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Abstract

The out-of-plane bending behaviour of single layer graphene sheets (SLGSs) is investigated
using a special equivalent atomistic-continuum model, where the C—C bonds are represented by
deep shear bending and axial stretching beams and the graphene properties by a
homogenization approach. SLGS models represented by circular and rectangular plates are
subjected to linear and nonlinear geometric point loading, similar to what is induced by an
atomic force microscope (AFM) tip. The graphene models are developed using both a lattice
and a continuum finite element discretization of the partial differential equations describing the
mechanics of the graphene. The minimization of the potential energy allows us to identify the
thickness, elastic parameters and force/displacement histories of the plates, in good agreement
with other molecular dynamic (MD) and experimental results. We note a substantial
equivalence of the linear elastic mechanical properties exhibited by circular and rectangular
sheets, while some differences in the nonlinear geometric elastic regime for the two geometrical
configurations are observed. Enhanced flexibility of SLGSs is observed by comparing the
nondimensional force versus displacement relations derived in this work and the analogous ones

related to equivalent plates with conventional isotropic materials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Single layer graphene sheets (SLGSs) are one atom thick
two-dimensional layers of sp>-bonded carbon densely packed
to form a honeycomb crystal lattice. The graphene
Young’s modulus and thermal conductivity rival the analogous
properties of graphite (1.06 TPa and 3000 W m™! K™
respectively) [1, 2]. The enhanced flexibility of graphene
sheets, despite their high Young’s modulus, has been attributed
to the change in curvature given by reversible elongation of
sp> C—C bonds [3], showing also the presence of ripples over
the surface [4] and the possibility of multiple folding when
embedded in a coarse grain [S]. These unusual mechanical
characteristics, coupled with the multifunctional properties,
make graphene sheets an excellent platform to design a novel
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class of advanced composites and nanosensors with superior
mechanical and electric performance [6—10].

The graphene (and graphite) models proposed in the
literature were initially based on interactions provided by axial
and rotational springs on an hexagonal lattice [11]. There
are analytical approaches based on low-energy continuum
mechanics approaches (see e.g. [12] and references therein).
Such approaches, albeit perhaps less accurate, can provide
physical intuition. MD and models based on Tersoff—
Brenner potentials [13], as well as the Cauchy—Born rule [14],
have also been proposed and their results mainly bench-
marked against available data from other simulations, or
bulk graphite properties. Recently, experimental data on
the out-of-plane properties of graphene have been made
available on multilayer [15] and SLGSs loaded with AFM
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tips [16].  Specific out-of-plane SLGS simulations have
been carried out using a meshless approach [17] and
continuum mechanics representations based on MD force
models [18, 19], while the flexural behaviour of SLGS has
been modelled in resonance mode using truss-like structural
assemblies [20]. The theoretical mechanical properties provide
a broad agreement over the tensile rigidity of SLGS between
0.190 and 0.350 TPa nm, according to the size and loading
conditions of the graphene samples [21]. However, a
significant scattering is observed for the thickness values
of the graphene, similarly to single wall carbon nanotubes
(the “Yakobson’s Paradox’ [22]). To solve the problem, the
thickness of the SLGS (and carbon nanotubes (CNTSs)) is
generally assumed equal to 0.34 nm, the interlayer graphite
atomic distance. In this work, we make the distinction between
the pure geometric definition of thickness and its representation
in continuum mechanics. We use the concept of thickness
to adopt an equivalent continuum model representing the
mechanical behaviour of the nanocomponent. In SLGSs, as in
single wall carbon nanotubes, the thickness of the equivalent
continuum (say a plate or a hollow tube) should be equal to
that of the C—C bonds composing the nanostructures. However,
there is neither any physical thickness per se for the covalent
bonds, nor for the carbon atoms involved. Nonetheless, the
nanostructure subjected to a mechanical static loading tends
to reach its equilibrium state corresponding to the minimum
potential energy. The geometric and material configuration
of the equivalent continuum mechanics structures (plate
and/or hollow tube) will be therefore defined by the energy
equilibrium conditions of the nanostructure, and cannot be
ascribed as fixed. The length of the covalent bonds also
merits some consideration. In finite size rectangular SLGSs,
the lengths of the C—C bonds at equilibrium after loading are
unequal, ranging between 0.136 and 0.144 nm, and depend
on the type of loading, size and boundary conditions of
the mechanical case [14, 23] and the location of the SLGS
itself (i.e. the edges [24]). This fact contrasts with the
classical use of the fixed value of 0.142 nm at equilibrium
considered in most mechanical simulations [25, 20, 26, 27].
The variation of thickness and distributions of equilibrium
length are important factors to consider when computing
the homogenized mechanical properties of the graphene,
i.e. the equivalent mechanical performance of the graphene
as a continuum. Homogenization theory applied to periodic
structures dictates a minimum number of periodic elements
to identify asymptotic values for the linear elastic mechanical
properties (stiffness, Poisson’s ratios) [28, 29]. However,
the variability of thickness and equilibrium lengths over the
same graphene sheets when subjected to different loading
conditions will result in different averaged homogenized
mechanical properties according to the test cases. In that
sense, the graphene behaves as a structure, not as an equivalent
continuum material.

