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THE BELLMAN FUNCTIONS AND TWO-WEIGHT
INEQUALITIES FOR HAAR MULTIPLIERS

F. NAZAROV, S. TREIL, AND A. VOLBERG

0. Introduction

Let T0 be an operator defined on some class of “sufficiently good” functions
f : R → R. Let u, v be two (almost) everywhere positive locally integrable functions
(from now on, we shall call such functions “weights”). The question we are going
to discuss is

When is the operator T0 bounded from L2(u) to L2(v)?
or, in other words,

When does the inequality∫
R
|T0f |2v ≤ C

∫
R
|f |2u

hold with some constant C independent of f?
(Unless otherwise specified, all integrals are taken with respect to the standard
Lebesgue measure on R.)

Denoting w := u−1, we can reformulate the above question as follows:
When is the operator T := M√

vT0M
√

w bounded in L2?
(Here Mϕ stands for the operator of multiplication by ϕ.)

Such weighted norm inequalities arise naturally in many areas of analysis, oper-
ator theory (including the perturbation of self-adjoint operators), and probability
theory.

The one-weight case is now pretty well understood for many interesting operators

T0 . For the Hilbert transform Hf(t) =
1
π

∫
R

f(s)
t− s

ds (defined as the principal value

lim
ε→0

1
π

∫
R\(t−ε,t+ε)

f(s)
t− s

ds) the answer is given by the famous theorems of Helson–

Szegö and Hunt–Muckenhoupt–Wheeden.
The Helson–Szegö theorem states that the Hilbert transform is bounded in L2(v)

if and only if the weight v can be represented as v = exp{ϕ+Hψ}, where ϕ, ψ ∈ L∞,
‖ψ‖

L∞ < π/2.
The Hunt–Muckenhoupt–Wheeden theorem states that the Hilbert transform is

bounded in L2(v) if and only if the weight v satisfies the so-called Muckenhoupt
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A2 condition

sup
I

( 1
|I|

∫
I

v
)
·
( 1
|I|

∫
I

v−1
)
<∞,(A2)

where the supremum is taken over all intervals I ⊂ R.
It is worth mentioning that no direct proof of the equivalence of the Helson–Szegö

condition and the Muckenhoupt A2 condition is known.
The same Muckenhoupt A2 condition is necessary and sufficient for boundedness

of the maximal function operator

Mf(x) := sup
I3x

1
|I|

∫
I

|f |

(here the supremum is taken over all intervals I containing x) and sufficient for
boundedness of all classical Calderón-Zygmund operators in L2(v).

Actually, the maximal operator M plays a very important part in the theory.
For example, one of the proofs of the Hunt–Muckenhoupt–Wheeden theorem uses
the above-mentioned fact that the A2 condition characterizes the boundedness of
M in L2(w). Then the inequality ‖Hf‖L2(w) ≤ C ‖Mf‖L2(w) is used, which holds,
for example, for A∞ =

⋃
p Ap weights (see [CF] for this result) or for Cq (q > p)

weights of Muckenhoupt and Sawyer (see [Sa]). Let us remind the reader that
A∞ is the class of weights satisfying the inverse Jensen inequality (many amazing
properties of such weights can be found in [St]):

sup
I

( 1
|I|

∫
I

w
)
·
(
exp

(
− 1
|I|

∫
I

logw
))

<∞,(A∞)

and Cq is defined as follows: There are positive constants C, ε such that∫
E

w ≤ C
( |E|
|I|

)ε
∫
|MχI |qw(Cq)

whenever E is a subset of an interval I.
Things look much more complicated in the two-weight case. Though there ex-

ists a beautiful two-weight analogue of the Helson–Szegö theorem due to Cotlar and
Sadosky (see [CS1]), the consensus now is that there can be no explicit (Mucken-
houpt type) necessary and sufficient condition for the boundedness of the Hilbert
transform.

It was a big surprise when Eric Sawyer [S1] found a necessary and sufficient
condition for boundedness of the maximal function operator M from L2(u) to
L2(v). His theorem states that it is enough to test the boundedness on a very special
class of “simple” test functions, namely on the functions u−1χ

I
(here and below χ

I
stands for the characteristic function of an interval I ⊂ R). Later (see [S2]) Sawyer
presented a necessary and sufficient condition of similar type for boundedness from
L2(u) to L2(v) of certain integral operators T0 with positive kernels. The main
difference from the case of the maximal function operator was that now one should
also check boundedness of the adjoint operator T ∗

0
on an appropriate class of simple

test-functions (see more about that in Section 2).
Everywhere below we shall call conditions of such kind Sawyer type conditions.

The main aim of this paper is to present a uniform approach that allows us to
recover many of Sawyer’s results (at least, in L2) and to obtain at least one new
theorem of Sawyer’s type: the necessary and sufficient condition for boundedness
of Haar multipliers. As far as we know, it is the first theorem of Sawyer’s type for
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TWO-WEIGHT INEQUALITIES FOR HAAR MULTIPLIERS 911

singular integral operators: all previous results concerned operators with positive
kernels only.

The paper is organized as follows: the Sawyer type theorem on Haar multipliers
is formulated and proved in Section 4. The reader who wants to go “straight to the
point” should keep in mind that some results from previous sections will be used
there without explicit reference. In Section 1 the weighted version of the dyadic
Carleson imbedding theorem is discussed. Section 2 deals with the dyadic version
of the classical Sawyer’s theorem on operators with positive kernels. Section 3
concerns the Sawyer type theorem on the (dyadic) square function operator.

We will restrict ourselves to the L2-case exclusively. Our methods allow us to
treat the Lp-case as well, but since the main result of our paper — Sawyer type
theorem for Haar multipliers — fails in any Lp with p 6= 2, we decided not to
include the corresponding pieces. The reader may find it a (quite challenging, but
definitely doable) exercise to find the “Bellman function proofs” of the Lp-versions
of the Weighted Carleson Imbedding Theorem and of the classical Sawyer’s theorem
on operators with positive kernels and to figure out what happens in the case of
the square function operator.

The reader may wonder what happens for the Hilbert transform H? What if
one just adopts all our proofs for the Haar multipliers to the case of M√

vHM√
w?

