ; (V = 0, x i6 0) 

v 

1vhen using a penal. ty ~unction (PF) approach b.o main 

points must be considered ; 
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1) ensuring that the PF, or sequence o~ PF's, approach 

a local minimum o~ 5.4.1 excluding the trivial 

solution 2£ = 0; 

2) ensuring that, i£ the minimum point is not a valid 

tangency point, a sequence o~ decreasing minima is 

obtained which eventually give the global minimum, 

and thus the valid tangency point. 

To satis~y these criteria an algorithm has been 

developed, the main points o~ ,,rhich are the ~ollowing 

(a) Choice o£ Initial LF 

Unless a particular RAS is required P is chosen as 

(b) Initial Startinc Point o~ Minimization 

A good initial starting point, 2£0' £or the PF 

minimization is ~ound by storing unit vectors as in 

the Complex algorithm and then expanding the boundary 

in 5.2.12 until 5.2J4 is satis~ied to a given accuracy 

(er = .1 say). The vector Zj e-iving the maximum value 

T 
o~ V on 2£ P2£ = 12 is then taken as x • 

-0 

• 



(c) Choice of' Penalty Function and Hinimization Routine 

To avoid the trivial solution ~ = 0 the constraint 

in 5.4.2 is posed as 

• 
e(~) = V(~)/Vz = 0 (z = 1 or 2) 

Then a PF f'rom Hiele (62) is chosen as 

\{(~) :: V(~) + Ae(~) + Ke2(~) 5.4.4 

R(~, A) 2 
:: + Ke (~) 

where Ais essentially an approximation to the 

Lagrange multiplier and IC:> 0 a penalty constant. 

Starting with ~ = X If is minimized f'or several 
-0" 
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cycles by the algorithm of' Fletcher and Powell (60, 64) 

of' conjugate directions, where a 'cycle' consists of' 

n iterations of' the latter with K and f. kept constant. 

Af'ter each cycle A and K are- updated and convergence 

is obtained when the conditions 

le I <:; ~ 

and 5.4.5 

II'2R(~,A)\I <: l:. 

( -4) are satisf'ied typically E. = 10 • If' hO\vever NC, 

the number of' cycles, exceeds some upper bound 

(NC > NIT say) the minimization is termed a f'ailure 

and another initial x is sought (see A4- f'or updating 
. -0 

of' A and K and Fletcher-Powell routine). 

Since the Fletcher-l'o'vell routine requires gradients 

of' \{ ,ye assume J(,f) , the Jacobian of' ,f, can be suitably 

calculated. Then 

7.Y = 'IV + y'e( A+ 2Ke) 5.4.6 
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"here 
1 • • 

= -y2 (vyy ~ vyy) 

and ) 

Prior to the minimization, scale factors for 3, V and e 

are derived (xsc., vsc and esc.) such that at the initial 
~ 

point 3 = 3
0 

the scaled values (xi/xsc:i' V/vsc, e/esc) 

give If and its first and second derivatives approximately 

unit magnitude (Haarhoff and Buys (65». In this case K 

may be chosen relative.ly small and often kept constant 

throughout the minimization (IC '" 20 is suitable). 

(d) Validification of Tangency Point 

For convergence let 3 = i be the minimizing value of 

• 
the PF for the last cycle. Since V(i~may not be satisfied 

i is repeatedly multiplied by a scalar D, close to one, 

until v(oji) < 0 for some j (e.g 0 = 1 ~ 10~4). This gives 

X= oji as a mOdified tangency point and a possible 
-m - -

stability boundary of 

• 
The validity of the latter is tested by evaluating VM(L) 

• 
in .5.2.15 w'ith a fine mesh. If V}j(L» 0 the maximizine-

• 
vector giving V}j(L) is found, ~ say, and the interval 

(0, 1.0) is' successively halved until bracl<eting numbers 

E, and E2 are found satisfying 0 ... E, ~ E2 L. 1.0 

such that 

V(E2~) ~ V(E1~) 

V(E2~) 

.:: ., 

where V(El~)..( 0 and V(E2~) '> O. The vector 2S
0 

= El~ 

determines a ne" starting point for the penalty function 

and the minimization is repeated. 
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Since Vm in 5.4.7 decreases for successive tangency 

points obtained, the method converges to a valid RA5 

boundary. Hmfever, if it is suspected that t"o tangency 

points exist giving almost the same boundary in 5.4.7, 

then either both of these must be found or an extremely 

• 
fine mesh is required to evaluate VN(L). 

Comment 

A slightly quicker, but less useful, initial point ;:So 

in (b) may be obtained by expa!lding the sphere ;:sT;:s = 1 

T 
instead of the boundary ;:s P;:s = 1. 

The choice of PF in 5 .If.4 is not arbitrary. Infact 

that of' Hiele was compared to one of Fletcher and Lill (63). 

They use a PF which has a stationary point at a solution 

of' the constrained problem thus avoiding a sequential 

approach. 1fith suitable q they minimize 

W= V _ er~:b] + ~ e: 

~ a 2 (~~) 
.5.4.8 

with.!'!. = 2e and :2 = 'SlY. The second term is here a continuous 

approximation to the Lagrane-e multiplier. HOHever, with 

limited experience the method was not as good as l-1iele's. 

Fig 5.6 gives a general flow diagram for the algoritl~" 

which was programmed in Fortran IV. Table 5.2 shows some 

typical features ,.,hen applied to the system 51, for a 

simple quadratic, and 511 for the best quadratic of' Chapter 

4, the latter sholling the effect of t,.,o tanc;ency points. 

Computation time seems large but this is due to the chosen 

values of Nn' NZ = 31 and N3 = 160, for the initial boundar;r. 

(Nz: = 10 and N3 = 50 ,wuld suffice, although givinG a worse 

starting point x ). 
-0 



TABLE 5.2 

SYSTEN Sl 
~--~~~--------r---~~-----~--~~--------------~ 

S11 

18.101 -15.853 1.878 

• 31.936 -16.586 
p I 

• • 17. 191f 

-----.-------... - .. =-.:.--:=----t----i~--------J 
EVALUATIONS OF 

• 
VH(1) 

FINAL 1 

CONVEHGENCE VALUE : 
(5.4.5) 

8 8 

1.2 0.375 

31 160 

12J 

SCALE FACTORS 
(xS'i I vsc. J es<-) 

NONE 
05, • 0 :),":"U;;~T;-4-;9 9'6";-1--;-lrxTq - 3 

;'O.11,~05 • • 05,4~3J~~029' , 
:..2_29, .287 • • 0745 .. _. _ _1. INITIAL x 

-0 

INITIAL v, A, ]{ 

-.420,-.384,.116 , 
.05, 0.575 

h.44,0.O,l.0 ~.996,O.0,20.0 1 *-. . j-----------------+-----______ ~Jl4.~~.~Q~~~ ______ ~ 

-, ;~ -- -I NO. OF CYCLES 3 

I-----+-----t ---r 
FINAL 2£ (TAN.PT.) 1.0746,0.620If r. .22101, .2937, .1 1f47(INVALID) 

1--------.-----+----_+-[, -=--..:, ~!..Q();liR4~L '4.=-... £i21iJJL, .• 2fL26..(y_JID) 

FINAL V, A, ]{ 1.5365~-.769-.~,.630,-.36961,20.0.--
1.a 4-467,-1.156,20.0 

4.8271 I 0.763 
(AREA) i 

FINAL VOL 

THIE (HILL/SECS.) 15 I 207 

* SECOND HINHlIZATION 
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CHAPTER 6 

GENERAL OPTIHAL LYAPUNOV FUNCTIONS 

FOR NON-LINEAR SYSTEHS INCLUDING 

THOSE OF LURe-;' FORN AND RELAY 

CONTROL SYSTEHS. 
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Chapter 6 

6.1 Hieh Degree Lya1)unov Functions :for Autonomu8 Non-Linear 

Systems. 

