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Abstract
Modern high-energy physics (HEP) enterprises, such asthe Belle II experiment (Abe et al, Belle II Technical Design Report. 
KEK Report 2010-1, 2010; Kou et al, The Belle II Physics book. KEK Preprint 2018-27, 2018) at the KEK laboratory in 
Japan, create huge amounts of data. Sophisticated algorithms for simulation, reconstruction, visualization, and analysis are 
required to fully exploit the potential of these data. We describe the core components of the Belle II software that provide 
the foundation for the development of complex algorithms and their efficient application on large data sets.
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Belle II Analysis Software Framework

Code Structure

The core software is organized in three parts: the Belle II 
Analysis Software Framework basf2 containing the Belle 
II-specific code, the externals containing third-party code 
on which basf2 depends, and the tools containing scripts for 
the software installation and configuration.

Basf2

The Belle II-specific code is partitioned into about 40 pack-
ages, such as the base-level framework, one package for each 
detector component, the track reconstruction code, and the 
post-reconstruction analysis tools. Each package is managed 
by one or two librarians.

The code is written in C++, with the header and source 
files residing in include and src subdirectories, respec-
tively. By default, one shared library is created per package 

and is installed in a top-level lib directory that is included 
in the user’s library path. The build system treats the pack-
age’s contents in pre-defined subdirectories as follows.

– Modules The code is compiled into a shared library and 
installed in a top-level module directory, so that it can 
be dynamically loaded by basf2.

– Tools C++ code is compiled into an executable and 
installed in a top-level bin directory that is included 
in the user’s path. Executable scripts, usually written in 
Python, are symlinked to this directory.

– Dataobjects These classes define the organization of the 
data that can be stored in output files. The code is linked 
in a shared library with the _dataobjects suffix.

– Scripts Python scripts are installed in a directory that is 
included in the Python path.

– Data All files are symlinked to a top-level data folder.
– Tests Unit and script tests (see “Basf2 Development 

Infrastructure and Procedures”).
– Validation Scripts and reference histograms for valida-

tion plots (see “Basf2 Development Infrastructure and 
Procedures”).

– Examples Example scripts that illustrate features of the 
package.

Users of basf2 usually work with centrally installed versions 
of basf2. At many sites, they are provided on CVMFS [3]. 
Users may also install pre-compiled binaries at a central 
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location on their local systems with the b2install-
release tool. If no pre-compiled version is available for 
their operating system, the tool compiles the requested ver-
sion from source.

Externals

We require a few basic packages to be installed on a system, 
like a compiler, make, wget, tar, and git. The tool b2in-
stall-prepare checks whether these prerequisites 
are fulfilled and installs, if desired, the missing packages. 
All other third-party code on which we rely is bundled in 
the externals installation. It includes basic tools like GCC, 
Python 3, and bzip2 to avoid requiring a system-wide instal-
lation of specific versions at all sites, as well as HEP spe-
cific software like ROOT [4], Geant4 [5], and EvtGen [6]. 
Some packages, like LLVM or Valgrind, are optional and not 
included in the compilation of the externals by default. The 
number of external products has grown over time to about 
60, supplemented with 90 Python packages.

The instructions and scripts to build the externals are 
stored in a git repository. We use a makefile with specific 
commands for the download, compilation, and installation 
of each of the external packages. Copies of the upstream 
source packages are kept on a Belle II web server to have 
them available if the original source disappears. The copies 
provide redundancy for the download if the original source 
is temporarily unavailable. The integrity of the downloaded 
files is checked using their SHA 256 digests.

The libraries, executables, and include files of all exter-
nal packages are collected in the common directories lib, 
bin, and include, respectively, so that each of them can 
be referenced with a single path. For the external software 
that we might want to include in debugging efforts, such as 
ROOT or Geant4, we build a version with debug information 
to supplement the optimized version.

The compilation of the externals takes multiple hours 
and is not very convenient for users. Moreover, some users 
experience problems because of specific configurations 
of their systems. These problems and the related support 
effort are avoided by providing pre-compiled binary ver-
sions. We use docker to compile the externals on several 
supported systems: Scientific Linux 6, Red Hat Enterprise 
Linux 7, Ubuntu 14.04, and the Ubuntu versions from 16.04 
to 18.04. The b2install-externals tool conveniently 
downloads and unpacks the selected version of the pre-built 
externals.

Because the absolute path of an externals installation 
is arbitrary, we have invested significant effort to make 
the externals location-independent. First studies to move 
from the custom Makefile to Spack  [7] have been done 
with the aim of profiting from community solutions for the 

installation of typical HEP software stacks, but relocateabil-
ity of the build products remains an issue.

Tools

The tools are a collection of shell and Python scripts for 
the installation and setup of the externals and basf2. The 
tools themselves are set up by sourcing the script b2setup. 
This script identifies the type of shell and then sources 
the corresponding sh- or csh-type setup shell script. This 
script, in turn, adds the tools directory to the PATH and 
PYTHONPATH environment variables, sets Belle II-specific 
environment variables, defines functions for the setup or 
configuration of further software components, and checks 
whether a newer version of the tools is available. A pre-
defined set of directories is searched for files containing site-
specific configurations. The Belle II-specific environment 
variables have the prefix BELLE2 and contain informa-
tion like repository locations and access methods, software 
installation paths, and software configuration options.

