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Abstract—When a mobile agent does not known its position Decision Process (MDP). MDP-based planning through a
perfectly, incorporating the predicted uncertainty of future posi- ~ Probabilistic Roadmap optimizes over a stochastic action
tion estimates into the planning process can lead to substantially space (Alterovitz et al., 2006, 2007), but still assumeseger
better motion performance. However, planning in the space ' ' '
of probabilistic position estimates, or belief space, can incur knowledge of the state. More recently, Pepy et al. (2008()i.use
substantial computational cost. In this paper, we show that &n RRT-based approach to plan over a set representation of
planning in belief space can be done efficiently for linear Gaussian uncertain states; however, only the effects of action uncer
systems by using a factored form of the covariance matrix. This tainty were considered in state prediction, resulting ie th
factored form allows several prediction and measurement steps monotonic growth of belief uncertainty without exterodept

to be combined into a single linear transfer function, leading to . . o )
very efficient posterior belief prediction during planning. We give observations. Incorporating the full probability distriton

a belief-space variant of the Probabilistic Roadmap algorithm Provided by state estimation into planning algorithms sash
called the Belief Roadmap (BRM) and show that the BRM can the PRM or RRT has generally not been feasible. Computing
compute plans substantially faster than conventional belief space the reachable part of belief space can be expensive; pireglict
planning. We conclude with performance resuits for an agent e || evolution of the agent's belief over time, incorpting
using ultra-wide bandwidth (UWB) radio beacons to localize and both stochastic actions and noisy observations, involestyc
show that we can efficiently generate plans that avoid failures ; : o L
due to loss of accurate position estimation. non-linear operations such as matrix inversions. Furtbeem
the reachable belief space depends on the initial condition
of the robot and must be re-computed when the robot's state
estimate changes. Therefore, any work done in predictiag th

Sequential decision making with incomplete state informaffect of a sequence of actions through belief space must be
tion is an essential ability for most real-world autonomousompletely reproduced for a query from a new start position.
systems. For example, robots without perfect state infioma ~ We present a formulation for planning in belief space which
can use probabilistic inference to compute a distributivero allows us to compute the reachable belief space and find
possible states from sensor measurements, leading totrobnimum expected cost paths efficiently. Our formulation is
state estimation. Incorporating knowledge of the uncetyai inspired by the Probabilistic Roadmap, and we show how a
of this state distribution, or belief, into the planning pess graph representation of the reachable belief space canrbe co
can similarly lead to increased robustness and improved psiructed for an initial query and then re-used for futureripse
formance of the autonomous system; the most general fornwe develop this formulation using the Kalman filter (Kalman,
lation of this problem is known as the partially observablg960), a common form of linear Gaussian state estimation. We
Markov decision process (POMDP) (Kaelbling et al., 1998jirst provide results from linear filtering theory and optima
Unfortunately, despite the recent development of efficeeat control (Vaughan, 1970) showing that the covariance of the
act and approximate algorithms for solving POMDPs, plagnirKalman filter can be factored, leading to a linear update
in belief space has had limited success in addressing latgep in the belief representation. This technique has been
real-world problems. The existing planning algorithms @dtn well-established in the optimal control and filtering lature;
always rely on discrete representations of the agent stdiewever, its use for prediction in planning is both novel and
dynamics and perception and finding a plan usually requirpswerful. Using this result, the mean and covariance riegult
optimizing a policy across the entire belief space, indlhjta from asequencef actions and observations can be combined
leading to problems with scalability. into a single prediction step for planning. The factorechfor

In contrast, the motion planning community has realizegbt only allows the graph of reachable belief space to be
considerable success in using stochastic search to find pajdmputed efficiently, but also updated online for additiona
through high-dimensional configuration spaces with algqueries based on new initial conditions. Optimal paths with
rithms such as the Probabilistic Roadmap (PRM) (Kavrakéspect to the roadmap can therefore be found in time linear
et al, 1996) or Rapidly-Exploring Randomized Tree@ith the size of the graph, leading to greatly accelerated
(RRT) (Lavalle and Kuffner, 2001). Some approaches hayganning times compared to existing techniques.
extended these techniques to allow uncertainty over tleetsff  The specific problem we address is an agent navigating in
of actions by modelling the planning problem as a Markos GPS-denied environment. The Global Positioning System

_ _ , _ (GPS) provides position estimates of a user's location on
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1. INTRODUCTION



in indoor and dense urban environments, GPS becomes un-
reliable or altogether unavailable. One approach to ntitiga

the loss of GPS involves placing anchor radio beacons around
the target environment, enabling localization by computin
range measurements from the RF signals. However, even with
spread-spectrum technologies such as ultra-wide banllwidt
(UWB) radio, the quality of positional information availabl

that connects the corresponding start and goal nodes. As
a result, the PRM returns a path consisting of a series
of straight-line trajectories between waypoints. If the
start and goal poses are not already nodes in the graph,
additional nodes are added to the graph and edges to any
reachable graph nodes are added as in the pre-processing
phase.

to a mobile agent varies across the environment. When arhe power of the PRM resides in the fact that even if
signal is transmitted, the channel properties of the enwirent ¢, . cannot be tractably computed, it is relatively efficient
may result in multiple signal path reflections; interferencio determine if an arbitrary node or edge liesap,... As
between these path reflections can result in signal degoadata result, when planning in high-dimensional SPA@H,cc

or even cancellation, which inhibits the receiver’s abllib can be approximated as a discrete graph by Samp]ing poses
successfully resolve the original signal for time-basedgra from ¢, retaining the collision-free samples and straight-line
ing. Obstacles in the environment may occlude the radigjectories. Note that there is an implicit assumptionsing
transceivers, blocking signal transmission or addingtsuit&l  the PRM, specifically, that some controller exists that can b
material propagation delays, both of which are problematiged to follow a straight-line trajectory from way-pointtay-

for ranging applications. We show that integrating predict  point without collisions when the edge is known to lie erire

of position uncertainty into the planning algorithm enablein ¢;,... It should also be noted that any sampling-based
the robot to choose plans that maximize the probability @badmap approach inherently sacrifices guaranteed glgbal o
reaching the goal, avoiding trajectories through regidnisw timality for the computational tractability of solutionsithin
density of UWB signals that lead to very uncertain estimates e discrete graph approximation. “Optimal” plans withire t

the agent position. We give experimental results demaimsra discrete roadmap are approximations of optimal trajeesoiri

this algorithm for motion planning of a mobile robot, in whic the continuous state space, which converge as the size of the
the robot must use UWB range estimates for tracking itgadmap grows.

position. We conclude with results that show planning using

a simulated UWB ranging model to navigate across MIT3 g gr ESTIMATION IN LINEAR GAUSSIAN SYSTEMS

campus. _
P When the agent does not have access to near-perfect in-

2. TRAJECTORYPLANNING AND SEARCH formation about its state in the world using some external

Given a map, model of robot kinematics, and the start aﬁgs!t!omng syster_n such as GPS, the agent can infer its
goal positions, the objective of trajectory planning is tadfi po§|t|on from a history of sensor measurgments and control
the minimum-cost collision-free path from start to goal. wactions. The sensor measurements constitute observatfons

will restrict the discussion in this paper to kinematic roati 1€ environment, and can be matched against a prior model

planning; we plan to extend this work to kinodynamic pIa@\inOf the _World, SfUCh as ‘? map. Typically, _th_ese _observations
in future work.C denotes the configuration space (Lozand'jlre noisy and ||fnpelrfect, as a rgsult, Stat'St'Cal_ mfere:rulrga
Perez, 1983), the space of all robot posés,.. is the set be used to maintain a distribution over possible positions,

of all collision-free poses (based on the map of obstac‘f'ése”tia"y averaging out errors in the observations awues.t

positions) andC,,.; is the set of poses resulting in coIIisionWh"e the inference results in a probability distributioneov

with obstacles. so that = C U C.se:. When the state is the agent’s state, a common assumption is that the maximum
fully observable. the ProBab];ITi;iic Roogd.map (PRM) algorit ikelihood state under the distribution can be used in plafce
(Kavraki et al., 1996; Bohlin and Kavraki, 2000) can b&l€ rue state when executing a plan.

