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1 Introduction

The study of b-flavored mesons made possible our current understanding of quark flavor
violation in the Standard Model (SM) [1, 2]. It is an ongoing endeavour to map out the
flavor sector at the electroweak scale and beyond, and possibly thereby gaining insights on
the origin of flavor.

In this effort, flavor changing neutral current-induced exclusive B decays into dileptons
are important modes because of their sensitivity to physics beyond the SM and their
accessibility at current collider experiments and possible future high luminosity facilities [3–
6].

We focus in this work on the semileptonic decays B̄ → K̄∗l+l− with l = e, µ. Their
branching ratios are measured at O(10−7 − 10−6) [7], consistent with the SM [8]. Beyond
the rate, several observables can be obtained from the rare decays, in particular when
analyzed through B̄ → K̄∗(→ K̄π)l+l− [9]. The presence of multiple observables is advan-
tageous because they are, in general, complementary in their sensitivity to the electroweak
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couplings, and they provide opportunities to control uncertainties. This is even more im-
portant nowadays, as flavor physics data are favoring the amount of fundamental flavor
violation being at least not far away from the one in the SM, and require a certain level of
precision to be observed.

Recently, data have become available on B̄ → K̄∗l+l− decay distributions in the
dilepton invariant mass,

√
q2, from the experiments BaBar [10, 11], Belle [12] and CDF [13].

These experimental studies cover essentially the full kinematical dilepton mass range, with
the exception of the regions around q2 ∼ m2

J/ψ and q2 ∼ m2
ψ′ . Here, cuts are employed

to remove the overwhelming background induced by B̄ → K̄∗(c̄c) → K̄∗l+l− from the
dominant charmonium resonances (c̄c) = J/ψ, ψ′.

Most theoretical works on B̄ → K̄∗l+l− decays over the past years have focussed on
the region of large recoil, that is, small q2 . m2

J/ψ. However, at low recoil (large q2 & m2
ψ′)

dedicated studies are lacking with a similar QCD-footing as the ones at large recoil, where
QCD factorization (QCDF) applies [14, 15]. It is the goal of this work to fill this gap and
benefit from the incoming and future physics data from the low recoil region as well.

We use the heavy quark effective theory (HQET) framework by Grinstein and Pir-
jol [16], which is applicable to the low recoil region, where

√
q2 is of the order of the mass

of the b-quark, mb, and the emitted vector meson is soft in the B mesons rest frame. The
original application was to extract the Cabibbo Kobayashi Maskawa (CKM) matrix ele-
ment Vub by relating the dilepton spectra of B̄ → ρlν to those in B̄ → K̄∗l+l− decays.
The framework has also been used previously to study the implications of the sign of the
forward-backward asymmetry in B̄ → K̄∗l+l− decays being determined SM-like for large
q2 [17], see also [18] for relating B̄ → K̄l+l− to B̄ → K̄νν̄ decays. Here, we work out and
analyze in detail distributions of B̄ → K̄∗l+l− decays in this low recoil framework and give
predictions within the SM and beyond.

The description of B̄ → K̄∗l+l− decays at low recoil is based on two ingredients: the
improved Isgur-Wise form factor relations [16, 19], going beyond the original ones [20],
and an operator product expansion (OPE) in 1/Q, where Q = (mb,

√
q2) [16]. The latter

allows to include the contributions from quark loops, most notably charm loops in a model-
independent way. Both ingredients are first principle effective field theory tools and allow to
obtain the B̄ → K̄∗l+l− matrix element in a systematic expansion in the strong coupling
and in power corrections suppressed by the heavy quark mass. The implementation of
continuum and resonance c̄c effects from e+e− → hadrons data [21] suggests no large
duality violation at least above the ψ′, supporting the aforementioned OPE.

We work to lowest order in Λ/mb, however, the actual leading power corrections to the
decay amplitudes arise only at order αsΛ/mb or with other parametric suppression factors,
and amount only to a few percent.

The plan of the paper is as follows: In section 2 we give the electroweak Hamiltonian
responsible for b → sl+l− processes and review the observables in B̄ → K̄∗l+l− decays.
The low recoil framework is summarized in section 3, where the B̄ → K̄∗l+l− transversity
amplitudes and observables are computed and correlations are pointed out. SM predictions
and the comparison with the data are given in section 4. We conclude in section 5. In
several appendices we give formulae and detailed input for our analysis.
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2 Generalities

We define the short distance couplings entering b→ sl+l− decays in section 2.1 and intro-
duce in section 2.2 the observables in B̄ → K̄∗l+l− decays, where the former can be tested.

2.1 Quark level

For the description of processes induced by b → sl+l− we use an effective ∆B = 1 elec-
troweak Hamiltonian

Heff = −4GF√
2
VtbV

∗
ts

∑
i

Ci(µ)Oi(µ) + h.c., (2.1)

which consists of the higher dimensional operators Oi and their respective Wilson coef-
ficients Ci. Here, µ denotes the renormalization scale, GF is Fermi’s constant and VtbV

∗
ts

collects the leading flavor factors of the SM encoded in the CKM matrix elements Vij . We
neglect subleading contributions of the order VubV ∗us, hence, there is no CP violation in the
SM in the decay amplitudes. We also set the strange quark mass to zero.

For the decays b → sl+l− the electromagnetic dipole (O7) and semileptonic four-
fermion (O9,10) operators are the most relevant:

O7 =
e

(4π)2
mb [s̄σµνPRb]Fµν , O8 =

gs
(4π)2

mb [s̄σµνPRT ab]Gaµν ,

O9 =
e2

(4π)2
[s̄γµPLb]

[
l̄γµl

]
, O10 =

e2

(4π)2
[s̄γµPLb]

[
l̄γµγ5l

]
, (2.2)

where PL,R denote chiral projectors, mb is the MS mass of the b-quark and Fµν(Gaµν) is
the field strength tensor of the photon (gluons a = 1, . . . , 8). The contributions from the
gluonic dipole operator O8 enter the semileptonic decay amplitude at higher order in the
strong coupling gs, and have a significantly reduced sensitivity to New Physics as compared
to those from O7,9,10. For the current-current and QCD-penguin operators O1...6 we use the
definitions of ref. [22]. We call the set of operators eq. (2.2) plus the four-quark operators
O1...6 the SM basis, and stay in this work within this basis.

The goal of this work is to extract from b-physics data the coefficients C7,9,10 and test
them against their respective SM predictions. All other Wilson coefficients are fixed to
their respective SM values. We restrict ourselves to real-valued Wilson coefficients, hence
allow for no CP violation beyond the SM. We made this choice because existing CP data on
the b→ sl+l− transitions [7], which are consistent with our assumption, are currently quite
limited, have rather large uncertainties, and the inclusion of phases doubles the number of
parameters in the fit. We hope to come back to this in the future.