Installation of externals and basf2 releases is handled by 
the shell scripts b2install-externals and b2in-
stall-release, respectively. Usually, they download 
and unpack the version-specific tarball of pre-compiled bina-
ries for the given operating system. If no binary is available, 
the source code is checked out and compiled. Each version 
of the externals and basf2 releases is installed in a separate 
directory named after the version. For the compilation of the 
externals, we rely on the presence of a few basic tools, like 
make or tar, and development libraries with header files. 
Our tools contain a script that checks that these dependen-
cies are fulfilled and, if necessary, installs the missing ones.

The command b2setup sets up the environment for a 
version-specified basf2 release. It automatically sets up the 
externals version that is tied to this release, identified by 
the content of the .externals file in the release direc-
tory. An externals version can be set up independently of a 
basf2 release with the b2setup-externals command. 
The version-dependent setup of the externals is managed 
by the script externals.py in the externals directory. 
Externals and basf2 releases can be compiled in optimized 
or debug mode using GCC. In addition, basf2 supports the 
compilation with the Clang or Intel compilers. These options 
can be selected with the b2code-option and b2code-
option-externals commands. A distinct subdirectory 
is used for the option’s libraries and executables. The com-
mands that change the environment of the current shell are 
implemented as functions for sh-type shells and as aliases 
for csh-type shells.

The tools also support the setup of an environment for 
the development of basf2 code. The b2code-create 
command clones the basf2 git repository and checks out 
the master branch. The environment is set up by executing 
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the b2setup command without arguments in the working 
directory. If a developer wants to modify one package and 
take the rest from a centrally installed release, the b2code-
create command can be used with the version of the 
selected release as an additional argument that is stored in 
the file .release. The sparse checkout feature of git is 
used to get a working directory without checked-out code. 
Packages can then be checked out individually with the 
b2code-package-add command. The b2setup com-
mand sets up the environment for the local working direc-
tory and the centrally installed release. Further tools for the 
support of the development work are described in “Basf2 
Development Infrastructure and Procedures”.

To make it easier for users to set up an environment for 
the development of post-reconstruction analysis code and to 
encourage them to store it in a git repository, the tools pro-
vide the b2analysis-create command. This requires 
a basf2 release version as one of the arguments and creates 
a working directory attached to a git repository on a cen-
tral Belle II server. The basf2 release version is stored in 
a .analysis file and used by the b2setup command 
for the setup of the environment. The b2analysis-get 
command provides a convenient way to get a clone of an 
existing analysis repository and set up the build system.

The tools are designed to be able to set up different ver-
sions of basf2 and externals and thus must be independent 
of them. For this reason, all binary code is placed in the 
externals. When GCC and Python were embedded in the 
tools originally to avoid duplication in multiple externals 
versions, this proved difficult to manage during updates. One 
of the prime challenges that we overcame in the develop-
ment of the tools was to cope with the different shell types 
and various user environment settings.

Basf2 Development Infrastructure and Procedures

The basf2 code is maintained in a git repository. We use 
Bitbucket Server [8] to manage pull requests. This provides 
us with the ability to review and discuss code changes in pull 
requests before they are merged to the main development 
branch in the git repository. Compared to the previous work-
flow based on subversion, it helps the authors to improve 
the quality of their code and allows the reviewers to get a 
broader view of the software. We exploit the integration with 
the Jira [9] ticketing system for tracking and planning the 
development work.

Developers obtain a local copy of the code with the 
b2code-create tool (see “Tools”). The build system is 
based on SCons [10], because compared to the HEP stand-
ard CMake, the build process is a one-step procedure and 
the build configuration is written in Python, a language 
adopted already for the basf2 configuration steering files (see 
“Python Interface”). The time SCons needs to determine 

the dependencies before starting the build is reduced by 
optimizations, such as bypassing the check for changes of 
the externals. Developers and users usually do not have to 
provide explicit guidance to the build system; they only have 
to place their code in the proper subdirectories. However, if 
the code references a set of linked libraries, the developer 
indicates this in the associated, typically three-line, SCon-
script file.

We implement an access control for git commits to the 
master branch using a hook script on the Bitbucket server. 
Librarians, identified by their user names in a .librar-
ians file in the package directory, can directly commit code 
in their package. They can grant this permission to others 
by adding them to a .authors file. All Belle II members 
are permitted to commit code to any package in feature 
or bugfix branches. The merging of these branches to the 
master via pull requests must be approved by the librarians 
of the affected packages. Initially, when subversion was used 
for version control, direct commits to the master were the 
only supported workflow, but after the migration to git pull 
requests are the recommended and more common way of 
contributing.

We have established coding conventions to achieve some 
conformity of the code. Because most of them cannot be 
enforced technically, we rely on developers and reviewers 
to follow them. We do enforce a certain style to empha-
size that the code belongs to the collaboration and not to 
the individual developer. The AStyle tool [11] is used for 
C++ code and pep8 [12] and autopep8 [13] for Python code. 
Some developers feel strongly about the code formatting, 
and so, we make it easy to follow the rules and reduce their 
frustration by providing the b2code-style-check tool 
to print style violations and the b2code-style-fix tool 
to automatically fix them. The style conformity is checked 
by the Bitbucket server hook upon push to the central repos-
itory. It also rejects files larger than 1 MB to prevent an 
uncontrolled growth of the repository size. To provide feed-
back to developers as early as possible and to avoid annoying 
rejections when commits are pushed to the central reposi-
tory, we implement the checks of access rights, style, and 
file size in a hook for commits to the local git repository.