used to find a path througli;,.. by generating a discrete Let us denote the (unknown) state of the agent at time

graph approximation of;,... The PRM provides a generalas s¢. If the _agent takes an action according to some control
framework for efficiently solving fully observable motiontt: then attimet +1 the agent has moved to some new state
planning problems in two stages, as follows: s¢+1 that is drawn stochastically according to some transition

1) Pre-processing phase The PRM first constructs a probability distributionp(s;+1|s:, u:). After each motion, the

graph, or roadmap, that is a simplified representatié”ﬁ’ent receives an observatiar that IS dravyp stgcr]asu-
Of C;,... Robot poses are sampled frafraccording to cally according to some observation probability distribaot

a suitable probabilistic measure and tested to determi@%ﬂ%&;{igxgh tﬁzogleedn%ecga tzgtiaﬂggltiﬁg ar;gbggﬁft} rv:tfloir:
if each pose lies iCt ce OF Copst. POSES WithinC¢ree ’ 9 P y

(i.e., that do not collide with obstacles) are retained arff"e"t Staté: = p(sifu1., z1.) after a sequence of controls

added as nodes to the graph. Edges in the graph S‘Fé‘i observations. tion is that th teri t
placed between nodes where a straight-line path betwee common assumption Is that the posterior stateatter
the nodes also lies entirely if,... Typically, edges some control input:.; depends only on the prior statg_; such

are limited to thek nearest neighbor nodes or to thihz;ﬁ'ﬁé?ésagr?lc;gszé:rt_alt')on g ep (ztrlgts_éﬁt)c.)nstha”grl?r,erigeta
neighbors that are closer than some bounding distan '% ! vatl P y u »

2) Query phase Given a start and goal pose, a grapR (¢St Uit 21:—1) = p(z|s:). These assumptions allow the
search algorithm is used to find a path through the graph



posterior beliefs; to be computed recursively as information matrix corresponding to a given measurement,
such that), = Q; + M,.

Z

) o ) ) 4. BELIEF SPACE PLANNING
whereZ is a normalization factor. Equation (1) is the standard The assumption of most planning and control alaorithms
Bayes’ filter equation, and provides a recursive form of P P g 9

updating the state distribution Is that knowledge of the mean of the belief distribution is
Implementing the Bayes’ filter requires committing to ?s)ufhuent for good performance. However, if the plannersuse

specific representation of the state distributigs, ), with con- oth the mean and the covariance of the belief in choosing
- . actions, different plans can be computed depending on wheth
sequences on how the transitipfs;|s;—1, u;) and observation

p(z¢|s) functions are represented, and on the tractability g?e position estimate Is very certain (for g)fample,l a horm
f the covariance is small), or if the position estimate is

erforming the integration in Equation (1). One of the mog! ) . :
P 9 9 q @) ncertain (a norm of the covariance is large). The robot can

common representations is the Kalman filter (Kalman, 196 ien balance shorter paths against those with greatertjaten
in which the state distribution is assumed to be Gaussian P 9 9

and the transition and observation functions are lineah wit> red_uce belief uncertainty through sensor |r_1format|orm,ga
choosing longer but more conservative motion plans when

Gaussian noise. If the true system transition and observati . . ) . o I~
functions are non-linear, the extended Kalman filter (EK ppropnate..Nouce that by mcorporatlng addltlone_ll IStats .
(Smith et al., 1990) linearizes the transition and obsawmat ffom the beﬁef suqh as the covariance, we are doing nothing
functions at each step. A full derivation of the EKF is ouesigmere than increasing the state space of the agent. Instead of
; i . L lanning in configuration space, the agent is now planning in
h f thi r riefly, th mption is that P& X . . .
the scope of this paper, but briefly, the assumption is that belief spaces, or information spacebut the basic problem is
st = g(Sp—1,us, wy), wy ~N(0,W,), (2) essentially the same: the planner must find a sequence of ac-
and 2 = h(se, q) 4 ~ N(0,Q,) ©) tions {uo, ..., u:} such that the resulting beliefd, ..., b:}
. _ maximize the objective functiod of the robot. Conventional
wherew; andg; are random, unobservable noise variables. Wotion planners generally search for collision-free pattat
the presence of this unobserved noise, the EKF estimates #fifimize the cost of moving to the goal location, such that
state at time from the estimate at time— 1 in two separate -
steps: a process step based only on the control impleading J — min C(s, — 11
to an estimate(s;) = N (7,, 3:), and a measurement step to (8¢) = min Cs: = sgoat) + ;c(st’ut)’ (11)
complete the estimate ¢f(s;). The process step follows as

1
p(st|ur.e, Zl:t):*p(zt|st)/p(5t|uta St—1)p(s¢—1)dse—1, (1)
S

where(C' is the cost of the distance to the goal location and
oy = g(pe—1,u) (4) is the cost of executing contral; from states;.
S =G SGT + VW VT, (5) Planning in a Gaussian belief space requires a differ-
ent objective function since every belief has some non-zero
whereG, is the Jacobian of with respect tos andV; is the probability that the robot is at the goal state (althougts thi
Jacobian ofy with respect tow. For convenience, we denoteprobability may be extremely small for beliefs where the
Ry = V,W,V,T. Similarly, the measurement step updates thaean is far from the goal). A more appropriate objective

belief as follows: function is therefore to minimize thexpectedtost of the path,
_ 7 Eq.+[J(s1)]. In practice, the effect of uncertainty along the
e = iy + Ke(h(R,) — 2t) (6) trajectory is dominated by the effect of uncertainty at tbalg
Y =% — KiH Yy, (7) allowing us to approximate the cost with a more efficient cost
function:
where H; is the Jacobian of. with respect tos and K; is T
known as the Kalman gain, J(by) ~ g})jl;lEbW”bt,uo;T[C(st—sgoal)]+z c(bg,ug), (12)
— — —1 ’ t
Ky =S H] (HEH +Q) . ®)

where the expectation is taken with respect to the belieé sta

If the measurement function is conditionally independdrd o at the goal.

large number of state variables, the information form of the A trivial extension of the PRM for solving this optimization
EKF may be more computationally efficient. The distributioproblem would first generate a graph by sampling belief nodes
p(st|ui, z1:+) can be represented by the information vectaandomly and creating edges between nodes where an action
and the information matrig, = ¥, (Julier et al., 1995). The exists to move the robot from one belief to another. Graph
information matrix updates in the process and measuremgehrch would then find a trajectory to the belief with highest
steps of the extended information filter (EIF) can be writteprobability of being at the goal.