It turns out that the proofs will work fine and will give a certain list of sufficient
conditions for M√

vHM√
w to be bounded. The reader can find these conditions in

[NTV1] or in the manuscript “The Bellman functions and two weight inequalities for
Haar multipliers” on the homepage http://www.math.msu.edu/˜volberg. However
these conditions are most probably not necessary.

1. Weighted Carleson Imbedding Theorem

We shall start with a statement of the weighted version of the dyadic Carleson
imbedding theorem. It is worth mentioning at this point that Sawyer’s theorem
on the maximal function operator is an easy consequence of the Weighted Carleson
Imbedding Theorem (see [SW] for details). What may be interesting (and, perhaps,
new) to the reader in this section is not the result itself, but our way of proving it.

Everywhere below we will use the notation 〈f〉
I

for the average 1
|I|

∫
I f of the

function f : R → R over the interval I ⊂ R.

Theorem (Weighted Carleson Imbedding Theorem). Let D be a dyadic lattice. Let
w be any weight. Let, at last, {α

J
}

J∈D be a sequence of non-negative numbers. The
imbedding ∑

J∈D
α

J
〈f√w〉2

J
≤ C‖f‖2

L2

holds for all f ∈ L2 if and only if for all I ∈ D,
1
|I|

∑
J⊂I

α
J
〈w〉2

J
≤ C〈w〉

I
.(SC)

Proof. The necessity of the Sawyer–Carleson condition (SC) for the imbedding is
almost obvious: just consider f =

√
wχ

I
and take the sum only over the intervals

J ⊂ I. The non-trivial part is the sufficiency.
Without loss of generality, one can assume that f ≥ 0 and that the constant

C in the Sawyer–Carleson condition equals 1. It is enough to show that for any
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912 F. NAZAROV, S. TREIL, AND A. VOLBERG

dyadic interval I, ∑
J∈D,J⊂I

α
J
〈f√w〉2

J
≤ C

∫
I

f2.

We do not know anything about the sequence α
J

except the condition (CS). So,
let us treat this sequence as an arbitrary one and consider the worst case scenario.

Namely, fix a dyadic interval I and fix the averages of all unknowns involved:

〈w〉
I

= w, 〈f√w〉
I

= f , 〈f2〉
I

= F,
1
|I|

∑
J⊂I

α
J
〈w〉2

J
= M.

Define the function B of 4 real variables by

B(F, f ,w,M) := sup
1
|I|

∑
J∈I

α
J
〈f√w〉2

J
,

where the supremum is taken over all possible choices of f ≥ 0, w, {α
J
}

J∈D with
fixed averages and such that for all dyadic intervals K,

1
|K|

∑
J⊂K

α
J
〈w〉2

J
≤ 〈w〉

K
.

Note that the function B does not depend on the choice of the interval I (this is
essentially just the observation that a linear change of variable does not alter the
average value of a function over an interval). The function B is called the Bellman
function associated with the Weighted Carleson Imbedding Theorem.

1.1. Properties of the Bellman function.
(1) The domain of B consists of all non-negative quadruples (F, f ,w,M) such

that

f2 ≤ Fw, M ≤ w.

(2) For any F, f ,w,M in the domain, 0 ≤ B(F, f ,w,M) ≤ CF.
(3) For any three quadruples (F, f ,w,M), (F±, f±,w±,M±) in the domain sat-

isfying

F =
F− + F+

2
, f =

f− + f+
2

, w =
w− + w+

2
,

M = m+
M− +M+

2
, m ≥ 0,

the following inequality holds:

B(F, f ,w,M)− 1
2
{B(F+, f+, . . . ) + B(F−, f−, . . . )

} ≥ f2

w2
m.(∗)

Let us discuss these properties a little bit. The inequality f2 ≤ Fw is just the
Cauchy–Schwartz inequality:( 1

|I|
∫

I

f
√
w

)2

≤
( 1
|I|

∫
I

w
)
·
( 1
|I|

∫
I

f2
)

= 〈w〉
I
〈f2〉

I
,

the inequality B ≥ 0 follows from the definition of B, and the inequality B ≤ CF
must hold if the theorem is true.

The property (∗), which we will call the main inequality, can be obtained by
analyzing how the averages are distributed between the right half I+ and the left
half I− of the interval I. Actually, (∗) means that the supremum taken over all
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TWO-WEIGHT INEQUALITIES FOR HAAR MULTIPLIERS 913

functions with fixed averages on interval I is larger than the supremum taken over
all functions with averages fixed on I+ and I− in such a way that their arithmetic
average equals the average over I. (The former set of functions just include the
latter one.) Inequality (∗) also shows how much larger the first supremum is; see
[NT].

We will not prove this property here because, in fact, we do not need to prove it
to obtain the theorem! To observe it is enough for our purposes.

1.2. The Bellman function proves the theorem. The trick is that to prove
the theorem, it suffices to find any function satisfying the above properties (1)–(3)!

Indeed pick f , w and {α
J
}

J∈D . For every dyadic interval J ∈ D, let F
J
, f

J
,

w
J
, M

J
be the corresponding averages:

F
J

= 〈f2〉
J
, f

J
= 〈f√w〉

J
, w

J
= 〈w〉

J
, M

J
=

1
|J |

∑
K⊂J

α
K

w2

K
.

Note that

M
J

=
1
2
(
M

J+
+M

J−

)
+ |J |−1α

J
w2

J
.

For the interval J , the main inequality (∗) implies

α
J
f2

J
≤ |J | · B(F

J
, f

J
, . . . )− |J+| · B(F

J+
, f

J+
, . . . )− |J−| · B(F

J−
, f

J−
, . . . ).

Now, if we take the sum of the above inequalities for all J ⊂ I, |J | > 2−k|I|, we
shall get∑

J⊂I
|J|>2−k|I|

α
J
f2

J
≤ |I|B(F

I
, f

I
,w

I
,M

I
)−

∑
J⊂I

|J|=2−k|I|

|J |B(F
J
, f

J
,w

J
,M

J
)

≤ |I|B(F
I
, f

I
,w

I
,M

I
) ≤ C|I|F

I
.