Introduction 

A natural extension of a quadratic LF f'or the stable 

system of' f'orm 1 •• 1.1 in Chapter 4. namely, 

6.1.1 

is the LF of' degree mY, 

6.1.2 

"here Vi is a homogeneous polynomial of' degree i and V
2

, 

T 
V

2 
= .;. p.;., is it·self' a LF f'or the system, For second order 

systems we write 

i~l i-j+1 j-l 
LV . . x

1 
x

2 j=l ~J 
6.1,3 

"hich involves to a multiplicative constant 

m = 2 + (mv + 5)(mv 

f'or mv", 5 (m ~ 17). 

2)jAparameters, v
ij

' "hich is large 

A less obvious class is the product o:f quadratics 

6.1.4 

"here the Plc are p,d,s. matrices '~hich solve 

(lc = 1. .. • mv-) 

:for p,d.s. Qlc' This LF has the simplicity o:f the quadratic 

and only m = 2mv parameters need determining • 

. Tl/o questions are apparent: 

a) Ho,,, do . the 0 ptimal RAS' 5 :for high degree LF' s compare 

"ith those o:f the quadratic? 

130 
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b) Are any 'equal tancency phenomena'· present such as 

property A for optimal quadratics? 

In order to give anS'1ers one must resort to numerical 

means as the RAS. problem is intractable analytically. 

Henceforth '1e discuss some of the numerical features in 

determining the optimal LF's. 

RAS Determination and °12til11ization Hethods 

The RAS problem in 4.1.10 and 4.1.11 of minimizing V 

• 
on the constraint V = 0 is more involved for a general LF 

of the form 6.1.) and can cause difficulty with numerical 

methods. The latter can be attributed to the fact that 

(a) 7V may vanish at a relative minimum and contact bet'1een 

the boundary V = V and the constraint contour is not 
m 

• 
smooth, (b) the contours of V and V = 0 may have several 

components and (c) V may not be p.d.in En. (~ (a), (b) 

and (c) are not unrelated and also that points satisfying 

rrv(3) = 0 give tangency points) 

Given the LF 6.1.) a HAS '1as obtained for a second 

order system via Hewit's (2) version of Hodden's method (). 

In essence the main features are: 

(1) a search for the constraint contour by spiralling out 

from the origin until a point 3
1 

is reached s.t • 

• 
V(31) > 0, followed by an accurate location of the 

constraint at.32 say. 

• 
(2) A step is taken alone a vector tancential to V = ° at 3 2 

in a direction of decreasing V followed by a search 

• 
along 2V to relocate the constraint. This is repeated 

until tangency, and a possible stability boundary is 

found. 

() Steps along this tentative stability boundary, V = c, are 

• • 
made and V(3) is evaluated at each step. If V(3) > 0 the 



previous tanGency point is invalid, and having relocated 

the constraint, step (2) is repeated. Unless the method 

breaks do",n a conservative RAS is obtained of V = c L. V 
m 

and its average radius is found. 

To determine the optimal LF of 6.1.J with respect to 

the numerical average radius r' the Nelder and Head (h6) 

simplex method was used. 'rhe optimization "as over the m 

parameters 

t" t z and v ij ' i = J, ••• , mv 

j = 1, . .. , i+1 

T 
where t1 and t2 determine Q as Q = L L + ~I, and P solves 

the matrix equation 4.1.5, the latter ensuring 6.1.J is a 

1J2 

LF for 6.1.1. In the numerical results ',hich fol101, Rodden's 

method continually broke down for higher deeree LF's due to 

difficulties (a) to (c) mentioned above and necessary 

features were incorporated: 

a) an upper bound on points, ~i say, "'hich search the 

constraint contour in step (2), 

b) a test for Vex. ) >- V at tangency, 
~ max 

c) a test for a pt. ~2 lying on V = c (stability boundary) , 

of 1I~211 "> Rmax (i.e a test for an Open boundary), 

d) a test to discover ",hether step (2) of Rodden's method 

was ,repeatedly converging to the same tangency point. 

If any of the bounds in (a) to (c) 1'lere satisfied the 

RAS function value of f> for Nelder & Head "'as penalized (i.e 

f= average radius = -10 say). In case (d) the best taneency 

point out of three was found. 

The LF in 6.1.4 was investigated for the restricted 

class of systems of c4 such that, with minor modifications, 

the 2nd order optimal quadratic algorithm could be used. The 

optimization 0:£;0' the average radius, was over the 2mv 
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values 

tl<: 1 ' tl<:2 • k = 1, mv , 

Q
k 

T 
+ E'. I 70 and where = LkLk 

[: 
tk1] 

Lk = 
tk2 

As for the quadratic, a boundary V = c is ea,sily traced out 

for if Z is any vector then V(az) = c "here 

---fIDf "f'. 1 
a = (c/ I IzP Z)2mv 

k=l k 

This fact also means that the complex algorithm of' C5 can'be 

extended to this LF to study hi~h order systems, the average 

• 
radius being easily obtained f'rom the evaluation of' V}j(L

k
), 

in 5.2.15. 

Numerical Examples of Optimal LF's f'or V 
mv 

In the examples that follow the average number of' 

function evaluations of f by P01{ell' s conjugate direction 

algorithm for the LF's of degree 2, 4 and 6 ',ere respectively 

4 -2 
70, 1 0 and 220, giving an accuracy of' 10 or more f'or the 

optimum ~ (average radius). The latter was calculated f'rom 

80 points on the boundary V = V • 
m 

Table 6.1 shows a comparison of' P for 4 systems taken 

from CI~. Some marked improvement exists for systems Sl, S2 

and S7 ",here the DOA's are radially symmetric, but for s6 

the difference beb-Teen the optimal p for V 2 and V 6 is poor. 

It ,,'as important in the optimization of P for V4 and 

V6 not to choose all initial Lk(k = 1, J) equal 

say or Lk = Lo ,,.here Lo gives the optimal quadratic.) This 



latter choice usually corresponded to a local minimum 

1,here the P01,ell optimization tended to stick due to the 

b,o valid tan. pts. of the OQ (~ the RAS's of V
m

(2!) 

and V(~) are the same). 

Fig. 6.1 shows the relationship between the optimal 

boundaries of V
2

' V4 and V6 and their constraint contours 

th . 
for system S1. For the 4 degree LF there are 2 valid RS 

tangency points and J RS constraint components, 1,hereas for 

th 
the 6 degree the numbers are 2 and 4 respectively. As i'or 

the quadrati.c case, these optimal LF's ,·,ere non-unique. From 

numerical evidence it seems highly probable that at the 

exact optima for V4 and V6 there are J and 4 11S valid tangency 

points respectively. Interestingly, the non-convex shapes of 

the higher degree boundaries resemble those of the DOA r.Jore 

clearly. 

Similar considerations apply to the corresponding 

boundaries for system S7, shmm in Fig. 6.2, ,·r1th an equal 

tangency property holding for V4 and V6 ,11th two RS valid 

tangency points and J and 5 RS constraint components 

respectively. (There is almost a third point of contact of . 

• 
V6 = Vm with V6 = 0). All the optimal boundaries pass through 

the singular'point (1,2) of system S7. 