To facilitate test-driven development, unit tests can be 
implemented in each package using Google Test [14]. These 
are executed with the b2test-units command. Test 
steering files in all packages can be run with the b2test-
scripts command. It compares the output to a reference 
file and complains if they differ or if the execution fails. The 
unit and steering file tests are executed by the Bamboo [15] 
build service whenever changes are pushed to the central 
repository. Branches can only be merged to the master if all 
tests succeed.

The tests are also executed by a Buildbot [16] continu-
ous integration system that compiles the code with the 
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GCC, Clang, and Intel compilers and informs the authors 
of commits about new errors or warnings. Once a day, 
the Buildbot runs Cppcheck, a geometry overlap check, 
Doxygen and Sphinx [17] documentation generation, and 
a Valgrind memory check. The results are displayed on a 
web page, and the librarians are informed by email about 
issues in their packages. A detailed history of issues is 
stored in a MySQL database with a web interface that also 
shows the evolution of the execution time, output size, and 
memory usage of a typical job.

Higher level quality control is provided by the valida-
tion framework. It executes scripts in a package’s vali-
dation subdirectory to generate simulated data files and 
produce plots from them. The validation framework then 
spawns a web server to display the plots in comparison 
with a reference as well as results from previous valida-
tion runs. A software quality shifter checks the validation 
plots produced each night for regressions and informs the 
relevant individual(s) if necessary.

As a regular motivation for the libarians to review the 
changes in their package, we generate monthly builds. For 
a monthly build, we require all librarians to agree on a 
common commit on the master branch. They signal their 
agreement using the b2code-package-tag command 
to create a git tag of the agreed-upon common commit 
with a tag name composed of the package name and a 
version number. The command asks for a summary of 
changes that is then used as tag message and included in 
the announcement of the monthly build. The procedure of 
checking the agreement, building the code, and sending 
the announcement is fully automated with the Buildbot.

An extensive manual validation, including the produc-
tion of much larger data samples, is done before releasing 
a major official version of basf2. Based on these major 
versions, minor or patch releases that require less or no 
validation effort are made. In addition, light basf2 releases 
containing only the packages required to analyze mini DST 
(mDST, see “Event Data Model”) data can be made by 
the analysis tools group convener. This allows for a faster 
release cycle of analysis tools. Each release is triggered by 
pushing a tag to the central repository. The build process 
on multiple systems and the installation on CVMFS is 
then automated.

In maintaining or modifying the development infra-
structure and procedures, we aim to keep the thresholds 
to use and contribute to the software as low as possible 
and, at the same time, strengthen the mindset of a common 
collaborative project and raise awareness of code quality 
issues. This includes principles like early feedback and 
not bothering developers with tasks that can be done by a 
computer. For example, the tools complain about style-rule 
violations already on commits to the local git repository 
and offer programmed corrections. In this way, users and 

developers can focus on the development of their code and 
use their time more efficiently.

Modules, Parameters, and Paths

The data from the Belle II detector, or simulations thereof, 
are organized into a set of variable-duration runs, each con-
taining a sequence of independent events. An event records 
the measurements of the by-products of an electron–positron 
collision or a cosmic ray passage. A set of runs with similar 
hardware state and operational characteristics is classified 
as an experiment. Belle II uses unsigned integers to identify 
each experiment, run, and event.

The basf2 framework executes a series of dynamically 
loaded modules to process a collection of events. The selec-
tion of modules, their configuration, and their order of 
execution are defined via a Python interface (see “Python 
Interface”).

A module is written in C++ or Python and derived from 
a Module base class that defines the following interface 
methods.

– initialize() called before the processing of events to ini-
tialize the module.

– beginRun() called each time before a sequence of events 
of a new run is processed, e.g., to initialize run-depend-
ent data structures like monitoring histograms.

– event() called for each processed event.
– endRun() called each time after a sequence of events of 

the same run is processed, e.g., to collect run-summary 
information.

– terminate() called after the processing of all events.

Flags can be set in the constructor of a module to indicate, 
for example, that it is capable of running in parallel-process-
ing mode (see “Parallel Processing”). The constructor sets a 
module description and defines module parameters that can 
be displayed on the terminal with the command basf2 -m.

A module parameter is a property, whose value (or list 
of values) can be set by the user at runtime via the Python 
interface to tailor the module’s execution. Each parameter 
has a name, a description, and an optional default value.

The sequence in which the modules are executed is stored 
in an instance of the Path class. An integer result value 
that is set in a module’s event() method can be used for 
a conditional branching to another path. The processing of 
events is initiated by calling the process() method with 
one path as argument. The framework checks that there is 
exactly one module that sets the event numbers. It also col-
lects information about the number of module calls and their 
execution time. This information can be printed after the 
event processing or saved in a ROOT file.
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Log messages are managed by the framework and can be 
passed to different destinations, like the terminal or a text 
file, via connector classes. Methods for five levels of log 
messages are provided.

– Fatal for situations, where the program execution cannot 
be continued.

– Error for things that went wrong and must be fixed. If an 
error happens during initialization, event processing is 
not started.

– Warning for potential problems that should not be 
ignored and only accepted if understood.

– Info for informational messages that are relevant to the 
user.

– Debug for everything else, intended solely to provide 
useful detailed information for developers. An integer 
debug level is used to control the verbosity.

The log and debug levels can be set globally, per package, 
or per module.

