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Abstract

Several recent works have explored the benefits of

providing more detailed annotations for object recogni-

tion. These annotations provide information beyond object

names, and allow a detector to reason and describe indi-

vidual instances in plain English. However, by demanding

more specific details from annotators, new difficulties arise,

such as stronger language dependencies and limited anno-

tator attention. In this work, we present the challenges of

constructing such a detailed dataset, and discuss why the

benefits of using this data outweigh the difficulties of col-

lecting it.

1. Introduction

Object recognition is a fundamental problem of com-

puter vision, and it is notorious for needing large amounts

of annotation. While some works ask how to learn with less

supervision [14, 8], a recent increase in availability of inter-

net based annotators also lets us ask, what can we do with

more data? Certainly we can collect more examples to train

more reliable models for categorization, but we can also col-

lect more detailed annotations for examples. These details

could include the layout of an object, and descriptions of its

underlying properties, such as pose, composition, or func-

tionality.

Several works [12, 17, 9, 4] have already taken advan-

tage of large annotation sources, and LabelMe [12] and Lo-

tusHill [17] are examples from two ends of the spectrum.

LabelMe allows anyone to provide rough polygons that lo-

calize objects or scene elements, with no monetary reward.

LotusHill provides rich object descriptions that range from

object labels to constituent parts, segmentations, and other

details. However, these finely detailed annotation requires

expensive trained workers.

Mechanical Turk [1] provides a balance between the low

cost of LabelMe and the high quality of LotusHill. Re-

searchers can use Mechanical Turk to pay semi-qualified

workers to produce detailed but not pixel-perfect annota-

tions. When collecting increasingly more detailed anno-

tations there are many inherent difficulties that arise from

potential ambiguities and more demanding requirements of

the tasks.

In this work, we first discuss the benefits of more detailed

annotations, then we give an overview of the challenges of

collecting this data and our solutions for many of the prob-

lems. Finally, we give a summary of the resulting datasets.

2. Benefits of Richer Annotation

Object recognition, typically posed as the problem of

categorization, has made great progress in recent years. For

many applications, categorization has only been a necessary

stepping stone, where ultimately these applications need

richer descriptions of the objects they see. If a robot de-

tects an alligator, it should also know that it is dangerous,

and identify which end can bite. Several threads of work

have made strides to introduce richer representations along

these lines. Human recognition has enjoyed most of the fo-

cus here, with pose [11] and face [9] recognition. However,

recent work has also considered a richer description for ob-

jects in general as well.

Making semantic knowledge explicit in object represen-

tations allows recognition systems to describe, in words,

what they see. Furthermore, such a representation can en-

code the necessary information to directly infer other prop-

erties that are not visually obvious, such as functionality.

Lampert et al. [10] take the most basic approach and as-

signs semantic properties to each category, and it is assumed

that each instance within a category has the same properties.

The power of this representation is that these properties may

be shared across categories, allowing predictions about un-

familiar objects. The annotation required here is compara-

ble to annotating category labels, with the only additional
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overhead of writing a table of properties for each category.

Works such as [9, 7] instead want to make distinctions

between instances of objects, for faces or general domains

of objects. This instance based learning requires more anno-

tation, but it comes with a significant benefit. These meth-

ods can now give finer descriptions of each object they are

presented. This allows them to direct attention to interest-

ing or unusual properties of an object, such as “this boat

is missing its sail”. They can even produce plain English

comparisons between two objects, such as “this face is more

feminine than this other face.” Each training example is la-

beled with a set of binary attributes, which represent some

semantics, or properties that have some underlying meaning

that can be expressed with words.

Curiously, by collecting more annotations for some ob-

jects and learning classifiers that generalize across cate-

gories, we need less data in the long run. Since this pro-

duces representations that are designed to be stable across

categories, we can describe unfamiliar objects without any

training examples, and even learn new category models with

little or no training examples.

However, these binary annotations gives no spatial infor-

mation, such as where an animal’s legs are or the extent of

its fur. Learning from these binary attributes is akin to us-

ing weakly annotated images for categorization, where the

existence of the object is known, but not its location. While

some works have addressed this problem for objects [8],

having additional localized data can ease the learning prob-

lem. In particular, without spatial information, it is difficult

to avoid relying on correlated or loosely related features. It

is especially important for classifiers to learn to only use

features directly related to a property when learning to gen-

eralize across categories. We begin exploring the use of

spatial annotations in [6].