In the following we understand all Wilson coefficients being evaluated at the scale
of the b-quark mass. In the SM at next-to-leading order their values are approximately,
for µ = mb,

CSM
7 = −0.3, CSM

9 = 4.2, CSM
10 = −4.2. (2.3)
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The coefficient of O7 is suppressed with respect to the ones of O9,10, a feature that holds
in many extensions of the SM as well, and is also respected by the data. This hierarchy in
coupling strengths is beneficial for controlling theoretical uncertainties, see section 3.

We neglect lepton flavor non-universal effects, hence, the couplings to l = e and l = µ

are considered to be equal. For recent works exploiting the possibility that New Physics
affects the final state electron and muon pairs differently, see, e.g., [23]. Since the decays
b→ sτ+τ− are experimentally difficult and have not been seen so far, we do not consider
taus and can neglect the lepton masses.

2.2 The B̄ → K̄∗l+l− observables

Angular analysis offers the maximal information which is accessible from the decay via
B̄ → K̄∗(→ K̄π)l+l−. For an on-shell K̄∗ the differential decay width can be written
as [9, 24]

d4Γ
dq2d cos θld cos θK∗dφ

=
3

8π
J(q2, cos θl, cos θK∗ , φ), (2.4)

where the lepton spins have been summed over. Here, q2 is the dilepton invariant mass
squared, that is, qµ is the sum of pµ

l+
and pµ

l− , the four momenta of the positively and
negatively charged lepton, respectively. Furthermore, θl is defined as the angle between
the negatively charged lepton and the B̄ in the dilepton center of mass system (c.m.s.) and
θK∗ is the angle between the Kaon and the B̄ in the (K−π+) c.m.s.. We denote by pi the
three momentum vector of particle i in the B̄ rest frame. Then, φ is given by the angle
between pK− ×pπ+ and pl− ×pl+ , i.e., the angle between the normals of the (K−π+) and
(l−l+) planes.

The full kinematically accessible phase space is bounded by

4m2
l 6 q2 6 (mB −mK∗)2, −1 6 cos θl 6 1, −1 6 cos θK∗ 6 1, 0 6 φ 6 2π, (2.5)

where ml,mB and mK∗ denote the mass of the lepton, B meson and the K∗, respectively.
The dependence of the decay distribution eq. (2.4) on the angles θl, θK∗ and φ can be

made explicit as

J(q2, θl, θK∗ , φ) = Js1 sin2 θK∗ + Jc1 cos2 θK∗ + (Js2 sin2 θK∗ + Jc2 cos2 θK∗) cos 2θl
+ J3 sin2 θK∗ sin2 θl cos 2φ+ J4 sin 2θK∗ sin 2θl cosφ

+ J5 sin 2θK∗ sin θl cosφ+ J6 sin2 θK∗ cos θl + J7 sin 2θK∗ sin θl sinφ

+ J8 sin 2θK∗ sin 2θl sinφ+ J9 sin2 θK∗ sin2 θl sin 2φ, (2.6)

where the angular coefficients J (a)
i = J

(a)
i (q2) for i = 1, . . . , 9 and a = s, c are functions

of the dilepton mass. We suppress in the following the q2-dependence also in expressions
derived from the J (a)

i . The latter can be written in terms of the transversity amplitudes
A⊥,‖,0, see appendix A. The fourth amplitude At does not contribute in the limit ml = 0.
The transversity amplitudes at low recoil are given in the next section. The ones at large
recoil can be seen, for example, in ref. [17].
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The angular coefficients J (a)
i , or their normalized variants Ji/(dΓ/dq2) or Ji/Jj , are

observables which can be extracted from an angular analysis. This method allows to test the
SM and probe a multitude of different couplings [17, 24–27]. We focus first on rather simple
observables, which can be extracted without performing a statistics intense full angular
analysis. Afterwards, we point out opportunities of measuring the angular distribution.

Data on B̄ → K̄∗l+l− decays already exists from BaBar [10, 11], Belle [12] and
CDF [13] for the differential decay width dΓ/dq2, the forward-backward asymmetry AFB

and the fraction of longitudinal polarized K∗’s, FL. They are written as

dΓ
dq2

= 2Js1 + Jc1 −
2Js2 + Jc2

3
= |AL0 |2 + |AL⊥|2 + |AL‖ |

2 + (L↔ R), (2.7)

AFB =
[∫ 1

0
−
∫ 0

−1

]
dcos θl

d2Γ
dq2 dcos θl

/
dΓ
dq2

=
J6

dΓ/dq2
, (2.8)

FL =
|AL0 |2 + |AR0 |2

dΓ/dq2
, (2.9)

and are all distributions in the dilepton mass.
The experimental data on the q2-distributions [10–13] are currently available in q2-bins,

i.e., the decay rate is given as a list of rates 〈dΓ/dq2〉k, where we denote by 〈. . .〉k the dq2-
integration over the k-th bin. Normalized quantities such as the forward-backward asym-
metry are then delivered as 〈J6〉k/〈dΓ/dq2〉k, and likewise as 〈|AL0 |2 + |AR0 |2〉k/〈dΓ/dq2〉k
for the longitudinal polarization fraction. The binned distributions equal our definitions
eqs. (2.8) and (2.9) for flat distributions or infinitely small bin size.

Note that the J5,6,8,9, and hence AFB are CP-odd observables, which vanish in an
untagged equally mixed sample of B̄ and B decays in the absence of CP violation [17].

We also consider the transverse asymmetries A(2)
T [24] and A

(3,4)
T [25], given as

A
(2)
T =

|AL⊥|2 + |AR⊥|2 − |AL‖ |
2 − |AR‖ |

2

|AL⊥|2 + |AR⊥|2 + |AL‖ |2 + |AR‖ |2

=
1
2
J3

Js2
, (2.10)

A
(3)
T =

|AL0AL∗‖ +AR∗0 AR‖ |√(
|AL0 |2 + |AR0 |2

)(
|AL⊥|2 + |AR⊥|2

)
=

√
4J2

4 + β2
l J

2
7

−2Jc2(2Js2 + J3)
, (2.11)

A
(4)
T =

|AL0AL∗⊥ −AR∗0 AR⊥|
|AL∗0 AL‖ +AR0 A

R∗
‖ |

=

√
β2
l J

2
5 + 4J2

8

4J2
4 + β2

l J
2
7

, (2.12)

which have not been measured yet. The factor βl is given in appendix A. Here we keep
the lepton mass dependence for generality but discard it later on when discussing the low
recoil region where ml is entirely neglibile.
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We propose the following new transversity observables for the region of low recoil
(high q2)

H
(1)
T =

Re(AL0A
L∗
‖ +AR∗0 AR‖ )√(

|AL0 |2 + |AR0 |2
)(
|AL‖ |2 + |AR‖ |2

) =
√

2J4√
−Jc2 (2Js2 − J3)

, (2.13)

H
(2)
T =

Re(AL0A
L∗
⊥ −AR∗0 AR⊥)√(

|AL0 |2 + |AR0 |2
)(
|AL⊥|2 + |AR⊥|2

) =
βlJ5√

−2Jc2 (2Js2 + J3)
, (2.14)

H
(3)
T =

Re(AL‖A
L∗
⊥ −AR∗‖ AR⊥)√(

|AL‖ |2 + |AR‖ |2
)(
|AL⊥|2 + |AR⊥|2

) =
βlJ6

2
√

(2Js2)2 − J2
3

. (2.15)

As will become clear in section 3, see also appendix B, the H
(i)
T are designed to have

very small hadronic uncertainties at low recoil. While both H
(3)
T and AFB depend on J6

and probe similar short distance physics, the former has a significantly smaller theoretical
uncertainty than the latter. Note also that the numerator J5 of H(2)

T is related to the
observable S5 which has good prospects to be measured with early LHCb data of 2 fb−1 at
least in the large recoil region [28].

