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Despite concerns on the effects of noise from seismic survey airguns on

marine organisms, there remains uncertainty as to the biological significance

of any response. This study quantifies and interprets the response of

migrating humpback whales (Megaptera novaeangliae) to a 3130 in3 (51.3l)

commercial airgun array. We compare the behavioural responses to active
trials (array operational; n ¼ 34 whale groups), with responses to control
trials (source vessel towing the array while silent; n ¼ 33) and baseline studies

of normal behaviour in the absence of the vessel (n ¼ 85). No abnormal

behaviours were recorded during the trials. However, in response to the

active seismic array and the controls, the whales displayed changes in behav-

iour. Changes in respiration rate were of a similar magnitude to changes in

baseline groups being joined by other animals suggesting any change group

energetics was within their behavioural repertoire. However, the reduced

progression southwards in response to the active treatments, for some

cohorts, was below typical migratory speeds. This response was more

likely to occur within 4 km from the array at received levels over 135 dB

re 1 mPa2.s.

1. Introduction
The increased use of the marine environment by humans has resulted in

increased ocean sound over the last several decades [1]. Anthropogenic

sound sources are highly variable in character and include impulsive sounds

from geophysical exploration for oil and gas, port developments and wind-

farm construction, sonar sounds from military and civilian operations and

continuous broadband noise from commercial shipping. The impact of these

sources on marine animal physiology and behaviour, though studied for

more than 30 years, is still poorly understood [2–4]. Without first understand-

ing impacts of these sources, mitigation and management strategies are difficult

to develop and implement. Extensive reviews of the effects of sound on marine

organisms have led to the development of precautionary criteria for hearing

and physiological responses in various taxa (e.g. fishes and sea turtles [5]

and marine mammals [6]). These tend to focus on animals close to sources

with high source levels. However, behavioural reactions may occur at much

greater distances, be more variable, context dependent and less predictable

than effects of noise exposure on hearing and physiology [6]. In addition, it

is not yet known how significant, in terms of adverse effects (if any) on the

population, these responses actually are [5,7].

In assessing the impact of sound on marine mammals, the National

Research Council [8] defined an effect as ‘biologically significant’ if it keeps
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enough animals from growing, surviving and reproducing,

thereby potentially affecting the survival of the population.

If the impact is biologically significant, there are obvious

repercussions for the conservation of that population. Var-

ious links from response to life functions, vital rates and

population effects has been put into a model framework

known as Population Consequences of Disturbance [9–11].

The first step of this model is to determine if, and how, the

changes in individual hearing, behaviour and/or physiology

are related to the sound source in terms of the type, level and

proximity of the sound source and the animal’s response.

Later steps relate this response to a change in one or more

life functions (e.g. mating, migration), a change in vital

rates (e.g. reproduction; [12]), and finally, to population-

level effects (e.g. [13,14]). While these pathways are concep-

tually simple, measuring the impact of a behavioural

change, from the initial disturbance, to just a change in a

life function, let alone through to population effects, is diffi-

cult, as is determining whether any of the responses could

be considered to be biologically significant. Progress can,

however, be made by comparing behavioural responses to

noise with normal (baseline) behaviour, and this is the

approach used in this paper.

Seismic airgun arrays generate intense sound pulses

intended to penetrate the sea floor to image the subsea strata

in exploration for oil and gas or research. Arrays can consist

of 20þ airguns fired every 8–15 s for periods lasting longer

than 24 h (depending on the length of the survey line).

An entire survey can last for months and may be conducted

over several thousand square kilometres, though the sound

field generated varies spatially and temporally. There have

been a number of studies focusing on the effects of noise

from seismic airguns on the behaviour of large whales. Reac-

tions ranged from no detectable response (e.g. [14–16]), to

small changes in travel course, speed and dive/respiration

parameters [17–24] and vocal responses (e.g. [25–28]), to dis-

placement of animals from an area [29–30]. It is therefore

apparent that the behavioural response of large whales to seis-

mic airguns is not a simple one but varies widely, likely due to

differences in social context [17,18,31], environmental context

[17,18,30], behavioural state and individual variability. None

of these studies, however, attempted to assess the response

in terms of its biological significance, making it difficult to

assess the implications, if any, of these responses.