The authors have recently formulated a modelling
approach, where the equivalent homogenized properties of
the graphene sheets are expressed in terms of the thickness,
equilibrium lengths and force models used to represent the
C-C bonds of the graphene lattice [21]. The covalent bonds

are represented as structural beams with stretching, bending,
torsional and deep shear deformation, based on the equivalence
between the harmonic potential expressed in terms of the
AMBER [30] or Morse models [31] and the mechanical strain
energies associated with affine deformation mechanisms. The
overall mechanical properties and geometric configurations
of the graphene sheets and CNTs are then calculated,
minimizing the total potential energy associated with models
of nanostructures subjected to mechanical loading. The models
are developed using finite element approaches, representing
either the nanostructures as truss assemblies with the C—-C
bond equivalent beams or as having previously homogenized
mechanical properties. These properties in turn are functions
of the force model, thickness and average equilibrium length
of the bonds. The nonlinear mechanical simulations are also
carried out on circular and rectangular SLGSs with no prestress
provided by external membrane tension (either mechanically
applied or induced through thermal loading). The results
illustrated are therefore only affected by the intrinsic elastic
mechanical properties and nonlinear geometric deformation of
the graphene plates.

2. Methodology

2.1. Lattice model

The carbon—carbon sp? bonds can be considered as equivalent
beams having axial, out-of-plane and in-plane rotational
deformation mechanisms. The harmonic potential associated
with the C—C bond can be expressed as [27]:
Uy =3k, (8r)*  Up=3ke(80)*  Ur = 5k:(89)%.
(D
The equivalent mechanical properties of the C—C bond can
be calculated using a beam mapping technique, imposing
the equivalence between the harmonic potential and the
mechanical strain energies of a hypothetical structural beam
of length L [21]:

k-, EA
3(8r) = Z(ar) 2a)
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Equation (2a) corresponds to the equivalence between the
stretching and axial deformation mechanism (with E being
the equivalent Young’s modulus), while equation (2b) equates
the torsional deformation of the C—C bond with the pure shear
deflection of the structural beam associated with an equivalent
shear modulus G. Contrary to similar approaches previously
used [27, 20], the term equating the in-plane rotation of the C—
C bond (equation (2c¢)) is equated to a bending strain energy
related to a deep shear beam model, to take into account the
shear deformation of the cross section. The shear correction
term becomes necessary when considering beams with aspect
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Figure 1. Lattice models of circular and rectangular graphene sheets. The figures show a typical pattern of stress and deformation distribution
under loading represented by a point force or distributed pressure over a small radius (such as those arising due an AFM tip). (a) Circular
lattice plate (R = 9.5 nm) under central loading. Distribution of equivalent membrane stresses. (b) Deformation behaviour of a lattice
rectangular SLGS plate (¢ = 15.1 nm, b = 13.03 nm) under central loading.

ratios lower than 10 [32]. For circular cross sections, the shear
deformation constant can be expressed as [21]:

_ 12E1

 GALY
In equation (3), A; = A/ F; is the reduced cross section of the
beam by the shear correction term Fy [33]:

3
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The insertion of (3) and (4) in (2) leads to an nonlinear relation

between the thickness d and the Poisson’s ratio v of the
equivalent beam [21]:

“

S

where
A = 112L%, + 192L%k,v + 64L%kv? (6)
B = 9%,d* + 18k.d*v + 9%k,d*V?. (7

The values for the force constants for the AMBER model are
kr = 6.52x 107" Nmm™', ky = 8.76 x 10~ N nm rad 2 and
k; =2.78 x 10719 N nm~! rad—2. For the linearized version of
the Morse potential, we adopt k, = 8.74 x 107" Nmm™", ky =
9.00x 10" "N nmrad 2 and k, = 2.78x 107N nm~! rad 2.
The equivalent mechanical properties of the C—C bond can
be determined by performing a nonlinear optimization of
equations (2a)—(2c) using a Marquardt algorithm [34]. The
C-C bond can then be discretized as a single two-nodes
three-dimensional finite element (FE) model beam with a
stiffness matrix described in [35], where the nodes represent
the atoms. The lattice models of the circular (figure 1(a))
and rectangular (figure 1(b)) graphene sheets are assembled
using the FE discretization, with loading represented by a point
force or distributed pressure over a small radius. Both for the
linear elastic and nonlinear geometric elastic loading, at each
substep of the Newton—Raphson solver technique [36] the total
potential energy is minimized to identify the thickness of the
C-C bonds and the average equilibrium length of the covalent
bonds. The nonlinear minimization technique is performed in
two steps, with a zero order method to identify first the minimal
clusters, and a subsequent first order derivative based method
to identify the absolute minimum of the potential energy.

2.2. Continuum model

In mechanical models for plates and shells, it is necessary to
introduce a continuum homogeneous material, in the form of a
Young’s modulus and Poisson’s ratio for isotropic mechanical
configurations. The continuum homogenized properties of a
single layer graphene sheet are calculated using an equivalent
honeycomb approach (EMA) used by the authors in [21]. The
unit cell of the SLGS is represented by beams with equivalent
hinging, stretching, bending and shear stiffness calculated
using the mechanical properties derived from the equivalence
between the bonds’ harmonic potential and the associated
strain energies of a Timoshenko deep shear beam [21]. For
the case of pure hinging—stretching (HS) deformation [37],
the in-plane tensile rigidity ¥ (the product between the SLGS
Young’s modulus E and the thickness d) and the SLGS
Poisson’s ratio v, are expressed in the following manner:

_ 4Bk K, ®
~ 3(k, + 3Ky)
-
Vg = . )
I+3%

Here K}, is the equivalent hinging force constant for the C—C
bond [21]. Equations (8) and (9) can be modified to consider
other equivalent deformation mechanisms for the graphene
C-C bonds, such as hinging—stretching—bending (HSB), and
hinging—stretching—bending-deep shear (HSBD) [21].

The variational formulation for the equation of a
circular plate in polar coordinates under central point loading
undergoing membrane and nonlinear geometric bending can be
expressed as [18, 38]:

“ d(Aw) 1dF dw |d(Aw)
D - ———— rdr=0 (10)
0 dr r dr dr dr
where L
1//:—/ gsds. (11)
rJo

In the above equations w is the out-of-plane deformation of
the plate, g is the generalized load normal to the plane of
the plate, and ‘fo = N; and %% = N,;, where F is a
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Figure 2. Continuum rectangular plate (¢ = 15.1 nm, » = 13.03 nm)
under central loading. Distribution of the out-of-plane deformations.

suitable stress function. Here N, and N, are, respectively,
the membrane force per unit length along the tangential and
radial directions. The flexural rigidity of the plate is D =
Yd*/12(1 — vgz). The minimization of equation (10) is
performed by discretizing the plate with axisymmetric finite
elements with linear interpolation shape functions [39].

For arectangular plate in Cartesian coordinates with mem-
brane and nonlinear bending deformation, the von Karman
equation for the potential energy can be expressed as [40]:

n*—// A DA A S laay a2
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In (12) p is the external distributed pressure, which can be

changed into a point loading by use of the integral of a Dirac
function [40, 18]. The functional F is expressed as:

2 w2 \*  ow? 9w
AF=Y -
0x0dy 0x2 dy?
where A? is the Laplace operator. For the rectangular model,

a FE discretization can be performed using general conformal
mapping rectangular elements [41].