Different possibilities to extract the Ji from single differential distributions as well have
been outlined in [17].

3 B̄ → K̄∗l+l− at low recoil

We start in section 3.1 with the model-independent description of the exclusive heavy-to-
light decays in the low recoil region following Grinstein and Pirjol [16, 19]. After calculating
and investigating the B̄ → K̄∗l+l− transversity amplitudes in section 3.2, we work out
predictions for and correlations between the B̄ → K̄∗l+l− observables at low recoil in
section 3.3. A numerical study within the SM is given in section 4.1.

3.1 The model-independent framework

The description of B̄ → K̄∗l+l− decays at low recoil, where q2 ∼ O(m2
b), is based on the

improved form factor relations in this region and an OPE in 1/Q [16, 19]. The latter
keeps the non-perturbative contributions from 4-quark operators (s̄b)(q̄q) under control by
expanding in m2

q/Q
2. This is most important for charm quarks, since their operators can

enter with no suppression from small Wilson coefficients nor CKM matrix elements.
Following [16] we briefly sketch the derivation of the improved Isgur-Wise form factor

relations to leading order in 1/mb between the vector and the tensor current. The starting
point is the QCD operator identity (for ms = 0)

i∂ν(s̄iσµνb) = −mbs̄γµb+ i∂µ(s̄b)− 2s̄i
←
Dµ b. (3.1)

After taking the matrix element of eq. (3.1) using the form factors given in appendix C
one arrives at an exact relation between the form factors T1 and V and the matrix element

– 6 –
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of the current s̄i
←
Dµ b. The latter can be expanded in 1/mb through matching onto the

HQET currents with the heavy quark field hv:

s̄i
←
Dµ b = D

(v)
0 (µ)mbs̄γµhv +D

(v)
1 (µ)mbvµs̄hv + . . . . (3.2)

We further need

s̄γµb = C
(v)
0 (µ)s̄γµhv + C

(v)
1 (µ)vµs̄hv + . . . , (3.3)

s̄b = C
(s)
0 (µ)s̄hv + . . . , (3.4)

to express the HQET currents in eq. (3.2) through quark currents. The ellipses denote
power suppressed contributions. The Wilson coefficients C(x)

i and D
(x)
i are calculable and

known in a perturbative expansion in the strong coupling, see, e.g., [16, 29].

Taking then the matrix element of eq. (3.2) yields

〈K∗|s̄i
←
Dµ b|B〉 =

mbD
(v)
0 (µ)

C
(v)
0 (µ)

〈K∗|s̄γµb|B〉+ . . . . (3.5)

After working out the corresponding formulae involving the axial currents, the improved
Isgur-Wise relations to leading order in 1/mb including radiative corrections are obtained as

T1(q2) = κV (q2), T2(q2) = κA1(q2), T3(q2) = κA2(q2)
m2
B

q2
, (3.6)

where

κ =

(
1 +

2D(v)
0 (µ)

C
(v)
0 (µ)

)
mb(µ)
mB

. (3.7)

Here, subleading terms of the order mK∗/mB, Λ/mB are dropped and a naively anticom-
muting γ5 matrix is used. The latter allows to relate the HQET Wilson coefficients of
currents without a γ5 matrix to those containing one by replacing s̄ with s̄(−γ5) in the
matching equations. We also suppress the renormalization scale dependence of the penguin
form factors Ti and of the coefficient κ. It reads, up to corrections of O(α2

s),

κ = 1− 2
αs
3π

ln
(
µ

mb

)
. (3.8)

The relations eq. (3.6) are consistent with the ones derived in [16] at lowest order in 1/mb

after changing to the Isgur-Wise form factor basis [20].
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The inclusion of the 4-quark and gluon dipole operators leads to the effective couplings,
Ceff

7,9 [16]. They read

Ceff
9 = C9 + h(0, q2)

[
4
3
C1 + C2 +

11
2
C3 −

2
3
C4 + 52 C5 −

32
3
C6

]
(3.9)

− 1
2
h(mb, q

2)
[
7 C3 +

4
3
C4 + 76 C5 +

64
3
C6

]
+

4
3

[
C3 +

16
3
C5 +

16
9
C6

]
+
αs
4π

[
C1

(
B(q2) + 4C(q2)

)
− 3 C2

(
2B(q2)− C(q2)

)
− C8F

(9)
8 (q2)

]
+ 8

m2
c

q2

[
4
9
C1 +

1
3
C2 + 2 C3 + 20 C5

]
,

Ceff
7 = C7 −

1
3

[
C3 +

4
3
C4 + 20 C5 +

80
3
C6

]
+
αs
4π

[
(C1 − 6 C2)A(q2)− C8F

(7)
8 (q2)

]
, (3.10)

and we recall that we use the 4-quark operators O1...6 as defined in [22]. The functions
A,B,C and F

(7)
8 , F

(9)
8 can be seen in [30] and [14], respectively.1 The lowest order charm

loop function is given as

h(0, q2) =
8
27

+
4
9

(
ln
µ2

q2
+ iπ

)
, (3.11)

which is simply the perturbative quark loop function for massless quarks. The m2
c/Q

2

corrections are given by the last line of eq. (3.9). Loops with b quarks stemming from
penguin operators are taken into account by the function

h(mb, q
2) =

4
9

(
ln
µ2

m2
b

+
2
3

+ z

)
− 4

9
(2 + z)

√
z − 1 arctan

1√
z − 1

, z =
4m2

b

q2
. (3.12)

We stress that the effective coefficients eqs. (3.9)–(3.10) are different from the ones used in
the low q2 region given in [14].

The product mb κ Ceff
7 is independent of the renormalization scale [16]. As we will see in

the next section, this is important because contributions from Ceff
7 enter the B̄ → K̄∗l+l−

amplitudes in exactly this combination. The µ-dependence of Ceff
9 is very small and induced

at the order α2
s C1,2 and αs C3,...6.

The heavy quark matrix elements 〈K∗|s̄i
←
Dµ (γ5)hv|B〉 are the only new hadronic in-

put required at order Λ/mb for both the form factor relations and the matrix elements
related to the electromagnetic current, Ceff

7,9 [16]. However, we refrain from including these
explicit Λ/mb corrections. Firstly, the requisite additional matrix elements are currently
only known from constituent quark model calculations [19, 33] bringing in sizable uncer-
tainties. More importantly, the leading power corrections to the form factor relations are
parametrically suppressed, see section 3.2. Note that the ones to the OPE arise only at
O(αsΛ/mb,m

4
c/Q

4). Hence, the power corrections have a reduced impact on the decay
observables. Quantitative estimates are given in section 4.1.