Data Store and I/O

Data Store

Modules exchange data via the Data Store that provides a 
globally accessible interface to mutable objects or arrays of 
objects. Objects (or arrays of objects) are identified by name 
that, by default, corresponds to the class name. By conven-
tion, arrays are named by appending an “s” to the class 
name. Users may choose a different name to allow different 
objects of the same type simultaneously. Objects in the Data 
Store can have either permanent or event-level durability. In 
the latter case, the framework clears them before the next 
data event is processed. Client code can add objects to the 
Data Store, but not remove them.

Within one event, two distinct arrays of objects in the 
Data Store can have weighted many-to-many relations 
between their elements. For example, a higher level object 
might have relations to all lower level objects that were used 
to create it. Each relation carries a real-valued weight that 
can be used to attach quantitative information such as the 
fraction a lower level object contributed to the higher level 
one. The relationship information is stored in a separate 
object; no direct pointers appear in the related objects. This 
allows us to strip parts of the event data, without affecting 
data integrity: if one side of a relationship is removed, the 
whole relation is dropped. The relations are implemented by 
placing a RelationArray in the Data Store that records 
the names of the arrays it relates, as well as the indices and 
weights of the related entries. As the Data Store permits 
only appending entries to an array, the indices are preserved. 

The name of the relations object is formed by placing “To” 
between the names of the related arrays.

The interface to objects in the Data Store is implemented 
in the templated classes StoreObjPtr for single objects 
and StoreArray for arrays of objects, both derived from 
the common StoreAccessorBase class. They are con-
structed with the name identifying the objects; without any 
argument, the default name is used. Access to the objects 
is type-safe and transparent to the event-by-event changes 
of the Data Store content. To make the access efficient, the 
StoreAccessorBase translates the name on first access 
to a pointer to a DataStoreEntry object in the Data 
Store. The DataStoreEntry object is valid for the life-
time of the job and contains a pointer to the currently valid 
object, which is automatically updated by the Data Store. 
Access to an object in the Data Store thus requires an expen-
sive string search only on the first access, and then a quick 
double dereferencing of a pointer on subsequent accesses.

The usage of relations is simplified by deriving the 
objects in a Data Store array from RelationsObject. 
It provides methods to directly ask an object for its rela-
tions to, from, or with (ignoring the direction) other objects. 
Non-persistent data members of RelationsObject and 
helper classes are used to make the relations lookup fast 
by avoiding regeneration of information that was obtained 
earlier.

We provide an interface to filter, update or rebuild rela-
tions when some elements are removed from the Data Store. 
It is possible to copy whole or partial arrays in the Data 
Store, where new relations between the original and copied 
arrays are created, and, optionally, the existing relations of 
the original array are copied.

I/O

We use ROOT for persistency. This implies that all objects 
in the Data Store must have a valid ROOT dictionary. The 
RootOutputModule writes the content of the Data 
Store with permanent and event durability to a file with two 
separate TTrees, with a branch for each Data Store entry. 
The selection of branches, the file name, and some tree 
configurations can be specified using module parameters. 
The corresponding module for reading ROOT files is the 
RootInputModule.

The RootOutputModule writes an additional object 
named FileMetaData to the permanent-durability tree of 
each output file. It contains a logical file name, the number 
of events, information about the covered experiment/run/
event range, the steering file content, and information about 
the file creation. The file metadata also contains a list of the 
logical file names of the input files, called parents, if any.

This information is used for the index file feature. A 
RootInputModule can be asked to load, in addition to 
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the input file, its ancestors up to a generational level given 
as a parameter. A file catalog in XML format, created by 
the RootOutputModule, is consulted to translate logi-
cal to physical file names for the ancestor files. The unique 
event identifier is then used to locate and load the desired 
event. With the index file feature, one can produce a file 
containing only EventMetaData objects (see next sec-
tion) of selected events, and then use this as the input file in 
a subsequent job to access the selected events in its parents. 
File-reading performance is not optimal, however, since the 
usual structure of TTrees in ROOT files is not designed 
for sparse event reading. The index file feature can be used 
also to add objects to an existing file without copying its full 
content or to access lower level information of individual 
events for display or debug purposes.

The Belle II data-acquisition system uses a custom output 
format with a sequence of serialized ROOT objects to limit 
the loss of events in case of malfunctions. The files in this 
format are transient; they are converted to standard ROOT 
files for permanent storage.

Event Data Model

The Data Store implementation makes no assumption about 
the event data model. It can be chosen flexibly to match 
specific requirements. In basf2, the full event data model is 
defined dynamically by the creation of objects in the Data 
Store by the executed modules. The only mandatory compo-
nent is the EventMetaData object. It uniquely identifies 
an event by its event, run, and experiment numbers and a 
production identifier to distinguish simulated events with 
the same event, run, and experiment numbers. The other 
data members store the time when the event was recorded 
or created, an error flag indicating problems in data taking, 
an optional weight for simulated events, and the logical file 
name of the parent file for the index file feature.

The format of the raw data is defined by the detector read-
out. Unpacker modules for each detector component convert 
the raw data to digit objects. In case of simulation, the digit 
objects are created by digitizer modules from energy depo-
sitions that are generated by Geant4 and stored as detector 
specific SimHits. The use of a common base class for 
SimHits allows for a common framework to add energy 
depositions from simulated machine-induced background 
to that of simulated physics signal processes. This is called 
background mixing.