(16)

Table 1. Equilibrium thickness, length and mechanical properties
for circular lattice SLGSs under concentrated central loading. E is
the Young’s modulus, v, is the Poisson’s ratio, [ is the equilibrium
bond length and Y is the in-plane tensile rigidity. The numbers of
atoms used in the simulation are as follows: radius 2.5 nm (3843),
radius 2.5 nm (6236), radius 2.5 nm (11 884).

Radius (nm) d (nm) E (TPa) v, [ (nm) Y (TPanm)
Force model: Morse
2.5 0.088 3.74 0.33 0.142  0.329
5.0 0.087 3.80 0.33  0.141 0.330
9.5 0.087 3.76 0.33  0.141 0.327
Force model: AMBER
2.5 0.100 2.54 0.32 0.144 0.254
5.0 0.100 2.56 0.32 0.144  0.256
9.5 0.100 2.60 0.32  0.140  0.260

Table 2. Equilibrium thickness, length and mechanical properties
for circular continuum SLGSs under concentrated central loading. E
is the Young’s modulus, v, is the Poisson’s ratio, [ is the equilibrium
bond length and Y is the in-plane tensile rigidity.

Radius (nm) d (nm) E (TPa) v, [ (nm) Y (TPanm)
Force model: Morse
2.5 0.087 3.80 0.33 0.136  0.330
5.0 0.088 3.75 0.33  0.141 0.330
9.5 0.087 3.76 0.33 0.142 0.327
Force model: AMBER
2.5 0.100 2.53 0.33 0.144 0.253
5.0 0.100 2.54 0.32 0.144 0.254
9.5 0.100 2.58 0.32 0.142  0.258

The lattice and continuum SLGS models were loaded with
a concentrated central force having a maximum magnitude of
500 nN. Both for the circular and rectangular SLGSs (figure 2),
the minimization of the potential energy during the static
loading is performed using the same nonlinear minimization
technique used for the lattice model.

3. Results

3.1. Circular graphene sheets

Tables 1 and 2 show the values for the thickness and
mechanical properties for a circular graphene sheet modelled
with the lattice and continuum approaches, respectively. The
homogenized Young’s modulus and Poisson’s ratio have
been calculated using equations (8) and (9), considering
a stretching—hinging deformation mechanism for the C-C
bond [21]. For both approaches we observe a remarkable
consistency between the mechanical properties predicted with
the same force model. The linearized Morse potential provides
average thickness values d ~ 0.088 nm, and equilibrium
lengths varying between 0.136 and 0.142 nm. For the AMBER
case, both the lattice and continuum approach provide an
equilibrium value of the thickness d = 0.100 nm and average
equilibrium lengths ranging between 0.140 and 0.144 nm. The
homogenized Young’s modulus of the SLGS is significantly
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dependent on the force model used and, to a certain extent,
on the radius of the graphene sheet itself. For all cases,
the Young’s modulus is on average 30% lower when the
AMBER force model is used, due to its lower stretching force
constant. It is worth noticing that the equivalent Young’s
modulus identified for the 9.5 nm radius SLGS is 3.76 TPa,
both for the continuum and lattice approaches; however, the
Young’s modulus shows a discrepancy of around 1% when
considering lower SLGS radii (2.5 and 5 nm). The dependence
of the equivalent continuum mechanical properties of a cellular
structure over the number of its periodic units is an aspect
considered in classical mechanical homogenization theory and
large numbers of unit cells are required to approximate the
asymptotic values. It is remarkable, however, that the Poisson’s
ratio is constant for all the Morse potential configurations at
0.33. Similar considerations for the distributions of mechanical
properties are valid also for the case of the AMBER force
model, where the Young’s modulus is identified as being equal
to 2.60 TPa for R = 9.5 nm and the Poisson’s ratio vy, is
constant for all configurations at 0.32. The tensile rigidity ¥
varies with the force model used, with an average of 0.255
and 0.257 TPa nm for the AMBER SLGS represented by the
continuum and lattice models, respectively. A stiffening effect
is observed for the Morse potential cases, with an average
tensile rigidity of 0.329 TPa nm, both for the continuum and
lattice models.