Note that explicit spectator effects are power suppressed and absent to the order
we are working. They only appear indirectly in the form factors, lifetime and meson

1Note that in [30] a different sign convention has been used than in the previous works [31, 32].
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masses. Hence, the formulae can be used for charged and neutral B̄ → K̄∗l+l− decays,
and B̄s → φl+l− decays after the necessary replacements.

3.2 The transversity amplitudes

Application of the form factor relations in eq. (3.6) and using the effective coefficients
eqs. (3.9)–(3.10) yields the low recoil transversity amplitudes to leading order in 1/mb as

AL,R⊥ = +i
{

(Ceff
9 ∓ C10) + κ

2m̂b

ŝ
Ceff

7

}
f⊥, (3.13)

AL,R‖ = −i
{

(Ceff
9 ∓ C10) + κ

2m̂b

ŝ
Ceff

7

}
f‖, (3.14)

AL,R0 = −i
{(
Ceff

9 ∓ C10

)
+ κ

2m̂b

ŝ
Ceff

7

}
f0, (3.15)

where the form factors enter as

f⊥ = NmB

√
2λ̂

1 + m̂K∗
V, f‖ = NmB

√
2 (1 + m̂K∗)A1,

f0 = NmB
(1− ŝ− m̂2

K∗)(1 + m̂K∗)2A1 − λ̂ A2

2 m̂K∗(1 + m̂K∗)
√
ŝ

, (3.16)

and the normalization factor reads

N =

√
G2

F α
2
e |λt|2mB ŝ

√
λ̂

3 · 210 π5
. (3.17)

Here, we switched to the dimensionless variables ŝ = q2/m2
B, m̂i = mi/mB and λ̂ =

1 + ŝ2 + m̂4
K∗ − 2 (ŝ+ ŝm̂2

K∗ + m̂2
K∗). We also suppressed for brevity the dependence on the

momentum transfer in the form factors and the effective coefficients. We further neglected
subleading terms of order mK∗/mB in the Ceff

7 -term only.
Interestingly, within our framework (SM basis, lowest order in Λ/mb) the transversity

amplitudes eqs. (3.13)–(3.15) depend in exactly the same way on the short distance coef-
ficients. Consequently, only two independent combinations of Wilson coefficients can be
probed, related to |ALi |2 ± |ARi |2, since AL and AR do not interfere for massless leptons,
see appendix A. The independent combinations can be defined as

ρ1 ≡
∣∣∣∣Ceff

9 + κ
2m̂b

ŝ
Ceff

7

∣∣∣∣2 + |C10|
2 , (3.18)

ρ2 ≡ Re
{(
Ceff

9 + κ
2m̂b

ŝ
Ceff

7

)
C∗10

}
. (3.19)

ρ1 and ρ2 are largely µ-scale independent. The dominant dependence on the dilepton mass
in ρ1,2 stems from the 1/ŝ-factor accompanying Ceff

7 . The short distance parameter ρ1

equals up to Λ/mb corrections the parameter Neff introduced in ref. [16].
The relation between all three transversity amplitudes makes the low recoil region

overconstrained and very predictive. We work out the corresponding implications in sec-
tion 3.3. Note that in the large recoil region two amplitudes are related as AX‖ = −AX⊥ by
helicity conservation up to corrections in 1/EK∗ in the SM basis [34].
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The leading power corrections of the OPE arise at O(αsΛ/mb,m
4
c/Q

4) ∼ few percent.
The Λ/mb corrections to the amplitudes from the form factor relations are parametrically
suppressed as well, by small dipole coefficients, such that we can estimate the leading power
correction from the form factor relations to the decay amplitudes as order (2Ceff

7 /Ceff
9 )Λ/mb.

So in general, the dominant power corrections to the transversity amplitudes are of the
order few percent.

We simulate the effect of the 1/mb corrections by dimensional analysis when estimating
theoretical uncertainties in section 4.1.

3.3 Observables and predictions

We begin with low recoil predictions of some basic distributions. At leading order they can
be written in terms of the transversity amplitudes A⊥,‖,0 given in eqs. (3.13)–(3.15) as:

dΓ
dq2

= 2 ρ1 × (f2
0 + f2

⊥ + f2
‖ ), (3.20)

AFB = 3
ρ2

ρ1
×

f⊥f‖

(f2
0 + f2

⊥ + f2
‖ ),

(3.21)

FL =
f2

0

f2
0 + f2

⊥ + f2
‖
, (3.22)

and

A
(2)
T =

f2
⊥ − f2

‖

f2
⊥ + f2

‖
, A

(3)
T =

f‖

f⊥
, A

(4)
T = 2

ρ2

ρ1
× f⊥
f‖
. (3.23)

The new high q2 transversity observables read as

H
(1)
T = 1, H

(2)
T = H

(3)
T = 2

ρ2

ρ1
. (3.24)

All observables factorize into short distance coefficients ρ1,2 and form factor ones f0,⊥,‖.
We note the following:

• The only two independent combinations of Wilson coefficients, ρ1 and ρ2, enter the
decay rate dΓ/dq2 and the forward-backward asymmetry AFB, respectively.

• The observables FL, A(2,3)
T and H(1)

T are independent of the Wilson coefficients. Data
on FL and A(2,3)

T test the form factors. In particular, A(2)
T and A(3)

T each measure the
ratio A1/V , whereas FL is in addition sensitive to A2. More observables designed to
not depend on the short distance coefficients are given in appendix B, see eq. (B.10).

• More generally, in the SM basis and to the order we are working, any observable in the
decay B̄ → K̄∗(→ K̄π)l+l− is correlated with dΓ/dq2 or AFB, or is independent of the
Wilson coefficients. Data on the multitude of angular observables can hence be used
to test our framework, that is, whether there are further operators beyond eq. (2.2),
the goodness of the OPE, and the form factors.
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|VtbV ∗ts| 0.0409± 0.0013 αs(MZ) 0.1176± 0.0020 [35]
|Vcb| 0.0417± 0.0013 αe(mb) 1/133
|Vub|/|VtbV ∗ts| 0.0884+0.064

−0.054 τB0 (1.530± 0.009) ps [35]
mc(mc) (1.27+0.07

−0.11) GeV [35] fB0 (200± 30) MeV
mb(mb) (4.2± 0.17) GeV [35] fK

∗

‖ (217± 5) MeV
mpole
t (173.1± 1.3) GeV [36] fK

∗
⊥ (1 GeV) (185± 10) MeV

MW (80.398± 0.025) GeV [35] λB,+(1.5 GeV) (0.458± 0.115) GeV [15]
MZ (91.1876± 0.0021) GeV [35] a‖,⊥1,K∗ (0.1± 0.07) MeV [37]

B(B̄ → Xclν̄l) (10.5± 0.4) % [35] a‖,⊥2,K∗ (0.1± 0.1) MeV [37]

Table 1. The numerical input used in our analysis. We neglect the mass of the strange quark. τB0

denotes the lifetime of the neutral B meson.

