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THE BENEFIT OF GROUP SPARSITY

BY JUNZHOU HUANG AND TONG ZHANG1

Rutgers University

This paper develops a theory for group Lasso using a concept called
strong group sparsity. Our result shows that group Lasso is superior to stan-
dard Lasso for strongly group-sparse signals. This provides a convincing the-
oretical justification for using group sparse regularization when the underly-
ing group structure is consistent with the data. Moreover, the theory predicts
some limitations of the group Lasso formulation that are confirmed by simu-
lation studies.

1. Introduction. We are interested in the sparse learning problem for least
squares regression. Consider a set of p basis vectors {x1, . . . ,xp} where xj ∈ R

n

for each j . Here, n is the sample size.
Denote by X the n× p data matrix, with column j of X being xj . Given an ob-

servation y = [y1, . . . , yn] ∈ R
n that is generated from a sparse linear combination

of the basis vectors plus a stochastic noise vector ε ∈ R
n:

y = Xβ̄ + ε =
d∑

j=1

β̄j xj + ε,

where we assume that the target coefficient β̄ is sparse. Throughout the paper,
we consider fixed design only. That is, we assume X is fixed, and randomization
is with respect to the noise ε (and thus the observation y). Note that we do not
assume that the noise ε is zero-mean.

Define the support of a sparse vector β ∈ R
p as

supp(β) = {j :βj �= 0}
and ‖β‖0 = |supp(β)|. A natural method for sparse learning is L0 regularization:

β̂L0 = arg min
β∈Rp

‖Xβ − y‖2
2 subject to ‖β‖0 ≤ k,

where k is the sparsity. Since this optimization problem is generally NP-hard, in
practice, one often consider the following L1 regularization problem, which is the
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standard convex relaxation of L0:

β̂L1 = arg min
β∈Rp

[
1

n
‖Xβ − y‖2

2 + λ‖β‖1

]
,

where λ is an appropriately chosen regularization parameter. This method is often
referred to as Lasso in the statistical literature.

In practical applications, one often knows a group structure on the coefficient
vector β̄ so that variables in the same group tend to be zeros or nonzeros simulta-
neously. The purpose of this paper is to show that if such a structure exists, then
better results can be obtained.

2. Strong group sparsity. For simplicity, we shall only consider nonoverlap-
ping groups in this paper, although our analysis can be adapted to handle moder-
ately overlapping groups (i.e., each feature is only covered by a constant number
of groups, and the resulting analysis depends on this constant).

Assume that {1, . . . , p} = ⋃m
j=1 Gj is partitioned into m disjoint groups

G1,G2, . . . ,Gm: Gi ∩ Gj = ∅ when i �= j . Moreover, throughout the paper, we
let kj = |Gj |, and k0 = maxj∈{1,...,m} kj . Given S ⊂ {1, . . . ,m} that denotes a set
of groups, we define GS =⋃

j∈S Gj .
Given a subset of variables F ⊂ {1, . . . , p} and a coefficient vector β ∈ R

p , let
βF be the vector in R

|F | which is identical to β in F . Similar, XF is the n × |F |
matrix with columns identical to X in F .

The following method, often referred to as group Lasso, has been proposed to
take advantage of the group structure:

β̂ = arg min
β

[
1

n
‖Xβ − y‖2

2 +
m∑

j=1

λj‖βGj
‖2

]
.(1)

The purpose of this paper is to develop a theory that characterizes the performance
of (1). We are interested in conditions under which group Lasso yields better esti-
mate of β̄ than the standard Lasso.

Instead of the standard sparsity assumption, where the complexity is measured
by the number of nonzero coefficients k, we introduce the strong group sparsity
concept below. The idea is to measure the complexity of a sparse signal using
group sparsity in addition to coefficient sparsity.

DEFINITION 2.1. A coefficient vector β̄ ∈ R
p is (g, k) strongly group-sparse

if there exists a set S of groups such that

supp(β̄) ⊂ GS, |GS | ≤ k, |S| ≤ g.

The new concept is referred to as strong group-sparsity because k is used to
measure the sparsity of β̄ instead of ‖β̄‖0. If this notion is beneficial, then k/‖β̄‖0
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should be small, which means that the signal has to be efficiently covered by the
groups. In fact, the group Lasso method does not work well when k/‖β̄‖0 is large.
In that case, the signal is only weak group sparse, and one needs to use ‖β̄‖0 to
precisely measure the real sparsity of the signal. Unfortunately, such information
is not included in the group Lasso formulation, and there is no simple fix of this
problem using variations of group Lasso. This is because our theory requires that
the group Lasso regularization term is strong enough to dominate the noise, and
the strong regularization causes a bias of the order O(k) which cannot be removed.
This is one fundamental drawback which is inherent to the group Lasso formula-
tion.

We shall mention that this paper focuses on the scenario that each group is
finite dimensional, and our analysis relies on the overall sparsity k. For some ap-
plications, each group may be an infinite-dimensional Hilbert space, and the group
Lasso can be used to learn combinations of kernels (see [1, 5] for analysis and
references). For such problems, our analysis does not apply because the sparsity k

may be infinity. Also in such case, Lasso cannot be run and thus group Lasso will
be the only natural formulation.

3. Related work. The idea of using group structure to achieve better sparse
recovery performance has received much attention. For example, group sparsity
has been considered for simultaneous sparse approximation [12] and multi-task
compressive sensing [4] from the Bayesian hierarchical modeling point of view.
Under the Bayesian hierarchical model framework, data from all sources con-
tribute to the estimation of hyper-parameters in the sparse prior model. The shared
prior can then be inferred from multiple sources. Although the idea can be justi-
fied using standard Bayesian intuition, there are no theoretical results showing how
much better (and under what kind of conditions) the resulting algorithms perform.

In [11], the authors attempted to derive a bound on the number of samples
needed to recover block sparse signals, where the coefficients in each block are
either all zero or all nonzero. In our terminology, this corresponds to the case of
group sparsity with equal size groups. The algorithm considered there is a spe-
cial case of (1) with λj → 0+. However, their result is very loose, and does not
demonstrate the advantage of group Lasso over standard Lasso.

In the statistical literature, the group Lasso (1) has been studied by a number of
authors [1, 5, 7, 8, 13]. There were no theoretical results in [13]. Although some
theoretical results were developed in [1, 7], neither showed that group Lasso is
superior to the standard Lasso. In particular, although [7] is related to our work (in
the sense that it also studies parameter estimation error), the analysis does not try
to show the advantage of group Lasso over standard Lasso.

The authors of [5] showed that group Lasso can be superior to standard Lasso
when each group is an infinite-dimensional kernel, by using an argument com-
pletely different from ours (they relied on the fact that meaningful analysis can be
obtained for kernel methods in infinite dimension). Their idea cannot be adapted
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to show the advantage of group Lasso in finite-dimensional scenarios of interests
such as in the standard compressive sensing setting. Therefore our analysis, which
focuses on the latter, is complementary to their work.

Another related work is [8], where the authors considered a special case of
group Lasso in the multi-task learning scenario, and showed that the number of
samples required for recovering the exact support set may be smaller for group
Lasso under appropriate conditions. The analysis is quite tight but with different
assumptions than what we make in this paper. That is, there are major differences
between our analysis and their analysis. For example, the group formulation we
consider here is more general and includes the multi-task scenario as a special
case. Moreover, we study signal recovery performance in 2-norm instead of the
exact recovery of support set in their analysis. The sparse eigenvalue condition
employed in this work is different from the irrepresentable type condition in their
analysis (which is required for exact support set recovery). Under our assumptions,
either Lasso nor group Lasso may be able to recover the exact support set.