The values of average length, thickness and mechanical
properties are in good agreement with the analogous values
present in the available literature. Both for the continuum
and lattice models, the equilibrium lengths are on average
around 0.144 nm, slightly higher than the classical 0.142 nm
indicated for C-C bonds [42, 43]. For the circular SLGS
continuum Morse model with a radius of 2.5 nm (table 2)
the equilibrium length is 0.136 nm, a value that is close
to the one encountered in nanostructures with Stone—Walls
defects [1]. Variation of equilibrium lengths in SLGSs has been
observed by Reddy et al using the Cauchy—Borne rule [14]
and in [21] for the case of in-plane mechanical tensile and
shear loading. The so-called ‘Yakobson’s paradox’ [22] for
the thickness and axial Young’s modulus in CNTs is well
present also for graphene nanostructures. For the in-plane
loading of SLGS nanostructures, the thickness d varies from
0.057 nm [44] to 0.335 nm [45]. Tu and Ou-Yang [46]
determined a thickness of 0.074 nm, while Kudin et al [47]
identified a value of 0.084 nm, very close to the 0.087 nm from
the Morse potential of this work. Scarpa et al [21] observed
thickness values between 0.074 and 0.084 nm, depending on
the deformation mechanism assumed for the SLGS. However,
all the cited values are referred to in-plane loading of the
graphene sheets. For out-of-plane loading, Sakhaee-Pour [26]
imposed a thickness of 0.34 nm equal to the atomic interlayer
distance between graphene layers in bulk graphite. The same
thickness is assumed for the experimental results on bi-layer
graphene of Frank et al [15] and Lee et al [16]. Hemmasizadeh
et al identified a thickness of 0.137 nm [18], close to the
0.12 nm of Sun et al in CNTs [43], slightly higher compared
to our AMBER models (0.100 nm). Duan and Wang [19]
derive a value d = 0.052 nm for a circular SLGS of 4 nm

diameter, imposing a Poisson’s ratio equal to 0.16. The latter
v, value is equal to the one from [42, 48] and close to the 0.15
of Kudin et al [47]. Our models, both continuum and lattice,
predict constant Poisson’s ratios between 0.32 and 0.33, which
are consistent with the results from second generation Tersoff—
Brenner potentials (v, = 0.39 [44]) and from the continuum
limit of the local density formulation (vy = 0.34 [46]). The
tensile rigidity from our models based on the AMBER force
field (~256 TPa nm) bears a good agreement with the ¥ =
0.243 TPa nm from [44], 277 TPa nm of Caillerie et al [37] and
0.251 TPa nm from the harmonic average of the orthotropic
in-plane stiffness of Reddy ef al [14]. The average tensile
rigidity from the Morse potential used in our models (average
0.329 TPa nm) is similar to the 0.349 TPa nm from [47] and the
0.337-0.354 TPa nm of Sakhaee-Pour et al [25]. Concerning
the tensile rigidity from out-plane (bending) loading, Duan
and Wang [19] determined a value of 0.358 TPa nm, while
the experimental single point loading of Lee e al showed a
tensile rigidity of 0.342 TPa nm [16]. We have reproduced
the experimental case related to the SLGS (radius 1200 nm)
under central point loading [16], using the continuum finite
element approach with the linearized Morse potential and our
simulations provide a tensile rigidity ¥ = 0.333 TPa nm, 2.6%
lower than the one from the experimental measurement.

The nondimensional force versus displacement for
a circular SLGS under central loading is described by
Hemmasizadeh et al as [18]:

FRE _42017w 0o (W ’
Yds  1—-vid " d

a7

where F is the point load and R the radius of the graphene
sheet. The linear part (%) of equation (17) corresponds to the
nondimensional flexural stiffness, while the cubic dependence
on the displacement/thickness ratio is proportional to the
membrane stiffness of the equivalent continuum material. The
(w/d)? behaviour if the out-of-plane stiffness of SLGSs has
also been observed experimentally by [16, 15]. Equation (17)
has been rewritten to take into account that the diaphragm
stresses are only due to the elasticity of the graphene sheet, and
have a form of the type K; /(1 — vé), while the nondimensional
bending stiffness has a constant of proportionality K, versus
(w/d)? [49]. In a dimensional form, the mismatch between
equation (17) and the force—deflection curve obtained by
Medyanik [17] is around 1%.