respectively as The difficulty with this approach is that the control prob-
= =1 T —1 lem is under-actuated and, thus, only a specific subset of
& *% = (G Gy + Ry ©)  peliefs B is actually realizable. Even if the robot has full
Q=+ H Q' Hy. (10) control of the mean of its belief, the covariance evolves as

a complicated, non-linear function of both the robot colstro

; & gTH-1
For convenience, we usf, = H;'Q; H, to denote the and environmental observations. If the robot has full aantr
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Fig. 1. A basic example of building a belief-space roadmap irmnronment with ranging beacons. (a) Distribution meanssarepled, and the means in
Cyree are kept. (b) Edges between distributions that li€’ip... are added to the graph. (c) Once the graph is built, an irbedef (lower right, labelled
START) can be propagated through the graph by simulatinggkets motion and sensor measurements, and performing thepajapedfilter update steps in
sequence along edges. The posterior distribution at eas iscdrawn withl —o uncertainty ellipses, and results from a single-sourcejrmim uncertainty
search path to that node. In this example, we artificiallyéased the noise in the robot motion to make the positional taiogr clearly visible throughout
the environment. Figure (d) reiterates the benefit of incaimg the full belief distribution in planning. The belispace planner detours from the shortest
path through an sensing-rich portion of the environment toaia well-localized.

over its n-dimensional mean, then the reachable part of tleellision (Figure 1b). We then simulate a sequence of cémtro
belief space is am-dimensional manifold embedded in theand measurements along each edge; for each step along the
n3-dimensional belief space, and therefore a subset of measedge eij,» the Gy, R, and M, matrices are computed using
0. It is vanishingly unlikely that any beliéf € B* would ever the appropriate models. Finally, we perform search in the
be sampled such that there exists a controd reach it. graph to find a sequence of controls starting from the initial
A different approach must therefore be used for buildinigelief by such that the posterior covariance at the end of the
the belief graph. Since the robot does have control authorgequence is minimized, computing this posterior covaganc
over its mean, it is possible to sample mean components of theing equations (5) and (7). Figure 1(c) shows the result of
belief, then predict the corresponding covariance compisne the search process and the minimum covariance achieved at
This process is shown in Figure 1. Let us sample a sedch graph node. Figure 1(d) demonstrates the advantage of
of mean posegy;} from Cy... as the nodes in the PRMplanning in belief space. The belief space planner detoars f
graph (Figure 1a). We add an edge between pairgy;, 11;) the shortest path, finding a trajectory that is rich with sens
if a sequence of controls,;; = {uy,,...,u;} exists to information to enable superior localization.
move along the straight line between and ; without



5. LINEARIZING BELIEF SPACE PLANNING Standard EKF Updates

A major computational bottleneck with the planning algo-
rithm described above is that standard search optimization

Beacon

techniques cannot be used, such as re-using portions af prev (Ho,20)  (H1,21) e s (wn2r)
ous solutions. While the EKF is an efficient model for tracking @' - @ - @ -- S0
the probability distribution of both linear and well-beleav Node / Node j
non-linear systems, the update steps in the filtering psoces
itself are non-linear. In particular, any trajectory optiation One-Step Transfer Function
that depends on the covariance requires solving the faligwi O
Riccati equation (from equations (5) and (7)):
Y

St = (G 1GT+R,) — (GiXy—1GT+R) HT x 13) ‘“@0’ e ()

(Hy(GtSi—1GT+R)H + Q1) ' Hy (G S 1GT+Ry). Node i Nobde ;

As a result, if the initial conditions or the trajectory ifsare
modified in any way, the covariance must be recomputed from
scratch. If the planner computes a predicted posterioe st&tg-g- Belief Predictiganith Orgje-sgp Covarigmce Trezzﬁtmctig;. Nodzs

i fatri ; ; i and j are connected by an edge ..., a beacon (diamond) provides

(e, 2¢) from an _|n|t|al dIStrIbUtlon(HO’ o) and a predicted range measurements. (Top) Standard EKF updates are usedcEssion to
sequence of actions and observations using a seétEiKF propagate the initial covariancg, along edge;; in multiple filtering steps.
updates, the non-linearity prevents us from computing a nédpttom) The ont(%j-step transfer functiqp; encodezjs the effecgls of ;wtiple

; ARV, ; o i EKF process and measurement covariance updates, enablingosterior
po/ster/lor statg;, ;) from a different S?t of initial conditions covarianceXr to be computed in one efficient step given any novel initial
(16, X6), except by repeating the entire sequence &KF  covariances,.
updates. This isiot the case for the mean, for most real-
world systems; for a sequence of contrfls), . .., u; }, under o »
some reasonably mild assumptions, opgés calculated from must be fully re-computed fqr a ghange in _|n|t|al conditions
11, @ newy, can be calculated in a single step from a differerk "€ One-step transfer function is shown in the bottom of
1,. The EKF update of the mean becomes linear durifdgure 2. An initial belief at node is propagated through

predictive planning when the measurements assumed to Gii in one efficient step to recover the posterior covariance at
be the maximum likelihood observation = h(z,), which nodej. The following section derives this transfer function by
simplifies equation (6) tqu, = 7,. ! showing that EKF covariance updates can be composed.

For a trajectory formed from a sequencekofiraph edges . .
each of lengthl, O(kl) EKF process and measurement up2-1- Linéar Covariance Updates
dates are required. The asymptotic complexity of the okeral To show the linearization of the EKF covariance update,
problem isO(1b%) for a search depth aof edges in the graph we rely on previous results from linear filtering theory and
with a branching factor ob; the computational cost of the optimal control (Vaughan, 1970) to make use of the following
specific EKF updates along each edge may seem negligiblgaairix inversion lemma:
a constant multiplier of the exponential growth, but thisrte Lemma 1.
has a significant effect on the overall time to plan. However,
if the covariance is factored appropriately, we can show tha (A+BC™H ' =(Acc +BCc™H!
the EKF update equations for each factor separately are in = C(AC + B)™!

fact linear. Along with other benefits, the linearity willl@alv

us to combine multiple EKF updates into a single transfdiheorem 1. The covariance can be factored as= BC™,
function(;; associated with each edgg to efficiently predict Where the combined EKF process and measurement update

the posterior filter state from a sequence of controls afesB: and C; as linear functions o3, _, and C_;.

measurements in a single step. Although initial constouncti Proof: We proceed by proof by induction.

of the graph and transfer functions requires a costf)  Base caseWe can show the theorem to be trivially true, as
per edge, this construction cost can be amortized, leading . .

to a planning complexity of2(b%), equivalent to the fully- Yo =BoCy =Xl ™. (14)
observable case. Induction step:

The one-step covariance transfer functign is demon-
strated in Figure 2. In the top, standard EKF updates are
used to predict the evolution of an initial belifi, 2) Given:X,_; = B,_1Cy Y (15)
along edgee;;. The belief is updated in multiple filter steps
across the edge; the mean propagates linearly (with the
assumptions stated above), while the covariance requaras ¢ From equation (5),
puting a corresponding series of non-linear updates aiwprd _ o
to Equation (13). The posterior beligl, ©1) resulting from =GB C Gy + Ry (16)
the initial belief(uo, Xo) is recovered aftef update steps, and Y= (GBi_1)(G;TC_ ) P+ R, (17)



From lemma 1,

5, :((G{Tct,l)(GtBt,1+Rt(G{TC’t,1))_1)_1 (18)

_ 1“1

5, = (DtEt ) (19)
=3, =E.D, (20)

Whereﬁt = G;Tctfl andEt GtBtfl + Rt(G;Tthl).