In the above context, the main contribution of this work is the introduction of the
strong group sparsity concept, under which a satisfactory theory of group Lasso is
developed. Our result shows that strongly group sparse signals can be estimated
more reliably using group Lasso, in that it requires fewer number of samples in the
compressive sensing setting, and is more robust to noise in the statistical estimation
setting.

Finally, we shall mention that independent of the authors, results similar to those
presented in this paper have also been obtained in [6] with a similar technical
analysis. However, while our paper studies the general group Lasso formulation,
only the special case of multi-task learning is considered in [6].

4. Assumptions. The following assumption on the noise is important in our
analysis. It captures an important advantage of group Lasso over standard Lasso
under the strong group sparsity assumption.

ASSUMPTION 4.1 (Group noise condition). There exist nonnegative constants
a, b such that for any fixed group j ∈ {1, . . . ,m}, and η ∈ (0,1): with probability
larger than 1 − η, the noise projection to the j th group is bounded by

‖(X	
Gj

XGj
)−0.5X	

Gj
(ε − Eε)‖2 ≤ a

√
kj + b

√− lnη.

The importance of the assumption is that the concentration term
√− lnη does

not depend on k. This reveals a significant benefit of group Lasso over standard
Lasso: that is, the concentration term does not increase when the group size in-
creases. This implies that if we can correctly guess the group sparsity structure,
the group Lasso estimator is more stable with respect to stochastic noise than the
standard Lasso.
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We shall point out that this assumption holds for independent sub-Gaussian
noise vectors, where et(εi−Eεi ) ≤ et2σ 2/2 for all t and i = 1, . . . , n. It can be shown
that one may choose a = 2.8 and b = 2.4 when η ∈ (0,0.5). Since a complete
treatment of sub-Gaussian noise is not important for the purpose of this paper,
we only prove this assumption under independent Gaussian noise, which can be
directly calculated.

PROPOSITION 4.1. Assume the noise vector ε are independent Gaussians:
εi −Eεi ∼ N(0, σ 2

i ), where each σi ≤ σ (i = 1, . . . , n). Then Assumption 4.1 holds
with a = σ and b = √

2σ .

The next assumption handles the case that true target is not exactly sparse. That
is, we only assume that Xβ̄ ≈ Ey.

ASSUMPTION 4.2 (Group approximation error condition). There exist δa,
δb ≥ 0 such that for all group j ∈ {1, . . . ,m}: the projection of error mean Eε

to the j th group is bounded by

‖(X	
Gj

XGj
)−0.5X	

Gj
Eε‖2/

√
n ≤

√
kj δa + δb.

As mentioned earlier, we do not assume that the noise is zero-mean. Hence, Eε

may not equal zero. In other words, this condition considers the situation that the
true target is not exactly sparse. It resembles algebraic noise in [16] but takes the
group structure into account. Similar to [16], we have the following result.

PROPOSITION 4.2. Consider a (g, k) strongly group sparse coefficient vector
β̄ such that

1

n
‖Xβ̄ − Ey‖2

2 ≤ �2

and a0, b0 ≥ 0. Then there exists (g′, k′) strongly group sparse β̄ ′ such that k′a2
0 +

g′b2
0 ≤ 2(ka2

0 + gb2
0), ‖Xβ̄ ′ − Ey‖2 ≤ ‖Xβ̄ − Ey‖2, supp(β̄) ⊂ supp(β̄ ′), and for

all group j

‖(X	
Gj

XGj
)−0.5X	

Gj
(Xβ̄ ′ − Ey)‖2/

√
n ≤ (

a0

√
kj + b0

)
�/

√
ka2

0 + b2
0.

The proposition shows that if the approximation error of β̄ is � = ‖Xβ̄ −
Ey‖2/

√
n, then we may find an alternative target β̄ ′ with similar sparsity for which

we can take δa = a0�/
√

ka2
0 + b2

0 and δb = b0�/
√

ka2
0 + b2

0 in Assumption 4.2.

This means that in Theorem 5.1 below, by choosing a0 = a and b0 = b
√

ln(m/η),
the contribution of the approximation error to the reconstruction error ‖β̂ − β̄‖2
is O(�). Note that this assumption does not show the benefit of group Lasso over
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standard Lasso. Therefore in order to compare our results to that of the standard
Lasso, one may consider the simple situation where δa = δb = 0. That is, the tar-
get is exactly sparse. The only reason to include Assumption 4.2 is to illustrate that
our analysis can handle approximate sparsity.

The last assumption is a sparse eigenvalue condition, used in the modern analy-
sis of Lasso (e.g., [2, 16]). It is also closely related to (and slightly weaker than)
the RIP (restricted isometry property) assumption [3] in the compressive sensing
literature. This assumption takes advantage of group structure, and can be consid-
ered as (a weaker version of) group RIP. We introduce a definition before stating
the assumption.

DEFINITION 4.1. For all F ⊂ {1, . . . , p}, define

ρ−(F ) = inf
{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}
,

ρ+(F ) = sup
{

1

n
‖Xβ‖2

2/‖β‖2
2 : supp(β) ⊂ F

}
.

Moreover, for all 1 ≤ s ≤ p, define

ρ−(s) = inf
{
ρ−(GS) :S ⊂ {1, . . . ,m}, |GS | ≤ s

}
,

ρ+(s) = sup
{
ρ+(GS) :S ⊂ {1, . . . ,m}, |GS | ≤ s

}
.

ASSUMPTION 4.3 (Group sparse eigenvalue condition). There exist s, c > 0
such that

ρ+(s) − ρ−(2s)

ρ−(s)
≤ c.

Assumption 4.3 illustrates another advantage of group Lasso over standard
Lasso. Since we only consider eigenvalues for submatrices consistent with the
group structure {Gj }, the ratio ρ+(s)/ρ−(s) can be significantly smaller than the
corresponding ratio for Lasso (which considers all subsets of {1, . . . , p} up to
size s). For example, assume that all group sizes are identical k1 = · · · = km = k0,
and s is a multiple of k0. For random projections used in compressive sensing ap-
plications, only n = O(s + (s/k0) lnm) projections are needed for Assumption 4.3
to hold. In comparison, for standard Lasso, we need n = O(s lnp) projections. The
difference can be significant when p and k0 are large. More precisely, we have the
following random projection sample complexity bound for the group sparse eigen-
value condition. Although we assume Gaussian random matrix in order to state
explicit constants, it is clear that similar results hold for other sub-Gaussian ran-
dom matrices.
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PROPOSITION 4.3 (Group-RIP). Suppose that elements in X are i.i.d. stan-
dard Gaussian random variables N(0,1). For any t > 0 and δ ∈ (0,1), let

n ≥ 8

δ2 [ln 3 + t + k ln(1 + 8/δ) + g ln(em/g)].
Then with probability at least 1 − e−t , the random matrix X ∈ R

n×p satisfies the
following group-RIP inequality for all (g, k) strongly group-sparse vector β̄ ∈ R

p ,

(1 − δ)‖β̄‖2 ≤ 1√
n
‖Xβ̄‖2 ≤ (1 + δ)‖β̄‖2.(2)

5. Main results. Our main result is the following signal recovery (2-norm
parameter estimation error) bound for group Lasso.