Passing to the limit as k →∞ and recalling what f
J

and F
I

mean, we obtain∑
J⊂I

α
J
〈f√w〉2

J
≤ C|I|〈f2〉

I
,

which is exactly what we need.

1.3. Finding a Bellman function. Now our task is to find a function B satisfying
properties (1)–(3). We will look for a function satisfying the infinitesimal version
of the main inequality (∗), namely, for a function satisfying (1), (2) and

(3′) The function −B is convex, i.e., d2B ≤ 0.

(3′′)
∂B
∂M

≥ f2

w2
.

Since the domain of B is convex, properties (3′) and (3′′) imply the main in-
equality (∗):

m
f2

w2
≤ B(F, f ,w,M)− B(F, f ,w,M −m)

≤ B(F, f ,w,M)− 1
2

{
B(F+, f+,w+,M+) + B(F−, f−,w−,M−)

}
.

The first inequality follows from (3′′), and the second one is just the convexity
condition (3′).
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914 F. NAZAROV, S. TREIL, AND A. VOLBERG

Now we shall just present a possible function B, leaving it to the reader (as an
easy exercise) to check the properties (2), (3′) and (3′′) in the domain given by (1):

B(F, f ,w,M) = 4
(
F− f2

w +M

)
.

2. Sawyer type theorem for operators

with positive kernels (dyadic version)

Let us first remind the reader of the classical Sawyer’s theorem on operators
with “good” positive kernels.

Theorem. For t, s ∈ R, denote by I(t, s) the interval of length 2|t− s| centered at
the point t+s

2 . Let K(t, s) be a positive kernel such that for every t, s ∈ R and for
every t′, s′ ∈ I(t, s),

K(t′, s′) ≥ cK(t, s)

with some c > 0 independent of t and s. Let T0 be the integral operator with kernel
K(t, s), i.e.,

T0f(t) =
∫

R
K(t, s)f(s) ds.

Let, at last, v, w be two weights.
The operator T = M√

vT0M
√

w is bounded in L2 if and only if for every interval
I ⊂ R,

1.
∫

I

|T0(wχI
)|2v ≤ C

∫
I

w;

2.
∫

I

|T ∗
0
(v χ

I
)|2w ≤ C

∫
I

v,

with some constant C > 0 independent of I.

This version of Sawyer’s theorem is due to Verbitsky. In the original version
proved by Sawyer the integrals on the left hand side in Conditions 1 and 2 were
taken over the whole real line R, i.e., the first condition was just the boundedness
of the operator T on the test-functions

√
wχ

I
, while the second condition was the

boundedness of the adjoint operator T ∗ on the test-functions
√
v χ

I
.

In this section we shall present a proof of the dyadic version of Sawyer’s theorem,
namely, we shall fix some dyadic lattice D and consider the operator

T0f =
∑
J∈D

α
J
〈f〉

J
χ

J

where {α
J
}

J∈D is any family of non-negative numbers. The result is exactly the
same as that of the classical Sawyer’s theorem except now it is enough to check
Conditions 1 and 2 for dyadic intervals I ∈ D only. It is worth mentioning at this
point that the classical Sawyer theorem can be easily derived from our dyadic one,
but, as far as we know, not vice versa.

The boundedness of the operator T := M√
vT0M

√
w is equivalent to the bilinear

inequality ∑
J∈D

α
J
〈f√w〉

J
〈g√v〉

J
|J | ≤ C‖f‖

L2‖g‖L2 .
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TWO-WEIGHT INEQUALITIES FOR HAAR MULTIPLIERS 915

We shall prove the following

Theorem (Bilinear Imbedding Theorem). (A) Under the conditions of Sawyer’s
theorem, the above bilinear inequality holds for all non-negative functions f, g ∈ L2.

(B) What is more, each of Conditions 1 and 2 is responsible for the boundedness
of a certain half of the sum. Namely, let

D1 =
{
J ∈ D :

〈f√w〉2
J

〈f2〉J 〈w〉J

≥ 〈g√v〉2
J

〈g2〉J 〈v〉J

}
(note that the set D1 of dyadic intervals does depend on the functions f and g as
well as on the weights w and v). Then Condition 1 is necessary and sufficient for
the estimate ∑

J∈D1

α
J
〈f√w〉

J
〈g√v〉

J
|J | ≤ C‖f‖

L2‖g‖L2 .

Note that the ratio
〈f√w〉2

J

〈f2〉
J
〈w〉

J
never exceeds 1 and can be equal to 1 only if the

function f is a multiple of
√
w on the interval J . So, roughly speaking, Condition

1 is responsible for the estimate for the sum over those intervals J ∈ D on which
f is closer to

√
w than g is to

√
v. This seems to make quite good sense (at least,

philosophically). As far as we know, this elegant “separation” of the conditions has
somehow been completely overlooked in the literature and may be considered the
second new result of this paper.

Proof. The necessity of Condition 1 is almost obvious. Indeed, for a fixed interval
I ∈ D, consider the test function f :=

√
wχ

I
. Let g ∈ L2 be any function supported

by the interval I. Since no such function can be closer to
√
w than

√
wχ

I
on any

interval J ⊂ R in the sense of the inequality in the definition of D1, we haveD1 = D.
Therefore, (

Tf, g
)
L2

=
∑

J∈D , J⊂I

〈f√w〉
J
〈g√v〉

J
α

J
≤ C‖f‖

L2‖g‖L2 .

Since g was an arbitrary L2-function supported by I, we can conclude from here that∫
I

|Tf |2 ≤ C‖f‖2

L2
, which is exactly Condition 1. So, again, the only non-trivial

part is sufficiency.

2.1. Young versus Hölder. We are going to prove the following lemma first.
Let, as before, {α

J
}

J∈D be a sequence of non-negative numbers. For every interval

I ∈ D, define the truncated operator T (I)
0
f :=

∑
J⊂I

α
J
〈f〉

J
χ

J
. We obviously have

T (I)
0

(fχ
I
) = T (I)

0
f ≤ T0f for any non-negative function f .