Including spatial information not only eases the learn-

ing problem, but it also opens opportunities to learn even

richer object representations. This includes predicting ex-

plicit part configurations, which has already been explored

for human recognition. In fact, Bourdev and Malik [3] re-

cently showed that these part annotations can even improve

detection performance for humans. From these part layouts,

we can predict descriptions of an object’s pose or the action

it’s performing. Furthermore, it may help improve segmen-

tations to determine the extent and shape of an object. All of

these abilities provide a better understanding of the objects

found in images.

To facilitate future research of these semantic represen-

tations, we introduce the CORE (Cross-category Object

REcognition) dataset [6], which intends to supersede the

dataset of Farhadi et al. [7], which we refer to as ATT09.

3. Data Overview

Our dataset collection experience covers four types of

data: images, binary attributes, polygon labels, and seg-

mentation masks. We introduce each of these types here,

and briefly motivate their uses.

Images: To collect images for the CORE dataset, we use

pre-filtered images from ImageNet [4]. ImageNet provides

images that are arranged by a hierarchy of object categories,

and ensures with high probability that an image contains the

category of interest. While ImageNet eases the difficulty of

sifting through many irrelevant images, it is still necessary

to remove many unsuitable images to obtain a representative

and diverse set of images of objects found in the “wild.”

Binary Attributes: The most basic annotation type is

the binary attribute, which indicates the existence or lack of

a certain property. These properties include anything that a

person might mention when describing an object: its shape,

constituent parts, compositional material, viewpoint, pose,

or surrounding context. They are cheap to collect, and are

helpful for describing properties without spatial informa-

tion, such as an object’s functionality or its overall state.

The interface for labeling these can be seen in Figure 1a.

Polygon Labels: As discussed in section 2, there are

many potential benefits from localized areas of interest. The

interface can be seen in figure 1b. This flash based web in-

terface was graciously provided by Alex Sorokin [15], and

is freely available.

First, we obtain a polygon for each object, giving a rough

outline that is more detailed than the bounding boxes pro-

vided in most datasets. Then, for each object, we have an

annotator draw polygons for each part. These are the key

component for learning a model that predicts an object’s

configuration. A fixed list of parts is provided to the anno-

tator, and the list is determined by the category of the object

to be labeled.

Material Segmentation Masks: The final type of an-

notation is a segmentation mask for materials. Being able

to localize different materials restricts the possible locations

and types of objects in an image. Furthermore, predicting

the material of an unfamiliar object gives invaluable infor-

mation about its place in a taxonomy of objects. We use a

segmentation mask rather than a polygon, because materi-

als can have holes, be disconnected, and have other unusual

spatial behavior. An example of the annotation task can be

seen in Figure 1c, again with the use of the annotation tool

from [15].

4. Quality Issues

When collecting these detailed annotations, we found a

characteristic set of difficulties, which stem from two main



(a) Binary Attributes

(b) Polygons

(c) Segmentation Masks

Figure 1. Example interfaces for each of the tasks. The binary

interface (1a) includes an “unsure” option to flag potential confu-

sion. The part list (1b) are tailored to the object of interest. In

contrast, the list of materials includes any possible material found

in images.

sources: the quality of the annotator and the complexity of

the task. Each of these themes will recur throughout this

section:

Annotators: The primary concerns with the annotators

are their motivation and ability to understand the task. Fur-

thermore, the annotators are not computer vision experts,

and they are not aware of which mistakes are more costly to

our machine learning techniques. Therefore even if they are

well motivated they may not make the best decision when a

subtle judgment is required. An example would be how to

draw a polygon around an object that is partially occluded

by a pole. While this can be addressed in the instructions,

it is not possible to enumerate every special case, especially

because annotators often ignore long detailed instructions

(see Section 6.2).

Task Complexity: In addition to annotators, the task it-

self may cause confusion and present some difficulty. When

asking for detailed annotations, the decision boundaries be-

come less clear, such as how far should an object’s torso

extend, or are bats’ wings covered in skin or fur. These

can lead to inconsistent results. Furthermore, when asking

for many annotations for a given image, the annotators may

begin to miss details, simply because they cannot attend to

every detail.