TABLE 6,1 

p = AVERAGE HAD IUS 
-- ._.- - - - ----- -r- ---~------

SY5TEH m = 2 m = 4 m = 6 
--_._------... -- ----0--. 1--- ---_ .. _- . ... _----- -

V
2 V

4 V6 

81 

(ZUBOV) 1,883 2,219 2,292 

82 

VAN,POL) 1.44 1.51 1.57 

86 

(nAVIES) 0,1857 0.1873 0.1874 

57 

2.52 2.75 3.21 

Numerical Examoles of ODtimal LF's For V in Series Form 

(6.1,3), 

An obvious initial choice for the coefficients v
ij 

6.1,3 for mv > 2 is 

a) for V select as initial values for mv 

i = 2, . .. , mv-1 

j = 1, . .. , i+1 

those of the optimalLF of degree mv-1 and 

b) put v . = 0,0, j = 1, 
mVJ 

or c) put v
mvj 

F 0,0, " 

. .. , mv+1 

11 11 

The choice of a) and b) ,.,as unsatisfactory since the 

optimization started on an equal tanGency surface and 

in 

convergence "as poor, Al thoue-h the other choice is better _ 

_ a) and c), arbitrarily selecting all coefficients of the 

same mac-nitude proved as Good, 
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For convenience we '''ri te tfte LF in 6.1.3 as V
2 

• 
,J, .. ,mv 

then FiGUres 6.3 to 6.6 sho,! the behaviour of the optimal 

LF's w'ith respect to the following systems: 

System S2 (Van dcr Pol) 

Since the DOA for the system is radially symmetric 

it vas reasonable to choose the Ll? accordingly and so the 

forms V 2' V 2, If and V 2,4,6 '"ere investigated for which 

m = 2, 7 and 14 respectively. The Simplex optimization ,ms 

termina ted vhen either the difference bet'veen function 

values of the simplex were less than 10-3 in magnitude or 

when I, the nl~ber of function evaluations exceeded an 

upper bound I HAX , the latter beine' .50, 190 and 290 for the 

respective cases. 

For the LF V 2 4 convergence was obtained in 181f , 
function evaluations (FE! s) but not ,-rithout many of the 

breru~downs of Rodden «a) to (d), this being the case for 

the following systems as veIl. Valid tangency alternated 

bet'-leen 3 distinct RS points near the optimum and is 

reflected in Fig. 6.3 "here the optimal boundary has J RS 

valid tangency points in contact with its constraint contour, 

the latter having 2 RS components "hi ch are unlike those of 

the quadratic. 

For the LF V2 4 6 convergence "as very poor in thatp , , 
tended to stick to a value near the optimum, which ",as in 

part due to the high dimension of the space of parameters 

a ij (m = 14) for which the Simplex method becomes ineffic

ient. H01{ever, after several restarts an accurate optimum 

"as obtained and Fig. 6.3 8h01{S that the optimal boundary, 

on "hich 3 valid RS tangency points lie, gives a good RAS 



both in shape and size. The correspondinG' table Sh01{S the 

laree computinG' time for V 4 6 
2, , • 

System S18 

Consider the system 

• 

• 

with singular points (0,0) and +(1,0). 

S18 

Investigating the same LF's shows the situation is 

some"hat different, since for all LF's, only one RS 

constraint component exists near the origin and the 

.respective optimal boundaries all have t,;o RS points of 

contact "ith the latter (Fig. 6.4). As :for the previous 

system the average radius of the 6 th degree LF is only 

fractionally better than that o:f the 4th and the RAS's are 

poor compared to the DOA. 

System S19 

A system Hith a non-symmetric DOA is 

• 
S19 
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In this case the LF's V2 ' V2 3 and V
2 

3 4 were investiG'ated. , , , 
Fie. 6.5 sho"s the optimal boundaries o:f the 3 rd and 4th 

deG'ree curves havinG' 3 points of contact with their 

constraint contours (the non-optimal ones havine one or 

tl;o). Their respective RAS's have the usual failing for 

systems vith open DOA's, being very poor 



System S13 (Yu (6)) 

The system is that in 5.3 and caused sOlne dif'ficulty 

in convereence of' the average radius to the optimum for 

v 4 This is sh01<11 in Fia. 6.6 where although the 2,-3, • 

optimal boundary f'or V2 ,3 has almost J points of contact 

with its constraint contour, that of V
2 

~ I, has one. Also, 
,J,""1" 

due to continued brealcd01,n of' the Rodden method (mainly 

138 

tangency points giving open boundaries), the latter required 

6000 mill/sec f'or 59 FE's after restarting near the optimum. 

H01{ever, some marked improvement is sh01-1n in the RAS. 

Comment 

It is evident that high degree optimal LF's do in 

some cases give much improved RAS's (systems S1, 87, 82, 

S19), but the equal tangency phenomenon 1-lhich is also 

present and contributes to lack of convergence, thereby 

making computing time excessive, of'fsets this advantac:e. 

All systems studied had t1{O or more valid tangency 

points for the optimal LF's of' degree greater than t .. o. 

The direct relationship bet .. een the number of' tangency 

points and valid tangency points is complicated by the 

multiple components of' both the V = const. and V = 0 
mv mv 

• 

. contours. Depending on the system, the number of' tancency 

points, valid tangency points and constraint components tend 

to increase w'i th mv. 



I 
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6.2 Optimum Lyapunoy l:'nnctions J<'or Relay Control Systems 

Introduction 

The application of Lyapunovts direct method to 

differential equations with discontinuous riGht hand sides 

has been studied in particular by Alimov (69), Ansonov (68) 

and Weissenbercer (48,66). In this section we shall extend 

some ,~ork of the latter and consider the relay system 

• 
2£ <: Ax + ,£s(';n eT , 6.2.1 

t~here C' 6 >0 sen eT <: E.,cJ=O, -1 ~ €. !S 1 6.2.2 

-1 ,()"( 0 

lfe assume, as for most practical systems, that 

6.2.) 

which implies hvo types of motion: reGular s,d tching in 

which trajectories in () >-0 connect on () <: ° with traject-

ories in ()< 0, and slidinl':, in which segments of the 

trajectories lie in the space ()(2£) = O. A complete discussion 

of' these motions is eiven in reference (48) and ,~e mention 

that the main definitions and theorems - including Theorem 

1.5.) - of Lyapunov's direct method are applicable to 

relay systems provided the stability of' the two motions are 

treated separately. 

For regular switching the motion is described by 

6.2.1, while f'or sliding, '''hich occurs for Id
T

A2£1 ~ IslT.£\ 

on dTx = 0, by the linear system 

6.2.4 



w'here 

6.2.5 

By considering an orthogonal transformation from x to y via 

( r;T ~ G- 1 ) 
-. I 

such that y is normal to the sliding plane, (J" = 0 i.e 
n 

(0, 0, ••• , 0, 1) = G£/ 11£ 11 

the system 6.2 .ll may be ,,,ri tten 

• - T 
Y = GAG Y 

• 
,Further, since Yn = 0, by defininG" a ne", vector z as 

~= (Y1' Y2' '0', Yn-1)' "'e obtain 

. , 
~ = A ~ 6.2.8 

, 
where A is the (n-1) x (n-1) matrix obtained by deleting 

the last ro,,, and column of' GAG
T • 

and 

~"o candidates for a LF for 6.2.1 are 

a) the uiecm,ise Cluadratic LIe 

(J" 

V = xTp~ + S sG"n s ds 
o 

. Tp IdT~1 = ~ ~ + 

Q = ATp + PA 

K = ATd + 2P:£ 

• 

6.2.10 

(By 6.2.3 V > 0 and V .t. 0 :for some n(h), h small, d" f. 0). 