Lemma. Assume that the weights v and w satisfy the condition

1′. M
I

:=
1
|I|

∫
I

[
T (I)

0
w]2v ≤ C〈w〉

I

for every I ∈ D. (This is just a slightly relaxed Sawyer’s condition 1.) Then for
any two non-negative functions f, g ∈ L2,∑

J∈D′1
α

J
〈f√w〉

J
〈g√v〉

J
|J | ≤ C

(‖f‖2

L2
+ ‖g‖2

L2

)
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916 F. NAZAROV, S. TREIL, AND A. VOLBERG

where D′1 is the set of all dyadic intervals J ∈ D on which

〈f√w〉2
J

〈w〉
J

≥ 〈g√v〉2
J

〈v〉
J

.

This lemma is already good enough to imply part (A) of the Bilinear Imbedding
Theorem. Indeed, using both Conditions 1 and 2 (or even their relaxed versions),
we can estimate the sum over all dyadic intervals:∑

J∈D
α

J
〈f√w〉

J
〈g√v〉

J
|J | ≤ C

(‖f‖2

L2
+ ‖g‖2

L2

)
.

Let t be any positive number. Replacing f by tf and g by t−1g, we obtain∑
J∈D

α
J
〈f√w〉

J
〈g√v〉

J
|J | ≤ C

(
t2‖f‖2

L2
+ t−2‖g‖2

L2

)
.

Taking the infimum of the right hand part over t ∈ (0,∞), we get∑
J∈D

α
J
〈f√w〉

J
〈g√v〉

J
|J | ≤ 2C‖f‖

L2‖g‖L2 .

On the other hand, the separation of conditions provided by this lemma is far less
satisfactory than that provided by part (B) of the Bilinear Imbedding Theorem:

firstly, the ratios
〈f√w〉J

〈w〉
J

do not seem to have any “physical sense”, and secondly,

now it is not at all clear why (or, even, whether) Condition 1 is necessary for the
estimate for the sum over D′1. Why then are we willing to switch to this Young
type lemma? The reason is that it is much easier to find an appropriate Bellman
function for it than for part (B) of the Bilinear Imbedding Theorem.

2.2. Hidden variable of the Bellman function. We shall try to prove the
lemma in the same way as for the Weighted Carleson Imbedding Theorem from the
previous section. First of all, it would be nice to discern the variables of the future
Bellman function. Some of them are obvious. These are the averages

F
J

= 〈f2〉
J
, f

J
= 〈f√w〉

J
, w

J
= 〈w〉

J
,

G
J

= 〈g2〉
J
, g

J
= 〈g√v〉

J
, v

J
= 〈v〉

J
,

and the variable M
J

from the Relaxed Sawyer Condition 1′. Nothing else is ready
right away, so it seems to be a good time to pass to the next step and to establish the
dynamics of our variables, i.e., to see how the values corresponding to the interval
J are related to those corresponding to its left and right halves J− and J+.

First six variables (denoted by bold letters) have trivial martingale dynamics,
i.e., F

J
= 1

2

(
F

J− + F
J+

)
, f

J
= 1

2

(
f

J− + f
J+

)
, etc., but we get a serious problem

with M
J
. Like the variable M

J
from the proof of the Weighted Carleson Imbedding

Theorem, it has supermartingale dynamics, that means, M
J
≥ 1

2

(
M

J−+M
J+

)
. The

problem is that now it is impossible to express the difference M
J
− 1

2

(
M

J− +M
J+

)
in terms of our seven variables. Let us take a closer look at this difference. On
each half J± of the interval J , we can write T (J±)

0 w = T (J)
0
w − α

J
〈w〉

J
. Using the
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inequality A2 − (A− a)2 ≥ aA (0 ≤ a ≤ A), we obtain

M
J
− 1

2
(
M

J+
+M

J−

)
=

1
|J |

∫
J

[(
T (J)

0
w

)2 − (
T (J)

0
w − α

J
〈w〉

J

)2
]
v ≥ α

J
〈w〉

J

1
|J |

∫
J

(T (J)
0
w)v.

So, if we introduce a new variable

N
J

:=
1
|J |

∫
J

(T (J)
0
w) v,

we can write

M
J
− 1

2
(
M

J+
+M

J−

) ≥ α
J
〈w〉

J
N

J
.

Note that in fact this inequality is almost an identity: since we also have A2 −
(A− a)2 ≤ 2aA for all 0 ≤ a ≤ A, we can conclude that

M
J
− 1

2
(
M

J+
+M

J−

) ≤ 2α
J
〈w〉

J
N

J
.

Actually we shall need the estimate from below only, but it is encouraging to know
that all we lose during this step is just a constant factor.

Now we are done with the dynamics of M
J
, but how about the dynamics of

N
J
? Fortunately, we do not get any problem with that one: a straightforward

computation shows that our new quantity N
J

also has supermartingale dynamics
and

N
J
− 1

2
(
N

J+
+N

J−

)
= α

J
w

J
v

J
.

So, we do not need any more variables and we may start

2.3. Guessing a Bellman function for the problem. We are looking for a
function B of 8 real variables F, f , w, G, g, v, M , N . The domain of B should be
the set of all non-negative octets X = (F, f , . . . , N) satisfying

f2 ≤ Fw, g2 ≤ Gv, M ≤ w.

The first 2 inequalities are just Cauchy–Schwartz estimates:

f2 =
( 1
|J |

∫
J

f
√
w

)2

≤
( 1
|J |

∫
J

f2
)( 1
|J |

∫
J

w
)

= Fw,

and similarly for g. The inequality M ≤ w is the Relaxed Sawyer Condition 1′

with the constant C = 1 (the general case can be easily reduced to this special one
by division of one of the weights v or w by C). We could also add the inequality
N2 ≤ Mv to this list (one more Cauchy–Schwartz), but, as it turns out, we shall
not need it anywhere below.

We also want our function B to satisfy the estimates

0 ≤ B(X) ≤ C(F + G).