condition we will consider is that of infinite uncertaintyy o
equivalently zero information. The second is that of zero
uncertainty, or equivalently infinite information. The éiar
system corresponding to the boundary update is given as

)= Do ancaer] [y

h = {MG MRGT +G~T (30)
We consider each boundary condition in turn, by solving

As a result, we can see that the process update preserve§|?ﬁes3_/ftem in equation (30) and imposing the constiEint

factored form of:. Similarly, if we start with the information
form for the covariance update,

From equation (10),

Y= (5, + HIQ H] ) (21)
Substituting inM; and equation (20),
S = (DB, ' + M)~} (22)
Again from lemma 1,
Y = Ey(Dy + M E,) ™! (23)
=¥, = B,C; *, (24)

whereB, = E, andC, = D, + M,E,. If we collect terms,
we see that

B =E;=GBi1+ R(G;TCry) (25)

and
Ct == Et + MtEt (26)
=G; "0y + My(GiBy—1 + R(G{ T Cyo1)). (27)

In both casesB; and C; are linear functions ofB;_; and
Ct—l-

Collecting terms again, we can re-write equations (25)

and (26), such that

el ;

v ollel,
| L], e

0 I 0o GT
where U, is the stacked block matrixZ |, consisting of the

I M} . {G RG™T
covariance factors an¢t = [ % |, is the one-step transfer
function for the covariance factors. [ |

5.2. Initial Conditions

XoY,

5.2.1. Boundary Case: Infinite Uncertainty, Zero Informa-
tion: The boundary condition of infinite uncertainy, = oo,
or zero information2_ = 0, corresponds to the case where
Y_ =0, which is shown as follows:

E_:%:%:oo, (31)
Q_:%:%:o, (32)
X_#0. (33)

Using equation (30), the covariance factors are written as
Xo=GoX_+0=GoX_ (34)
Yo = MoGoX_- +0=MyGoX_. (35)

Solving for the initial condition using equations (34-38)e
obtain,

XYyl =GoX_ - XZ'Gy Myt = My Y,
which implies the following constraint:

Yo =Mt (36)

By denoting.4A = GoX_ and applying the constraint in
equation (36) to equations (34-35), we obtain the following
A

solution set:
X
= |a_ , A#0.
RS

Note that our trivial initial condition ofX, = ¥y andYy =1
is valid with A = %.

The result shown above is intuitive when considering
EKF/EIF control and measurement updates from the boundary
condition of zero information2_ = 0 and, equivalently,
infinite uncertainty X _ oco. The EKF control update is
irrelevant, since adding any process noise to infinite canae
results in infinity:

io = GQZ_G(T; + Ry = GOOOGg + Ry = oo.

(37)

(38)

The measurement update, however, shows that an update from

In order to use this factored form of the covariance, Wgis boundary condition corresponds to receiving a measure
need to ensure that this factorization applies across &t penent M, = Qo:

sible initial conditions. To verify that the factorizaticand

update are independent of the initial conditions, we shat th

our assumed initial conditiorty = XOY(;1 = Yol tis

Qo =Q_ + My =0+ My = M,. (39)

Thus, this boundary update is equivalent to beginning in

an achievable result of performing a boundary update frof giate with zero information and increasing certainty by

each of two possible boundary conditions, which we will,

denote with a minus subscript a5 = % or equivalently

corporating a measurement of valis = Qg = Egl.
5.2.2. Boundary Case: Zero Uncertainty, Infinite Informa-

Q= % with a slight abuse of notation. The first boundaryion: The boundary condition of zero uncertairy. = 0, or



infinite information{2_ = oo, corresponds to the case wher@umerical stability through inherent structure preseéovais

X_ =0, which is shown as follows: the Hamiltonian form, with the corresponding composition
X 0 operator known as the Redheffer “star” product (denoteti wit
o= v =7 =0 (40) a ‘x) (Redheffer, 1962). A2n x 2n block matrix
Y. Y. _[A B
Y_ #0. (42) is calledHamiltonianif
As before, the covariance factors are written as JS = (JS)T = =87, (51)
Xo=Go-0+ RoGy Y. = RyGyTY_ (43) noting thatJT = J=! = —J. We will show that there
Yy = MGy -0+ (MoRoGy T + G 1Y (44) is a Hamiltonian representation and composition operator

equivalent to the symplectic form that does not share theesam
numerical instability.
Computing the initial covariance corresponding to equa-

= (MoRo + )Gy Y. (45)

tions (43-45) gives us 6.1. Derivation of Star Product
XoYy ' = RoGyTY_ - YT'GE (MoRy + 1) ™! We can formally derive the Hamiltonian method of com-
= Ro(MoRy + 1)~ position by starting with descriptor matrices of a Hamileon

system at two adjacent timesteps as follows:
implying the following constraint orRy, and M:

T2| A B Ty (52)
Yo = Ro(MoRo+1)™". (46) y1|  |C D] |y’
We make the substitutioB = G;’Y_ for the free WX
variables, and apply the constraint in equation (46) to equa Bﬂ = [Y Z] [Zﬂ . (53)
2 3

tions (43-45), yielding the solution set:
D¢ RB For clarity it should be stated that these two system matrice
= 0 , B#£0, (47) have the same block structure, where each block actually cor
Y (MoRy + I)B : : . . )
0 responds to a time-varying quantity. Our goal is to deteemin
This result is also intuitive, although not as straightfards the Hamiltonian matrix corresponding to the aggregateesyst
as the previous boundary update in which the control updatet represents both equation (52) and equation (53). We wil
had no effect. Due to the ordering of control and measuremeshiow that the resulting system can be computed using the star
updates, the initial covariance can result from a combbmati product in the following manner:
of both adding uncertainty?, to the boundary state of per-

X . ’ x3 A B W X| [z
fect information, and then subsequently adding measuremen =l pl*ly 2z . (54)
information M. It is for this reason that the constraint set is n ¥
a function of bothR, and M,. However, our assumed initial Our explicit goal is to derive equations for the variables
condition of X, = ¥y and Y, = I is the trivial result of andy; in terms ofz; andys; to determine the star product
adding only process noisB, = ¥, and zero measurementoperation in equation (54). We begin by writing the given

information My = 0, with B = 1. equations from the systems in equations (52) and (53), as
follows:
6. REDHEFFERSTAR PRODUCT
_ _ _ g = Axy + By (55)
The factored covariance representation and matrix form of
: i i ; y1 = Cx1 + Dys (56)
the update given in equation (29) represents a non-reeursiv
solution to the Riccati equation (13) in the symplectic form r3 = Wiy + Xys (57)
The 2n x 2n matrix ¥ is by definition symplectic if Yo = Yxo + Zys. (58)
vJul =g (48) Substitutingy, from equation (58) into equation (55) we solve
for x5 as follows:
where
J = LO _(*)rn} (49) x9 = Az1 + B(Yx2 + Zys3)
and I,, is the n x n identity matrix. The eigenvalues of w2 = (I — BY) YAz, + (I — BY) 'BZy; (59)

symplectic matrices such ai occur in reciprocal pairs such

that if \ is an eigenvalue o, then so is\—!. Unfortunately, We also substitute:; from equation (55) into equation (58)
as a result, composition of symplectic matrices is known to

become numerically unstable as round-off errors in computa

tion can result in loss of the symplectic eigenvalue stmectu

(Fassbender, 2000). An alternate form that provides greate



to solve fory, as follows: The Riccati difference equation is represented as follows:
y2 = Y (Ax1 + By) + Zys3 Y = R+ G (I - MY ) 'GY,  (66)
(I - YB)yQ = YA.’I?l + Zyg
=(I-YB)'YA I—-YB) ' Zys.
y2 = ) 1t ) yd(so) G, =state transition matrixof scattering transmission matpjix