Here lleissenber,:;er has sho",n that V is a LF for 6.2.1 iff 

the symmetric P has the property 



6.2.11 

"here A' is from 6.2.8 and pI is formed by deleting the 

last ro,,, and column of GPG T. IIere, V may still be a LF even 

though P is indefinite and/or A is unstable. 

b) the piecm<ise lin8ar LF 

V = 

orieinally 'used by 

m T 
~ Ic.xl L -J.-
i=1 

Hosenbrock (70 ), ",here for 

6.2.12 

6.2.1 c. 
-3-

for SOllP i and, to ensure V is p.d. the vectors c. span 

The contours of V = constant are composed of 

hyperplanes ,.hose normals satisfy 

m 

L :;:c. 
. 1 -J. 
3-= 

m 
j = 2, ••• , 2 

-l. 

at most 

Then since 6.2.1 is linear for er> 0, by Rosenbrock l s 

analysi s, if 

.T 
x n. ~ 0 
- -J. 

2
m 

= §. 

E~ 

at each vertex of the face ",hose normal is n., for all faces 
-1. 

of V = c, then V ~ c is an estimate of the HAS provided 

6.2.13 also holds for sliding. 

The Piecm<ise Quadratic LP 

An RAS determination for the LF 6.2.9 is essentially 

the same as in 6.1 of minimizing V on the constraint 

• 
contour V = 0 from 6.2.10, ",here in the plane IS = 0 the 

latter is discontinuous and given by 

i-leissenberger (48) has given a second order example "There 

he optimizes the area of the HAS for LF 6.2.9. He produces 



an optimal boundary havine- 2 RS points of' contact ldth its 

constraint, but goes no further. Here we explore the-

situation more f'ully. 

• 
Since ~oints on V = 0 are easily determined by 

solving a quadratic, the second order algorithm of' Chapter 

4. is a[','ain applicable. The major modi:ficatj.on in HAS 

determination is the replacement of' the one-dimensional 

search routine using, continuity f'or quadratic fits, by the 

method of' search by Golden Section (56). This is due to the 

t1W types of tangency which occur: 

• 
a) a smooth tangency at which V and V = 0 are continuous 

and 

b) a corner tangency lying on er = 0 "here the contours 

• 
of V = 0 may 'jump' discontinuously. 

The optimization of the area of the RAS ","as made over 

the space of' the elements of' P (Pll' P12' P22) subject to 

6.2.11. 

Numerical Examples 

System S20 

A relay system having a limit cycle is 

• 
520 

• 
X z = - xl + X z - sgn(X

1 
+ X

Z
) 

Optimization of' the RAS area by Pm-lell's method sho"ed a 

marked oscillatory ef'f'ec-t of' the valid tangency point 

bet1{een a corner and a smooth tangency. Fig. 6.7 sh01{S an 

initial LF boundary 

(with;O :: 2.094 ) 1vith one smooth R5 valid tangency and the 

best LF boundary 



with a corner and a sl.ooth RS valid tangency point, 

(p= 2.73). In this case the constraint contours are closed. 

That one equal tangency su~~ace eXists, similar to 

the curve in the OQ case (c4), is seen in Fig. 6.8a and 

6.8b where the actual area contours have been plotted 

through sections o~ the 3 dim. space o~ elements o~ P 

parallel to the P11- P22 plane for P12 = 0.0 and P12 = -.5 

respectively (Shown AB). Values of P giving smooth tangency 

lie above sur~ace AB, the optimal P lying on the section o~ 

AB, in Fig. 6.Sb. 

'System S21 

• 
An exaLople showing a marked discontinuity of V On 

0"' = 0 is 

• 
S21 

• 
x2 = - 2x

1 
+ x 2 - 2sgn(2x

1 
+ x

2
) 

Fig. 6.9 shows the initial TIE' used in the previous example 

,fith one valid RS corner tangency point, and again the 

optimal LF ,fi th the t,vo types of valid tane;ency. The RAS 

boundary is ' 

2 2 
3.544x1 - 0.S70 7x

1
X z. + 1.0x2 + 12x

1 + xzl = ~.9941 

(p = 11.17) 
, 

Convergence was dee:raded once PO'iell t S metho,d hit the equal 

tane;ency surface and variolls initial pt s were tried to get 

the optimum. 



System S22 

A case '·There the optiw.um piece1Vise quadratic LF 

approaches a piece,,.rise linear LF is the f'ollovring 

• 
S22 

• 
X2 = Xl - sgn(x

1 
+ 2X2 ) 

Fig. 6.10 Sh01{S an initial· LF (p = I) compared to the 

• 
optimum in which the V = 0 constraint f'orms part of' the 

RAS boundary, V = V • The latter caused dif'f'iculty since 
ill 

the precise tanGency at the optimum was not clear. (A check 

,.as made to see if' 2S
1 

,{as the valid tangency "here :;ZV(2S
1 

)=0) • 

. Comment 

lfeissenberger uses a gradient method to optimize the 

RAS volume f'or 3rd order systems. The complex method of' C5 

could also be applied, \fith better convergence properties. 

The examples given here certainly sho,,, that the equal 

tangency property of' optimal LF's is not restricted to 

continuous systems. 

The PieceHise Linear LF 

Weissenberger (66) gives an analytic expression f'or 

the optimal .piecewise quadratic LF of' 6.2.9 f'or the system 

6.2.14 

W.Q sho'-I here that a good RAS boundary f'or the piece,dse 

linear LF of' 6.2.12 can be obtained by assuming an'equal 

tangency property' f'or the optimum LF. 

Consider the LF 

6.2.15 



and assumB slidinG for 6.2.,4 is a.s., i.e. 

Then ,dthout loss of generality the situation is sho"n in 

Diag. 6.1 ,d th a contour, V = 0< = const., having vertices 

a, band c of interest in ()'>O (by symmetry the analysis 

is considered for 1S'7 0 only) and normals 

i:!, = .1 + .£ 

i:!2 =.1 .£ 

DIAG 6., 

.! = (-c2 ,c,)/ 11£11 

! = (-d2,d,)/ lid" 

I 

I; 

For V = Cl. to be a stability 

T' 
.1::0 n.x 

-].-

at the vertices a, b and c, 

tl, 

boundary lie require 

i = , , 2 

or, 

/ 
/ 



1h6 

T' 
~O n

2
x 

- a 

T' 
6 0 a2x b 

'L" 
~ 0 !?'1?'b 

T' 
.( 0 n

1
x 

- c 
, 

and also f'or sliding, which on 0" = 0 gives 

, 
T' T' 

V " at' =-.£ x =-~(d2C1 - d
1

c
2

) 

d
2 

, 
T' T' and V = !!1X = -a z""{ 

Hence ,le require 

6,2,17 

,.hich also implies V p,d, For local stability we also 

require T 
n.b 
-~- '" 0 "hi ch ai vas 

c
2 + d

2 >- 0 and d
2 - c 2 "> 0 6,2,18 

Let Ii and ~. be unit vectors to vertices a' and band zt and 

t the respective distances 

t = 11.£11 0\ 6,2,19 

and the area of' V ..::.'" is;o = toll 11.£11 or 

2 

) (d2c, - d
1

c
2

) 6,2,19b 

The RAS is determined by the maximum ~ satisf'ying 6,2,16, 

or equivalently, by the minimum of' the t (>0) giving 

equality in all h relations of' 6,2,16, The h values of' 

t are respectively 



T T T T -n b -!!22 -n b 
& !!12 -2- , -1 - , 

6.2.20 

Z!!~A.t;;r T 
!!2AI 

T 
!!lAI 

T 
Z!!lA~ 

Hhere Z = II~II /11£.11 • 

As the boundary V = ex is expanded its vertices Hill 

• 
have a f'irst contact ,,ri th the V = 0 constraint _ in this 

case t"o RS straieht lines found in regions Al and El. 