THEOREM 5.1. Suppose that Assumptions 4.1, 4.2 and 4.3 are valid. Take
λj = (A

√
kj + B)/

√
n, where both A and B can depend on data y. Given η ∈

(0,1), with probability larger than 1 − η, if the following conditions hold:

• A ≥ 4 maxj ρ+(Gj )
1/2(a + δa

√
n),

• B ≥ 4 maxj ρ+(Gj )
1/2(b

√
ln(m/η) + δb

√
n),

• β̄ is a (g, k) strongly group-sparse coefficient vector,
• s ≥ k + k0,
• let 
 = s − (k − k0) + 1, and g
 = min{|S| : |GS | ≥ 
,S ⊂ {1, . . . ,m}}, we have

c2 ≤ 
A2 + g
B
2

72(kA2 + gB2)
,

then the solution of (1) satisfies

‖β̂ − β̄‖2 ≤
√

4.5

ρ−(s)
√

n
(1 + 0.25c−1)

√
A2k + gB2.

The first four conditions of the theorem are not critical, as they are just defin-
itions and choices for λj . The fifth assumption is critical, which means that the
group sparse eigenvalue condition has to be satisfied with some c that is not too
large. In order to satisfy the condition, 
 should be chosen relatively large as the
right-hand side is linear in 
. However, this implies that s also grows linearly. It
is possible to find s so that the condition is satisfied when c2 in Assumption 4.3
grows sublinearly in s. Consider the situation that δa = δb = 0. If the conditions
of Theorem 5.1 are satisfied, then

‖β̂ − β̄‖2
2 = O

((
k + g ln(m/η)

)
/n
)
.

In comparison, the Lasso estimator can only achieve the bound

‖β̂L1 − β̄‖2
2 = O

((‖β̄‖0 ln(p/η)
)
/n
)
.
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If k/‖β̄‖0 � ln(p/η) (which means that the group structure is useful) and g �
‖β̄‖0, then the group Lasso is superior. This is consistent with intuition. However,
if k � ‖β̄‖0 ln(p/η), then group Lasso is inferior. This happens when the signal is
not strongly group sparse.

Theorem 5.1 also suggests that if the group sizes are not even, then group Lasso
may not work well when the signal is contained in small sized groups. This is
because in such case g
 can be significantly smaller than g even with relatively
large 
, which means we have to choose a large s and small c, implying a poor
bound. This prediction is confirmed in Section 7.2 using simulated data. Intu-
itively, group Lasso favors large sized groups because the 2-norm regularization
for large group size is weaker. Adjusting regularization parameters λj not only
fails to work in theory, but also is impractical since it is unrealistic to tune many
parameters. This unstable behavior with respect to uneven group size may be re-
garded as another drawback of the group Lasso formulation.

In the following, we present two simplifications of Theorem 5.1 that are easier
to interpret. The first is the compressive sensing case, which does not consider
stochastic noise.

COROLLARY 5.1 (Compressive sensing). Suppose Assumptions 4.1 and 4.2
are valid with a = b = δb = 0. Take λj = 4

√
kj maxj ρ+(Gj )

1/2δa. Let β̄ be
a (k, g) strongly group-sparse signal, 
 = k, and s = 2k + k0 − 1. If (ρ+(s) −
ρ−(2s))/ρ−(s) ≤ 1/

√
72, then the solution of (1) satisfies

‖β̂ − β̄‖2 ≤ 6
√

2 + 18

ρ−(s)
max

j
ρ+(Gj )

1/2δa
√

k.

If δa = 0, then we can achieve exact recovery. Moreover, Proposition 4.2
implies that we may choose a target with similar sparsity such that δa

√
k =

O(‖Xβ̄ − Ey‖2/
√

n). This implies a bound

‖β̂ − β̄‖2 = O
(‖Xβ̄ − Ey‖2/

√
n
)
.

If we have even sized groups, the number of samples n required for Corollary 5.1
to hold [i.e., (ρ+(s) − ρ−(2s))/ρ−(s) ≤ 1/

√
72] is O(k + g ln(m/g)), where g =

k/k0. In comparison, although a similar result holds for Lasso, it requires sample
size of order ‖β̄‖0 ln(p/‖β̄‖0). Again, group Lasso has a significant advantage if
k/‖β̄‖0 � ln(p/‖β̄‖0), g � ‖β̄‖0, and p is large.

The following corollary is for even sized groups, and the result is simpler to in-
terpret. For standard Lasso, B = O(

√
lnp), and for group Lasso, B = O(

√
lnm).

The benefit of group Lasso is the division of B2 by k0 in the bound, which is a
significant improvement when the dimensionality p is large. The disadvantage of
group Lasso is that the signal sparsity ‖β̄‖0 is replaced by the group sparsity k.
This is not an artifact of our analysis, but rather a fundamental drawback inherent
to the group Lasso formulation. The effect is observable, as shown in our simula-
tion studies.
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COROLLARY 5.2 (Even group size). Suppose that Assumptions 4.1 and 4.2
are valid. Assume also that all groups are of equal sizes: k0 = kj for j = 1, . . . ,m.
Given η ∈ (0,1), let

λj = (
A
√

k0 + B
)
/
√

n,

where

A ≥ 4 max
j

ρ+(Gj )
1/2(a + δa

√
n
)
,

B ≥ 4 max
j

ρ+(Gj )
1/2(b√ln(m/η) + δb

√
n
)
.

Let β̄ be a (k, k/k0) strongly group-sparse signal. With probability larger than
1 − η, if

6
√

2
(
ρ+(k + 
) − ρ−(2k + 2
)

)
/ρ−(k + 
) <

√

/k

for some 
 > 0 that is a multiple of k0, then the solution of (1) satisfies

‖β̂ − β̄‖2 ≤ ρ−(k + 
)−1(√4.5 + 4.5
/k
)√

A2 + B2/k0
√

k/n.

6. Parameter estimation lower bound. The following parameter estimation
lower bound applies to all statistical estimators. In order to simplify the proof, we
intentionally exclude the �(k/n) term from the lower bound (see comments in the
proof), as this is a well-known term from the classical parametric statistics.

THEOREM 6.1. Given an n × p design matrix X, we define ∀β̄ ∈ R
p the fol-

lowing probability density for y ∈ R
n:

pβ̄(y) = 1

(2π)n/2σn
e−‖y−Xβ̄‖2

2/(2σ 2).

Let H(g, k) be the family of (g, k) strongly group-sparse signals in R
p with respect

to a set of m predefined groups with even group size k0 = p/m, where k = gk0. Let
β̂(y) ∈ R

p be an arbitrary statistical estimator of β̄ based on y ∼ pβ̄ . If g < m/2,
then we have

sup
β̄∈H(g,k)

Ey∼pβ̄

∥∥X(β̂(y) − β̄
)∥∥2

2 ≥ σ 2 ρ−(2g)

8ρ+(2g)

[
g ln

(
(m − g)/g

)− (g + 2) ln 4
]
.