The BRAHSS (Behavioural Response of Humpback

whales to Seismic Survey) project is a large-scale study

with the overall aim of quantifying the behavioural

response of humpback whales (Megaptera novaeangliae) to

various seismic airgun array operational modes, including

ramp-up (a mitigation measure used to prevent whales

being exposed to levels that might cause a physiological

effect). This study builds on three previous experiments

[17,18,32] that used small experimental arrays. Using a full

commercial seismic array as the source, we aim to quantify

the response of migrating humpback whales (after account-

ing for social and environmental effects) and look for

evidence of ‘recovery’ after the airguns ceased firing.

Secondly, we compare these responses with normal (base-

line) behaviour as a first step in assessing any biological

significance. Thirdly, we relate the response magnitude to

received level (RL) and proximity to the source in order

to assess the ‘zone’ at which any significant responses are

most likely to occur.

2. Methods
(a) Study design
Detailed data collection methodology has been presented else-

where [17,18] and is summarized here as well as in the

electronic supplementary material, methods section. Data were

collected during the southward migration of the eastern Austra-

lian humpback whales in September and October 2014 and 2015.

Experimental trials were carried out using a dedicated seismic

source vessel with a 51.3 l (3130 in3) airgun array (2014). Data

were collected on groups of whales when no trials were occur-

ring (baseline behavioural data; 2014 and 2015). Experiments

were designed to obtain adequate sample sizes (based on

power analysis; see [33]).

As in previous work at this site, focal groups of humpback

whales (including male and female adults as well as calves)

were ‘followed’ as they moved southwards through the study

area. Inshore focal follows were conducted by four teams of

observers on two land stations (11.5 km apart) and offshore fol-

lows by four teams on separate ,7 m length, boats. A previous

study found the data from the two platforms to be complemen-

tary [34]. ‘Scan’ teams at both stations gathered spatial and

behavioural data ad libitum on all groups in the area.

The study area was monitored acoustically using a fixed

array and moored recorders. The fixed array of five hydrophone

buoys were moored 1.5–2.5 km off the coast and radioed data to

a shore station to acoustically track singing whales [35]. Six cali-

brated underwater acoustic recorders [36] were used to cover the

full study area with different receiver to array azimuths and vari-

able bathymetry paths (36 deployments of 1–5 days each). The

received sound exposure levels (SEL in dB re 1 mPa2.s) of

airgun signals at whale groups as a function of time along

their tracks [37] were estimated using an empirical propagation

model developed for the site at ranges greater than 1 km and

modelled and verified source propagation at ranges ,1 km.

Predictions of SEL incorporated the effect of array directionality

and different seafloor types (see electronic supplementary

material for further details).

The source vessel used in this study was the RV Duke, a 65 m,

2031 ton seismic exploration vessel. Once activated, the power of

the airgun array ‘ramped-up’, during the first 20 min. As in pre-

vious work, the ramp-up was designed to progress in

approximately 6 dB steps so that the increase in level is likely

to be clear to the whales. The array was towed at 4.5 knots

(8.3 km h21), 80–100 m astern the RV Duke with an 11 s shot

interval at 6 m depth.

Each trial followed a ‘before/during/after’ design. In the

before period (60 min), the RV Duke approached the start of the

transect at reduced speed (less than 4 kt) from the southeast to

maintain maximum separation with the whale groups. The

during transect (see table 1 for duration of stages) was north-

wards into their migratory path. In the after period, the ship

slowly left the study site and the whale groups were well

south of the ship. Trials were balanced between being active,
with the airguns firing, or control, where the airguns were

towed along the same transect but were not operated. Observers

were blind to the ‘treatment’ as well as phase. Data were also col-

lected from baseline groups (no source vessel in the study area)

for at least 90 min when trials were not underway.