. . . . Ry =error covarianced right reflection coefficient
Now with 25 andy, both written in terms ofc; andys, it is ] ] i o
possible to similarly solve foz; andy;. To solve forzs, we M, =measurement informatioroi left reflection coefficiet

where at filtering time (or scattering layert)

substitutez, from equation (59) into equation (57): and the associated Hamiltonian matrix is called shattering

23 = Wao + Xys matrix and has the form:

G R
= ((I — BY) Az, + (I - BY)_lBZyg) + Xy S = s (67)
M 67,
which is simplified to give the desired result Composition of multiple layers can be performed using the
w3 = W(I—BY) 'Az,+ (X +W(I—BY) ' BZ)y,. (61) Star product as

We also substitutg, from equation (60) into equation (56) to Str = St x Spy1 * - * S, (68)
solve fory, as follows: where S;.r is the aggregate scattering matrix capturing the

y1 = Cxy + Dys effects of layers throughT'.

_c D —YB)-V A DU —VB)-17 It can be shown that individual control and measurement
=Cr + DI — ) r1+ DI — ) Y3 steps have corresponding scattering matrices by notindithe
which simplifies to become rect correspondence between EKF/EIF updates and the Riccat

. . equation (66). The control update yields the control update
Y1 = (C‘FD(I* YB) YA).’Kl +D(I*YB) Zyg (62) Scattering matriX

Now, with equations (61) and (62), our solution is obtained e {G R]
t =
t

as the aggregate system in equation (54), which can now be 0o GgT (69)

written in terms of one matrix as - .

. . Similarly, the measurement update gives the measurement
T3 _ W(I=BY)" A  X+W(I-BY) BZ| |z (63) update scattering matrix
y1| |C+D(I-Y B)~YA D(I-YB)™'Z ||ys|’

) 1 0
where we have now derived the star product as a set of matrix SM = [_ Y I] : (70)
block operators, given as t

Thus, multiple filter updates can be composed in the

S1%Sp = [é g} * B‘// )Z(} = (64) Hamiltonian form as in equation (68) by star-producing the
corresponding scattering matrices in succession:
W(I - BY) A X+W( -BY)'BZ 65 O oM
C+D(I-YB)'YA DI-YB)‘z | (65) St =8 x5 (71)
6.2.1. Initial Conditions: The initial conditions in this
6.2. Scattering Theory Parallel formulation are handled in similar fashion to our discussio

The Hamiltonian method of composition can be demord Section 5.2. The insight in applying the initial covaian
strated most intuitively with an analogy in scattering tyeo is to create @oundary layey which is a scattering layer that
stemming from Redheffer’s original work and developed ii$ attached to theull scattering layer.
the context of optimal filtering by Kailath et al. (1976). It is straightforward to see that the initial covariankig

The key to this analogy lies in the forward-backward Hamikould be represented as a null layer with process nfise
tonian system associated with the discrete Riccati diffeze o, OF alternatively with additional measurement informatio
equation: in filtering, this corresponds to a system whichl = ;' = Q. These are identical to the cases derived
simultaneously produces filtered and smoothed estimates;n Section 5.2. The first two cases would be boundary layers
scattering theory it is interpreted as waves travelingupho described as
a medium in opposite directions with forward and backward I % I 0
transmission and reflection operators, whose interactiwas 0= [0 [} , or So= {_QO [} ' (72)
determined by the state space parame{érsi, M }. Given . .
these param(g{cers for a seFt) of cgnsecSt{ive scatt}c:zring medi\ﬁvrrﬁere this _boundary I_ay(_ar can .b? attached to a scattering
layers, or equivalently a set of consecutive Kalman filter u}gnedlum to impose an initial condition.
dates, the descriptor matrices for each update can be cethbin
using the star product to producae descriptor matrix. This 6.3. Computing the Hamiltonian One-Step Update
resulting descriptor matrix represents the aggregateesoay The key to applying the star product for composition
medium, or equivalently the aggregate filter update. lies in the associative property of the star product opemati



Algorithm 1 The Belief Roadmap Build Process. Algorithm 2 The Belief Roadmap Search Process.
Require: Map C over mean robot poses Require: Start belief(yu, Xo), goal locationg,,; and belief
1: Sample mean posefu;} from Cy... using a standard graphg
PRM sampling strategy to build belief graph nodefsett  Ensure: Pathp from yg to 140, With minimum goal covari-

such thatn;[u] = anceY oa1.
2: Create edge sefe;;} between nodegn;,n;) if the 1. Append G with nodes {ng,ngu}, edges
straight-line path betweefn;[], n;[u]) is collision-free {{eo;},{€igoar}}, and one-step transfer functions
3: Build one-step transfer functions;; } V e;; € {ei;} {{¢o.;}: {Ci,g0ai } }
4: return  Belief graphG = {{n;}, {ei;}, {¢;}} 2: Augment node structure with best patk=() and covari-

anceX=(, such that,={u, 3, p}
3: Create search queue with initial position and covariance

(Redheffer (1962)), which ensures that the star produchpfa @ < no= {10, Zo, 0}

scattering matrices yields another scattering matrix efstime 4 While @ is not emptydo

block form. To compose the filter updates fbrtime steps, > FOP" —Q

we begin by computing the aggregate scattering matrix, 6. if n= Tgoal then
7 Continue

Sip— { Grr R;T] =Sy % Syk- xSy, (73) & endif
My Gy 9: for all n’ such that3e, ,» and notn’ > n[p] do
We can then apply a novel initial conditioB, and use 10 Compute one-step updale = (, ./ - ¥, where¥ =

equation (66) to solve for the posterior covariance, (=] 1

11 PRV U
[. ET] = {(I) 2}0] * 17 (74) 12: if tr(X') < tr(n/[X]) then

13: ' {n'[p, 3 np] U {n'}}

(The matrix elements are irrelevant to the final solution 14: Pushn’ — Q

for the covariance.) As mentioned previously, the advantags. end if

to this formulation is that the aggregation of Hamiltoniang: end for
matrices is numerically more stable than the symplectimfor17: end while

of equation (29). 18 retum . nyoulp]