It implies the following lower bound on the 2-norm parameter estimation error

sup
β̄∈H(g,k)

Ey∼pβ̄
‖β̂(y) − β̄‖2

2 ≥ σ 2 ρ−(2g)

24nρ+(2g)2

[
g ln

(
(m − g)/g

)− (g + 2) ln 4
]
.
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The theorem shows that under the sparse eigenvalue conditions, the advantage
of group Lasso over standard Lasso is real. For standard sparsity, we take k0 = 1,
and the parameter estimation lower bound is �(k ln(p/k)/n). Since Lasso does
not take advantage of group structure, it follows that there exists a k-sparse signal
for which Lasso can only achieve parameter estimation error of �(k ln(p/k)/n),
independent of the signal’s group structure. In comparison, if this signal is (g, k)

strongly group-sparse with respect to a predefined group structure, then the lower
bound is �(g ln(m/g)/n). Since the classical parametric statistics implies that
the lower bound for any statistical estimator cannot be better than �(k/n) with k

features, we obtain a lower bound of �((k + g ln(m/g))/n) under strong group-
sparsity (with even group size), which matches our upper bound obtained for group
Lasso. This means that group Lasso achieves the optimal minimax rate for 2-norm
parameter estimation up to a constant factor that depends on ρ+(·) and ρ−(·).

Moreover, we note that in the setting of compressive sensing, the RIP condition
at sparsity k requires �(k ln(p/k)) random projections. In general, �(k ln(p/k))

random projections are also needed in order to reconstruct a k-sparse signal. This
claim follows from some classical n-width results in approximation theory. How-
ever, similar results for group-sparsity are not easy to derive. Therefore, we shall
not include such results here.

7. Simulation studies. We want to verify our theory by comparing group
Lasso to Lasso on simulation data. For quantitative evaluation, the recovery error
is defined as the relative difference in 2-norm between the estimated sparse coeffi-
cient vector βest and the ground-truth sparse coefficient β̄ :‖βest − β̄‖2/‖β̄‖2.

The regularization parameter λ in Lasso is chosen with five-fold cross vali-
dation. In group Lasso, we simply suppose the regularization parameter λj =
(λ
√

kj )/
√

n for j = 1,2, . . . ,m. The regularization parameter λ is then cho-
sen with five-fold cross validation. Here, we set B = 0 in the formula λj =
O(A

√
kj + B). Since the relative performance of group Lasso versus standard

Lasso is similar with other values of B , in order to avoid redundancy, we do not
include results with B �= 0.

7.1. Even group size. In this set of experiments, the projection matrix X is
generated by creating an n × p matrix with i.i.d. draws from a standard Gaussian
distribution N(0,1). For simplicity, the rows of X are normalized to unit mag-
nitude. Zero-mean Gaussian noise with standard deviation σ = 0.01 is added to
the measurements. Our task is to compare the recovery performance of Lasso and
group Lasso for these (g, k) strongly group sparse signals.

7.1.1. With correct group structure. In this experiment, we randomly generate
(g, k) strongly group sparse coefficients with values ±1, where p = 512, k = 64
and g = 16. There are 128 groups with even group size of k0 = 4. Here the group
structure coincides with the signal sparsity: k = ‖β̄‖0.
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FIG. 1. Recovery results when the assumed group structure is correct. (a) Original data; (b) results
with Lasso (recovery error is 0.3444); (c) results with group Lasso (recovery error is 0.0419).

Figure 1 shows an instance of generated sparse coefficient vector and the recov-
ered results by Lasso and group Lasso, respectively, when n = 3k = 192. Since
the sample size n is only three times the signal sparsity k, the standard Lasso does
not achieve good recovery results, whereas the group Lasso achieves near perfect
recovery of the original signal.

Figure 2(a) shows the effect of sample size n, where we report the averaged
recover error over 100 random runs for each sample size. Group Lasso is clearly
superior in this case. These results show that the the group Lasso can achieve
better recovery performance for (g, k) strongly group sparse signals with fewer
measurements, which is consistent with our theory.

To study the effect of the group number g (with k fixed), we set the sample
size n = 160 and then change the group number while keeping other parameters
unchanged. Figure 2(b) shows the recovery performance of the two algorithms,
averaged over 100 random runs for each sample size. As expected, the recovery
performance for Lasso is independent to the group number within statistical error.
Moreover, the recovery results for group Lasso are significantly better when the
group number g is much smaller than the sparsity k = 64. When g = k, the group
Lasso becomes identical to Lasso, which is expected. This shows that the recovery
performance of group Lasso degrades when g/k increases, which confirms our
theory.

7.1.2. With incorrect group structure. In this experiment, we assume that the
known group structure is not exactly the same as the sparsity of the signal (i.e., k >

‖β̄‖0). We randomly generate strongly group sparse coefficients with values ±1,
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(a) (b)

FIG. 2. Recovery performance: (a) recovery error vs. sample size ratio n/k; (b) recovery error vs.
group number g.

where p = 512, ‖β̄‖0 = 64 and g = 16. In the first experiment, we let k = 4‖β̄‖0,
and use m = 32 groups with even group size of k0 = 16.

Figure 3 shows one instance of the generated sparse signal and the recovered
results by Lasso and group Lasso, respectively, when n = 3‖β̄‖0 = 192. In this
case, the standard Lasso obtains better recovery results than the group Lasso. Fig-
ure 2(a) shows the effect of sample size n, where we report the averaged recover
error over 100 random runs for each sample size. The group Lasso recovery per-
formance is clearly inferior to that of the Lasso. This shows that group Lasso fails
when k/‖β̄‖0 is relatively large, which is consistent with our theory.

FIG. 3. Recovery results when the assumed group structure is incorrect. (a) Original data; (b) re-
sults with Lasso (recovery error is 0.3616); (c) results with group Lasso (recovery error is 0.6688).



1990 J. HUANG AND T. ZHANG

(a) (b)

FIG. 4. Recovery performance: (a) recovery error vs. sample size ratio n/k; (b) recovery error vs.
group size k0.

To study the effect of k/‖β̄‖0 on the group Lasso performance, we keep ‖β̄‖0
fixed, and simply vary the group size as k0 = 1,2,4,8,16,32,64 with k/‖β̄‖0 =
1,1,1,2,4,8,16. Figure 4(b) shows the performance of the two algorithms with
different group sizes k0 in terms of recovery error. It shows that the performance
of group Lasso is better when k/‖β̄‖0 = 1. However, when k/‖β̄‖0 > 1, the per-
formance of group Lasso deteriorates.

7.2. Uneven group size. In this set of experiments, we randomly generate
(g, k) strongly sparse coefficients with values ±1, where p = 512, and g = 4.
There are 64 uneven sized groups. The projection matrix X and noises are gen-
erated as in the even group size case. Our task is to compare the recovery perfor-
mance of Lasso and group Lasso for (g, k) strongly sparse signals with ‖β̄‖0 = k.
To reduce the variance, we run each experiment 100 times and report the average
performance.

In the first experiment, the group sizes of 64 groups are randomly generated and
the g = 4 active groups are randomly extracted from these 64 groups. Figure 5(a)
shows the recovery performance of Lasso and group Lasso with increasing sample
size (measurements) in terms of recovery error. Similar to the case of even group
size, the group Lasso obtains better recovery results than those with Lasso. It shows
that the group Lasso is superior when the group sizes are randomly uneven.