4.1. Collecting Images

The first hurdle of any dataset is collecting a diverse set

of images that not only facilitate learning robust models,

but also thoroughly evaluate the generalization capabilities

of the learned model. For example, relying on a single

source for images of cars, such as Flickr [2], can introduce

a skewed view of cars, the majority of which come from

car shows or race tracks, where the cars are exotic, interest-

ing, and rarely found in a natural street scene. In general, a

dataset of images has to avoid the following pitfalls:

Canonical Poses: Humans are often photographed from

the front, and cars from the side and front. Any robust

model should be insensitive to changes in viewpoint, and

the dataset should encourage this with a variety of poses

and viewpoints.

Archetypal Examples: As mentioned with the Flickr

car bias, we want to avoid collections that do not fully rep-

resent the objects as they are found “in the wild”.

Foreground Only: It is typically helpful to avoid images

that contain only an object, without a surrounding scene,

which is a common criticism of older datasets. Evaluating

with many of these images won’t fully evaluate the ability to

localize, and a system could learn an artificial spatial prior.

Furthermore, learning from scene based images may allow

taking advantage of contextual information.



Stylized Images: Many images with solid backgrounds

and edited colormaps or appearance can also cause difficul-

ties. These types of images are more likely for inanimate

objects such as household items, which introduces a clear

bias.

Annotators of ImageNet were not made aware of these

criteria, since their goal was to simply filter the images, so

we carefully select images by hand to avoid the above is-

sues.

4.2. Binary Attributes

Given an object, the annotator chooses whether a set of

binary properties holds for each object. To handle cases

where a particular attribute does not make sense, or there is

some unexpected confusion, we add an “unknown/unsure”

checkbox. This gives the annotator an opportunity to assert

their uncertainty, allowing us to identify difficult attributes

without having to reject conflicting annotations. For train-

ing, these “unsure” labels can be used to ignore potentially

unhelpful training examples.

The main source of labeling inconsistency is the view-

point attribute. This attribute indicates which portion of

the object is visible. The main difficulty here appears to be

communicating the task to the annotator in simple English.

However, results improved significantly between after up-

dating the definition of the task. The first attempt asked

the annotator to indicate which way the object was facing,

defined by the “canonical forward facing direction” with re-

spect to the camera. For the first airplane in Figure1a, the

label would be “into the camera, and to the right”. Clearly

this description can be quite confusing. We get much better

results by updating the instructions to ask for which sides

of the object are visible, such as the front, and right side, in

Figure 1a.

Another interesting source of mistakes appears to stem

from issues with human attention. When presented with an

image, annotators often miss obvious attributes, such as a

cat is furry, and they also miss rarely occurring attributes,

such as a bottle being square. By changing the task slightly,

we might be able to avoid this issue. For example, one task

might present several images, and the annotator labels the

same attribute for each image.

4.3. Polygon Labels

We considered two different polygon tasks, labeling ob-

jects and object parts, and got quite different results for

each. Annotators seem to thoroughly enjoy labeling poly-

gons around objects, and they generally did a very good job.

We had to reject very few images, only 5%, and annotator

comments were typically positive. In contrast, getting good

part annotations was much more difficult.

Two common problems occur with the part annotation.

First, the annotators only label a portion of the parts, which

may simply be an issue of motivation or possibly due to the

attention issue mentioned above. These can be resolved by

breaking up the task. Another problem appears to be con-

fusion about the meaning of part names, which appears to

be a language issue. By only using annotators from the US,

these problems decreased, but so did the overall throughput.

4.4. Masks

Obtaining segmentation masks for materials proved to

be the most difficult of all the tasks. The requirements for

a segmentation mask are higher than polygons, as they re-

quire near pixel accuracy. As with MSRC [13] and the Pas-

cal Segmentation task [5], we are forced to designate areas

in the mask where the value is unknown, typically along

material or object boundaries. In our case, we erode the

masks so that evaluation and learning are less likely to use

incorrectly labeled pixels.

Furthermore, choosing the material labels posed some

difficulty. Without detailed knowledge of an object in-

stance, it is difficult to visually distinguish particular ma-

terials: Is a bottle made of glass or transparent plastic, is the

body of a car plastic or painted metal, and what exactly are

blimps made out of? This suggests that that if humans can-

not make this distinction, then it is unreasonable to expect a

computer to succeed.