The output of the reconstruction consists mainly of detec-
tor-specific objects. In contrast, the RecoTrack class is 
used to manage the pattern recognition and track fitting 
across multiple detectors. It allows us to add hits to a track 
candidate and is interfaced to GENFIT [18, 19] for the deter-
mination of track parameters.

The subset of reconstruction dataobjects used in 
physics analyses, called mini data summary table (mDST), is 
explicitly defined in the steering file function add_mdst_
output. It consists of the following classes:

– Track the object representing a reconstructed trajectory 
of a charged particle, containing references to track 
fit results for multiple mass hypotheses and a quality 
indicator that can be used to suppress fake tracks.

– TrackFitResult the result of a track fit for a given parti-
cle hypothesis, consisting of five helix parameters, their 
covariance matrix, a fit p-value, and the pattern of lay-
ers with hits in the vertex detector and drift chamber.

– V0 candidate of a K0

S
 or � decay or of a converted pho-

ton, with references to the pair of positively and nega-
tively charged daughter tracks and track fit results. The 
vertex fit result is not stored as it can be reconstituted 
at analysis level.

– PIDLikelihood the object that stores, for a charged par-
ticle identified by the related track, the likelihoods for 
being an electron, muon, pion, kaon, proton or deuteron 
from each detector providing particle identification 
information.

– ECLCluster reconstructed cluster in the electromag-
netic calorimeter, containing the energy and posi-
tion measurements and their correlations, along with 
shower-shape variables; a relation is recorded if the 
cluster is matched to an extrapolated track.

– KLMCluster reconstructed cluster in the K0

L
 and muon 

(KLM) detector, providing a position measurement and 
momentum estimate with uncertainties; a relation is 
recorded if the cluster is matched to an extrapolated 
track.

– KlId candidate for a K0

L
 meson, providing particle iden-

tification information in weights of relations to KLM 
and/or ECL clusters.

– TRGSummary information about level 1 trigger deci-
sions before and after prescaling, stored in bit patterns.

– SoftwareTriggerResult the decision of the high-level 
trigger, implemented as a map of trigger names to trig-
ger results.

– MCParticle the information about a simulated particle 
(in case of simulated data), containing the momentum, 
production and decay vertex, relations to mother and 
daughter particles, and information about traversed 
detector components; relations are created if simulated 
particles are reconstructed as tracks or clusters.

The average size of an mDST event is a critical perfor-
mance parameter for the storage specification and for the 
I/O-bound analysis turnaround time. Therefore, the mDST 
content is strictly limited to information that is required 
by general physics analyses. In particular, no raw data 



Computing and Software for Big Science (2019) 3:1 

1 3

Page 7 of 12 1

information is stored. For detailed detector or reconstruc-
tion algorithm performance studies as well as for calibra-
tion tasks a dedicated format, called cDST for calibration 
data summary table, is provided.

Central Services

Python Interface and Jupyter Notebooks

Python Interface

To apply the functionality described in “Belle II Analy-
sis Software Framework” to a data processing task—at 
the most basic level, arranging appropriate modules into 
a path and starting the event processing—basf2 provides 
a Python interface. Typically, users perform tasks using 
Python scripts (called “steering files” in this context), but 
interactive use is also supported. Figure 1 shows a mini-
mal example for the former, while “Jupyter Notebooks” 
discusses applications for the latter.

Python is a very popular language and provides an easy-
to-understand syntax that new users can rather quickly 
deploy to use the framework efficiently. It allows us to har-
ness the power of a modern scripting language for which 
copious (third-party) packages are available. We exploit 
this, for example, to build a higher level framework for 
performing typical analysis tasks in a user-friendly way. 
The docstring feature of Python is used to generate docu-
mentation web pages with Sphinx.

We use Boost.Python [20] to expose the basf2 frame-
work features in Python. While steering files can be exe-
cuted by passing them directly to the Python interpreter, 
we also provide the basf2 executable as an alternative to 
add framework-specific command line arguments. Among 
these are options to print versioning information, list avail-
able modules and their description, and specify input or 
output file names.

Besides the implementation of modules in C++, the 
framework allows the user to execute modules written 
in Python. This makes it even easier for users to write 
their own module code, because it can be embedded in the 

steering file. It can also facilitate rapid prototyping. Even 
so, the modules provided by the framework are written in 
C++ (with a few exceptions for tasks that are not perfor-
mance critical) to profit from the advantages of compiled 
code.

Using PyROOT [21], Python access to the Data Store is 
provided by classes resembling the StoreObjPtr and 
StoreArray interfaces. In an equivalent way, interface 
classes provide access to conditions data, such as calibra-
tion constants (see “Conditions Data”).

A feature that facilitates development and debugging is 
the possibility to interrupt the event processing and pre-
sent an interactive Python prompt. In the interactive ses-
sion based on IPython [22], the user can inspect or even 
modify the processed data.

Jupyter Notebooks

Typical HEP user-level analyses for processing large 
data samples are mostly based on the execution of small 
scripts written in Python or ROOT macros that call com-
plex compiled algorithms in the background. Jupyter 
notebooks  [23] allow a user to develop Python-based 
applications that bundle code, documentation and results 
(such as plots). They provide an enriched browser-based 
working environment that is a front-end to an interactive 
Python session that might be hosted centrally on a remote 
high-performance computing cluster. Jupyter notebooks 
include convenient features like syntax highlighting and 
tab-completion as well as integration with data-analysis 
tools like ROOT, matplotlib [24] or pandas [25].