(b) Behavioural analysis
The behavioural record for each trial group was compared with

the general behaviour of baseline groups to look for evidence of

abnormal, or a cessation of ‘normal’, behaviours. Response vari-

ables were group dive time and respiration (blow) rate (per

individual per 10 min), rates of various surface behaviours (per

group per 10 min; ‘breach behaviours’, ‘tail slapping behaviours’
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and ‘pectoral slapping behaviours’) and measures of group

movement per 10 min including (i) group speed of southward

movement (speed south), (ii) the change in group swim speed

(speed variation) and (iii) group course deviation from south

(‘course 180’, a measure of their deviance from their general

southwards migratory direction). See electronic supplementary

material for further details on calculating these.

Each dive and each 10 min time bin were annotated with var-

ious contextual social and environmental variables. Groups were

categorized as female–calf, female–calf–escort, multiple adults, adult
pair or lone animals according to their group composition. Group

social behaviour was categorized as pre-split (up to 10 min before

the split), post-split (up to 10 min after the split), pre-join, post-join
(as with splitting) or no change in group membership (stable).

Additional measured social variables included the distance of

the nearest other group to the focal group (within 1 km, 1–

2 km, 2–5 km and beyond 5 km), distance of the nearest singing

whale (using the same distance categories), number of other

groups in the study area (a proxy for density) and number of

singing whales in the study area. Environmental variables

included wind speed, distance of the group from shore, water

depth and broadband background noise level (5 Hz–1.8 kHz),

all averaged over the 10 min time bins.

Each measured response variable was modelled against var-

ious predictor variables in a mixed model with group ID as the

random effect (using the lme4 package in ‘R’ [38]. ‘Dive time’,

‘course 180’ and ‘course variation’ were log transformed to

result in a normal distribution. ‘Speed south’ and ‘speed vari-

ation’ were normally distributed. ‘Blow rate’ data were analysed

using a Poisson model. Surface behaviour data were analysed

in 30 min time bins (due to zero inflation). The number of

breaches within a 30 min time bin was counted, as these were

usually singular events, analysed using the glmmADMB’ package

(http://glmmadmb.r-forge.r-project.org). Models assumed a

negative binomial distribution with zero inflation to account for

the skew towards zero. Tail slapping and pectoral slapping

occurred in bouts which were highly variable in duration (with

between 3 and over 40 behaviours per bout) and therefore

scored from 0 to 3 depending on how many of the 10 min time

bins (within each 30 min time bin) contained bouts. These ordinal

data were analysed using a cumulative link effects mixed model

fitted with Laplace approximation using the ‘ordinal’ package

in ‘R’ [39] with a ‘probit’ function.

First a ‘base’ model was generated for each response

variable which incorporated significant (p , 0.05) social and

environmental predictor variables [40,41]. This ‘base’ model

included all data from baseline (n ¼ 85), control (n ¼ 33) and

active (n ¼ 34) groups. To test for additional changes in behaviour

(aim 1) in response to the presence of the ship (control), the

‘ramp-up’ procedure (first 30 min of active) and the full seismic

array (the second 30 min of active), the interaction term

(phase � treatment) was added and tested for significant

improvement using a maximum likelihood ratio test (with the

degrees of freedom being d.f.1 [base model] 2 d.f.2 [experimen-

tal model]). Effect sizes from response models were calculated

(back-transformed, if necessary) and reported with standard

errors in tables (in the electronic supplementary material) and

plotted with 95% confidence intervals. The tables include

the effect sizes of significant variables and the results of the

likelihood ratio comparison between base and experimental

models. Residual plots were visually inspected and did not

reveal any obvious deviations from homoscedasticity or

normality. Residuals for any ‘Poisson’ models were checked for

over-dispersion.

Significant responses were selected for further analysis to

address the second aim, to determine if the response to the treat-

ments lay outside the range of normal behaviours after

accounting for changes due to social or environmental variables.

The interaction effect of treatment (baseline or active) and the

strongest social or environmental predictor were modelled for

each response variable using procedures outlined above).