(Diae.6.1). In vieH of' the equal taneency properties 

which usually hold f'or optimum LF's we assume that the 

• 
optimum boundary in this case ,,rill touch V = 0 at all 

• 
vertices (and thus V = 0 on all sides of the boundary) • 

• 
For V = 0 along bc 'le require the last t"o terms in 6.2.20 

to be equal i.e 

T T 
-!!1 2 = !!12 6.2.21 
'f 

!!lAI 
T 

Z!!l AlJ 

',hich gives 

or 

2 
u + P2u - Pl = 0 6.2.22 

,,rith u = (cl + d
1 
)/(c

2 
+ d

2
). 

Let r = P2/2·- Jp=':;4 + P
1 

-< 0 be the negative .oT,one.roo\: o-~ 

6.2.22, then Cl and c
2 

must satisf'y 

6.2.2.3 

in order that 6.2.21 holds (the other root gives Cl' c
2 
~ 0). 

The RAS boundary for such Cl' c
2 

is determined as 

f'rom 6.2.19, Hhere, f'rom the substitution of 6.2.23 into 

6.2.21, He have 



t 

Using the fact that 

and 

P1(d1 + rd2 ) = P1 d 2 ~ P2d 1 + d 1r 
r 

6.2.24 

from 6.2.23, sUbstitution of 6.2.24 into 6.2.19b gives the 

area in terms of c
2 

as 

6.2.25 

The only restriction on c
2 

is from 6.2.18 and to is maximized 

,,,hen c
2 

= d
2 

giving the boundary 

• 
(Note the first two terms in 6.2.20 are both zero, and V = 0 

on ab) Fig. 6.10 shoHS this boundary for system 522, and is 

the optimum (1'Teissenberger (66)). 

, 
6.3 Finite Regions of Attraction For The Problem of Lure 

Introduction 

He shall be concerned with the system of Lure' form 

6.3.1 

IT= A stable, 

where f(<r) is a continuous non-linear function 'vhich may 

leave the sector 

f(O) _. 0 
} 



at some cJ:!!: 0"1 "'- ° and/or 0'";:,. cJ
2

> 0, but satisf'ies 6.3.2 

f'or cJ2 .:; cJ 6°
1

• The latter restrictions often occur in 

practical systems "here f'(a-) is unkno"n for . large er. Even 

"ith these restrictions a region of' attraction exists if' 

the Popov condition 

Re(1 + iwq)G(iW) + ~ >- 0, 6.3.3 

holds f'or some real q "here 

and A is stable (Aizerman and Gantmacher (71)). The standard 

LF associated "ith this problem is 

V = 2STp,2£ + qS f'(s)ds 

° 
6.3.5 

,~ith P p.d. I:f such a LF can be :found which proves 3'.a.s. 

f'or 6.3.2 "ithout restriction, then "ith restriction, 

V -< V ,dl1 be a region of' attraction if' it lies in 
m 

"26 "60 "1· The largest boundary V = Vm ,~i11 be tangential 

to ,,= (f'1 or eT" = eT"2 and thus 

v = V = min H. 
m 

i 
:I. 

6.3.6 

where 

qg 
H. . 2; T -1 

:f(s)ds = 0'". c P c + 
:I. :I. _. -

° 
An· Optimal Quadratic For The In:finite Sector 

For q = ° and K = 00 a quadratic V = xTp2S (if' it exists) 

• 
giving V 6: ° ldthout restriction on f' in 6.3.2 is eiven hy 

and 
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• 'f 
(Then V = -~ Q~ - a-f'(a-) """ 0.) 1veissenberG'er (72) has proposed 

the optimization of' the volume of' region 6.3.6, 

1 
= maxJ\ ~ }2 

P€.j5"ldCP) 
6.3.10 

with ~ : (pi 6.).8 and 6.3.9 satisfied),to obtain the 

optimal quadratic when the Popov condition holds/ensurinG' P 

is non-empty. 1valker and NcClamroch (73) ,h01,ever, suggest 

a single LF obtained via the Kalman construction procedure 

(67). For the general case (q I 0) the assumptions made are 

(1) the pairs (A,:£) and (A
T ,.£) are completely controllable 

~ ". .. 
(see (43» and (2) the Popov condition holds for some real 

q with d(qA + I) I O. Then a LF of' f'orm 6.3.5 exists where P 

solves 

T . l' 
A P + PA = -:!l :!l 

and :!l is a real vector determined by writing 

Re(1 + iwq)G(iW) + ~ 

and setting 

= 1!7~12 
d(rr..J:.[:-Aj 

uT(sI _ A)-1:£ = Iz - e(s)/d(sI - A) 

6.:3.11 

6.:3.12 

(e is a real pOlynomial of' degree nand z = 1/K _ q,£Tb • 

Kalman chooses roots of€lCiW)to have neg. real parts). 

The f'ollo,dng relation no,{ holds betlVeen the b,o 

approaches above: 

Theorem 6.1 

For n = 2 the maximizing P in 6.3.10 is determined via 

the Kalman construction procedure i.e.6.:3.11 
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Ylith a generql A, :2 and .2. the proof is lone and 

tedious. How.ever, since it is assumed the pair (A, :2) is 

completely controllable a transformation exists (see Lefshetz 

(4.3)) transforming 6 • .3.1 to cononical form ,d thout changing 

the problcm. Hence without loss of generality '·re assume 

the system 

2£ + Cl 6 • .3.14 

Here 

2 . 
GCs) = (c

2
s + c

1
)/(s + as + b) 

and the relation for e in 6 • .3.12 reduces to 

with r = cl b .,. 0 and t = aC
2 

- cl .,. O. The hvo choices of 

e are e(iW) = Ir + ic.JJt and eCiw')= fr - iwft. Hith the former, 

u = - ( Ir, It) giving 

6 • .3.15 

It is easy to Sh01, that the Q corresponding to the optimal 

P in 6 • .3.10 is just this. For 6 • .3.8 implies P of the form 

P = [~ 

and 

Hence we require to minimize ~ subject to Q p.d. or 

Hence the optimal Q is that in 6.3.15. 
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InterestinGly, the P minimizinG the area in 6.3.'0 

corresponds to the other choice of' e-. 

The result was also sho,m valid f'or specif'ic 3rd 

order examples and is conjectured to hold f'or general n. 

Variation of'(' ,.1th 9 (K =00) 

The system 6.3.' will be globally asymptotically 

stable if' the modif'ied frequency response (X vs. Y) ,.1 th 

G(iW) = X(c...» + iY(w)/w 

lies to the right of' the Popov line 

, 
X - qY + if = ° 

f'or some q in the X - Y plane. A range of' such q, q2 L. q.(' ,q, 

will usually exist and the question arises of' whether a 

search f'or the q giving the best stability reGion in 6.3.6 

is profitable, with V obtained via the Kalman construction' 

procedure. lfe consider 4 second order examples f'or the 

inf'ini te sector ,.,hich give dif'f'erent types of' f'requency 

response and range 'of' q. 

For system 6.3.,4 and LF 6.3.5 the modif'ied f'requency 

response is a convex curve and the Popov lines tangential to 

it ,give the range of' q. Let 0(= aC
2 

- c, and f3 = c
2

b - c,a' 

then the tangency values give 

and 

q2 = n 11 

The f'ollm.1ng ranges then hold 

Case , : d. 6 0, 13> ° • q2 .£. q L. q, , 

Case 2: cl? 0, f3 >- ° • ° ~q 
.(. q, , 

Case 3: Cl C: 0, 13<- ° q2 .Lq .( co 

Case 4: 0,>- 0, {3i. ° ° <!::q .4. 00 



Fig. 6.11 to 6.14 show examples of the 4 cases for 

:f = (j - (j3 (-1.t:.. (j .t:.. 1). Evidently, marked increases in 

the size of stability regions are found for some q and in 

15J 

only one case (Case 3) is the optimum q near one of the 

extreme points q = q1 or q = q2 (i.e q= 104 in Fig. 6.13). 
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Conclusions 

The continuous theme throughout this thesis has been the 

search for improved results "hen applying Lyapunov functions to 

autonomous non-linear systems. lye intend here to bring together 

the main points arising from this search and add some suggestions 

for future "ork. 