The integration of Jupyter into basf2 simplifies the pro-
cess of creating and processing module paths within Jupy-
ter notebooks and represents a natural next step beyond 
the integration of Python into basf2. The package for the 
interplay between Jupyter and basf2 is encapsulated into 
a basf2-agnostic hep-ipython-tools project [26] that can 
be used with the framework code of other experiments.

The processing of one or more paths is decoupled into 
an abstract calculation object, which plays well with the 
interactivity of the notebooks, because multiple instances 
of this calculation can be started and monitored while con-
tinuing the work in the notebook. Abstracting the basf2 
calculation together with additional interactive widgets 
and convenience functions for an easier interplay between 
Juypter and basf2 not only improves the user experience, 
but also accentuates the narrative and interactive character 
of the notebooks.

The decoupling of the calculations is achieved using the 
multiprocessing library and depends heavily on the ability 
to steer basf2 completely from the Python process. Queues 
and pipelines are used from within the basf2 modules to 

#!/ usr / bin / env python3
# −∗− coding : utf−8 −∗−

# Generate 100 events with event numbers 0 to 99←↩
that contain only the event meta data .

import basf2
main = basf2 . create_path ( )
main . add_module ( ’ EventInfoSetter ’ , evtNumList←↩

=[100 ] )
basf2 . process ( main )

Fig. 1  Example of a basf2 steering file
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give process and runtime-dependent information back to the 
notebook kernel. The interactive widgets are created using 
HTML and JavaScript and display information on the mod-
ules in a path, the content of the data store or the process 
status and statistics.

Parallel Processing

For the past several years, the processing power of CPUs 
has grown by increasing the number of cores instead of the 
single-core performance. To efficiently use modern CPU 
architectures, it is essential to be able to run applications 
on many cores.

The trivial approach of running multiple applications, 
each using one core, neglects the sharing of many other 
resources. In particular, the size of and the access to the 
shared memory can be bottlenecks. The amount of mem-
ory per core on typical sites used by HEP experiments has 
remained in the range of 2–3 GB for many years.

A more efficient shared use of memory can be achieved 
by multithreaded applications. The downside is, that this 
imposes much higher demands and limitations on the code 
to make it thread safe. While the development of thread-safe 
code can be assisted by libraries, it requires a non-trivial 
change in how code is written. Few, if any, Belle II members 
have the skills to write thread-safe code. Developing a mul-
tithreaded framework would require educating on the order 
of a hundred developers. Additionally, the multiprocessing 
savings are sufficient for stable operation of the Belle II soft-
ware, as the memory consumption of a single event is small.

In our solution, we have implemented a parallel-process-
ing feature, where processes are started by forking and each 
of them processes the data of a separate complete event. 
As the processes have independent memory address spaces, 
developers do not have to care about thread-safe data access. 
Still, we can significantly reduce the memory consumption 
of typical jobs because of the copy-on-write technology 
used by modern operating systems. A large portion of the 
memory is used for the detector geometry. Because it is 
created before the forking and does not change during the 
job execution, multiple processes share the same geometry 
representation in memory. Figure 2 illustrates the scaling 
of a basf2 job’s execution time with the number of parallel 
processes on a 16-core machine. For both event reconstruc-
tion scenarios, one with smaller ( e+e− ) and the other with 
larger ( BB̄ ) event sizes, the scaling is either equal or very 
close to the theoretical linear expectation until the number 
of parallel processes exceeds the number of cores. The minor 
loss in efficiency when the number of processes reaches the 
number of cores can be attributed to shared resources, like 
level-3 caches, used by all processing cores. The memory 
saving is illustrated in Fig. 3.

Each module indicates via a flag (see “Modules, Param-
eters, and Paths”) to the framework, whether it can run in 
parallel-processing mode, or not. Notably, the input and 
output modules that read or write ROOT files cannot. As 

Fig. 2  Scaling of parallel-processing rate vs. number of parallel pro-
cesses measured on a 16-core machine for smaller ( e+e− ) and larger 
( BB̄ ) events. As reference, the expected perfect scaling is plotted as 
the dotted line, assuming a 20% gain in the hyper-threading domain. 
The measured speedup when using sleep instructions is plotted with a 
dotted green line

Fig. 3  Proportional memory usage of parallel-processing jobs for BB̄ 
events. The graph for e+e− events is very similar. For comparison, the 
memory usage of a single-core job times the number of processes is 
plotted as the dashed line
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the input and output modules are usually at the beginning 
and end of a path, respectively, the framework analyzes the 
path and splits it into three sections. The first and last sec-
tion are each executed in a single process. Only the middle 
section is executed in multiple processes. The beginning of 
the middle section is defined by the first module that can 
run in parallel-processing mode. The next module that is 
not parallel-processing capable defines the beginning of the 
third section. Each event is processed by all three sections, 
but only by one process at any given time. After the first sec-
tion is completed the event is passed to exactly one worker 
process which in turn sends it to the third section.

To transfer the event data among these processes, dedi-
cated transmitter and receiver modules are added at the end 
or beginning of the sections. A transmitter module serial-
izes the event data using the streamers generated by ROOT 
and writes it to a ring buffer in shared memory. A receiver 
module reads the event data and deserializes it, so that it 
becomes available in the Data Store of the process. In case 
of a run transition the input process waits until all receiving 
processes are finished to avoid mixing of events from dif-
ferent runs in the output. The interprocess communication 
is based on System V shared memory. A replacement of the 
custom solution by ZeroMQ [27] is being evaluated.