To develop the dose–response model (aim 3), using only con-
trol and active groups, a measure of group deviance (change in

movement behaviour from their predicted pathway, DDgp, as

developed in [42]) was used. An increase in DDgp equates to a

bigger change in movement behaviour (e.g. slowing of speed

south and/or increase in course deviance). Following the

model framework developed in [32] using a 20 in3 airgun and

a four-stage array, a two-dimensional smooth surface was used

as the interaction between RL and SVP (received level and

source vessel proximity, both continuous covariates). A complex

region spatial smoother (CReSS) [43] with a spatially adap-

tive local smoothing algorithm [44] was used to fit this

two-dimensional smooth, which was then used as one of the

covariates. ‘Water depth’ and ‘wind speed’ were also included.

Model selection of covariates was undertaken using fivefold

cross-validation. The optimal model was then rerun in a general-

ized estimating equation (GEE) framework to deal with the lack

of independence of model residuals with focal ID as the panel

structure. Predictions were made from the best model and a

Table 1. Detailing the structure of treatments in the ‘during’ phase, including the array volumes used in ramp-up. Volumes are total volumes and may be a
single airgun or a number of airguns operated simultaneously. Mean (and range) of received airgun SELs at the focal whale groups used in the analysis and
distance ( proximity) from the source.

treatment duration of stage (min) gun volumes (in3)

received SEL dB re
1 mPa2.s
(mean and range)

source distance
( proximity) m
(mean and range)

ramp-up (first during

phase)

30 (4 � 5 min stages and

1 � 10 min full array

stage)

ramp-up 40, 250, 500,

1440, full

array 3130

131 (76 – 166) 6878 (636 – 14 240)

full array (second

during phase)

30 3130 130 (75 – 157) 8281 (3488 – 15 810)

control first

30 min

30 not applicable not applicable 6244 (922 – 15 640)

control second

30 min

30 not applicable not applicable 7521 (1093 – 13 950)
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parametric bootstrap from the GEE model was used to calculate

95% confidence intervals.

3. Results
(a) General behavioural response (aim 1)
None of the groups exhibited any behaviours that were out-

side their normal repertoire of behaviours (e.g. continuous

surface activity, female–calf separation) and none of the

groups ceased to migrate or turned and continued to head

northwards after the trial was over. Groups continued to gen-

erally move southwards and socially interact during active
and control treatments.

Group median dive time was 220 s with a median ‘blow

rate’ (per individual) of 4 blows per 10 min (though up to 26

blows per 10 min in socially interacting groups). Both

depended on the group composition and social behaviour

(whether it was splitting or joining) with dive time also

depending on the distance to shore (electronic supplementary

material, tables A1 and A2; [40]). In response to the ‘ramp-

up’ and ‘full array’ phase, groups significantly reduced their

‘dive time’ (by 45 s and almost 1 min respectively; figure 1a)

and individuals had an elevated ‘blow rate’ (by 1 blow/

individual/10 min equating to a 20% increase; figure 1b).

‘Blow rate’ remained significantly elevated in the after phase

suggesting a prolonged effect of the airgun stimulus. Minimum
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Figure 1. Group dive, respiration and movement responses, including 95% confidence intervals, before, first and second phase of during, and after the active (n ¼
34 groups) and control treatments (n ¼ 33 groups) and baseline groups (n ¼ 85 groups). Within-model p values (setting the before phase and baseline groups as
the intercept) are represented as *( p , 0.05), **( p , 0.01), ***( p , 0.001) and ****( p , 0.0001).
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(usually start) received SEL during follows in the ‘ramp-up’

phase ranged from 90 to 149 dB re 1 mPa2.s and generally

escalated in the during phase. The maximum SEL reached

during any follow was over 100 dB re 1 mPa2.s in all groups

suggesting the source was audible (louder than background

noise), the highest received level being 166 dB re 1 mPa2.s.

Since this was a commercial seismic array operating in a realis-

tic scenario relative to the whale movements, the range of

received levels could be considered typical of exposure

during seismic surveys.

Control groups displayed significantly shorter (by 45 s)

dive times in the second 30 min (figure 1a) suggesting the

dive response was also a response to the ship. All control
groups came within 5.5 km of the vessel apart from one

with a minimum approach distance of 8.4 km and had a simi-

lar range of proximities to the vessel compared to active
groups (table 1). Group ‘dive time’ recovered to pre-exposure

dive times once the airguns had ceased firing and the ship

had left the area (figure 1a).