A comparison between equation (17) and the continuum
and lattice models (Morse potential) for different radii is
presented in figure 3. There is a very good agreement between
the analytical formula (17) and the lattice representations for
the different radii. The continuum models also show a very
satisfactory agreement for radii up to 5.0 nm, all featuring a
slight strain softening effect compared to the lattice models,
with the exception of the SLGS with R = 9.5 nm, where this
effect is more significant. The constant 4.2017 in equation (17)
is similar to the value K; = 5.33 for isotropic plates with
clamped edges, but with no tension held and subjected to a
uniform pressure distribution [49]. The constant 2.0462 is
also close to the value K, = 3.44 related to a plate with
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Figure 3. Comparison of the nondimensional force versus
nondimensional out-of-plane displacement for circular lattice and
continuum SLGSs.

Table 3. Equilibrium thickness, length and mechanical properties
for rectangular continuum SLGSs.

Dimensions a x b

(nm x nm) d (nm) E (TPa) v, [ (nm) Y (TPanm)
Force model: Morse
4.14 x 3.55 0.080 3.75 0.33 0.144 0.300
7.66 x 6.55 0.086 3.92 0.42 0.140 0.337
15.1 x 13.03 0.084 4.06 0.37 0.142 0.340
Force model: AMBER
4.14 x 3.55 0.100 2.57 0.32 0.144 0.257
7.66 x 6.55 0.100 2.55 0.32 0.142 0.255
15.1 x 13.03 0.100 2.68 0.31 0.136 0.268

pure diaphragm stiffness and K, = 2.89 for a circular plate
fixed and held. It must be noticed that for loading conditions
approaching the concentrated load, the values K; and K>
change significantly, with K; assuming values higher than
27 and K, of 14. These results can be considered a further
demonstration of the enhanced flexibility of SLGSs under out-
of-plane loading, with their nondimensional stiffness similar to
the one provided by an equivalent isotropic plate under uniform
pressure, rather than point loading.

3.2. Rectangular graphene sheets

The rectangular SLGSs under out-of-plane loading show an
overall similar trend to the circular graphene plates, although
some specific differences can be observed.

Rectangular SLGSs show an in-plane special orthotropic
behaviour [50, 14, 51, 21], following the reciprocity rela-
tionships for special orthotropic materials: E v, = E,v,,,
which is typical of cellular and honeycomb structures [52].
As a normalizing metric, the equivalent mechanical properties
of a general anisotropic medium can be represented by their
geometric average [53]. In this context, the equivalent
homogenized properties identified during the out-of-plane

Table 4. Equilibrium thickness, length and mechanical properties
for rectangular lattice SLGSs. The numbers of atoms used in the
simulation are as follows: dimension 4.14 x 3.55 nm? (2176),
dimension 7.66 x 6.55 nm? (4228), dimension 15.1 x 13.03 nm?
(84438).

Dimensions a x b

(nm x nm) d (nm) E (TPa) v, [ (nm) Y (TPanm)
Force model: Morse

4.14 x 3.55 0.088 3.74 0.33 0.142 0.329

7.66 x 6.55 0.088 3.75 0.33 0.141 0.330

15.1 x 13.03 0.087 3.76 0.33 0.136 0.327

Force model: AMBER

4.14 x 3.55 0.122 1.83 0.54 0.144 0.223

7.66 x 6.55 0.123 1.80 0.54 0.135 0.221

15.1 x 13.03 0.124 1.80 0.54 0.136 0.223

bending loading in tables 3 and 4 can be represented as E =
VExEy and vy = /vy V. For an isotropic material in
two dimensions, the Poisson’s ratio is limited between —1 and
+1. Special orthotropic materials do obey only the reciprocity
relation and therefore their Poisson’s ratios vy, or vy, could
have values outside the isotropic bounds [52].