• The H(1,2,3)
T , by construction, do not depend on the form factors. Within our frame-

work, these are the only observables with this feature, see appendix B.

• Moreover, H(1)
T does not depend on Wilson coefficients either. Its simple predic-

tion eq. (3.24) holds beyond the SM and provides a null test of the framework.

• The set of observables eqs. (3.20)–(3.24) and (B.10) with two short distance and three
form factor coefficients is heavily overconstrained. Measurements can directly yield
either products ρifjfk or ratios ρ2/ρ1 and fj/fk, but not the fi or the ρi alone.

4 Exploiting data

We give numerical SM predictions for B̄ → K̄∗l+l− decay observables in section 4.1, with
emphasis on the low recoil region. In section 4.2 we confront the distributions with existing
data and work out constraints for the Wilson coefficients. Next, we combine low with large
recoil regions and point out complementarities.

4.1 SM predictions

The low recoil predictions are obtained using the formulae given in section 3. The frame-
work applies to the region where the K̄∗ is soft in the heavy mesons rest frame, i.e.,
has energy EK∗ = mK∗ + Λ. In terms of dilepton masses, this corresponds to large values,
q2 & (mB−mK∗)2−2mBΛ up to the kinematical endpoint. We use, unless otherwise stated,

q2
min = 14 GeV2 < q2 ≤ 19.2 GeV2 = q2

max, (4.1)

obtained numerically for Λ = 500 MeV, with the lower boundary starting just above the
ψ′ resonance.

To make quantitative predictions in the low recoil region the B → K∗ form factors are
requisite input. Unfortunately, the current knowledge on the form factors at low recoil is
very limited and our results can as far as form factor uncertainties are concerned provide
guidance of the achievable precision only.
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For our numerics we use the light cone sum rule (LCSR) results of ref. [37] extrapolated
from their domain of validity at large recoil to the low recoil one with physical pole or
dipole shapes. These extrapolations are supported by fits based on series expansion in the
case of B → K and B → ρ transitions [38]. Note that there is lattice and experimental
information available on B → ρ form factors at low recoil [39, 40], however, to use this for
B → K∗ would require knowledge of the size of SU(3) flavor breaking. More details on
the form factors and a comparison with existing lattice results for T1,2 [41, 42] are given in
appendix C. We use the parameters given in table 1.

From q2-integration in the low recoil region eq. (4.1) we obtain the integrated SM
branching ratio dB/dq2 = τBdΓ/dq2 as

107 ·
∫ q2max

q2min

dq2 dB
dq2

= 2.96 +0.90
−0.77

∣∣∣
FF

+0.18
−0.17

∣∣∣
SL
±0.10

∣∣∣
IWR
±0.16

∣∣∣
CKM

+0.08
−0.06

∣∣∣
SD
. (4.2)

For the remaining q2-distributions X of eqs. (2.8)–(2.15) we define “naively integrated”
observables as

X ≡ 1
q2

max − q2
min

∫ q2max

q2min

dq2X(q2) . (4.3)

For these we obtain

AFB = −0.39 +0.06
−0.07

∣∣∣
FF
±0.02

∣∣∣
SL
±0.01

∣∣∣
IWR
±0.001

∣∣∣
SD
, (4.4)

FL = 0.35 +0.03
−0.04

∣∣∣
FF
±0.03

∣∣∣
SL
±0.01

∣∣∣
IWR

, (4.5)

A
(2)
T = −0.54 +0.15

−0.13

∣∣∣
FF

+0.04
−0.03

∣∣∣
SL

+0.03
−0.02

∣∣∣
IWR

, (4.6)

A
(3)
T = +2.25 +0.52

−0.45

∣∣∣
FF
±0.11

∣∣∣
SL
±0.08

∣∣∣
IWR

, (4.7)

A
(4)
T = +0.53 +0.12

−0.11

∣∣∣
FF
±0.03

∣∣∣
SL
±0.02

∣∣∣
IWR
±0.002

∣∣∣
SD
, (4.8)

H
(1)
T = +1.000 +0

−0.00002

∣∣∣
SL

+0
−0.0007

∣∣∣
IWR

, (4.9)

H
(2,3)
T = −0.985±0.001

∣∣∣
SL

+0.007
−0.005

∣∣∣
IWR

+0.004
−0.003

∣∣∣
SD
. (4.10)

In addition, we consider the integrated observables 〈X〉 defined by replacing Ji with
its integral 〈Ji〉 in each of the observables X = X(Ji) in eqs. (2.7)–(2.15),

〈X〉 ≡ X(〈Ji〉), 〈Ji〉 ≡
∫ q2max

q2min

dq2Ji(q2). (4.11)

This definition agrees with the way B, AFB and FL are obtained experimentally [11–13],
i.e., by integrating numerator and denominator before taking the ratio. Using the same
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integration boundaries as above, eq. (4.1), we obtain

〈AFB〉 = −0.41±0.07
∣∣∣
FF
±0.02

∣∣∣
SL
±0.01

∣∣∣
IWR

+0.001
−0.002

∣∣∣
SD
, (4.12)

〈FL〉 = 0.35 +0.04
−0.05

∣∣∣
FF
±0.03

∣∣∣
SL
±0.02

∣∣∣
IWR

, (4.13)

〈A(2)
T 〉 = −0.48+0.18

−0.15

∣∣∣
FF

+0.04
−0.04

∣∣∣
SL
±0.03

∣∣∣
IWR
±0.001

∣∣∣
SD
, (4.14)

〈A(3)
T 〉 = 1.71 +0.39

−0.33

∣∣∣
FF
±0.08

∣∣∣
SL
±0.06

∣∣∣
IWR
±0.001

∣∣∣
SD
, (4.15)

〈A(4)
T 〉 = 0.58 +0.13

−0.11

∣∣∣
FF

+0.09
−0.09

∣∣∣
SL
±0.07

∣∣∣
IWR
±0.002

∣∣∣
SD
, (4.16)

〈H(1)
T 〉 = +0.997±0.002

∣∣∣
FF

+0
−0.001

∣∣∣
IWR

, (4.17)

〈H(2)
T 〉 = −0.972 +0.004

−0.003

∣∣∣
FF
±0.001

∣∣∣
SL

+0.008
−0.005

∣∣∣
IWR

+0.003
−0.004

∣∣∣
SD
, (4.18)

〈H(3)
T 〉 = −0.958±0.001

∣∣∣
SL

+0.008
−0.006

∣∣∣
IWR

+0.003
−0.004

∣∣∣
SD
, (4.19)

with the branching ratio as before, eq. (4.2). Uncertainties not explicitly given are be-
low O(10−4).