Fortunately, we found that while the names may have

caused confusion, the material masks did not span across

multiple physical materials. This allowed us to easily adjust

the names afterwards without changing the segmentation.

5. Quality Assurance

Many of the previously mentioned issues can be ad-

dressed by grading the results or only accepting results from

trusted annotators. Grading is more robust, since it allows

every instance to be inspected, at the cost of requiring more

time or money. Establishing trust, through qualification

tasks or a positive history, provides a cheaper way to iden-

tify good annotators, but is not completely reliable. There-

fore, we find a trade-off between these two, giving us good

results at lower costs.

Grading: Each of the previous annotation tasks fall into

one of two classes where quality can be verified efficiently:

1. Multiple annotations can be compared easily: By com-

paring multiple annotations for the same object, incon-

sistencies can be identified quickly.



2. Quick visual inspection: The amount of time to visu-

ally inspect an annotation is significantly less than the

time to perform the annotation itself.

For binary tasks, we collect labels for each object from

multiple annotators, allowing us to resolve the disagreement

with a majority vote, or flag it for manual inspection. This

automatic comparison is best suited for binary annotations

because visual inspection takes just as much time as the ac-

tual annotation. Furthermore, obtaining the labels is cheap

and fast, and comparison is possible with simple boolean

expressions.

In contrast, each of the localization tasks are time con-

suming and expensive to collect. Thus, collecting multiple

annotations can be prohibitive. Also, comparing two poly-

gons may be possible, but is not always reliable. Fortu-

nately, visually verifying each of these annotations can be

done at a glance, so grading is still feasible.

Establishing Trust: To reduce the number of potentially

bad annotators and avoid inspecting every annotation, we

can establish a certain level of trust in two ways. First, we

can require them to pass a qualification task, which ensures

that they have some grasp of the English language, and that

they understand the task. Another consequence is that anno-

tators looking for quick payment with little work are turned

away by the perceived inconvenience of taking the qualifi-

cation test. A second method to identify good annotators is

to simply accept all work from an annotator that has sub-

mitted a certain number of tasks and demonstrated that they

will be accepted with high probability. For labeling poly-

gons, we accept everything from annotators that we have

given an acceptance rate of 90% for 10 or more annotations

for a particular task.

6. Results and Discussion

In this section, we give a qualitative and quantitative

analysis of our annotation tasks. There are several common

factors to consider when collecting data on mechanical turk.

Quality, cost, and time are three interdependent measures

for good annotations. Here, we spent little energy choos-

ing an optimal pay rate, and time was of minimal concern,

so we focused mainly on quality assurance. Sorokin and

Forsyth [16] give a more detailed overview of the trade-off

between these criteria.

To characterize these factors, we first present a general

set of statistics for each task. Throughput, cost, pay rate and

quality are the most representative criteria. Each of these

can be found in Table 1.

6.1. ATT09

To provide a comparison with previous work on collect-

ing semantic attributes, we compare to the ATT09 dataset.

There are a total of 15980 objects from the Pascal and Ya-

hoo datasets, with 81 unique attributes (64 of which are des-

ignated for experiments). The acceptance rate is only an es-

timate here, based on the agreement with experts on a subset

of the data. This previous work uses a less stringent qual-

ification process, and more importantly does not filter out

international workers. This is reflected in the lower accep-

tance rate when compared to the CORE binary annotations.

6.2. CORE

To summarize the CORE dataset, we collect 2780 im-

ages, containing 3192 labeled objects from 28 categories.

For these objects, we collect a total of 26695 polygons from

one of 71 possible part types, and there are 34 possible bi-

nary attributes. Finally, there are 1052 images labeled with

material masks, with 10 different material labels. Tables

2,3,4 give more details for the attributes and categories col-

lected.

Quality Results: We found that the quality of annotation

is heavily dependent on the task itself. For example, even

with much lower pay rate, the object annotations have the

highest acceptance rate. When considering the part polygon

annotation, it seems that this task is too daunting for some

annotators. The results from Figure 3 support this hypoth-

esis, as we found that many of the bad annotations result

from being completed too hastily. To resolve this, it may be

helpful to split the task in half, and request annotations for

a subset of the parts.

Out of curiosity, we performed a simple experiment to

see how carefully annotators actually read the directions.