Finally, we want our function to satisfy the main inequality ,

B(X)− 1
2

(
B(X+) + B(X−)

)
≥

 γαfg, if f2

w ≥ g2

v ;

0, if f2

w < g2

v ,
(∗∗)
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with some absolute constant γ > 0. This inequality should hold for all octets
X = (F, f , . . . ), X± = (F±, f±, . . . ) from the domain and numbers α ≥ 0 satisfying
the relations

F =
1
2
(
F− + F+

)
, f =

1
2
(
f− + f+

)
, . . . , v =

1
2
(
v− + v+

)
,

and

M − 1
2

(
M+ +M−

)
≥ αwN, N − 1

2

(
N+ +N−

)
= αwv.

Once such a function is found, the lemma is proved. Indeed, take any two weights w
and v satisfying the Relaxed Sawyer Condition 1′ and any two functions f, g ∈ L2.
For an interval J , let X

J
be the corresponding octet (F

J
, f

J
, . . . ). Then the main

inequality yields

γ|J |α
J
〈f√w〉

J
〈g√v〉

J
≤ |J |B(X

J
)− |J+|B(X

J+
)− |J+|B(X

J+
).

Adding these inequalities up over all dyadic intervals J ⊂ I of length |J | > 2−k|I|,
we get

(2.1)
∑
J⊂I

|J|>2−k|I|

α
J
〈f√w〉

J
〈g√v〉

J
|J |

≤ |I| · B(X
I
)−

∑
J⊂I

|J|=2−k|I|

|J | · B(X
J
) ≤ |I| · B(X

I
).

Passing to the limit as k →∞, we obtain

(2.2)
∑
J⊂I

α
J
〈f√w〉

J
〈g√v〉

J
|J | ≤ |I| · B(X

I
) ≤ |I| · C · (F

I
+ G

I
)

= |I| · C · (〈f2〉
I

+ 〈g2〉
I
) = C

(∫
I

f2 +
∫

I

g2
)
.

Now, to prove the lemma, it remains only to pass to the limit as I expands to the
whole real line R.

2.4. Construction of a Bellman function. The Bellman function we are going
to present will consist of two parts. The first part is guessed after the Bellman
function for the Weighted Carleson Imbedding Theorem:

B1 := F− f2

w +M
.

Since f2 ≤ Fw, we have 0 ≤ B1 ≤ F. It is easy to check that the function B1 is
concave (d2B1 ≤ 0). At last, since M ≤ w, the inequality

∂B1

∂M
≥ 1

4
· f2

w2

holds everywhere in the domain.
Therefore

B1(X)− 1
2

(
B1(X+) + B1(X−)

)
≥ ∂B1

∂M
·
(
M − 1

2
(
M+ +M−

)) ≥ 1
4
· f

2

w
αN.

Hence, if N ≥ gw
4f , we are done (with γ = 1

16 ).
The second part B2 of the Bellman function B := B1 + B2 takes care of the case

when N is small.
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Consider a one-parameter family of functions

B(t)
2 (X) := F + G−

( f2

w + tN
+

g2

v + t−1N

)
,

and put B2(X) := inft>0 B(t)
2 (X).

Fix an octet X , and let t∗ = t∗(X) be the value of t where the infimum of B(t)
2 (X)

is attained. Then

B2(X)− 1
2

(
B2(X+) + B2(X−)

)
≥ B(t∗)

2 (X)− 1
2

(
B(t∗)

2 (X−) + B(t∗)
2 (X+)

)
≥ ∂B(t∗)

2

∂N

(
X

) · [N − 1
2
(
N+ +N−

)] ≥ ( f2t∗
(w + t∗N)2

+
g2t−1

∗
(v + t−1∗ N)2

)
αwv

=
2fg

(w + t∗N)(v + t−1∗ N)
· αwv.

Thus, if we show that w + t∗N ≤ 2w and v + t−1∗ N ≤ 2v, then we are done (with
γ = 1

2 ). Recall that we only need to prove these inequalities under the assumption
N < gw

4f because otherwise B1 already gives us all that we need.
By definition, t∗ is the value of t at which the supremum

sup
t>0

( f2

w + tN
+

g2

v + t−1N

)
is attained. If we show that this supremum is at least

f2

w
+

1
2
· g

2

v
≥ 1

2
· f

2

w
+

g2

v

(it is here where we use the inequality f2

w ≥ g2

v ), then we shall indeed be able to
conclude that w + t∗N ≤ 2w and v + t−1∗ N ≤ 2v, finishing the proof.

Since
f2

w + tN
≥ f2

w
− tN

f2

w2
,

g2

v + t−1N
≥ g2

v
− t−1N

g2

v2
,

it is enough to show that

inf
t>0

{
tN

f2

w2
+ t−1N

g2

v2

}
≤ 1

2
· g

2

v
.

But this infimum equals 2 fg
wvN which is clearly less than 1

2 · g
2

v under our assumption
N < gw

4f . The lemma is proved.

Proof of the Bilinear Imbedding Theorem. By now we have constructed a Bellman
function B of an octet X = (F, f ,w, . . . ) such that

0 ≤ B(X) ≤ 2(F + G)

and

B(X)− 1
2

(
B(X+) + B(X−)

)
≥


1
16αfg, if f2

w ≥ g2

v ;

0, if f2

w < g2

v .

To prove part (B) of the Bilinear Imbedding Theorem, it would suffice to find a
function B̃ satisfying

0 ≤ B̃(X) ≤ 14
√

FG
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and

B̃(X)− 1
2

(
B̃(X+) + B̃(X−)

)
≥


1
16αfg, if f2

Fw ≥ g2

Gv ;

0, if f2

Fw < g2

Gv .

To this end, consider the family of functions

B̃(τ)(F, f , . . . ) := τF + 14τ−1G + B(τF,
√
τ f ,w, τ−1G,

√
τ−1g,v,M,N).

(This family has a clear physical sense: essentially we are just looking at what
happens to our Bellman function B if we multiply the function f by

√
τ , divide

the function g by the same
√
τ and leave the weights v and w without change.)

Observe that we always have

τF + 14τ−1G ≤ B̃(τ)(X) ≤ 3τF + 16τ−1G.

The sought after function B̃ can now be defined by

B̃(X) := inf
τ>0

B̃(τ)(X).