This parallel-processing scheme works well if the com-
putational effort of the modules in the middle section domi-
nates over the input, output, and (de)serialization load. For 
high-throughput jobs with little computational demands, the 
serialization and deserialization impose a sizable penalty, so 
that the multiple cores of a CPU are not optimally exploited. 
For typical Belle II reconstruction jobs and event data sizes, 
we have verified with up to 20 concurrent processes, which 
is well within the envelope of parallelism we currently fore-
see to deploy during the online reconstruction or grid simu-
lation and reconstruction, that the input and output processes 
do not become a bottleneck.

Random Numbers

Belle II will generate very large samples of simulated data 
for a broad array of physics processes to provide signal and 
background expectations with a precision that is much bet-
ter than available in real data. We have to ensure that this 
production is not hindered by issues with the pseudorandom 
number generator (PRNG). A PRNG is a deterministic algo-
rithm to generate numbers whose properties approximate 
those of random numbers while being completely determin-
istic. It has an internal state that uniquely determines both 
the next random number and the next internal state. If the 
internal state is known at some point, all subsequent random 
numbers can be reproduced.

For Belle II, we chose xorshift1024* [28], a newer gen-
eration PRNG based on the Xorshift algorithm proposed by 
Marsaglia [29]. It generates 64-bit random numbers with 
a very simple implementation, operates at high speed, and 
passes all well-known statistical tests with an internal state 
of only 128 bytes (1024 bits). This PRNG is used consist-
ently throughout the framework for all purposes: from event 
generation to simulation to analysis.

To ensure that events are independent, we seed the state 
of the random generator at the beginning of each event using 
a common, event-independent seed string together with 
information uniquely identifying the event. To minimize 
the chance for seed collisions between different events, we 
calculate a 1024 bit SHAKE256 [30] hash from this infor-
mation that we use as the generator seed state. This also 
allows us to use a common seed string of arbitrary length.

The small generator state also allows us to pass the ran-
dom generator for each event along with the event data in 
parallel-processing mode to achieve reproducibility indepen-
dently of the number of worker processes.

Conditions Data

In addition to event data and constant values, we have a 
number of settings or calibrations that can evolve over time 
but not on a per-event rate. These are called “conditions” 
and their values are stored in a central Conditions Database 
(CDB) [31].

Conditions are divided into payloads. Each payload is 
one atom of conditions data and has one or more “intervals 
of validity” (IoV)—the run interval in which the payload 
is valid. One complete set of payloads and their IoVs are 
identified by a global tag. There can be multiple global tags 
to provide, for example, different calibration versions for the 
same run ranges. When a new global tag is created, it is open 
for modifications so that assignments of IoVs to payloads 
can be added or removed. Once a global tag is published, it 
becomes immutable.

The CDB is implemented as a representational state trans-
fer (REST) service. Communication is performed by stand-
ard HTTP using XML or JSON data. By design, the CDB is 
agnostic to the contents of the payloads and only identifies 
them by name and revision number. The integrity of all pay-
loads is verified using a checksum of the full content. Clients 
can query the CDB to obtain all payloads valid for a given 
run in a given global tag.

The choice of a standardized REST API makes the client 
implementation independent of the actual database imple-
mentation details and allows for a simple and flexible imple-
mentation of clients in different programming languages.

In addition to communication with the CDB, we have 
implemented a local database backend that reads global tag 
information from a text file and uses the payloads from a 
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local folder. This allows us to use the framework without 
connection to the internet, or if the CDB is unreachable or 
unresponsive, provided the local copies of the necessary 
payloads exist. This local database is created automatically 
in the working directory for all payloads that are downloaded 
from the server during a basf2 job execution.

Multiple metadata and payload sources can be combined. 
By default, global tags are obtained from the central server 
and payloads from a local database on CVMFS that is auto-
matically updated in regular intervals. If a payload is not 
found in any local folder, it is downloaded directly from the 
server. If the central database is not available, the global tag 
is taken from the local database on CVMFS.

Access of Conditions Objects

By default, the framework assumes that payload contents are 
serialized ROOT objects and manages the access to them, 
but direct access to payload files of any type is possible, 
too. User access to conditions objects is provided by two 
interface classes, one for single objects called DBObjPtr 
and one for arrays of objects called DBArray. These classes 
reference DBEntry payload objects in the DBStore global 
store. Multiple instances of the interface class point to the 
same object. It is identified by a name that is, by default, 
given by the class name. Access to the conditions objects 

is available in C++ and in Python. The class interfaces are 
designed to be as close as possible to the interface for event-
level data (see “Data Store”), so that users can use the same 
concepts for both.

The interface classes always point to the correct pay-
load objects for the current run; updates are transparent 
to the user. If the user needs to be aware when the object 
changes, they can either manually check for changes, or 
register a callback function for notification. Figure 4 visu-
alizes the relations among the entities.

The CDB handles payloads at run granularity, but the 
framework can transparently handle conditions that change 
within a run: if the payload is a ROOT object inherit-
ing from the base class IntraRunDependency, the 
framework transparently checks for each event whether 
an update of the conditions data is required. Different spe-
cializations of IntraRunDependency can be imple-
mented: for example, changing the conditions depending 
on event number or time stamp.