As discussed after Theorem 5.1, because group Lasso favors large sized groups,
if the signal is contained in small sized groups, then the performance of group
Lasso can be relatively poor. In order to confirm this claim of Theorem 5.1, we
consider the special case where 32 groups have large group sizes and each of the
remaining 32 groups has only one element. First, we consider the case where half
of g = 4 active groups are extracted from the single element groups and the other
half of g = 4 active groups are extracted from the groups with large size. Fig-
ure 5(b) shows the signal recovery performance of Lasso and group Lasso. It is
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(a) (b)

FIG. 5. Recovery performance: (a) g active groups have randomly uneven group sizes; (b) half of
g active groups are single element groups and another half of g active groups have large group size.

clear that the group Lasso performs better, but the results are not as good as those
of Figure 5(a).

Moreover, Figure 6(a) shows the recovery performance of Lasso and group
Lasso when all of the g = 4 active groups are extracted from large sized groups.
We observe that the relative performance of group Lasso improves. Finally, Fig-
ure 6(b) shows the recovery performance of Lasso and group Lasso when all of
the g = 4 active groups are extracted from single element groups. It is obvious that
the group Lasso is inferior to Lasso in this case. This confirms the prediction of
Theorem 5.1 that suggests that group Lasso favors large sized groups.

8. Conclusion. In this paper, we introduced a concept called strong group
sparsity that characterizes the signal recovery performance of group Lasso. In par-

(a) (b)

FIG. 6. Recovery performance: (a) all g active groups have large group size; (b) all g active groups
are single element groups.
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ticular, we showed that group Lasso is superior to standard Lasso when the under-
lying signal is strongly group-sparse:

• Group Lasso is more robust to noise due to the stability associated with group
structure.

• Group Lasso requires a smaller sample size to satisfy the sparse eigenvalue con-
dition required in the modern sparsity analysis.

However, group Lasso can be inferior if the signal is only weakly group-sparse,
or covered by groups with small sizes. Moreover, group Lasso does not perform
well with overlapping groups (which is not analyzed in this paper). Better learning
algorithms are needed to overcome these limitations.

APPENDIX A: PROOF OF PROPOSITION 4.1

Without loss of generality, we may assume σi > 0 for all i (otherwise, we can
still let σi > 0 and then just take the limit σi → 0 for some i).

For notation simplicity, we remove the subscript j from the group index, and
consider group G with k variables.

Let  be the diagonal matrix with σi as its diagonal elements. We can find an
n × k matrix Z = XG(X	

GXG)−0.5, such that Z	Z = Ik×k . Let ξ = Z	(ε −
Eε) ∈ R

k . Since ∀v ∈ R
n,

‖(X	
GXG)−0.5X	

Gv‖2 = ‖(Z	Z)−0.5Z	v‖2,

we have

‖(X	
GXG)−0.5X	

G(ε − Eε)‖2
2

ξ	ξ
≤ sup

v∈Rn

v	Z(Z	Z)−1Z	v

v	ZZ	v

= sup
u∈Rk

u	(Z	Z)−1u

u	u
= sup

u∈Rk

u	Z	Zu

u	(Z	Z)u

≤ sup
v∈Rn

v	v

v	v
≤ σ 2.

Therefore, we only need to show that with probability at least 1 − η for all η ∈
(0,1):

‖ξ‖2 ≤ a
√

k + b
√− lnη(3)

with a = 1 and b = √
2.

To prove this inequality, we note that the condition Z	Z = Ik×k means
that the covariance matrix of ξ is Ik×k . Therefore, the components of ξ are k

i.i.d. Gaussians N(0,1), and the distribution of ‖ξ‖2
2 is χ2. Many methods have

been suggested to approximate the tail probability of χ2 distribution. For exam-
ple, a well-known approximation of ‖ξ‖2 is the normal N(

√
k − 0.5,0.5), which

would imply a = b = 1 in (3). The weaker bound with a = 1 and b = √
2 can be

obtained through direct integration.
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APPENDIX B: PROOF OF PROPOSITION 4.2

We consider the following group-greedy procedure starting with β̄(0) = β̄ , and
form (k(
), g(
)) strongly group sparse β̄(
) as follows for 
 = 1,2, . . . :
• let r(
−1) = Xβ̄(
−1) − Ey,

• let j (
) = arg maxj [‖(X	
Gj

XGj
)−0.5X	

Gj
r(
−1)‖2/

√
kja

2
0 + b2

0],
• let β̄(
) = β̄(
−1); and then reset its coefficients in group Gj as β̄

(
)
Gj

= β̄
(
)
Gj

−
(X	

Gj
XGj

)−1X	
Gj

r(
−1), where j = j (
).

It is not difficult to check that∥∥r(
−1)
∥∥2

2 − ∥∥r(
)
∥∥2

2 = ∥∥(X	
Gj

XGj
)−0.5X	

Gj
r(
−1)

∥∥2
2,

k(
) − k(
−1) ≤ kj , g(
) − g(
−1) ≤ 1, with j = j (
). Therefore, if for all 0 ≤ 
 ≤ t ,
we have

arg max
j

[∥∥(X	
Gj

XGj
)−0.5X	

Gj
r(
)

∥∥
2/

√
kja

2
0 + b2

0

]≥ √
n�/

√
ka2

0 + b2
0,

then by summing over 
 = 1, . . . , t, t + 1, we obtain

n�2 = ∥∥r(0)
∥∥2

2 ≥
t+1∑

=1

[∥∥r(
−1)
∥∥2

2 − ∥∥r(
)
∥∥2

2

]

≥ n

t+1∑

=1

[(
k(
) − k(
−1))a2

0 + (
g(
) − g(
−1))b2

0
]
�2/(ka2

0 + b2
0)

≥ n
[(

k(t+1) − k
)
a2

0 + (
g(t+1) − g

)
b2

0
]
�2/(ka2

0 + b2
0).

This implies that

k(t+1)a2
0 + g(t+1)b2

0 ≤ 2(ka2
0 + gb2

0).

Therefore if we let t be the first time k(t+1)a2
0 + g(t+1)b2

0 > 2(ka2
0 + gb2

0), then
there exists 
 ≤ t , such that β̄ ′ = β(
) satisfies the requirement.

APPENDIX C: PROOF OF PROPOSITION 4.3

The following lemma is taken from [9].

LEMMA C.1. Consider the unit sphere Sk−1 = {x :‖x‖2 = 1} in R
k (k ≥ 1).

Given any ε > 0, there exists an ε-cover Q ⊂ Sk−1 such that minq∈Q ‖x −q‖2 ≤ ε

for all ‖x‖2 = 1, with |Q| ≤ (1 + 2/ε)k .

The following concentration result for χ2 distribution is similar to Proposi-
tion 4.1, and can be obtained from direct integration. We skip the detailed cal-
culation. This is where the Gaussian assumption is used in the proof. A similar
result holds for sub-Gaussian random variables.
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LEMMA C.2. Let ξ ∈ R
n be a vector of n i.i.d. standard Gaussian variables:

ξi ∼ N(0,1). Then ∀ε ≥ 0:

Pr
[∣∣‖ξ‖2 − √

n
∣∣≥ ε

]≤ 3e−ε2/2.

The derivation of the following estimate employs a standard proof technique
(e.g., see [10]).

LEMMA C.3. Suppose X is generated according to Proposition 4.3. For any
fixed set S ⊂ {1, . . . , p} with |S| = k and 0 < δ < 1, we have with probability
exceeding 1 − 3(1 + 8/δ)ke−nδ2/8:

(1 − δ)‖β‖2 ≤ 1√
n
‖XSβ‖2 ≤ (1 + δ)‖β‖2(4)

for all β ∈ R
k .