To check the properties, note first of all that for τ = 2
√

G/F, we have

B̃(τ)(X) ≤ 6
√

FG + 8
√

FG = 14
√

FG.

Thereby, B̃(X) ≤ 14
√

FG as well.
Let τ∗ = τ∗(X) be the value of τ at which the infimum is attained. Since

14τ−1
∗ G ≤ B̃(τ∗)(X) ≤ 14

√
FG,

we should have τ∗ ≥
√

G/F. Note that the difference

B̃(X)− 1
2
(B̃(X−) + B̃(X+)

) ≥ B̃(τ∗)(X)− 1
2
(B̃(τ∗)(X−) + B̃(τ∗)(X+)

)
is always non-negative and can be estimated from below by 1

16αfg provided that

τ∗f2

w
≥ τ−1∗ g2

v
.

But for τ∗ ≥
√

G/F, this inequality is implied by the inequality

f2

Fw
≥ g2

Gv
,

which means that we are done.

3. Two–weight inequalities for the (generalized) square function

Recall that for a dyadic interval J ∈ D, the corresponding Haar function h
J

is
defined by

h
J
(t) :=

 0, t /∈ J ;
−1, t ∈ J−;
+1, t ∈ J+.

For a function f ∈ L1
loc and for an interval I ∈ D, define

∆
I
f :=

1
|I|

∫
R
fh

I
=

1
2

(
〈f〉

I+
− 〈f〉

I−

)
.
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In this section we are going to prove a Sawyer type theorem for the (generalized)
square function operator

T0f :=
(∑

J∈D
a

J
[∆

J
f ]2 χ

J

) 1
2

where {a
J
}

J∈D is an arbitrary family of positive numbers. The “standard” dyadic
square function Sf corresponds to a

J
all equal to 1.

Theorem (Sawyer type theorem for the square function operator). The operator
T = M√

vT0M
√

w is bounded in L2 if and only if it is uniformly bounded on all
test-functions f =

√
wχ

I
, i.e., if and only if there exists a constant C > 0 such

that ∫
R

[
T0(wχI

)
]2 ≤ C

∫
I

w for all I ∈ D.

Proof. Necessity is obvious. To prove the sufficiency part, let us note first of all
that

T0(wχI±
)(t) ≥

√
a

I±

2
〈w〉

I±

for every t ∈ I (just consider the term corresponding to the interval I in the
definition of T0(wχI±

) ). Therefore, the Sawyer condition implies the inequalities

aI

4
〈w〉2

I±

∫
I

v ≤
∫

I±
w,

i.e.,

〈w〉
I±
〈v〉

I
≤ 4a−1

I
.

Taking into account that

〈w〉
I
≤ max

{〈w〉
I−
, 〈w〉

I+

}
,

we obtain the Muckenhoupt type inequality

〈w〉
I
〈v〉

I
≤ 4a−1

I
.(3.1)

Now, for every interval I ⊂ D, let us consider the truncated square function operator

T (I)
0
f :=

( ∑
J∈D , J⊂I

a
J

[∆
J
f ]2 χ

J

) 1
2
.

Since T (I)
0
f ≤ T0f pointwise on R, the assumption of the theorem implies∫

I

[
T (I)

0
(wχ

I
)
]2
v ≤ C

∫
I

w,

i.e.,

1
|I|

∑
J∈D , J⊂I

a
J

[∆
J
w]2 〈v〉

J
|J | ≤ C〈w〉

I
.(3.2)

We are going to show now that Conditions (3.1) and (3.2) are sufficient for the
boundedness of the operator T in L2.
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3.1. Disbalanced Haar functions. We would like to modify the Haar functions
a little bit so that they become orthogonal in the weighted space L2(w) instead of
the non-weighted L2. More precisely, we would like to find constants A

J
(J ∈ D)

such that the disbalanced Haar functions

H
J

:= h
J
−A

J
χ

J

are orthogonal in L2(w), or, which is the same, the functions
√
wH

J
are orthogonal

in the non-weighted L2. Their orthogonality is equivalent to the relations

0 =
(
1, H

J

)
L2(w)

=
∫

R
H

J
w = |J | [∆

J
w −A

J
〈w〉

J

]
(J ∈ D),

from which we conclude that we must take

A
J

=
∆

J
w

〈w〉
J

.

Now, let f : R → R be an arbitrary L2-function. Our aim is to show that∫
R
[T0f ]2 ≤ C

∫
R
f2,

or, which is the same, ∑
J∈D

a
J

[
∆

J
(f
√
w)

]2〈v〉
J
|J | ≤ C

∫
R
f2.

Note that

∆
J
(f
√
w) =

1
|J |

(
f
√
w, h

J

)
L2

=
1
|J |

(
f
√
w,H

J
+A

J
χ

J

)
L2

=
1
|J |

(
f,
√
wH

J

)
L2

+A
J
〈f√w〉

J
.

Since (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R, it would suffice to show that∑
1 :=

∑
J∈D

a
J

[ 1
|J |

(
f,
√
wH

J

)
L2

]2

〈v〉
J
|J | ≤ C

∫
R
f2

and ∑
2 :=

∑
J∈D

a
J
A2

J
〈f√w〉2

J
〈v〉

J
|J | ≤ C

∫
R
f2.

3.2. Estimate for
∑

1. Note that the functions
√
wH

J
are orthogonal in L2 and

‖√wH
J
‖2

L2
= |J |〈w〉

J

[
1−

(
∆

J
w

〈w〉
J

)2
]
≤ |J |〈w〉

J
.

Recall that for any orthogonal system of functions {ϕ
J
}

J∈D , the Bessel inequality∑
J∈D

1
‖ϕ

J
‖2

L2

(
f, ϕ

J

)2

L2
≤

∫
R
f2

holds. Therefore, ∑
J∈D

1
|J |〈w〉

J

(
f,
√
wH

J

)2

L2
≤

∫
R
f2.
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Now it remains only to note that, due to the Muckenhoupt condition (1), the factors
1
|J|aJ

〈v〉
J

in front of
(
f,
√
wH

J

)2

L2
in the definition of

∑
1 do not exceed C

|J|〈w〉
J
.