All groups, taken together, generally migrated along a

median deviance from ‘course 180’ of 188 (i.e. south-south-

east) and varied their course by a median of 198 between

successive 10 min time bins, though less so in deeper water

(see electronic supplementary material, table A3; [40]). The

average ‘speed south’ of all groups was 4.1 km h21 with a

mean ‘speed variation’ between successive time bins of

0.002 km h21. In terms of social effects, female–calf groups

made slower progress south compared to most other group

compositions (electronic supplementary material, table A3;

[40]). In response to ‘ramp-up’, groups significantly increased

their ‘course 180’ by a further 108 (generally, though not

always, heading further east; figure 1c) and moved south-

wards more slowly (by 0.5 km h21; figure 1d). This

reduction in speed south within the active trials persisted

into the after phase. They did not significantly change their

‘speed variation’ (i.e. neither sped up nor slowed down)

suggesting this reduction in ‘speed south’ was a consequence

of course deviation, rather than a change in travel speed.

Note, in the before phase, active group ‘speed south’ was

lower (though not significantly) compared to the control and

baseline groups (reasons for this will be discussed later).

‘Course 180’ and ‘course variation’ remained elevated in the

‘full array’ phase, though not significantly (figure 1c), and

had almost returned to baseline by the after phase. Groups

also significantly increased their ‘speed south’ after controls
suggesting some movement response to the ship (figure 1d).

(b) Surface behaviour
The mean breaching rate (per group per 30 min) in all

measured groups was 1.8, though groups could breach up

to 80 times in 30 min. Group breaching rates increased in

higher wind speeds and differed according to the distance

of the nearest neighbour (see electronic supplementary

material, table A4; [41]). In response to the experimental treat-

ments, groups were significantly more likely to breach in the

first 30 min of both active (p , 0.05) and control (p , 0.0001)

treatments (by an additional 0.5 breach per 30 min with an

upper 95% CI of 3 in active trials and 0.6 per 30 min in control
trials with an upper 95% CI of 4). This suggests some effect of

the presence of the ship on surface behaviour rates.

Tail slapping and pectoral slapping scores (0–3) were

similar between the different group compositions despite

the differences in group number and membership and related

to group social behaviour and wind speed (see electronic sup-

plementary material, tables). There was no change in either

behaviour in response to active or control trials. Groups con-

tinued to use these signals socially while the airguns were

operating and in the vicinity of the ship.

(c) The comparison of the observed reaction with
baseline behaviour (aim 2)

The strongest effects in the baseline dataset predicting group

‘dive times’ and individual ‘blow rates’ were group compo-

sition and the social behaviour of the group (electronic

supplementary material, tables A1 and A2). Groups contain-

ing a calf as well as multiple adult groups (which sometimes

contained a calf), tended to have shorter dive times compared

to other adult-only cohorts (figure 2a) as did socially interact-

ing groups (figure 2b). Individual ‘blow rates’ were between 4

and 6 blows/individual/10 min for all group compositions

(figure 3c) but elevated during social interactions (figure 3d).

The greatest dive/respiratory response in the experiment

was within groups during the full array phase of the active
treatments (figure 1a,b). If accounting for the effect of group

composition, only multiple adult groups and adult pairs
responded in this way. These cohorts significantly decreased

their dive time (by over 1 min; figure 2a) with a concurrent

elevation in respiratory rate (by 3 blows/individual/10 min;

figure 2c). Dive times, especially in multiple adult groups,

fell below baseline group dive times, even baseline groups con-

taining a calf or baseline groups changing in membership,

suggesting dive behaviour in these groups was outside

normal baseline behaviour. Although ‘blow rates’ in groups

exposed to the airguns were elevated, they were not signifi-

cantly different to ‘blow rates’ within joining groups

(figure 2d ). ‘Dive times’ and ‘blow rates’ within interacting

groups (splitting and joining), however, were similar between

baseline and active groups (figure 2b,d ).