PROOF. It is enough to prove the conclusion in the case of ‖β‖2 = 1. Ac-
cording to Lemma C.1, given ε1 > 0, there exists a finite set Q = {qi} with
|Q| ≤ (1 + 2/ε1)

k such that ‖qi‖2 = 1 for all i, and mini ‖β − qi‖2 ≤ ε1 for all
‖β‖2 = 1.

For each i, since elements of ξ = XSqi are i.i.d. Gaussians N(0,1), Lemma C.2
implies that ∀ε2 > 0:

Pr
[∣∣‖XSqi‖2 − √

n‖qi‖2
∣∣≥ √

nε2
]≤ 3e−nε2

2/2.

Taking union bound for all qi ∈ Q, we obtain with probability exceeding 1−3(1+
2/ε1)

ke−nε2
2/2: for all qi ∈ Q,

(1 − ε2) ≤ 1√
n
‖XSqi‖2 ≤ (1 + ε2).

Now, we define ρ as the smallest nonnegative number such that

1√
n
‖XSβ‖2 ≤ (1 + ρ)(5)

for all β ∈ R
k with ‖β‖2 = 1. Since for all ‖β‖2 = 1, we can find qi ∈ Q such that

‖β − qi‖2 ≤ ε1, we have

‖XSβ‖2 ≤ ‖XSqi‖2 + ‖XS(β − qi)‖2 ≤ √
n
(
1 + ε2 + (1 + ρ)ε1

)
,

where we used (5) in the derivation. Since ρ is the smallest nonnegative constant
for which (5) holds, we have

√
n(1 + ρ) ≤ √

n
(
1 + ε2 + (1 + ρ)ε1

)
,

which implies that

ρ ≤ (ε1 + ε2)/(1 − ε1).
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Now we choose ε1 = δ/4 and ε2 = δ/2. Since 0 < δ < 1, it is easy to see that ρ ≤ δ.
This proves the upper bound. For the lower bound, we note that for all ‖β‖2 = 1
with ‖β − qi‖2 ≤ ε1, we have

‖XSβ‖2 ≥ ‖XSqi‖2 − ‖XS(β − qi)‖2 ≥ √
n
(
1 − ε2 − (1 + ρ)ε1

)
,

which leads to the desired result. �

PROOF OF PROPOSITION 4.3. For each subset S ⊂ {1, . . . ,m} of groups with
|S| ≤ g and |GS | ≤ k, we know from C.3 that for all β such that supp(β) ⊂ GS :

(1 − δ)‖β‖2 ≤ 1√
n
‖Xβ‖2 ≤ (1 + δ)‖β‖2

with probability exceeding 1 − 3(1 + 8/δ)ke−nδ2/8.
Since the number of such groups S can be no more than C

g
m ≤ (em/g)g , by

taking the union bound, we know that the group RIP in (2) fails with probability
less than

3(em/g)g(1 + 8/δ)ke−nδ2/8 ≤ e−t . �

APPENDIX D: TECHNICAL LEMMAS

The following lemmas are adapted from [16] to handle group sparsity structure.
Related techniques can be found in [2] and [14]. The first lemma is in [16].

LEMMA D.1. Let A = X	X/n, and let I and J be nonoverlapping indices in
{1, . . . , p}. We have

‖AI,J ‖2 ≤
√(

ρ+(I ) − ρ−(I ∪ J )
)(

ρ+(J ) − ρ−(I ∪ J )
)
,

where the matrix 2-norm is defined as ‖AI,J ‖2 = sup‖u‖2=‖v‖2=1|u	AI,J v|.

The next lemma uses the previous result to control the contribution of the
nonsignal part Gc of an error vector u to the product u	

GAG,GcuGc .

LEMMA D.2. Given u ∈ R
p and S ⊂ {1, . . . ,m}. Consider 
 ≥ 1 and define

λ2− = min
{∑

j∈S′
λ2

j : |GS′ | ≥ 


}
.

Let S0 ⊂ {1, . . . ,m} − S contain indices j of largest values of ‖uGj
‖2/λj (j /∈ S),

and satisfies the condition 
 ≤ |GS0 | < 
 + k0. Let G = GS ∪ GS0 . Then√ ∑
j /∈S∪S0

‖uGj
‖2

2 ≤ (2λ−)−1
∑
j /∈S

λj‖uGj
‖2



1996 J. HUANG AND T. ZHANG

and
1

n

∣∣∣∣ ∑
j /∈S∪S0

u	
GX	

GXGj
uGj

∣∣∣∣
≤ λ−1− ρ̃+(|G|, 
 + k0 − 1)‖uG‖2

∑
j /∈S

λj‖uGj
‖2,

where

ρ̃+(|G|, 
 + k0 − 1)

= ((
ρ+(|G|) − ρ−(|G| + 
 + k0 − 1)

)
× (

ρ+(
 + k0 − 1) − ρ−(|G| + 
 + k0 − 1)
))1/2

.

PROOF. Without loss of generality, we assume that S = {1, . . . , g}, and we
assume that j > g is in descending order of ‖uGj

‖2/λj . Let S0, S1, . . . be the first,
second, etc., consecutive blocks of j > g, such that 
 ≤ |GSk

| < 
 + k0 (except for
the last Sk). If we let Gk = GSk

, then:

∑
j /∈S∪S0

‖uGj
‖2

2 ≤
[ ∑
j /∈S∪S0

λj‖uGj
‖2

][
max

j /∈S∪S0
‖uGj

‖2/λj

]

≤
[ ∑
j /∈S∪S0

λj‖uGj
‖2

][
min
j∈S0

‖uGj
‖2/λj

]

≤
[ ∑
j /∈S∪S0

λj‖uGj
‖2

][∑
j∈S0

λj‖uGj
‖2

/ ∑
j∈S0

λ2
j

]

≤ [∑j /∈S λj‖uGj
‖2]2

4λ2−
.

This proves the first inequality of the lemma. Note that the second inequality fol-
lows from the descending order of ‖uGj

‖2/λj for j > g. Similarly, we have

∑
k≥1

‖uGk‖2 = ∑
k≥1

√∑
j∈Sk

‖uGj
‖2

2

≤ ∑
k≥1

√∑
j∈Sk

λj‖uGj
‖2

√
max
j∈Sk

‖uGj
‖2/λj

≤ ∑
k≥1

√∑
j∈Sk

λj‖uGj
‖2

√
min

j∈Sk−1
‖uGj

‖2/λj

≤ ∑
k≥1

√∑
j∈Sk

λj‖uGj
‖2

√√√√ ∑
j∈Sk−1

λj‖uGj
‖2

/ ∑
j∈Sk−1

λ2
j
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≤ λ−1−
∑
k≥1

√∑
j∈Sk

λj‖uGj
‖2

√ ∑
j∈Sk−1

λj‖uGj
‖2

≤ λ−1−
∑
k≥1

1

2

[∑
j∈Sk

λj‖uGj
‖2 + ∑

j∈Sk−1

λj‖uGj
‖2

]

≤ λ−1−
∑
k≥0

∑
j∈Sk

λj‖uGj
‖2 = λ−1−

∑
j /∈S

λj‖uGj
‖2.