The continuum Morse force field model (table 3) provides
equilibrium lengths varying between 0.140 and 0.144 nm,
while the simulations related to the AMBER case show a
drop of the average L up to 0.136 nm. The distribution
of the equilibrium lengths is substantially unchanged for the
lattice case (table 4); however, the various L for the AMBER
cases are on average lower than the continuum representation
(~0.138 nm). For the linearized Morse potential in the lattice
case, the average thickness is around 0.088 nm, with no
evident relation to the dimensions of the SLGS. The AMBER
cases show a higher average bond thickness for the lattice
representation (d = 0.123 nm) and a slightly lower one for
the continuum model (d = 0.100 nm). The continuum case
shows average thickness values of 0.083 nm for the linearized
Morse potential, 6% lower than the ones provided by the lattice
case. Quite significantly, the Young’s modulus identified with
equation (8), using the values of thickness and length after
the minimization of the total potential energy, is in general
stiffer for the continuum model than for the lattice one. As an
example, the largest rectangular graphene sheet simulated in
this work (15.1 nm x 13.03 nm—see figures 1(b) and 2) shows
Young’s moduli of 4.06 TPa and 3.76 TPa for the continuum
and lattice cases, respectively. Similar high values of the
in-plane Young’s modulus have been found in SLGSs under
tension using first generation (3.81 TPa) and second generation
(4.23 TPa) Tersoff-Brenner potentials [44]. Similarly to the
circular SLGS case, the AMBER based Young’s modulus is
significantly lower than in the Morse potential case (average
2.60 TPa for the three configurations)—again, due to the lower
stretching constant force. When considering the lattice models,
the ones based on the linearized Morse potential provide a good
agreement with the continuum ones, while the AMBER based
finite element representations show a significant lowering of
the identified Young’s modulus from equation (8), with an
average £, = 1.82 TPa. Albeit lower than the Morse based
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ones, the values of the Young’s modulus calculated with the
AMBER force model are in line with the ones from [48, 45]
(1.15 TPa) and [42] (1.06 TPa). A Young’s modulus close
to 1.80 TPa was observed by Scarpa et al in combined HSB
dominated deformations due to in-plane loading [21]. The
Poisson’s ratio v for the continuum Morse case varies between
0.33 and 0.42, again in line with predictions from Huang
et al (0.41 for the second generation TB potential) [44]. The
Morse lattice simulations are also in line with the continuum
ones, with an average v, = 0.33. The situation is different
for the AMBER force field, where the continuum models
predict a geometric averaged Poisson’s ratio of 0.32, while
the lattice ones provide vy, = 0.54. The reason for the
discrepancy between the two models lies in the difference
between average equilibrium lengths and, more importantly,
between bond thicknesses (0.123 nm for the lattice, 0.100 nm
for the continuum). The different thicknesses affect the hinging
constant K;, = 8k, /d2 [21], which affects the in-plane
mechanical properties ((8) and (9)). The average Poisson’s
ratio of 0.54 for the AMBER lattice model is comparable
with the values from [14] (0.47) and [21] (0.51). We report
also the value of 1.27 simulated by Sakhaee-Pour [26], a
Poisson’s ratio which could be partly explained if the C-C
bonds behave under pure flexural and deep shear deformation,
like in thick honeycombs [21]. However, it must emphasized
that all the cited results are related to SLGSs loaded in-plane,
while the results from our models are referred to pure out-of-
plane bending loading. The homogenized in-plane rigidity Y
for the Morse potential is substantially equivalent for the lattice
and continuum models (average 0.329 TPa nm and 0.326
TPa nm respectively). One can notice that for the continuum
model, both the Young’s modulus and tensile rigidity increase
asymptotically with the size of the SLGS, a feature typical
of mechanical homogenization processes [29]. The tensile
rigidity values are in very good agreement with the ones
related to the circular graphene sheets described in this work
and elsewhere in the literature. For the AMBER force field,
comparable tensile stiffnesses under in-plane tensile loading
for rectangular graphene can be found in the works of Caillerie
et al [37] (0.277 TPa nm), Reddy et al [14] and Huang et al
[44].

Using the perturbation approach of [18] applied to
equation (16), one could obtain a relation between the
nondimensional force and the normalized out-of-plane
displacement similar to equation (17):

Fab _ 4541w o (w ’ 8
Yd3_1—u§d+' <d) (15
where a and b are, respectively, the major and minor
dimensions of the rectangular SLGS and v, has to be
considered the geometric average of the in-plane Poisson’s
ratios. One can notice the similarity in terms of magnitude of
the linear term of equation (18) compared to the analogous one
of the circular SLGSs in equation (17). The nondimensional
membrane stiffness (cubic part) is, however, 64% of the
analogous one for the circular graphene sheet, suggesting
that membrane-induced deformations dominate in rectangular
SLGSs unlike in their circular counterpart.
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Figure 4. Comparison of the nondimensional force versus
nondimensional out-of-plane displacement for rectangular lattice and
continuum SLGSs. The aspect ratio for the plates is 1.15:1.