Movement behaviour was most dependent on group com-

position (electronic supplementary material, table A3). Baseline
multiple adult groups tended to deviate more from south (at

248) and progress faster south (at 5 km h21) compared to

other group compositions. These larger groups comprise mul-

tiple adult males competing for the primary escort position to

the female and as such, can move somewhat erratically in

terms of course and speed [40]. In response to the ramp-up

phase of the active treatments, groups generally increased their

‘course 180’ (figure 1c) and decreased their ‘speed south’

(figure 1d). When accounting for group composition, the most

significant change in ‘course 180’ was within female–calf
groups, which increased their course deviation by 208 compared

to baseline groups (figure 3a), resulting a 1 km h21 decrease in

speed south (figure 3b). Female–calf–escort groups also

increased their ‘course 180’ (though not significantly), resulting

in a similar decrease in ‘speed south’ (of 1 km h21) to female–calf
groups. The most significant change in ‘speed south’ occurred in

adult pairs, which reduced their speed south by half of their

original speed, travelling at only 2.5 km h21 (figure 3b).

(d) The effect of source received level and proximity
(aim 3)

Changes in movement behaviour, re-measured as the

deviance of the group from their prior course and speed
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(group deviance), was significantly dependent on the combi-

nation of RL and SVP along with environment variables of

wind speed and water depth. Spatially, within the CReSS

term (the interaction between proximity and the received

level of the airgun array), animals were more likely to

avoid this source (deviate from their path) at received levels

over 135 dB re 1 mPa2.s and when the source was less than

4 km away (figure 4). In other words, significant changes in

group movement behaviour were more likely to occur

within a specific received level/proximity ‘zone’.

4. Discussion
For a change in behaviour to be considered biologically

significant, it should have an effect on one or more life

functions (e.g. migration, survival, mating), affecting individ-

ual vital rates (e.g. maturation, reproduction) and ultimately

leading to population effects [8–13]. For example, an

animal that is under stress can exhibit behaviours outside

their normal behavioural repertoire and/or cease to exhibit

typical behaviours [45]. If this stressor is chronic, then the

animal is likely to have a reduced likelihood of surviving

and reproducing. In this study, no abnormal behaviours,

such as instances of a female separating from her calf or

sustained bouts of high energy surface behaviours (which

are considered abnormal behaviour indicative of a stress

response in humpback whales), were observed. We also con-

tinued to observe typical behaviours including singing,

socializing with conspecifics, using social signals such as sur-

face slapping, and general migratory travel southwards.

Given the lack of abnormal behaviours, and the continued

prevalence of typical behaviours, we found no evidence

that they were under significant additional stress (as defined

above) during the experimental trials. Put another way, the

behaviour of the whales appeared to be driven primarily by

other whales and the need to socialize and migrate, and the

addition of a seismic vessel and airguns had little impact

on that. Other studies, specifically looking at the effects of

seismic airgun noise on large whale behaviour (e.g.

[14–25]), also did not report any gross changes in behaviour.

Groups of migrating humpback whales, however,

responded to a full seismic array by changing the magnitude

and rates of typical behaviours, such as their movement pat-

terns, dive/respiratory parameters and rates of breaching

behaviours. These changes were dependent on the group

composition and were, for the most part, small, variable, tem-

porary (did not last into the after phase) and were likely a

response to the presence of the ship as well as the airguns.

Changes in ‘blow rate’ interestingly did not occur in the

control trials and did last into the after phase, indicating a

potential response to just the airgun array. These changes

were, however, within the normal behavioural repertoire of

migrating groups, and of a lesser magnitude compared to

the group’s respiratory response to changes in social context.

Individual respiration rates were clearly elevated in joining

groups, and remained elevated after joining, probably due

to the change in group social dynamics. It cannot be

assumed, however, that because an animal shows little or

no response, that it is not vulnerable [46]. Female–calf

groups, originally thought to be the most ‘sensitive’ (due to

the presence of a young calf ), did not change their dive/

respiratory behaviour. However, the reactions of these

groups may be constrained by the energetic demands of the

calf in that the calf was already respiring at a high rate and

therefore had little scope to increase further. In addition,

female–calf groups in this study were migrating and an ear-

lier study suggested resting humpback whale female–calf
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groups may be more sensitive to the effects of seismic airgun

sound and therefore more likely to respond [21]. The cohort

studied here, however, was more likely to change movement

behaviour (as discussed below) rather than dive/respiratory

behaviour, illustrating a suite of measured response variables

should be measured when dealing with different groups.