Therefore,

n−1
∣∣∣∣ ∑
j /∈S∪S0

u	
GX	

GXGj
uGj

∣∣∣∣
≤ n−1

∑
k≥1

|u	
GX	

GXGkuGk |

≤ n−1
∑
k≥1

‖X	
GXGk‖2‖uGk‖2‖uG‖2

≤ ρ̃+(|G|, 
 + k0 − 1)‖uG‖2
∑
k≥1

‖uGk‖2

≤ ρ̃+(|G|, 
 + k0 − 1)λ−1− ‖uG‖2
∑
j /∈S

λj‖uGj
‖2.

Note that Lemma D.1 is used to bound ‖X	
GXGk‖2. This proves the second in-

equality of the lemma. �

The following lemma shows that the group L1-norm of the group Lasso esti-
mator’s nonsignal part is small (compared to the group L1-norm of the parameter
estimation error in the signal part).

LEMMA D.3. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Assume that for
all j :

λj ≥ 4ρ+(Gj )
1/2‖(X	

Gj
XGj

)−1/2X	
Gj

ε‖2/
√

n.

Then the solution of (1) satisfies∑
j /∈S

λj‖β̂Gj
‖2 ≤ 3

∑
j∈S

λj‖β̄Gj
− β̂Gj

‖2.

PROOF. The first-order condition is

2X	X(β̂ − β̄) − 2X	ε +
m∑

j=1

λjnvj = 0,(6)
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where vj = β̂Gj
/‖β̂Gj

‖2 when β̂Gj
�= 0; ‖vj‖2 ≤ 1 and supp(vj ) ⊂ Gj when

β̂Gj
= 0. It implies that

β̂	vj = ‖β̂Gj
‖2, |(β̂ − β̄)	vj | ≤ ‖(β̂ − β̄)Gj

‖2.

By multiplying both sides by (β̂ − β̄)	, we obtain

0 ≥ −2(β̂ − β̄)	X	X(β̂ − β̄) = −2(β̂ − β̄)	X	ε +
m∑

j=1

λjn(β̂ − β̄)	vj .

Therefore,∑
j /∈S

λj‖β̂Gj
‖2

≤ ∑
j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 2

n
(β̂ − β̄)	X	ε

≤ ∑
j∈S

λj‖β̄Gj
− β̂Gj

‖2

+ 2√
n

m∑
j=1

√
ρ+(Gj )‖(β̂ − β̄)Gj

‖2‖(X	
Gj

XGj
)−1/2X	

Gj
ε‖2

≤ ∑
j∈S

λj‖β̄Gj
− β̂Gj

‖2 + 0.5
m∑

j=1

λj‖(β̂ − β̄)Gj
‖2.

Note that the last inequality follows from the assumption of the lemma. By simpli-
fying the above inequality, we obtain the desired bound. �

The following lemma bounds parameter estimation error by combining the pre-
vious two lemmas.

LEMMA D.4. Let supp(β̄) ∈ GS for some S ⊂ {1, . . . ,m}. Consider 
 ≥ 1 and
let s = |GS | + 
 + k0 − 1. Define

λ2− = min
{∑

j∈S′
λ2

j : |GS′ | ≥ 


}
,

ρ̃+(s, s − |Gs |) =
√(

ρ+(s) − ρ−(2s − |GS |))(ρ+(s − |GS |) − ρ−(2s − |GS |)).
If for all j :

λj ≥ 4ρ+(Gj )
1/2‖(X	

Gj
XGj

)−1/2X	
Gj

ε‖2/
√

n
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and

6
ρ̃+(s, s − |Gs |)

ρ−(s)
≤ λ−√∑

j∈S λ2
j

,

then the solution of (1) satisfies

‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)

(
1 + 1.5λ−1−

√∑
j∈S

λ2
j

)√∑
j∈S

λ2
j .

PROOF. Define S0 as in Lemma D.2. Let G = ⋃
j∈S∪S0

Gj . By multiplying

both sides of (6) by (β̂ − β̄)	G, we obtain

2(β̂ − β̄)	GX	
GX(β̂ − β̄) − 2(β̂ − β̄)	GX	ε + ∑

j∈S∪S0

λjn(β̂ − β̄)	Gj
vj = 0.

Similar to the proof in Lemma D.3, we use the assumptions on λj to obtain

4n−1(β̂ − β̄)	GX	
GX(β̂ − β̄) + ∑

j∈S0

λj‖β̂Gj
‖2 ≤ 3

∑
j∈S

λj‖β̂Gj
− β̄Gj

‖2.(7)

Now, Lemma D.2 implies that

(β̂ − β̄)	GX	
GX(β̂ − β̄)

≥ (β̂ − β̄)	GX	
GXG(β̂ − β̄)G

− ρ̃+(s, s − |GS |)λ−1− n‖(β̂ − β̄)G‖2
∑
j /∈S

λj‖(β̂ − β̄)Gj
‖2.

By applying Lemma D.3, we have

n−1(β̂ − β̄)	GX	
GX(β̂ − β̄)

≥ ρ−(G)‖(β̂ − β̄)G‖2
2

− 3ρ̃+(s, s − |GS |)λ−1− ‖(β̂ − β̄)G‖2
∑
j∈S

λj‖(β̂ − β̄)Gj
‖2

≥ ρ−(G)‖(β̂ − β̄)G‖2
2 − 3ρ̃+(s, s − |GS |)λ−1−

√∑
j∈S

λ2
j‖(β̂ − β̄)G‖2

2

≥ 0.5ρ−(G)‖(β̂ − β̄)G‖2
2.

The assumption of the lemma is used to derive the last inequality. Now plugging
this inequality into (7), we have

‖(β̂ − β̄)G‖2
2 ≤ 1.5ρ−(G)−1

∑
j∈S

λj‖β̂Gj
− β̄Gj

‖2

≤ 1.5ρ−(G)−1
√∑

j∈S

λ2
j‖(β̂ − β̄)G‖2.
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This implies

‖(β̂ − β̄)G‖2
2 ≤ 2.25ρ−(G)−2

∑
j∈S

λ2
j .

Now Lemmas D.2 and D.3 imply that

‖(β̂ − β̄)‖2
2 − ‖(β̂ − β̄)G‖2

2 ≤ 0.25λ−2−
[∑
j /∈S

λj‖(β̂ − β̄)Gj
‖2

]2

≤ 2.25λ−2−
[∑
j∈S

λj‖(β̂ − β̄)Gj
‖2

]2

≤ 2.25λ−2−
∑
j∈S

λ2
j‖(β̂ − β̄)G‖2

2.

By combining the previous two displayed inequalities, we obtain the lemma. �

APPENDIX E: PROOF OF THEOREM 5.1

Assumption 4.1 implies that with probability larger than 1 − η, uniformly for
all groups j , we have

‖(X	
Gj

XGj
)−0.5X	

Gj
(ε − Eε)‖2 ≤ a

√
kj + b

√
ln(m/η).

It follows that with the choice of A, B and λj , we have

λj ≥ 4ρ+(Gj )
1/2‖(X	

Gj
XGj

)−1/2X	
Gj

ε‖2/
√

n

for all j . Moreover, assumptions of the theorem also imply that ρ̃+(s, s − |GS |) ≤
ρ+(s) − ρ−(2s), and

ρ̃+(s, s − |GS |)
ρ−(s)

≤ ρ+(s) − ρ−(2s)

ρ−(s)
≤ c ≤

√

A2 + g
B2

6
√

2(kA2 + gB2)
≤ λ−

6
√∑

j∈S λ2
j

.