For the part annotation task, we included a line at the end

of the instructions asking the annotator to write in the com-

ment box “I Understand the Directions” with the first sub-

mitted task. Only 20.47% of the annotators actually fol-

lowed these instructions. Unfortunately, this was not a help-

ful indicator of annotator reliability.

Suitable Tasks: This leads to a discussion of which

tasks are more suitable for Mechanical Turk, and what ex-

pectations to set for these tasks. First, getting pixel perfect

annotations either requires paying a small pool of qualified

works a high rate per task, or rejecting a large number of

tasks. Therefore, for these sorts of tasks, Mechanical Turk

may not be the best solution. The average worker is how-

ever willing to provide moderately accurate results, as char-

acterized by column 2 of Figure 2, quickly and at a low cost.

Furthermore, tasks with a small language dependence

are appealing for Mechanical Turk, because many of the



Task Class Task Type Time/Task (s) Cost/Task ($) Pay Rate ($/h) Accept Rate (%) Quantity Cost ($)

Binary
ATT09 42 0.03 2.59 81.4 15980 559.30

CORE 73 0.04 1.98 90.7 9576 430.92

Polygon
Object 160 0.03 0.67 95.0 2780 97.30

Part 286 0.10 1.26 75.4 3192 351.12

Mask Material 372 0.07 0.68 78.3 1052 81.00
Table 1. Summary of statistics for tasks: This table shows that some tasks are more difficult than others. Although the pay rate for part

polygons is twice as high as object polygons, the quality is significantly lower. The difference in times between binary attributes for ATT09

and CORE can be explained by a more stringent qualification process, and is reflected in the acceptance rates.Total cost takes into account

Mechanical Turk commissions.

Figure 3. This graph shows a histogram of the amount of time

spent on good and bad object part annotations. It is clear that many

annotators did not want to spend sufficient time to produce high

quality results. This may be an indication that higher pay could

produce better results. This disparity in annotation time is not as

prominent for the other tasks.

annotators are not native English speakers. Unfortunately,

for many of our tasks, we are interested in the explicit se-

mantics related to objects, implying a language dependence.

The only other solution to leverage the potentially untapped

workers is to provide the tasks in a variety of languages.

7. Conclusion

We have presented a new dataset that provides rich de-

scriptions of object to encourage new areas of research

in object representations and recognition. After resolving

many of the difficulties of collecting these detailed annota-

tions, we have the tools in place to allow us to expand the

dataset to new domains and categories, allowing the capa-

bilities of recognition systems to expand as well.

With this case study, we have also identified some of the

shortcomings and limitations of Mechanical Turk, which is

a valuable tool that is often tricky to tame.

Object Polygons

Name #Obj #parts Name #Obj #parts

airplane 104 9.49 dolphin 151 6.17

alligator 122 8.90 eagle 107 8.01

bat 121 8.55 elephant 117 11.97

bicycle 103 6.62 elk 112 11.47

blimp 100 5.29 hovercraft 105 4.81

boat 110 3.76 jetski 110 3.64

bus 113 11.32 lizard 110 9.27

camel 129 12.15 monkey 117 11.90

car 110 8.15 motorcycle 87 9.03

carriage 105 5.43 penguin 151 6.95

cat 104 11.50 semi 110 11.51

cow 146 10.93 ship 105 4.29

crow 112 8.08 snowmobile 133 5.99

dog 103 13.17 whale 95 4.82
Table 2. All 28 Objects in the CORE dataset. For each category we

list the number of objects (#Obj) and the average number of parts

annotated for each instance (#parts). Each category has a rich list

of parts, although some categories such as jetskis and ships have

smaller lists of distinctive parts.
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harness 1 41 tail wing 1 89

head 15 1618 torso 15 1566

headlight 4 293 track 1 59

headlights 1 91 trailer 1 82

horn 2 109 trunk 1 91

hull 3 309 tusk 1 41

hump 1 96 veh wing 1 103

jet engine 1 52 wheel 8 709

land gear 1 38 window 4 136

leg 13 1235 windsh 3 189

lic plate 4 236 wing 4 438

lifeboat 1 29
Table 4. There are 71 parts in CORE dataset. We also include a

list of the number of categories that have this part (#Cat) and the

number of objects that are assigned this part (#Objs).