Groups exposed to the active seismic array made about a

1 km per hour slower progression south compared to most

baseline groups (due mostly to a deviance off their normal

course rather than a slowing down of travel speed). The

majority of whale groups were NE to NW of the source at

the start of the during phase and moving generally south,

thus approaching the source. It should be noted that the

speed south of groups in the active trials were already

lower in the before phase compared to baseline or control
groups. The procedure in setting up of the active trials is

likely to have contributed to this. In active trials, due to

strict mitigation protocols, start times had to be delayed if

whales were sufficiently close to cause a shut-down in

the during phase meaning the ship was sometimes in the

start position for longer compared to control trials (and

groups, we know, also responded to the presence of

the ship). Otherwise, conditions were similar between

active, baseline and control trials, such as the distribution of

social groups and the range of distances from the vessel

start position. The reduction in speed south from the before
to the ramp-up phase of the active exposure was, however,

statistically significant.

Group composition was a factor in that adult pairs

reduced their speed south 2.5 km h21 in response to the seis-

mic airgun array, travelling about half of their original speed

south. Female–calf groups were the most ‘responsive’ in

terms of changes in course deviation from south, resulting in

a 1 km h21 reduction in speed south, again moving slower

than baseline groups. These changes, to some extent, persisted

into the after phase of the active trials. Resting female–calf

pairs have been found to show avoidance responses at rela-

tively low received levels (129 dB re 1 mPa2.s) compared to

migrating humpback whales, which showed clear course

changes at received levels of 144–151 dB re 1 mPa2.s [21].

The dose–response model presented here showed that a

change in movement behaviour was more likely to occur

within 4 km from the ship at received levels over 135 dB re

1 mPa2.s. These values are similar to those obtained for a smal-

ler experimental array [32] suggesting some consistency in

these results despite differences in array size and towpath
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direction. Previous studies of the response of baleen whales to

airguns have shown a wide range of received levels for which

some measure of disturbance was observed. While the current

results generally lie within this range, differences in methods

of measuring responses and received levels, as well as differ-

ences in behavioural and social conditions, limit the extent

that comparisons can be made. It should also be noted

that the values reported here are specific to our context

(migrating humpback whales returning to feeding grounds)

and may need to be updated depending on species, sound

source and context.

Whether or not the changes in travel behaviour found

here translate to a longer-term effect on migratory behaviour

and thus a lasting effect on life functions requires further

study. Disturbances to the optimal migration strategy has

been found to theoretically increase overall energy use in

humpback whales by altering average velocity and increasing

the total travelled distance due to displacement [47]. Extreme

capital breeders, such as humpback whales, may be vulner-

able to changes in the energetic costs of migration. These

changes may have implications for the growth potential of

calves [47] and may be a problem for lactating females in

that it would delay these whales replenishing their energy

reserves. In this experiment, the exposure phase only lasted

for 1 h and the whales were migrating so that most were

moving away from the source meaning they were only

likely to be in the ‘zone of avoidance’ for a short period of

time. Even with a seismic survey that continues for many

hours in an area, migrating whales are only likely to be

exposed for a relatively short period of time before they

move away as part of their migration. However, the situation

might be different for animals which were resident (e.g. feed-

ing grounds), or temporarily resident (e.g. resting areas

during migration) in an area, for part of the survey where

sustained exposure is possible.

This study found no evidence of gross changes in behaviour

in migrating humpback whales in response to a full commercial

seismic array. Progression southwards, however, was signifi-

cantly lower compared to normal (baseline) behaviour in

response to the airgun array. This response was more likely to

occur if groups within a specific received level/proximity

zone, meaning any assessment of biological significance

should incorporate both spatial and temporal parameters. To

do this, an estimate of the potential exposure time within the

avoidance ‘zone’ could be modelled using likely survey tracks

and the whale movements relative to the source [10].
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