Note that we have used
∑

j∈S′ [A2kj + B2] ≤ n
∑

j∈S′ λ2
j ≤ 2

∑
j∈S′ [A2kj + B2].

Therefore, the conditions of Lemma D.4 are satisfied. Its conclusion implies
that

‖(β̂ − β̄)‖2 ≤ 1.5

ρ−(s)

(
1 + 1.5λ−1−

√∑
j∈S

λ2
j

)√∑
j∈S

λ2
j

≤ 1.5

ρ−(s)

(
1 + 1

4c

)√∑
j∈S

λ2
j

≤ 1.5

ρ−(s)

(
1 + 1

4c

)√
2(A2k + B2g)/n.

This proves the theorem.
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APPENDIX F: PROOF OF THEOREM 6.1

First, we recall the standard definition of KL divergence:

DKL(pβ̄‖p
β̂
) =

∫
y
pβ̄(y) ln

(
pβ̄(y)/p

β̂
(y)

)
dy.

Our proof relies on the following lower bound result, with an appropriately chosen
B ⊂ H(g, k) to be determined later. Although the bound is related to other stan-
dard lower-bound techniques such as Fano’s inequality, it is easier to apply for our
purpose. The lemma itself is a special case of a more general lower bound theorem
in [15] with uniform prior on B; it is a direct translation using our notation.

LEMMA F.1. Consider an arbitrary finite set B ⊂ R
p and let N = |B|. For an

arbitrary estimator β̂(y) ∈ R
p of β̄ from y ∼ pβ̄ , we have

1

N

∑
β̄∈B

Ey∼pβ̄

∥∥X(β̄ − β̂(y)
)∥∥2

2

≥ 0.5 sup
{
ε : inf

β̄ ′∈Rp
ln

N

|{β̄ ∈ Rp :‖X(β̄ − β̄ ′)‖2
2 < ε}| ≥ 2�B + ln 4

}
,

where �B = N−2∑
β̄,β̄ ′∈B DKL(pβ̄‖pβ̄ ′).

The following result relates KL-divergence and in-sample prediction error.

LEMMA F.2. We have

DKL(pβ̄‖p
β̂
) = ‖X(β̄ − β̂)‖2

2

2σ 2 .

PROOF. By definition, we have

DKL(pβ̄‖p
β̂
)

=
∫

y∈Rn
pβ̄(y) ln

(
pβ̄(y)/p

β̂
(y)

)
dy

=
∫

y∈Rn

1

(2π)n/2σn
e−‖y−Xβ̄‖2

2/(2σ 2) × ‖y − Xβ̂‖2
2 − ‖y − Xβ̄‖2

2

2σ 2 dy

= ‖X(β̂ − β̄)‖2
2

2σ 2 ,

which implies the lemma. �

The following result is used to define a set B in order to apply Lemma F.1.
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LEMMA F.3. Given positive integer g < m/2. Let N be the largest number
such that there exist subsets S1, . . . , SN ⊂ {1, . . . ,m} : |Sj | = g and |Si − Sj | ≥ g

for i �= j . Then we have

lnN ≥ 0.5g ln
(
(m − g + 1)/(4g)

)
.

PROOF. Let S0 be a subset of {1, . . . ,m} of cardinality g, chosen uniformly at
random without replacement. Then for each j = 1, . . . ,N ,

P [|S0 − Sj | < g] =
∑


>g/2 C

gC

g−

m−g

C
g
m

= ∑

>g/2

C

g

g!
(g − 
)!

(m − g)!2
m!(m + 
 − 2g)!

≤ ∑

>g/2

C

gg


 (m − g)g−


(m − g + 1)g
≤ ∑


>g/2

C

g

(
g/(m − g + 1)

)g/2

≤ 2g(g/(m − g + 1)
)g/2

.

Since N is the largest, for any S0, there exists j such that |S0 − Sj | < g. It follows
that

1 = P [∃j : |S0 − Sj | < g] ≤
N∑

j=1

P [|S0 − Sj | < g] ≤ N
(
4g/(m − g + 1)

)g/2
.

This implies the desired bound. �

Let δ = σ
√

(2nρ+(2g))−1 ln(N/4). Now, we can apply Lemma F.1 with the

following B , with |B| = N . We choose B ⊂ H(g, k) such that each β̄ ∈ B has
components β̄j ∈ {0, δ/

√
k}. Moreover, we assume that any two different elements

β̄, β̄ ′ ∈ B satisfy the separation condition ‖β̄ − β̄ ′‖2 ≥ δ. Lemma F.3 implies that
we can find such a set B (for each j in Lemma F.3, we define a corresponding
β̄ ∈ B with supp(β̄) = GSj

) so that N = |B| ≥ (m − g + 1)0.5g/(4g)0.5g .
We observe that B has the property that for any two different elements β̄ ,

β̄ ′ ∈ B:

ρ−(2g)
nδ2

2σ 2 ≤ nρ−(2g)
‖β̄ − β̄ ′‖2

2

2σ 2 ≤ ‖X(β̄ − β̄ ′)‖2
2

2σ 2

≤ nρ+(2g)
‖β̄ − β̄ ′‖2

2

2σ 2 ≤ ρ+(2g)
nδ2

σ 2 .

Therefore, in Lemma F.1, we have

�B ≤ sup
β̄,β̄ ′∈B

DKL(pβ̄‖pβ̄ ′) = sup
β̄,β̄ ′∈B

‖X(β̄ − β̄ ′)‖2
2

2σ 2

≤ ρ+(2g)
nδ2

σ 2 ≤ 0.5 ln(N/4).
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This means if we pick ε = nρ−(2g)δ2 in Lemma F.1, then ∀β̄ ′ ∈ R
p : |{β̄ ∈

B :‖X(β̄ − β̄ ′)‖2
2 < ε}| ≤ 1 and thus

1

N

∑
β̄∈B

Ey∼pβ̄

∥∥X(β̄ − β̂(y)
)∥∥2

2 ≥ 0.5ε = σ 2 ρ−(2g)

4ρ+(2g)
ln(N/4),

which proves the first lower-bound of the theorem.
Note that the estimator β̂(y) does not have to be in H(g, k). In order to see

that the first lower bound implies the second lower bound, let β̂ ′(y) be the best
2-norm approximation of β̂(y) in H(g, k) [i.e., keeping the g groups of β̂(y) with
largest values]. Then simple algebra implies that ‖β̂(y)− β̄‖2

2 ≥ ‖β̂ ′(y)− β̄‖2
2/3 ≥

(3nρ+(2g))−1‖X(β̂ ′(y)− β̄)‖2
2. Now the first lower-bound of the theorem, applied

to ‖X(β̂ ′(y) − β̄)‖2
2, implies the desired lower bound for ‖β̂(y) − β̄‖2

2.
Finally, we observe that the above definition of B only considers the effect of

choosing g out of m groups. We intentionally skipped the effect of estimating
coefficients within any selected k features to simplify the calculation. From the
proof of Lemma F.3, it is not hard to see that we can incorporate this effect and
increase lnN to �(k + g ln(m/g)). This will give an improved lower bound.
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