In both definitions of integrated observables the uncertainties are estimated the same
way: The dominant uncertainty of the form factors V , A1 and A2 has been assumed ±15 %
(FF). Furthermore, we include a real scaling factor for each of the transversity amplitudes
AL,R⊥,‖,0 in order to estimate uncertainties due to the subleading corrections of order αsΛ/mb

by varying them with ±5 % (SL). The subleading corrections to the improved Isgur-Wise
form factor relations eq. (3.6), of order Λ/mb, and the neglected kinematical factors of
mK∗/mB in the term ∼ κ Ceff

7 are accounted for by three real scale factors for A⊥,‖,0 with
±20 % (IWR). Note however, that the latter are additionally suppressed in the SM by
2 Ceff

7 /Ceff
9 . The uncertainties due to the CKM parameters VtbV ∗ts correspond to their 1σ

ranges (CKM), which cancel in the normalized quantities and thus appear in the branching
ratio only. The uncertainties due to the µ-dependence and the t- and b-quark masses (at 1
σ) concern the short distance couplings ρ1,2 only, and are subsumed under the label (SD).
The variation with the scale µ ∈ [µb/2, 2µb] (with central value µb = 4.2 GeV) is small,
as expected.

In figure 1 we show ρ1 and the ratio ρ2/ρ1 with error bands from different sources.
The t-pole mass and b-MS mass dependence (at 3σ) are comparable in size and amount to
about 5 % each. Finally, a variation of ±20 % due to the subleading Λ/mb and mK∗/mB

corrections denoted above as (IWR) results in about 6 % uncertainty. The overall uncer-
tainty of ρ1 and ρ2 is about 9 % and 10 %, respectively, when adding all uncertainties in
quadrature. However, the uncertainties cancel to a large extent in the ratio ρ2/ρ1, provid-
ing a strong test of the SM when measuring the observables H(2,3)

T [eqs. (2.14)–(2.15)] with
an uncertainty of about 2 % (at 3σ).

The uncertainties of each group (FF), (SL), (IWR), (CKM) and (SD) are obtained by
varying each parameter separately and adding them subsequently in quadrature. Our SM
values for 〈AFB〉 and 〈FL〉 are in agreement with [43].
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Figure 1. The short distance coupling ρ1 and the ratio ρ2/ρ1 in the SM.

For the SM predictions at large recoil [14, 15] we follow closely [17], with the updates
of the numerical input given in table 1. In this kinematical region, spectator effects arise
and for concreteness, we give predictions for neutral B̄ decays.

We estimate the uncertainties due to the two large energy form factors ξ⊥,‖ by vary-
ing them separately — for an improved treatment of this source of uncertainty using
directly the LCSRs the reader is refered to [26]. Furthermore, we estimate uncertainties
due to subleading QCDF corrections of order Λ/mb by varying a real scale factor for each
of the transversity amplitudes AL,R⊥,‖,0 within ±10 % separately and adding the resulting
uncertainties subsequently in quadrature. The latter constitute the numerically leading
uncertainties in the observables A(2,3,4)

T where form factor uncertainties cancel at leading
order in QCDF [25].

The differential branching ratio dB/dq2, the forward-backward asymmetry AFB and
the longitudinal polarization FL in the SM in both the low and large recoil regions are
shown in figure 2. The vertical grey bands are the regions vetoed by the experiments to
remove backgrounds from intermediate charmonia, J/ψ and ψ′ decaying to muon pairs for
8.68 GeV2 < q2 < 10.09 GeV2 and 12.86 GeV2 < q2 < 14.18 GeV2 [12, 13]. Within QCDF,
the region of validity is approximately within (1−7) GeV2. We mark the large recoil range
(below the J/ψ) outside this range by dashed lines.

In figure 3 we show the SM predictions for B, AFB and FL next to the available data.
Note that the physical region of FL is between 0 and 1. The data are consistent with
the SM, although they allow for large deviations from the SM as well given the sizeable
uncertainties. In particular, the data for B at low q2 and AFB at high q2 show a trend to
be slighly below the SM. The shape of AFB at low q2 is currently not settled and allows for
either sign of the dipole coefficient C7 while having the others kept at their SM values. In
the future the LHCb collaboration expects to surpass the precision of the existing B-factory
AFB measurements after an integrated luminosity of 0.3 fb−1 [44], and may shed light on
this matter.
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Figure 2. The differential branching ratio dB/dq2 in units of 10−7/GeV2 (a), the forward-backward
asymmetry AFB (b) and the longitudinal polarization FL (c) in the large recoil q2 < m2

J/ψ and
the low recoil q2 & m2

ψ′ ∼ O(m2
b) regions in the SM. At low recoil, the uncertainties shown are

due to the Λ/Q expansion of the improved Isgur-Wise relations (green bands), subleading terms of
order αsΛ/Q (red bands) and the form factors (blue bands). At large recoil, the bands denote the
uncertainties from Λ/mb, Λ/EK∗ corrections (red bands) and the form factors (blue bands). The
vertical shaded (grey) bands mark the experimental veto regions [12, 13] to remove contributions
from B̄ → J/ψ(→ µ+µ−)K̄∗ (left band) and B̄ → ψ′(→ µ+µ−)K̄∗ (right band).

In figure 4 we show A
(2,3,4)
T in the SM. The behaviour in the low and high q2 region is

very different from each other. In particular, A(2)
T is strongly suppressed, in fact, vanishes
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Figure 3. The B̄ → K̄∗l+l− distributions dB/dq2 (a), AFB (b) and FL (c) in the SM including
the theoretical uncertainties added in quadrature (shaded blue bands) versus the existing data from
Belle [12] (red), BaBar [10, 11] (gold) and CDF [13] (black). The experimental data for AFB have
their sign flipped to match the conventions used in this work. The isolated solid (black) line in the
AFB plot illustrates the case with C7 = −CSM

7 . The vertical shaded (grey) bands are defined as
in figure 2. The isolated dashed (black) lines between the c̄c-bands are theory extrapolations from
the low and large recoil region.

up to 1/EK∗ corrections by helicity conservation [34] for low dilepton masses, but is order
one for large ones. The size of A(2)

T at low q2 can be used as an indicator for the correctness

– 16 –



J
H
E
P
0
7
(
2
0
1
0
)
0
9
8

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18

A
T

(2
) (q

2
)

q
2
 [GeV

2
]

J/ψ ψ’

(a)

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 3.6

 4

 0  2  4  6  8  10  12  14  16  18

A
T(3

) (q
2
)

q
2
 [GeV

2
]

J/ψ ψ’

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0  2  4  6  8  10  12  14  16  18

A
T(4

) (q
2
)

q
2
 [GeV

2
]

J/ψ ψ’

(c)

Figure 4. The transverse asymmetries A(2)
T (a), A(3)

T (b) and A(4)
T (c) in the SM. The explanation

of the bands is the same as in figure 2.

of our assumptions: in the presence of chirality-flipped operators beyond those in eq. (2.2),
the aforementioned suppression of A(2)

T would be lifted. Note that A(3)
T is proportional to

1/
√
λ̂ and diverges at the endpoint λ̂→ 0. On the other hand, A(4)

T ∝
√
λ̂ is finite in this

limit and vanishes at maximum q2.