3.3. Estimate for
∑

2. The estimate for
∑

2 is exactly the same as the estimate
of the Weighted Carleson Imbedding Theorem with

α
J

:= a
J
A2

J
〈v〉J |J |.

Therefore, to prove it, it is enough to check the Sawyer–Carleson condition
1
|I|

∑
J⊂I

α
J
〈w〉2

J
≤ C〈w〉

I
(I ∈ D) .

Recalling that A
J

= ∆
J

w

〈w〉
J
, we see that this condition coincides with (3.2). The

Sawyer type theorem for the dyadic square function operator is thus completely
proved.

4. Two-weight inequalities for Haar multipliers

Again let D be some dyadic lattice and let h
J
, J ∈ D, be the corresponding

family of Haar functions.
Let a = {a

J
}

J∈D be any sequence of real numbers. Define the operator T0(a)
by

T0(a)f :=
∑
J∈D

aJ

|J |
(
f, h

J

)
L2
h

J
=

∑
J∈D

a
J

[∆
J
f ]h

J
.

As before, we would like to know whether the “weighted operator” T (a) :=
M√

vT0(a)M√
w is bounded in L2 if and only if it is bounded on the test-functions√

wχ
I

and the adjoint operator T (a)∗ = M√
wT0(a)M√

v is bounded on the test-
functions

√
v χ

I
(I ∈ D).

At the present moment we are unable to answer this question for an individual
operator T0(a). We are quite sure that in general the answer is negative, but there
may exist some interesting partial cases for which the Sawyer type theorem still
holds. For instance, it surely holds when all a

J
= 1 (the identity operator) though

this case can hardly be called “interesting”.
What we are going to do below is to prove a Sawyer type theorem for a “fam-

ily of operators”. Namely, fix some sequence a = {a
J
}

J∈D of positive numbers
and consider all the operators T0(σσσa) and the corresponding weighted operators
T (σσσa) = M√

vT0(σσσa)M√
w where σσσ = {σ

J
}

J∈D is an arbitrary sequence of signs,
i.e., σ

J
= +1 or −1 for every J . (As usual, σσσa stands for the sequence of products

{σ
J
a

J
}

J∈D .)

Theorem (Sawyer type theorem for Haar multipliers). The operators T (σσσa) are
uniformly bounded in L2, i.e., supσσσ ‖T (σσσa)‖

L2→L2 < +∞ if and only if they are
uniformly bounded on the test-functions

√
wχ

I
and the adjoint operators T (σσσa)∗

are uniformly bounded on the test-functions
√
v χ

I
, that is, if and only if there exists

a constant C > 0 such that∫
R

[
T0(σσσa)(wχ

I
)
]2
v ≤ C

∫
I

w and
∫

R

[
T0(σσσa)(vχ

I
)
]2
w ≤ C

∫
I

v(∗)

for all dyadic intervals I ∈ D and sign sequences σ.
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Proof. Necessity is obvious. To prove the sufficiency part, note first of all, that
Sawyer’s condition (∗) implies that for each dyadic interval I ∈ D, the following
three estimates hold:

(1) 〈w〉
I
〈v〉

I
≤ 4Ca−2

I
(Muckenhoupt type condition);

(2 w)
1
|I|

∑
J⊂I

a2

J

[
∆

J
w

]2〈v〉
J
|J | ≤ C〈w〉

I
;

(2 v)
1
|I|

∑
J⊂I

a2

J

[
∆

J
v
]2〈w〉

J
|J | ≤ C〈v〉

I
.

Indeed, fixing some I ∈ D and taking the average of
∫

R
[
T0(σσσa)(w χ

I
)
]2
v over all

possible sign sequences σσσ, we get

1
|I|

∑
J∈D

a2

J

[
∆

J
(wχ

I
)
]2〈v〉

J
|J | = Avrgσσσ

1
|I|

∫
R

[
T0(σσσa)(wχ

I
)
]2
v ≤ C〈w〉

I
.

Observing that ∆
J
(wχ

I
) = ∆

J
w for all J ⊂ I and that every square is non-negative,

we immediately arrive at (2 w).
To prove (1), let us apply the above inequality with I− and I+ instead of I.

Taking into account that |∆
I
(wχ

I±
)| = 1

2 〈w〉I± , we find

a2
I

4
〈w〉2

I±
〈v〉

I
≤ C〈w〉

I±
,

i.e.,

〈w〉
I±
〈v〉

I
≤ 4Ca−2

I
.

Recalling that 〈w〉
I
≤ max{〈w〉

I−
, 〈w〉

I+
}, we get (1).

The proof of (2 v) is similar to that of (2 w).
To continue we shall use the disbalanced Haar functions H

J
= h

J
− A

J
χ

J
constructed in the previous section. Only now we shall need them for both weights
w and v. So, let us put

A
(w)

J
:=

∆
J
w

〈w〉
J

, H
(w)

J
:= h

J
−A

(w)

J
χ

J
; A

(v)

J
:=

∆
J
v

〈v〉
J

, H
(v)

J
:= h

J
−A

(v)

J
χ

J
.

The uniform boundedness of the operators T (σσσa) is equivalent to the bilinear in-
equality

Σ(f, g) :=
∑
J∈D

a
J

∣∣∆
J
(f
√
w)

∣∣ · ∣∣∆
J
(g
√
v)

∣∣ · |J | ≤ C‖f‖
L2‖g‖L2 .

Note again that

∆
J
(f
√
w) =

1
|J |

(
f,
√
wH

(w)

J

)
L2

+A
(w)

J
〈f√w〉

J

and

∆
J
(g
√
v) =

1
|J |

(
g,
√
v H

(v)

J

)
L2

+A
(v)

J
〈g√v〉

J
.

Plugging these expressions into the formula for Σ(f, g), we get 4 sums to estimate.
Our next aim will be to show that all these sums except

Σ̃(f, g) =
∑
J∈D

a
J

∣∣A(w)

J

∣∣ · ∣∣A(v)

J

∣∣ · ∣∣〈f√w〉
J

∣∣·∣∣〈g√v〉
J

∣∣·|J |
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can be estimated using conditions (1), (2
w
) and (2

v
). More precisely, we shall

prove that under these conditions,

|Σ(f, g)− Σ̃(f, g)| ≤ C‖f‖
L2‖g‖L2 .