The problem of' improving a crude RAS or an estimate of 

the transient response of' a non-linear system "as considered in 

Chapter 2. For the t,yO f'orms of system considered the rate at 

which the trajectories approach the origin can be estimated 

through quantities oI-or(3 "here 01= 1'//2 - ./jJ.c
o 

and fS=n./2 -.Mc2; 

-1 -1 ,.,here cL . and f3 behave as I time-constants I of' the syst!3ms. 

, 1· 
The SUb-optimum problem of' maximizing Tl (m(P- Q)) and then 

minimizing pep) (M(P)/m(P)) over the space of' p.d. s. matrices 1l 

"hi ch results, "as solved f'or a special case 1ihere A "as. in 

companion f'orm 1iith reai eigenvalues. A conjecture and a bound 

of' 1fiberg were also proved invalid. 

Al though the theory of' condition numbers is "ell estab-

lished there are a surprisingly small number of' usef'ul bounds 

that are obtainable f'or ,M(p). The main drm,back of' the ones 

proposed, namely, F(P), F(P- 1
) and that of' 2.6.14, is the 

calculation of' d,(s), although simplif'ication arises ,dth A in 

companion f'orm. 

The numerical 1iork sho",s that the procedure of' minimizing 

.M(p) (p- 1 = (sn) (sn)*) over the extended space of' hermitian 

matrices Gives no improvement over that of' the real matrices. 

The results in Table 2.1 sho\-1 the extra ef'fort in computing the 

estimates IIlsl Is-1111 = 1) may be ,"orth1fhile. 

The evidence in Table 2.2 causes some doubt on the sub-optimum 

problem as simple choices of P or Q of'ten give larger values of 

Cl or f3 • 



AlthouGh the choice of a quadratic Lyapunovfunction gives 

rise to many simplifications in obtaining bounds for the 

transient response, the optimizationSof quantities such as ",-1 

. -1 
or (!> are essentially independent of the non-linear parts of 

the system thus Giving crude bounds. Unless one considers a very 

special type of system,LF's incorporating the non-linearity are 

hard to find. 

An analytic solution of the Zubov eqn. in Chapter 3 "ould 

give the optimum result in that the exact DOA ,muld be prescribed, 

v .( 1 (regular equation). The impossibility of analytic solutions 

in general has led to the Zubov construction procedure vith its 

non-uniform cO:J.ver,c;-ence of the RAS to the DOA. The analytic 

example given has thrm,n some liGht on the reason for this. 

HOllever, the problem of determininc "hether the convercence of 

the HAS to the DOA is ahmys non-uniform "hen the reGion of 

convergence of' the pO'lOr series LF is a subset of the DOA, vould 

appear intractable analytically, and may be so numerically in 

vie" of the difficulty in findine; the ree;ion of convere;ence. 

The breakd01,n of the difference method near the DOA 

boundary ,;hen solvine; Zubov's PDE, is disapPOinting. It is due 

to the possibility of the analytic solution for V not being 

defined outside ·the DOA (Example 3.6.1 sho"s that ,vith cP = r2, 

AI 2 2 
V is def'ined every"here, "hereas fo.r 'f' = 10x + y , only in the 

DOA). The validity of the difference approach is also question_ 

able and breakdovns occur. A more critical comparison of' the 

methods of' Troch, Burnand {o Sarlos and Davidson and Co,;an may 

prove interestinG. 

, ,'_. _;' i 

I 
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In the author's vie" the "ork in Chapters if, 5 Cc 6 contid~ 

the essential result of this thesis. It has been shoHn, both 

from an analytical and numerical standpoint, that Given,a class 

of Lyapunov functions the optimal' LF, V say, can have more thaTi 

onei valid tangency-point "ith its constraint contour, V = O. 

Although the number of' such points depends upon the system 

considered, f'or a quadratic LF, the property can be suitably 

defined as 'property A'. Analytic evidence has sho"n the 

intractability of' proving that the property A ah,ays holds for 

autonomous systems not asymtotically stable in the "hole. 

Ho"ever, the numerical- evidence gives. some overHhelming evidence 

for such a ytl.lp<Lvt,y.A contrary resul,t has not yet been encountered 

Defining a similar property f'or higher degree LIe's is 

difficult due to the number of' special cases - f'or example, 

a system giving only one tangency point f'or any LF _ but the 

vie" that multiple valid tangency is a general phenomenon 

encountered "ith any class of' suitable LF's is certainly 

supported by the evidence in this thesis. 

In the f'ollo1ofing paragraphs "e give the main points 

of' each chapter. 

The problem of' RAS determination and its associated 

search f'or the global minima of' a constrained function 

is a big obstacle in using Lyapunov's direct method. 

With this in mind Chapter 4 investigates the simplest 

class of Lyapunov functions, 
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the quadratics. Even ,,.ith very simple non-linear second order 

systems RAS determination is impossible. The systems studied 

show this in detail but in t"o cases optimal quadratics are 

obtained, one of ""hich gives a lead to the equal tangency 

property, property A. 

It is hoped that the second and highe~ ordor optimal 

quadra tic alc;ori tllms will be of use to future researchers. 

They have certainly sho"n the existance of property A for a 

number of second and tp:ird order examples·"here accuracy "as 

needed. l"uture "ork "ould be to compare some of the best 

optimization methods (e.g Fletcher and Lill, Nelder and Head, 

Po"ell and DCS) on a varied selection of optimal quadratic 

problems. The deC;rading of the searcj;I directions near an equal 

tangency curve as for 1'o"ell's method, should affect these 

other methods to varying degrees. Future optimization algorithms 

should be chosen or developed on the fact that, although a good 

direction of search is along the equal tangency curve or surface, 

the RAS determination for a quadratic corresponding to a point 

on this curve is also degraded because of the extra effort in 

verifying the valid tangency point. 

An extension of Chapter 4 is the problem of optimizing 

J over the class of quadratic LF's in order to obtain a large 

region of the origin in "hich trajectories have a certain 

exponential stability. For example "e maximize the volume inside 

• \ 1 
a boundary V = V in "hich also V + 2AV.~ 0 (211 ,(m(P- Q» .• The 

m 

problem is similar to the one of the optimal quadratic and it 

is easily shom'1 that for system S1 equal tanc;ency exists. 

In Chapter 5 the superiority of the 'complex' optimal 

quadra tic algorithm over that of Davidson and Kurak ,.as mainly 

due to some unsatisfactory steps in the latter algorithm, namely, 

;. , 
./" solving the constrained problem by Rosenbroclc's hill-climber and 
. ~'t 

.' .~, 



minimizing the eccentricity of the initial stability boundary. 

The main reason for the latter step was to avoid local minima 

of the objective function~ (volume). In our experience local 

minima Here rarely encountered. The main point; "as that of a 

bad initial quadratic "hich in the space of elements of L 

(p = L TL ) meant that the search for the O!'tin11Pl engaged an 

equal tangency surface someHay from the o;;>timutll "i th little 

hope of reaching it. 

It would be aclvantageous to find a· large class of systems 

, .. hich for a quadratic LF have only one HS tangency point Hhere 

the above maladies do not occur,A member is the system s4. 

The I)enal ty function approach to the quadratic HAS 

problem in Chapter 5 has given good results. Further experience 

with the penalty function method of Fletcher and Lill (63) for 

high order systems is required iri vie,., of the claims of the 

method by the authors. 