7. THE BELIEF ROADMAP ALGORITHM

The belief space planning algorithm can now be shown Adgorithm 2, where a neighboring nodée is only considered
a two stage process. First, mean positions of the robot dfé is not already in the search state patfp]. This guarantees
sampled, as in the Probabilistic Roadmap algorithm, anédghat upon termination of the breadth-first search procéss, t
between visible graph nodes are added. The correspondmigimum covariance path stored at the goal node is optimal
process and measurement Jacobians are calculated at sigpsrespect to the roadmap. More intelligent search preees
along each edge and assembled via matrix multiplicatiam intely on anA* heuristic to find the goal state faster; however,
a one-step transfer function for the covariangg, according common admissible heuristics do not apply as the evolution o
to equation (29). the covariance through the roadmap is non-monotonic (due to
In the second stage, a standard search algorithm is usedht® expansion and contraction of uncertainty in the undegly
compute the sequence of edges through the graph, startingtate estimation process). Developing suitableheuristics for
by, that maximizes the probability of being at the goal (oplanning in belief space are a topic for future work. Sintjlar
equivalently, results in minimal belief covariance at ttoaly. the applicability of dynamic search processes, such a®the
During search, eacfy; now allows us to compute the posteriofamily of algorithms (Stentz, 1995; Koenig and Likhachev,
covarianceX; that results at nodg by starting at node with  2002) and anytime methods (Van den Berg et al., 2006), is a
covariance;, moving in one efficient step along edgg;. direction for future research. For the results given in ff@per,
We call this algorithm theBelief RoadmapBRM) planner. we used exclusively breadth-first search for both shopati-
The build and search phases of the BRM planner are shof®RM) and belief-space (BRM) planning problems.
in Algorithms 1 and 2, respectively. Additionally, note in lines 12-13 of Algorithm 2 that we
There are several points of discussion that we addressomly expand nodes where the search process has not already
turn. Firstly, note that this must be a forward search preicegsound a posterior covarianeg[X] such that some measure of
the terminal node of this path cannot be determiagatiori, uncertainty such as the trace or determinant is less than the
for while the goal location,,,; is known, the covariance (andmeasure of the new posterior covarian¢elt is also assumed
henceb; (s40q1)) depends on the specific path. that a noden’ replaces any current queue membérwhen
Secondly, the BRM search process in Algorithm 2 assumpashed onto the queue in line 14.
a queue function that orders the expansion(@fX) nodes. Further, considerable work has been devoted to finding
Breadth-first search sorts the nodes in a first-in, first-otdéo good sampling strategies in fully-observable motion pigni
Note that cycles in the path are disallowed in line 9 gfroblems (we refer the reader to (Hsu et al., 2006; Missiuro
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Algorithm 3 The Min-Max Belief Roadmap (minmax-BRM) more principled approach, one could modify the BRM search
algorithm. process to optimize an alternative objective function that
Require: Start belief(yuo, £o), goal locationug.q; and belief minimizes the maximum predicted uncertainty along therenti
graphGg path. Within the context of the BRM graph, this approach
Ensure: Pathp from g t0 11400; With minimum maximum would consider the posterior covariance predicted at each
covariance. intermediate belief node in a series of trajectories. Thal go
1 G = {{ni},{ei;},{Sij}} — BUILD_BRM_GRAPH (3*) would be to minimize the objective functiof, which is given
2: Append G with nodes  {no, Ngoai } edges as

{{eo;};{€igoat}}, and  one-step  descriptors
{{SOJ}’ {Si’goal}} ] . T

3: Augment node structure with best path = @ and J(by) %min(z (b, uy) + max D(b,[X])), (75)
maximum covarianc&?, . = oo along pathp, such that vor bo-r

;] — p = . . .
ni = {11, 2, P X } I . .__whereJ(...) is the cost of a path; is the cost of executing
4: Create search queue with initial position and covariance : . .
control u; from belief posé[u], and D is the cost associated
Q —no = {/1'07 207 ®7 OO}

with the maximum uncertainty of all discrete belief nodes

5: th|)Ie Q is not emptydo along the path.
3: ifor?i ; Ql then _ The BRM §§arch process is a_ldapted to minimize the o_bjec-
8 Contirgla{:a tive function./ in Algorithm 3, which we have named the Min-
9: end if Max Belief Roadmap (minmax-BRM) algquthm. There are
10.- for all n’ such thaBe,., and n’ 5 n[p] do two key changes from thg stgndard BRM. First, the augmented
11: Compute one-stepnﬁ;daﬁé = (U, Wherel = searc.h node structure in Ilqe 3 stores. the best patto

' (5] e the given node and the maximum covariar¥®g,,, alongp.

S , -1 The best pathm;[p] to noden; corresponds to the series of

12: X0y \1,121 ) nodes beginning at the start nodg that collectively has the
i max(tr(3X), tr(n[25,0,]) < (035 1) hen - minimum maximum (min-max) covariance of all such paths
14 e {," [, 2 Anlp), '}, maz (¥, 25,0000} considered to node,. The maximum covariance;[S?,,. ]
15: Pu_shn —Q along this best path;[p] is also stored in the search state for
16: end if computing the associated cabt in the objective function/
17: end fpr (equation (75)) and for decision-making during search.eNot
18: end while

that the covariancey;[X] stored at noden; is no longer
19: retumn  ngoa[p] the minimum achievable covariance, but rather the posterio
covariance resulting from the best pathp).

Secondly, the primary decision-making step in line 13 is
and Roy, 2006)). Such strategies can bias samples towanssdified for the new objective function. In this case, the
different topological features and areas of interest toraw@ path being considered in the current search state|,n'}
both the quality and efficiency of the roadmap. For thig deemed better than the existing patlyp] to noden’ if its
results in this paper, we used a medial-axis sampling glyatemaximum uncertainty is less than that of the existing path.
for both the shortest-path (PRM) and belief-space (BRMyote that the maximum uncertainty of the current search path
planning problems. However, it is likely that better belief{n[p],n’} is computed by taking thenaz function of the
space planning would result from sampling strategies that associated uncertainty of each portion of this path, which i
aware of the sensor model. Similarly, a sampling strategy thr(n[>2 1) for n[p] and¢r(X’) for »’. If the current search
incorporates the cost function would also lead to improveshth is better than the existing path, then the node updated
planning, especially for cost functions that are not solely accordingly in line 14 and placed on the queue in line 15.
function of the distribution over the goal state. By itevaly A key consideration of the minmax-BRM algorithm is that
computing expected costs and re-sampling the roadmap, iegan only guarantee an optimal solution within the roadmap
upper-bound on the expected cost of the entire computed pfan a specific resolution of the uncertainty evolution along
can be achieved. The exact algorithm for iteratively plagni a path. In Algorithm 3, we only consider the covariance

resampling is outside the scope of this paper. at node locations along the path. While lines 11-12 exactly
compute the posterior covariance of multiple EKF updates
7.1. Modified BRM for MinMax Path Uncertainty along a trajectory, the underlying multi-step process i no

. . . monotonic. This means that it is possible for the covariaatce
In the BRM formulgtlon shoyvn m_AIgorlthm 2, the Se‘;Tlr(.:han intermediate point on an edge between two graph nodes
process finds the series of trajectories that results inmahi

uncertainty at the goal location; however, it may be de%rabto be larger than both the prior covariance and posterior
to insteadylimit theg maximum u,ncertaint, encoﬁntered alor%:ovariance for the full trajectory. It is possible to reveot

: y e Bme form of multi-step approach to this problem, but, witho
an entire path. One approach could be to impose bounds

0} . . L
fafher assumptions, the guarantee of min-max covariarite w

the maximum allowable uncertainty during the BRM searci ways be limited to the resolution of discretization. Wavie

tr(¥) < trme. to discard undesirable goal paths. In a
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the analysis of this problem for future work, and place ot True Distance vs. Range Bias Error in LOS Scenario
focus on the standard BRM for experiments. T

It is important to note the generality of the BRM formula-
tion, which was demonstrated in this section by modifying th
search process to optimize an alternative objective fancti
The BRM technique presents a general approach to planni
in belief space that can be adapted to solve a broad class
planning problems.