The q2-behaviour of both the new, transverse observables H
(2,3)
T can be obtained

from figure 1, where ρ2/ρ1 is shown in the SM.

– 17 –



J
H
E
P
0
7
(
2
0
1
0
)
0
9
8

(a) (b)

Figure 5. The constraints on C9 and C10 from B̄ → K̄∗l+l− at large recoil and B̄ → Xsl
+l− for

C7 = CSM
7 (a) and C7 = −CSM

7 (b) using Belle [12, 48], BaBar [49] and CDF [13] data at 68% CL
(red areas) and 95% CL (red and blue areas). The (green) square marks the SM value of (C9, C10).

(a) (b)

Figure 6. The constraints on C9 and C10 from B̄ → K̄∗l+l− low recoil data [12, 13] only for
C7 = CSM

7 (a) and C7 = −CSM
7 (b) at 68% CL (red areas) and 95% CL (red and blue areas). The

(green) square marks the SM value of (C9, C10).
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(a) (b)

Figure 7. The individual 68% CL constraints on C9 and C10 from B̄ → K̄∗l+l− at large and low
recoil and B̄ → Xsl

+l− for C7 = CSM
7 (a) and C7 = −CSM

7 (b) using Belle [12, 48], BaBar [49] and
CDF [13] data. The (grey) square marks the SM value of (C9, C10). See the color key at the top for
the different constraints.

(a) (b)

Figure 8. The global constraints on C9 and C10 from B̄ → K̄∗l+l− and B̄ → Xsl
+l− for C7 = CSM

7

(a) and C7 = −CSM
7 (b) using Belle [12, 48], BaBar [49] and CDF [13] data at 68% CL (red area)

and 95% CL (red and blue areas). The (green) square marks the SM value of (C9, C10).
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4.2 Constraining new physics

To confront the available data with the SM we perform a parameter scan over −15 ≤
C9,10 ≤ 15 for 60×60 points and check the goodness-of-fit for each of the observables listed
in table 2 in every point (C9, C10). We implement every observable analytically with the
single exception the B̄ → Xsγ branching ratio, for which we use the numerical SM results
given in [45]. Contributions to the latter from physics beyond the SM are implemented at
leading order. The integrated observables 〈X〉q2min,q

2
max

follow the definition eq. (4.11) with
the lower (upper) integration boundary q2

min (q2
max). In particular we calculate

χi,E
({
Cj
})
≡


|Xi,T−Xi,E|−∆+

i,T

σi,E
Xi,E ≥ Xi,T + ∆+

i,T

|Xi,T−Xi,E|−∆−i,T
σi,E

Xi,E ≤ Xi,T −∆−i,T
0 otherwise

(4.20)

with the theoretical prediction of the i-th observable Xi,T ≡ Xi,T(
{
Cj
}

) and its upper

(lower) uncertainty ∆+(−)
i,T = ∆+(−)

i,T (
{
Cj
}

) as described in section 4.1. The experimental
result from experiment E for the i-th observable is denoted by Xi,E and its error σi,E
is obtained by adding linearly the statistical and systematic errors and subsequent sym-
metrization. From here we calculate the likelihood L as

L(
{
Cj
}

) = exp

−1
2

∑
i,E

χ2
i,E(
{
Cj
}

)

 . (4.21)

These scans allow us to constrain the values of the coefficients C9 and C10 under the
assumption that they are real-valued, i.e., there is no CP violation beyond the SM, and that
C1...6,8 take on their respective SM values. The B(B̄ → Xsγ) data constrain the magnitude
of C7 strongly to a narrow range of values around |CSM

7 |, however without determining the
sign of C7. For this reason, we present in the following our scans for C7 = ±CSM

7 .
In figure 5 we show the constraints in the C9 − C10 plane from B̄ → K̄∗l+l− decays

at large recoil and B̄ → Xsl
+l− data, without use of the low recoil information. On

the other hand, taking into account the B̄ → K̄∗l+l− data at low recoil only, we arrive
at the constraints given in figure 6. We see that the latter low recoil constraints are
presently much more powerful than the others. An important ingredient for this are the
AFB measurements at low recoil constraining AFB ∝ Re{C9C∗10} to be SM-like, the benefits
of which have already been pointed out in [17]. The individual constraints, overlaid on top
of each other, are given at 68% CL in figure 7. The data are consistent with each other.

The global constraints, obtained after summing over the χ2-values of all aforementioned
data, are shown in figure 8. Two disjoint solutions are favored, around (CSM

9 , CSM
10 ) or in

the vicinity of (−CSM
9 ,−CSM

10 ). There appears to be space for order one deviations from
either solution, regardless of the sign of C7. Note that the flipped-sign solution around
(−CSM

9 ,−CSM
10 ) for C7 = CSM

7 is disfavored, see figure 7. Varying C7 between -0.5 and +0.5
and imposing the B̄ → Xsγ constraint leads to barely noticable larger contours in the
C9 − C10 plane than the ones in figure 8 a (for C7 < 0) and figure 8 b (for C7 > 0), and are
not shown.
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We find that at 2σ the allowed values of C10 are within 0.5 ≤ |C10| ≤ 8. This gives
branching ratios for B̄s → µ+µ− decays enhanced or lowered with respect to the SM one,
within the interval [2× 10−11, 1.3× 10−8]. This is consistent with the current upper limit
on this mode, B(B̄s → µ+µ−) < 3.6 × 10−8 (95% CL) [7]. Similarly, the values of the
transversity observables 〈H(2,3)

T 〉 integrated over the low recoil region, eq. (4.1), are within
the ranges −1.0 and +0.2.

As the experimental precision improves over time, especially with the LHCb data at
the horizon, there will be opportunities to resolve the 4-fold ambiguity of the current
solutions presented in figure 8. Firstly, knowing whether AFB has a zero for low q2 as in
the SM or not, fixes the sign of Re {C7C∗10}, thereby eliminating two of the four possible
solutions. Alternatively, the sign of the interference term Re{C∗7C9} in B(B̄ → Xsl

+l−) can
be extracted from precision measurements. In the SM, this term decreases the branching
ratio. These two effects are correlated within our framework, i.e., the existence of an AFB

zero crossing implies a destructive interference term in the branching ratio and vice versa.
At this point, there would still be two possible solutions left. Assuming, for instance,

a confirmation of the AFB zero, these solutions are C7,9,10 having SM-like signs, or C7,9,10

having opposite signs with respect to their SM values. This last ambiguity can be resolved
with precision measurements at the level where one becomes sensitive to the (known) dif-
ference between the Wilson coefficients Ci and the effective ones Ceff

i . Then, the additional
contribution breaks the symmetry in the observables under sign reflection. Since the con-
tribution of C7 to the decay amplitudes is small at large q2, promising observables to resolve
the final sign issue are those at low dilepton masses.