The extensions made in Chapter 6 of obtaining quite 

general optimal LF's for non-linear systems, including relay 

systems, give conclusive numerical evidence for the equal 

tangency phenomenon being a general one, and not solely attrib-

uted to quadratics. 

The problem of determining optimal LF's in the series 

form (6.1.3) has numerous pitfalls. Besides those o:f the 

quadratic, the greater number of valid tangency points for mv 

increasing,the possible open nature of the V = constant 
mv 

boundaries and the vanishing of 2Ymv at tangency, all cause 

serious problems in RAS determination for mv 7' 2. From a purely 

mathematical standpoint the question o:f why multiple valid 

tangencies occur is striking. As the degree of the LF increases 

so do the degrees of freedom of its contours, as shm1n in 

Figures 6.1 to 6.6, but the direct relationship beb1een these 



• 
contours and those of V = 0 at tanGency, is obscured by the 

mv 
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I RAS determination. FindinG the number of valid tanGency points 

a' priori for a given LF of degree mv and a c-iven system is an 

unsolved problem. It is hoped that the numerical evidence 

presented in this thesis has made some contribution to its 

solution. 

By assuming an equal tane-ency property a useful sub-

optimuI!l pL'cewise linear LF has been obtained in Chapter 6 for 

a second order r(llay system. Porhaps this idea could be oxtonded 

to other systems. The proof for General n that the Kalman 

construction procedure gives the optimal quadratic-would be 

worth"hile in view of the ease in obtaining the rec-ion of 

attraction. 

The numerous practical systems have shown that the 

optimal MS of a quadratic often giveSa good estimate of' the 

DOA "hen the latter is radially symmetric, but that in general 

it is poor, especially -for an open DOA (Figures 4.4, 5.3, 5. 1+, 

5.5, 6.4 and 6.5 sho" this) Hewit (2), after comparing the best 

RAS's for a number of constructed Lyapunovfunctions (those of 

Krasovski , Ing-we,,-son, Zubov and Szego) concluded that 

Lyapunov's direct method was unsqtisfactory "hen applying 

numerical construction procedures to it. The presence of the 

equal tangency phenomenon for second and high order systems and 

its associated convergence problems, gives even more evidenco 

against Lyapunov's direct method as a tool for estimatinG the 

DOA. 

Wc can conclude from the ,.,or]< in this thesis that the 

search for optimal results has been profitable and that 

applications range fro!n simple autonomous systems to s~stems of 

discontinuous ri"ht-hand sides. It is hoped that the optimal 

phenomena sho1i'n have contributed to a better understanding of 



Lyapunov's direct method. 
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Appendix 1 • 

. The following definition is important in defining 

the closed surfaces or contours of a continuous 

function Vex) in some region R(h). 

Def. A1.1 

The level surface V(~) ~ c (the set of points 

satisfying V ~ c : constant) is closed in R(h) if 

any continuous line from the origin meets' this 

surface in at least one point. 

Theorem A1.1 

If V(~) is a p.d. (n.d.) function in R(h) then 3 

a c, such thatf'or O<c<c1 (c
1
<c:<:0) the level 

surfaces V = c are closed. 

TheoI\em A1.2 (13arbashin (18» 

If Vex) is p.d. (n.d.) and radially unbounded i.e. -
lirn V<'?f) = 00 (- (0) 

IIxll --.. cO 

its level surfaces are closed in En. 
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Appendix 2 

Solving a Set of Linear Equations 

Since we are interested only ih the i th stage of 

the 

The 

or 

calculation of the Vi' we olnit the . subscript. 
J l . 

set of linear equations 4.1. 6 gives (n::N in C3 ) 

V
1

a
t 

+ V
2
b

1 

V2a'2 + V
3
b 2 

• • 

• • 

• 

• 

Ay' = ~ 

• 

• 

• 

• 

= c n 

Consider the following two algorttbms: 

a) starting with 1st equation express Vj in 

terms of Vi up to the n-1 th e1g.uation; SUDstition 

into the last equation then gives 

Vi (1 - (_1)n -ff~n = ( cn 
. !.\ i bn 

_ an C'n_l 
b
n 

b
n

_
1 

+ an ~-1 cn_2 • • • • b
n 

b
n

_
1 

b
n

_
2 

( )n+1 
-1 an 8 n-t • 

bn 
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the last equation in 

express V'. in terms of V
l 

dOHn to 
J' I 

the 2nd equation 

substition into the 1st then gives 

V
tl 

(1 _ (_11)n) _ 

z •• 

Provided a i f 0 1 - <;1)n f 0 back substition 

gives', 

Vn _ j +1 = 1 (c n-j - bn_
j 

Vn_j +
2 

) , a
n

_
j 

VN+11 =- Vii 
n 

Thus provideddCA) $i ) (z: -1 ):; 0 and with 

round off errors in View, choose algorithm 

(a) if 1201 <:: 1 

and (b) if I zj >1, 
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Appendix 3 

A Crude R.A.S. 

With the assumptions on i~)in 2.1, the bound 

2.1.19 holds in some region R(h) for which ~>O 

i.e. 

, 1J1H~) 11 :S. h 11511 A 3.5. 

It is easily seen that A 3.5 is satisfied; for all 

solutions of 2.1:.:[ with 

11 lS ( 0 )11 <: h/J)J" A 3.6 

where h: m3f IllSlI for lS satisfying A 3.5 

For then lIi (t)11 <:::: h by 2.11~21 which implies: 

A 3.5 and hence f3:> O. 

When .y = 0 and G (x,t) ': G (x) -. - in 2.1.1:, a possibly 

sharpe~ estimate can be obtained if lim G (~) = O. 
I~I--')< 0 

~e crude R.A.S. is given by A. 3.6 with 

h:: min 11 t.£ll 
5 

for.;. satisfying IIG(lS)11 = 11/2J)A 

The Minimizing D (Baue~ (22) ) 

The diagonal matrix D giving the bound in 2.3.11 is 

determined as follows. 

Let 

and for .,. 
this non-negative matrix let S' Y1 and 

left and right eigenvectors (Perron) of M 

corresponding to the largest positive eigenvalue of M, 
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--- ------------------

Where e == (1,1. •••• , 1) and Y
1 

and X
1 

are diagonal 

matrices. Then 
.1.. .1. 

D = Y
t 

2: X
1

- 2 
A 3.9 

A Minimization Algorithm 

Let Pij and ~,j be the i,j th elements of P and Q 

where Q is any p.d.s. matrix withm(: ... n(n+1)/Z) 

element 8. The optimization problems are to 

minimize 

(a) s(p-1iQ) == M(p-1 Q) _ m(p-1.Q) 

(b) )J.(p) 

(c) -t) 

(d) -02/}A 

over the (m-1i) dimensional space of elements qij 

subject to 

Q ~ 0 (posi ti ve def'ini te ) 

where ATp + PA == -Q 

A 3.15 

A 3.16 

. (Note one element of Q can be arbitrarily chosen) 

The non-linear optimization algorithms of Rosenbrock 

(32) or Powell (33) are well suited to these problems 

and standard subroutines are available. (See A4). 

These routines require an auxiliary routine to 

evaluate the objective function and in this case the 

main steps were: 

(1) from L, a lower triangular matrix input 

to the routine, calculate Q via 

T 
Q == L L + er A 3.17 

which is p.d. for e>Oj 

12.0 



(2) Solve A 3.16 for P by the direct method 

(20) i.e. solve 

I{l. =-<1 A3.18 

whereE = (P11,P12,P22,P13'p23, ... Pnn ) 

$ = (~1, ~2, ClQ~,"""'''''' <;m) 

and B the m x In matrix of coefficients (See Barnett 

(20); 

(3) compute Rand R-1 where p. => RTR and R a lo~.,er 

triangular matrix; 

(4) compute M(p-1 Q) = Iv1(T) and II = m(T) 

(5) For (b) and (d) compute m (p) and M (p). 