=
o
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8. UWB LOCALIZATION

In this work, we applied the belief roadmap algorithm tc
the problem of navigating in a GPS-denied environment usit
ultra-wide bandwidth (UWB) radio beacons for localization
UWB is a nascent technology that is amenable to rangit . : " L . . - o
applications in dense indoor and urban environments, ow True Distance (m)
coming weaknesses of traditional narrowband counterparts
with its fine delay resolution and large bandwidth that pdevi rig. 3. The Ultra-Wide Band Ranging Model in LOS. Theaxis is
immunity to multipath fading and the ability to penetratéhe true range between sensors and ghexis is the measured systematic
building materials (Win and Scholtz, 1998; Cassioli et algc" (Unbiased measurements are at 0), and the error barshgiatandard
2002). Ranges can be computed between a pair of UWB
radio beacons by measuring the round-trip time-of-flight of
UWB pulse exchanges. While a complete characterization with varianceo;,s(d;)2. When used in filtering problems, the
the UWB channel is still an active area of research and beyorzhge function in equation (79) corresponds to the obsiervat
the scope of this paper, here we briefly develop the genefahction z; = h(z;) + vy, With 2, = ¢, vy = N(0, Opias(di)?)
ranging model used in this work. A supplementary discussiamd /(z;) is given as

Bias Error: Mean and Standard Deviation (m)

| oA

I
N
B
[ |
——

|
&
T

|
)

of the details of this UWB ranging scheme was presented b%
Prentice (2007). (1) = di + pbias(dy) (80)
b m 2 2
= ias+ 1+ 1as T —Tbpeacon + — Ybeacon) »
8.1. Ultra-Wideband Measurement Model Ho (4ug )\/( b v ()81)

The general UWB sensor model can be written as : )
wherez, is assumed to be the robot pose y, 0); at timet,

ry = di + by + ny, (76) and (Tpeacon; Yveacon) iS the ranging beacon location.

where r, is the range,d; is the distance between UWB
sensorsp, is the range bias, and; is additive noise. The
round-trip time calculation is approximate in nature, iegd  In order to evaluate the BRM algorithm, we performed a
to uncertainty in the range calculation which can be modellgeries of evaluations on a small planning domain in simorati
as a stochastic process. In a testing campaign, we develop8g testing consisted of two objectives: (1) to evaluate the
a Gaussian model to describe ranging uncertainty in La®ality of plans produced by the BRM algorithm in terms
scenarios. We characterized the Gaussian process byiggthe?f uncertainty reduction; and (2), to assess the compuiaitio
range data between a pair of sensors at various distangggantage of employing the linearized EKF covariance wpdat
with LOS visibility. The distance was increased in 0.25 metéluring the search process.
increments from 1 to 14 meters of separation and at eachThe experimental setup consisted of small-sized maps with
point, 1,000 range samples were gathered. The resultiagsiatrandomly placed ranging beacons using the stochastic range
plotted in Figure 3, showing the mean bias,, and standard sensor model from Section 8.1. The environment was assumed
deviationoy;,s errorbar at each distance. to be free of obstacles to avoid experimental bias resulting
This data suggests that the LOS range bias can be readopm artifacts in sensor measurements and random trajector
ably modeled as distance-varying Gaussian noise, with megiaph generation in environments with varying contours.
Urias(dy) and standard deviatian,;,(d;). Computing a linear ~ We begin by presenting the motion and sensor models used

9. EXPERIMENTAL RESULTS

regression yields in our experiments, which are linearized versions of theionot
and sensor models for use in our EKF-based formulation. Note
vias(de) = Hilasdl + i @) i it time | nts i
bias % bias®t bias that, for readability, we omit time index subscripts in thexn
Ovias(di) = o ody + 08 (78) two sections; however, all matrices derived are time-vayyi

The range function in equation (76) then becomes quantities.

Ty = dt + ,ubin,s(dt) + N(O; Obias (dt)2)7 (79)

where the biash; is now a linear function of the distance
Upias(dt), @and the noise term; is zero-mean Gaussian noise



9.1. Linearized Motion Model
We use the following non-linear probabilistic motion mqade
T+
)

gx:x—&—Dcos(Q—i—%)—i—Ccos(G—i—

T+ x
2

T
gy:y+Dsin(9+§)+C’sin(9+ )

go=0+T mod 2,

where g, g, and go are the components @f corresponding
to each state variable, and the control variablés given by
u=[DC T}T with down-rangeD, cross-range” and turn
T components.

In the EKF, the state transition matriX is the Jacobian of

the motion model with respect to the state, and is computed

by linearizing the state transition functignabout the mean
statey as follows:

_ |99y O9y dgy| _ "
G=|% v Sl _ 1o 1 b,
or  dy 00 00 1
990 090 990
ox by 401,
where
T T
a:stin(u9+5)fCSin(u9+#)
T T
szcoS(M9+§)+Ccos(u9+ ;—ﬂ-)

12

9.2. Linearized LOS Sensor Model

| Similarly, the UWB sensor model developed in Section 8.1
can be linearized for use in the EKF. For convenience we
restate the distance-varying Gaussian noise model of t®e bi
N (up(d),op(d)) and the observation function. The noise
model is given by,

po(d) = pg'd + oy
op(d) = o"d + o}

and the observation function= h(z) + v is determined by,

h) = i+ (4 i (@ —2)* + (y— )

v = N(0,04(d)?),
where(z, y) is the robot pose(z;, y5) is the beacon location,

d is the Euclidean distance and the parameters of the Gaussian
bias distribution are linear functions of the distance.

The linearized transformation from measurement space to
state space is computed as the measurement JacHbieom-
puted as the partial derivatives of the measurement fumctio
with respect to each component of the state:

LN
Sz oy 80|’
which becomes:

A+ )(@—a) A+ ") (Y—ys)

V) ) e+ ()

- 0]. (82)

The linearized process noise in state space is computed\ede that(xz — z;) = d cos 8,, and (y — ) = dsin6,,, where

R £ VWVT where W is the process noise covariance i
control space
o2 0 0
W=|0 ¢4 0
0 0 0'%

M, = atandy—y;, z—xy) IS the angle of measurement relative
to the robot pose. Thus, equation (82) becomes

H=[(1+p")cosby, (14 p)sinb, 0]. (83)

As can be seen, the range measurements yield no informa-

andV is the mapping from control to state space, computed #@n on bearing, and thus only affect the estimation of the
the Jacobian of the motion model with respect to the contrandy components of the robot state. The measurement noise

space components
D C T
S, 95, b4,

D C T
S S d%
oD 6C 0T 1y, pulw)

Computing these partial derivatives leads to

cos(f+ Z) cos(@—&—%) —%(D sin (9—|—Z )—|—Csin(9+¥ ))
= . . THm, 1 T4 ’
51n(6(?)—|j) bln(e?) 5 ( COS (9+§ )+1CYCOS(0+2))

where the components &f are evaluated at the mean stat

p and the mean contrgt* (D, C, andT take on the mean
values of the respective normal distributions).

covariance) = cov(q,q) for a given beacon is the x 1
matrix
Q= [(o"d + 0})*]. (84)

Recall that the information matrix update in the measure-
ment step is additive a8, = Q, + M,. Thus, the range
measurementsf] to each of NV visible beacons at time ¢
can be incorporated by computing the aggregate measurement
information as

N
M= M, (85)
=0

where M = gl QU1 gl

8.3. Localization Performance:

In the first set of analyses, we compared the quality of
paths produced using the BRM algorithm to those resulting
from a shortest path search in a conventional PRM, which
does not incorporate uncertainty. In each test iteratiensar
locations were sampled along randomized trajectoriesdmtw
a start and goal location in an obstacle-free environmetit wi
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Sensor Model Uncertainty vs. Positional Error at Goal Location

(m)

BRM Planner
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Positional Error at Goal Location
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Fig. 4. Experimental Setup. Range sensor locations (showma circles) W

were sampled along randomized trajectories between a sthgaat location.