Figure 4 shows a comparison between the nondimensional
point loading using the continuum, lattice and equation (18)
approaches. Similarly to the circular graphene case, there
is a close agreement between the continuum model solved
with finite shell elements and the analytical formula. Lattice
models with lower dimensions also follow equation (18) quite
satisfactorily. However, the two rectangular lattice SLGS
configurations (¢ = 5.0 and 15.1 nm) show a stiffening
effect compared to the continuum finite element formulations
and equation (18). We have observed that the continuum
model with conformal mapping elements (figure 2) provides
combined membrane and bending maximum stresses close
to 35% less than the lattice model (figure 1(b)), which is
composed of Timoshenko beams. This fact seems to suggest
that the lattice model is more sensitive to the stiffening
effect provided by the presence of corners in the rectangular
cellular structure representing the graphene and shows a
lower decay of the membrane Saint-Venant’s effects of the
edges [54].

It is interesting to compare the nondimensional force
versus displacement of equation (4) and the analogous for an
equivalent clamped isotropic rectangular plate, as available in
the literature, which is given by the relation [49]:

99" 193( ") 4 3g.41(“ 3
vaz o\a N7 )

Equation (19) indicates that a rectangular plate fixed and
held at the edges has a higher nondimensional stiffness (both
bending and membrane) compared to a circular plate (see the
coefficients K, and K, for the circular case of the previous
paragraph). Even considering the stiffening effect given in the
rectangular SLGS lattice case, the rectangular graphene sheet
shows an out-of-plane stiffness similar to the circular topology,
with the linear and cubic terms, respectively, 5 and 30 times
lower than the ones of an equivalent plate made with classic
isotropic material (v = 0.31 [49]).

(19)
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4. Conclusions

Out-of-plane deformation of circular and rectangular SLGSs
is considered in this study. Using the proposed methodology,
it is possible to identify the equilibrium lengths and effective
thickness of the circular and rectangular SLGSs corresponding
to the minimum of the potential energy associated with out-
of-plane mechanical nonlinear point loading. The predicted
membrane and bending deformations of circular graphene
sheets compare well with existing numerical and experimental
results, while the tensile rigidity and overall deformation
mechanism of rectangular SLGSs is consistent with that of
circular graphene plates.

The main novelty of the work lies in the comparative
analysis of the out-of-plane deformation of circular and
rectangular graphene sheets and the provision of the predictive
formulae to assess their transverse mechanical behaviour under
point loading. While circular SLGSs have been considered
in the past, to the best of our knowledge the nonlinear
out-of-plane behaviour of rectangular graphene (excluding
the ripple effects) is described here for the first time.
We also gave further evidence of the increased flexibility
of the graphene, comparing the nonlinear loading against
known nondimensional stiffness equations related to isotropic
conventional materials. The key conclusions arising from the
analytical and numerical works reported in the paper are as
follows.

(1) The SLGSs under out-of-plane deformation assume
different equivalent thicknesses and average equilibrium
lengths compared to the in-plane cases listed in the
available literature, although within the available range of
the corresponding values for graphene and nanotubes. The
minimization of the total potential energy seems therefore
to confirm [44] that different thickness values have to be
considered for specific mechanical loading.

(i) A rectangular SLGS under out-of-plane deformation
assumes a tensile rigidity close to that identified in circular
SLGSs, while the nondimensional membrane stiffness
provided by the continuum and perturbation technique
shows a slight softening effect compared to the circular

Lattice models tend, however, to be stiffer, with

higher bending stresses compared to the continuum cases.

case.

(iii) Both the circular and rectangular graphene sheets show
a lower nondimensional stiffness compared to analogous
plates mechanically loaded and made with an equivalent
isotropic material with constant v, a further demonstration
of the intrinsic enhanced flexibility of this particular
nanostructure.
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