The introduction of L avoids the n implied constraints 
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of A 3.15 and the rnih:lm:i.zation is thus over the m-1 

elements Clij , i ::0 2:; n,j = 1,2 ., i ) of L011= 1·0 say) 

(In practice A 3.18 was solved by a Crout iterative 

method (35) and the eigenvalues of T by the method 

of Householder (36). The choice of E::o 10-10 was 

sufficient in A 3.17. 



Anpendix h 

The optimization methods used in this thesis concern the 

programming problem. 

Ah.1 

subject to (a) an equality constraint e(x) = ° 
or (b) an inequality constraint C(2!:) == ° 

The class of methods used to solve Al~.1 depends on the form of 

F and the constraints. Fletcher (5h) and Box (56) give good 

accounts. The methods of Rosenbrock (J2), P01,ell(JJ) and 

Nelder and I'lead (Jh) are "ell jcnoHn and standard packages Here 

used Hritten in Fortran IV. We only mention that Rosenbrock 

deals Hith the constraint, c :!E 0, by introducing an implicit 

variable x 1 = c Hhich is 'deemed feasible if 
n+ 

( -h) z10-h z 1 - 10 !:S xn + 1 ~ 

where z is a lower bound for c. Should this not be satisfied 

-h but,x 11ies in one of the boundary zones z10",x 160 or 
n+ n+ 

z 6x 1 4 z(1 - 10-
h

) a special penalty function is used 
n+ 

otherHise the value is termed a failure. 

Box's Complex Method For Constraint (b) 

A method modifying the Simplex method, it consists of 

forming a complex - a set of K (~n+1) independent points 

E.(j = 1, ••• , K), at which F is evaluated, Initially, assume 
J 

all points are feasible i.e. C(Ej) 6 0. Let ~correspond to Fh , 

the highest value of F in the complex, and ~ the centroid of 

points Ej excluding .l2tt. Then a stage consists of the follo,dng : 

wi th ()\ = 01 and 
o 

E = ~ + OI(~ - .l2tt) 

(an over-reflection of En through the centroid) evaluate F(E) 

and (1) if c Cl?) >- 0t 0( is halved and the calculation rep ea ted 

until C(E) ~ 0, then (2) if F(E) ~ Fh is not satisfied ~ is 



'S3 

again halved until it is. The final values of E and F(E) then 

replace l4t and Fh and new values of ~ and Fh are found 1"ith 

new centroid 

~(new) = ~(Old) + (E - ~)/(K - 1)-

This completes a stage. The calculation is rAl'A"-ted until after 

I stages, I ~ I or IF -max h 

K = 2n + " E.=,0-4). 

Penalty Function Updating 

With respect to the penalty function of Hiele (62), 

the following rules are used for the conjugate gradient (DFP) 

algorithm 

Ini tially select. A = \ = 0, K "K, (K, = 20 say) 

With SOme initial x and If " I perform niterations 
-0 

of' DFP on v(;!). 

(3) If' 1\2R(x*,A,)1I 

* Let;! be the final point. 

J.. lE. and le (;! *)1 L. EO. convergence is 

assumed, otherwise 

(4) An updated A is chosen to minimize II;zR (;!*, A
2

) 11 2, 

of' the form 1'12 = A, + 2~e. Which gives 

T (* .) 
= A _;Ze.2R;!. ", 

1 = 

lI'2ell 2 

The value of K is either kept constant or a criterion of 

reducing Ii':1.RII and lel at the same rate is employed 1Vhich gives 

K2 == min(Ko ' K,) if' lel ~ 1I;zn(;!*. '>--2)11 

K2 == max(Ko' f3 K 1 ) if' I el > II:;ZR (;!.... »..2)11 

where f3 ~, and Ko " 11'2/el "here the latter makes the" order of' 
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the term Ke
2 

the same as that of R. Step (2) is now repeated. 

Fletcher Powell Method (DFP) 

When derivatives of A5.1 are available the algorithm 

determines a sequence of iterates x. and directions s. as 
-~ -1 

follm{s : ,dth some initial p.d.s. H, H = I say, and initial ~o' 

x. 
-J, 

+ z. 
-J, 

where .§.i = -Hi!ri' .B:i = SZT (~i) 

and 11 determines the minimum of F along a line 

Here Hi is updated as 

where :!!i = .B:i+l - !ri' 

A converted Algol program of Fletcher (64) was used where 

cubic interpolation is advocated to determine the min. along 

a line>;' Tne initial step, 11= sl' along the latter was 

restricted to 

0,1 
sl = 

s. 
-J, 

for the problem in Chapter 5, 



Appendix 5 

The Complex Optimal Quadratic Algorithm 

The pro{l'ram, desi{l'llated n459, is written in Fortran 4 

and flow dia{l'rams are given in Figures 5.1 and 5.2. Access to 

the ICL library of scientific subroutines is needed to run 

the program (FPQRVS, FPDIRHESSF, FPQRHESSE, FPBACK, F4ACSL 

and F4ROOT1 are from it). The ,instructions are intended for 

guidance in running the program. 

Input 

The sequence of input variables are as follo'/s: 

1) N, and LOADQ are set in the Naster segment; n being stored 

in Nand LOADQ being of logical value • TRUE. or .FALSE •• 

2) The initial complex matrix D is input and stored in 

array DEL (i,j) (j = 1, 2n, i = 1, n) 

J) The elements of A, a .. , a:r;-e input in array A(I) such 
:l.J 

that A(k) contains a .. , k = n(j-1) + 1. (In the Rao system in 
:l.J 

the listing, A(k) have been calculated in the program for 

accuracy) • 

The r.h.s. ,of the system f(2£) are set through subroutine 

CALFX (N, X, F) where X and F are one-dim. arrays containing 

x. and f .• Unit vectors X
J
. are stored in array Y(i) such that 

:I. :I. 

th . th ' t -<' • e:l. componen OL Xj :l.S contained in Y(n(j-1)+i). They are 

calculated through a call to SETUNVEC (S, NV, N, Y, NX, p) 

where S is the step inS1 and s/cose
2 

the step in9
2 

for unit 

vectors calculated via polar co-ordinates 4.5.1; NV is the 

number of unit vectors calculated; NX = N(N+1)/2, and the array 

P(i) contains the initial P such that p .. (j=1,n, i=1,j) = 
:l.J 

P(i+j(j-1)/2). If the 'box' method is used S is immaterial and 

N1, the number of mesh points along a half-edge of the box, is 

set in SETUNVEC (N1 is set after statement 61. S is set after 

statement 100 in the master segment). 



Output 

After some checking output the follo,-;ine; sequence is 

observed: 

1) The elements of initial P and Q are output in the order 

that the p .. are read. 
J.J 

• 
2) .. A ... f'tcr each cvalun.tion of' VH(l) the values of" ~ax' 

• • 
VH(l) and 1 are output in order, where :z.uax gives VH(l). 

3) The final 1, 1
2

, is output (called E) followed by the 

T 
volume of ~. p~ < 1

2
, 

4) Output from the setting up of.the initial feasible 

• 
complex - rows containing p (vol), V( I'j) and S (initially 

2max It. I ). If no feasible complex is found the w·ords 
J. 

'IFEASIBLE SHIPLEX' 

are output. 

5) The complex points .E. (j=:1, 2n+1) are output • 
. J 

• 
6) After every 10 evaluations of VI,CL), v , p .. (j=1,n, 

-, -max J.J 
• 

i=1,j), VH(L) and -fare output. Then ti (i=1,NX) are output 

on a ne" line (elements of L). The co-efficients of v 
--max 

follmv the word 'NAXVllOT'. 
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