Indeed, this difference does not exceed Σ1(f, g) + Σ2,w
(f, g) + Σ2,v

(f, g) where

Σ1(f, g) :=
∑
J∈D

a
J

∣∣∣∣ 1
|J |

(
f,
√
wH

(w)

J

)
L2

∣∣∣∣ · ∣∣∣∣ 1
|J |

(
g,
√
v H

(v)

J

)
L2

∣∣∣∣ · |J |;
Σ2,w

(f, g) :=
∑
J∈D

a
J

∣∣A(w)

J

∣∣ · ∣∣〈f√w〉
J

∣∣ · ∣∣∣∣ 1
|J |

(
g,
√
v H

(v)

J

)
L2

∣∣∣∣ · |J |;
and

Σ2,v
(f, g) :=

∑
J∈D

a
J

∣∣A(v)

J

∣∣ · ∣∣〈g√v〉
J

∣∣ · ∣∣∣∣ 1
|J |

(
f,
√
wH

(w)

J

)
L2

∣∣∣∣ · |J |.
4.1. Estimate for Σ1 . As we have seen in Section 3,∑

J∈D

1
|J |〈w〉

J

(
f,
√
wH

(w)

J

)2

L2
≤

∫
R
f2.

Analogously, ∑
J∈D

1
|J |〈v〉

J

(
g,
√
v H

(v)

J

)2

L2
≤

∫
R
g2.

The Cauchy–Schwartz inequality now yields∑
J∈D

1
|J |√〈w〉

J
〈v〉

J

∣∣∣(f,√wH (w)

J

)
L2

∣∣∣ · ∣∣∣(g,√v H (v)

J

)
L2

∣∣∣ ≤ ‖f‖
L2‖g‖L2 .

To estimate Σ1 , it remains only to note that, according to (1),

a
J
≤ C√〈w〉

J
〈v〉

J

.

4.2. Estimates for Σ2,w
and Σ2,v

. Since∑
J∈D

1
|J |〈v〉J

(
g,
√
v H

(v)

J

)2

L2
≤

∫
R
g2,

to get the desired estimate for Σ2,w , it is enough to show that∑
J∈D

a2

J

∣∣A(w)

J

∣∣2〈f√w〉2
J
〈v〉

J
|J | ≤ C

∫
R
f2

for every f ∈ L2. According to the Weighted Carleson Imbedding Theorem, it
suffices to check that for every I ∈ D,

1
|I|

∑
J⊂I

a2

J

∣∣A(w)

J

∣∣2〈w〉2
J
〈v〉

J
|J | ≤ C〈w〉

I
.

But the last inequality coincides with (2
w
), and we are done. Similarly, the estimate

for Σ2,v is implied by (2 v ).
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4.3. Auxiliary operator T̃ and the end of the proof. Now let F be any family
of non-negative functions. The above argument shows that under Conditions (1),
(2

w
) and (2

v
), the following assertions are equivalent:

• sup
{‖T (σσσa)f‖

L2

‖f‖
L2

: σ
J

= ±1 , f ∈ F
}
< +∞ ;

• sup
{ Σ(f, g)
‖f‖

L2‖g‖L2

: f ∈ F , g ∈ L2
}
< +∞ ;

• sup
{ Σ̃(f, g)
‖f‖

L2‖g‖L2

: f ∈ F , g ∈ L2
}
< +∞ ;

• sup
{‖T̃ f‖

L2

‖f‖
L2

: f ∈ F
}
< +∞ ,

where T̃ = M√
vT̃0M

√
w and the (linear) operator T̃0 is defined by

T̃0f :=
∑
J∈D

a
J

∣∣A(w)

J

∣∣ · ∣∣A(v)

J

∣∣ · 〈f〉
J
χ

J
.

Applying this observation to the family of all test-functions
√
wχ

I
, I ∈ D, and

recalling that the operators T (σσσa) are uniformly bounded on such test-functions,
we conclude that the operator T̃ is also bounded on such test-functions. Similarly,
the adjoint operator T̃ ∗ is bounded on the family of test-functions

√
v χ

I
, I ∈ D.

According to our dyadic version of Sawyer’s theorem on operators with positive
kernels, this means that the operator T̃ is bounded in L2. Therefore for any two
non-negative functions f, g ∈ L2,

Σ̃(f, g) =
(
T̃ f, g

)
L2
≤ C‖f‖

L2‖g‖L2 .

The trivial inequality Σ̃(f, g) ≤ Σ̃(|f |, |g|) allows us to extend this estimate to all
(not necessarily non-negative) functions f and g, finishing the proof of the bilinear
inequality Σ(f, g) ≤ C‖f‖

L2‖g‖L2 and thereby of the theorem.

5. Concluding remarks

Notice that conditions (1), (2 v), (2 w), allowed us to reduce the question of
boundedness of Haar multipliers to the boundedness of operator T̃0 with positive
kernel. Conditions (1), (2 v), (2 w) are necessary for the boundedness of Haar mul-
tipliers, and, thus, the reduction is an entirely equivalent one. On the other hand
for T̃0 (as for dyadic operators with positive kernel) we have two necessary and suf-
ficient conditions for its boundedness. They are listed in Section 2. Thus we have
a list of five conditions in terms of v, w necessary and sufficient for the two-weight
boundedness of Haar multipliers.

We do not know whether these five conditions are independent. We strongly
believe they are. However if either weight w or weight v satisfy the A∞ condition,
then only (1) is enough for two-weight boundedness! The same is true if the weights
are mutually A∞. These facts are well-known to experts. The reader can find the
proofs in [NTV1].

Coming back to our list of five dyadic conditions, one can notice that they can be
rewritten in “continuous” form. Then they form the list of conditions sufficient for
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the Hilbert transform H to be bounded between two weighted spaces with different
weights. Again the reader can find this in [NTV1]. Unfortunately some of these
conditions are most probably not necessary. This is why we decided not to include
them in this article.
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