The solid _and dashed I|r)e shovy the plans generel_ted by th_e BRIMIzortest O TTToT oz o3 o4 o5 o5 o7 o5 o
path algorithms, respectively, with ellipses indicating tovariance& along Sensor Noise Standard Deviation (m)

each trajectory. This experimental design tests the alufityhe BRM to find
paths with greater potential information gain to stay weddlized during

execution (a) Varying Sensor Noise

Maximum Sensor Range vs. Positional Error at Goal Location

100m sides, as shown in Figure 4. This experimental sett
tests the ability of the BRM to detour from shorter paths fc
those with lower expected uncertainty. We tested the qualit
paths computed by the BRM and PRM shortest path plannii
algorithms by evaluating the average position error oltin
at the goal location after executing the prescribed path.

We performed two analyses to demonstrate that the BR
provided more accurate localization; we artificially varigne
random noise of the range beacons, and we artificially lisnite
the range of the beacons by discarding measurements bey
a maximum range. In Figure 5(a), we see the performan
of the two planning algorithms under conditions of varying L7
noise. As the sensor noise increases, both algorithms hi s m = = =
worsened positional accuracy at the goal, but the shorgght p Maximum Sensor Range (m)
algorithm degrades more quickly. The BRM planner contends
with increased sensor noise by finding trajectories witthéig
quality measurements. In Figure 5(b), we see that with alsmal _ . .

. . . . .Fig. 5. In these figures we characterized the positional racguof the
maximum sensor range, the BR_M IS able to find traJeCtonev%ot for both the PRM shortest path and BRM planners as dibmof the
in close proximity to sensors, yielding a reasonable lefel eensor noise and sensor range. (a) Accuracy vs. Sensor. Nbisgositional

iti i i uracy of the PRM shortest path algorithm suffered wittradased noise.
po_smongl accuracy. As the maXImum senso.r .rang.e mprea i%e positional accuracy of the BRM increased slightly but substantially
traJeCt0r|?S f_arther from sensors provide sufﬁuent infation  ith noise. (b) Accuracy vs. Range. The positional accuratyhe PRM
for localization and the positional errors in both plannershortest path algorithm increased with sensor range asgéet dad more
converge to similar values. Intuitively, as the informatispace 'anges for localization. Even with very short range, the BRIgorithm was

e . . ’ L able to find paths that maintained relatively good localorati
becomes artificially saturated with abundant state inféiona
the agent can remain well-localized regardless of itsdtafg.

Conversely, when the information space has greater dtgpary,.c\racy. This experiment evaluates the effect of usingiee

the BRM excels at finding higher-quality paths that providgie, fransfer function on planning speed. Planning exerisn

greater state information. were performed using randomized sensor locations in maps
of varying size 80— 100m per side). To reduce variability

9.4. Algorithmic Performance: in the speed comparison results, the number of sensors was

Secondly, we assessed the speed improvement of utiliziyg/d constant throughout the e_xperimenFs and the number of
the linearized EKF covariance update during planning. Wiodes was sampled randomly in proportion to the area of the
compared the time required by the planning search proc&&ironment to maintain consistent trajectory lengths.
when using the one-step linearized EKF covariance update 19ure 6(a) shows the relative search times with respect
(¢i,) to that of the standard EKF covariance updates. Note orféethe depth of the search tree in the corresponding trajec-
again that the one-step covariance transfer function mesiutory graph. The BRM maintains a consistent improvement
the same resulting covariance as performing each of meiltifly ©ver two orders of magnitude, with search costs scaling
standard EKF updates in succession; there is no trade-offi@garithmically with increasing tree depth. Similar resul

BRM Planner

— — — PRM Planner

Positional Error at Goal Location (m)
=
_
—

30

(b) Varying Sensor Range
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Search Time vs. Search Tree Depth
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Fig. 7. Example trajectories for a mobile robot in an indooriemment
(a) Time vs. Tree Depth (~70m across) with ranging beacons. The robot navigates fralRS
(lower left) to GOAL (top). The BRM finds a path in close proxignito
Search Time vs. Path Length the ranging beacons, balancing the shorter route computethdyPRM
10° ¢ in configuration space against a lower cost path in informagspace. The
¥ x ,Xf,,/z—)ffx'”“' positional uncertainty over the two paths is shown as thel lmolvariance
x WK Geors x g * ellipses.
T x5 XX % X
10t 5% x %
x X Search with Standard EKF Updates for localization. The BRM planner detours from the direct

O  Search with One-Step EKF Updates

route chosen by the shortest path planner for sensor-rich
regions of the environment. Whereas the shortest path planne
accumulates positional error by relying on dead-reckortimg
BRM path incorporates ranging information to maintain lowe
uncertainty.

Figure 8 shows example trajectories for a very large plan-
ning problem. The robot must navigate across the MIT campus
from the bottom right corner to the top left corner. Scatlere
N \ \ \ \ \ \ \ throughout the environment are ranging beacons with known
0 20 40 60 80 100 120 140 . .

Path Length (m) position, shown as the small blue circles. The robot can
localize itself according to the ranges, but the rangingieay
varies across campus according to the proximity and density
o Aldorithmic Perf . o Tree Db of the beacons. The robot is also constrained to the outside
toIgP.Igh vs.glg’ar{L II~_nel(rzmgtﬁ.r ISIE)TeatnhCaet-tﬁagselgrzrt)?\s aarlg ;/:hi%grﬁ(r?g?cé\?ﬁg paths (and cannot short-cut through buﬂng;, the |Ig‘h’§.»‘g
two orders of magnitude increase in speed. blocks). The shortest path planner shown in Figure 8(a) finds

direct route (the solid blue line) but the positional unagrty
grows quite large, shown by the green uncertainty ellipses.
are obtained when comparing the search times with resp&etcontrast, the BRM algorithm finds a path that stays well-
to the length of the resulting path, shown in Figure 6(b)ocalized by finding areas with a high sensor density. The
reiterating the significant scalable improvement of the-sie® uncertainty ellipses are too small to be seen for this ttajgc
update. The one-step covariance update presents a cohsiste
improvement in planning speed and scales with the size of 10. CONCLUSION
the trajectory graph, making planning in belief space wlith t
BRM computationally tractable.

10° b

Search Time (s)

(b) Time vs. Path Length

In this paper, we have addressed the problem of planning in
belief space for linear-Gaussian systems, where the bislief
in the graph, the one-step linearized search incurs a Ootrr%lcked using Kalman-filter style estimators. We have shown

at the computational cost of EKF predictions during plagn

time build cost comparable to the cost ohe path search can be reduced by factoring the covariance matrix and combin

using the standard covariance model. However, this cost. % multiple EKF update steps into a single, one-step praces

amortized; the BRM reuses this graph to enable efﬁmeWe have presented a variant of the Probabilistic Roadmap

search in replanning. algorithm, called the Belief Roadmap (BRM) planner, and

. ) shown that it substantially improves planning performazuce

9.5. Example trajectories: positional accuracy. We demonstrated our planning algyorit
Finally, example trajectories are shown in Figures 7-8. lon a large-scale environment and showed that we could plan

Figure 7, a mobile robot navigates through a small-sized igfficiently in this large space. This kind of trajectory has

door environment{70m in length) providing ranging beaconseen reported elsewhere (Roy and Thrun, 1999) but in limited
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