Creation of Conditions Data

To facilitate easy creation of new conditions data—for 
example, during calibration—we provide two payload 
creation classes, DBImportObj and DBImportArray. 

DBStoreEntry
filename
checksum
revision

DBObjPtr/DBArray
hasChanged()

isValid()

notifies on change/destruction

registers/removes itself

requests reference

LocalDatabase
filename

ConditionsDatabase
globalTag

payloadDirectory

CDB
REST Service

CDB
File Server

DBStore

Database

0..N

0..N

points to
0..1

owns

0..N

1..N

1..N

request updates
each run

notify on updates

TFile

owns

0..1

TObject

owns

0..1

request payload
information download missing

payloads

Obtains reference to
filename, TFile*, TObject*

register callbacks
on change

configures

Fig. 4  Relations between all entities for the Conditions Database Cli-
ent. The user usually only interacts with the DBObjPtr and DBAr-
ray objects and maybe configures the database sources (shown in 

blue). Everything else is handled transparently, including the commu-
nication with the CDB (shown in green)
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They have an interface very similar to DBObjPtr and 
DBArray. Users instantiate one of the creation classes, 
add objects to them and commit them to the configured 
database with a user-supplied IoV. This includes support 
for intra-run dependency. The capability to use a local file-
based database allows for easy preparation and validation 
of new payloads before they are uploaded to the CDB.

Management of CDB Content

To simplify the inspection and management of the CDB con-
tents, we provide the b2conditionsdb tool that uses 
the requests package [32] for communication with the CDB 
API. It allows users to list, create and modify global tags, as 
well as to inspect their contents. It can be used to download 
a global tag for use with the local database backend and 
to upload a previously prepared and tested local database 
configuration to a global tag.

Geometry and Magnetic Field

In Belle II, we use the same detailed geometry description 
for simulation and reconstruction. It is implemented using 
the Geant4 geometry primitives. A central service is respon-
sible for setting up the complete geometry: each sub-detector 
registers a creator that is responsible for defining and con-
figuring its detector-specific volumes as one top-level com-
ponent of the geometry.

All parameters for the geometry description are provided 
by payloads in the conditions database. For the creation of 
these payloads, a special operation mode is available that 
reads the geometry parameters from an XML file using 
libxml2 [33]. The sub-detector-specific descriptions are 
joined from XML files in the detector packages using XIn-
clude [34] directives. The loading from XML includes auto-
matic unit conversion of values that have a “unit” attribute 
and accommodates the definition of new materials and their 
properties.

Instead of using the conditions database, the geometry 
can be created directly from XML. This allows one to edit 
the XML files to adapt the geometry description as neces-
sary and test the changes locally before creating the payloads 
and uploading them to the database.

Testing the Geometry Description

Developing a functional material and geometry description 
is quite cumbersome, because, usually, complex construction 
drawings need to be converted from CAD or paper into code 
that places the separate volumes with their correct transfor-
mation. To assist the sub-detector developers with this task, 

we developed a set of tools to supplement the visualization 
tools provided by Geant4.

First, we run an automated overlap check that uses meth-
ods provided by Geant4 to check, for each volume, if it 
has intersections with any of its siblings or its parent. This 
is done by randomly creating points on the surface of the 
inspected volume and checking if this point is either out-
side the parent, or inside any of the siblings. This check is 
performed on a nightly basis and repeated with more sam-
ples points prior to major releases, or if large changes to the 
geometry have been made.

Second, we provide a module to scan the material budget 
encountered when passing through the detector. This module 
tracks non-interacting, neutral particles through the detector, 
and records the amount of material encountered along the 
way. It can be configured to scan the material in spherical 
coordinates, in a two-dimensional grid, or as a function of 
the depth along rays in a certain direction. The output is a 
ROOT file containing histograms of the traversed material. 
These histograms can be created for each material or each 
detector component. In particular, the material distribution 
by component is a very useful tool to track changes to the 
material description, allowing us to visualize the differences 
after each update to the volume-definition code or material-
description parameters.

Magnetic Field Description

The magnetic field description for Belle II is loaded from the 
conditions database. The payload is created from an XML 
file using the same procedure as for the geometry description 
introduced above. Because the magnetic field does not create 
any Geant4 volumes, analysis jobs can obtain the field values 
without the need to instantiate a Geant4 geometry.

The magnetic field creator can handle a list of field defi-
nitions for different regions of the detector. If more than 
one definition is valid for a given region, either the sum 
of all field values is taken, or only one definition’s value is 
returned, if it is declared as exclusive. We have implementa-
tions for constant magnetic field, 2D radial symmetric field 
map and full 3D field maps and some special implementa-
tions to recreate the accelerator-magnet conditions close to 
the beams. For normal simulation and analysis jobs, we have 
a segmented 3D field map with a fine grid in the inner detec-
tor region and a total of three coarse outer grids for the two 
endcaps and the outer barrel region.
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Conclusions

Ten years of development work with emphasis on software 
quality have culminated in a reliable software framework for 
the Belle II collaboration that is easy to use and extend with 
new or improved algorithms. It fulfills the requirements for 
data taking, simulation, reconstruction, and analysis. The 
success is illustrated by the fact that first physics results were 
presented to the public two weeks after collision data taking 
had started in Spring 2018.

While the core Belle II software is mature and robust, it 
must continue to accommodate the evolution of technology 
and requirements. It is, therefore, crucial that expertise is 
preserved and carried forward to new developers, as for all 
other components of Belle II.
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