5 Conclusions

Discrepancies between b physics predictions and measurements can be caused by new
physics beyond the SM or by an insufficiently accounted for background from strong inter-
action bound state effects. Due to the decays simple transversality structure at low recoil,
these QCD and electroweak effects can be disentangled in B̄ → K̄∗l+l− angular studies.

In fact, to leading order in the power corrections with subleading terms being further
suppressed, all contributing transversality amplitudes exhibit the same dependence on the
short distance electroweak physics, which moreover factorizes from the hadronic matrix
elements. This in turn allows to define new observables, H(1,2,3)

T , see eqs. (2.13)–(2.15),
which do not depend on the form factors at low recoil and cleanly test the SM. Other
observables, which do not depend on the Wilson coefficients at low recoil, such as FL,
A

(2,3)
T and the newly constructed ones in eq. (B.10), probe certain B → K∗ form factors

combinations. Measurements of the latter provide input to form factor parametrizations
along the lines of [38], which could be compared to (future) lattice results.

Exploiting data we find that the constraints from the low recoil region add significant
new information, while being consistent with the large recoil and inclusive decays data,
and the SM. Large deviations from the SM are, however, allowed as well due to the current
experimental uncertainties. Our findings are summarized in figures 3 and 8. Improved
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Observable SM Prediction Measurement∫ 6.0
1.0 dq2dB(B̄ → Xsl

+l−)/dq2 (1.55± 0.11)× 10−6 [46, 47]
(
1.49+0.92

−0.83

)
× 10−6 [48]

(1.8± 1.2)× 10−6 [49]
B(B̄ → Xsγ)Eγ>1.6 GeV (3.15± 0.23)× 10−4 [45] (3.55± 0.33)× 10−4 [7]
〈B(B̄ → K̄∗l+l−)〉1.0,6.0

(
2.60+1.82

−1.34

)
× 10−7 [17]

(
1.49+0.57

−0.52

)
× 10−7 [12](

1.60+0.68
−0.68

)
× 10−7 [13]

〈AFB(B̄ → K̄∗l+l−)〉1.0,6.0 +0.05+0.04
−0.03 [17] −0.26+0.37

−0.34 [12]
−0.43+0.43

−0.42 [13]
〈FL(B̄ → K̄∗l+l−)〉1.0,6.0 0.73+0.13

−0.23 [17] 0.67+0.28
−0.28 [12]

0.50+0.30
−0.33 [13]

〈B(B̄ → K̄∗l+l−)〉14.18,16.00

(
1.32+0.43

−0.36

)
× 10−7 [17]

(
1.05+0.37

−0.34

)
× 10−7 [12](

1.51+0.49
−0.49

)
× 10−7 [13]

〈AFB(B̄ → K̄∗l+l−)〉14.18,16.00 −0.44+0.07
−0.07 −0.70+0.32

−0.26 [12]
−0.42+0.25

−0.25 [13]
〈B(B̄ → K̄∗l+l−)〉16.00,19.21

(
1.54+0.48

−0.42

)
× 10−7 [17]

(
2.04+0.43

−0.40

)
× 10−7 [12](

1.35+0.49
−0.49

)
× 10−7 [13]

〈AFB(B̄ → K̄∗l+l−)〉16.00,19.21 −0.38+0.07
−0.07 −0.66+0.20

−0.15 [12]
−0.70+0.35

−0.26 [13]

Table 2. The observables used to constrain C7,9,10. The experimental data for AFB have their sign
flipped to match the conventions used in this work. For the notation of the observables, see text.

measurements of the forward-backward asymmetry or precision data on the inclusive B̄ →
Xsl

+l− branching ratio can resolve the present ambiguities in the best-fit solution.
Since the decay B̄s → φµ+µ− has been seen [13], it becomes relevant in the near future

as well. The low recoil framework and our analysis applies to Bs decays with the obvious
replacements of masses and hadronic input.

To conclude, we obtained from the existing data on B̄ → K̄∗l+l− decays at low recoil
new and most powerful constraints. The proposed angular studies offer great opportunities,
both in terms of consistency checks and precision, to explore further the borders of the SM.
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A The angular coefficients

Here, the coefficients J (a)
i in the angular distribution eq. (2.4) are given in terms of the

transversity amplitudes A⊥,‖,0,t [24]. Terms with finite lepton masses, which are of relevance
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at low q2, have been kept.

Js1 =
3
4

{
(2 + β2

l )
4

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]

+
4m2

l

q2
Re
(
AL⊥A

R
⊥
∗

+AL‖ A
R
‖
∗)}

, (A.1)

Jc1 =
3
4

{
|AL0 |2 + |AR0 |2 +

4m2
l

q2

[
|At|2 + 2Re(AL0 A

R
0
∗
)
]}

, (A.2)

Js2 =
3β2

l

16

[
|AL⊥|2 + |AL‖ |

2 + (L→ R)
]
, (A.3)

Jc2 = −
3β2

l

4

[
|AL0 |2 + (L→ R)

]
, (A.4)

J3 =
3
8
β2
l

[
|AL⊥|2 − |AL‖ |

2 + (L→ R)
]
, (A.5)

J4 =
3

4
√

2
β2
l

[
Re(AL0 A

L
‖
∗
) + (L→ R)

]
, (A.6)

J5 =
3
√

2
4
βl

[
Re(AL0 A

L
⊥
∗
)− (L→ R)

]
, (A.7)

J6 =
3
2
βl

[
Re(AL‖ A

L
⊥
∗
)− (L→ R)

]
, (A.8)

J7 =
3
√

2
4
βl

[
Im(AL0 A

L
‖
∗
)− (L→ R)

]
, (A.9)

J8 =
3

4
√

2
β2
l

[
Im(AL0 A

L
⊥
∗
) + (L→ R)

]
, (A.10)

J9 =
3
4
β2
l

[
Im(AL‖

∗
AL⊥) + (L→ R)

]
, (A.11)

where

βl =

√
1−

4m2
l

q2
. (A.12)

The transversity amplitudes at low recoil are given in section 3. The ones at large recoil
can be seen in [17].

B The low recoil transversity observables

It is useful to introduce the (q2-dependent) quantities

U1 = |AL0 |2 + |AR0 |2, U4 = Re(AL0A
L∗
‖ +AR∗0 AR‖ ), U7 = Im(AL0A

L∗
‖ +AR∗0 AR‖ ), (B.1)

U2 = |AL⊥|2 + |AR⊥|2, U5 = Re(AL0A
L∗
⊥ −AR∗0 AR⊥), U8 = Im(AL0A

L∗
⊥ −AR∗0 AR⊥), (B.2)

U3 = |AL‖ |
2 + |AR‖ |

2, U6 = Re(AL‖A
L∗
⊥ −AR∗‖ AR⊥), U9 = Im(AL‖A

L∗
⊥ −AR∗‖ AR⊥), (B.3)

which are invariant under the transformations [25]

AL,Ri 7→ eiφL,RAL,Ri ,

AL,R0,‖ 7→ cos θAL,R0,‖ ∓ sin θAR,L∗0,‖ , AL,R⊥ 7→ cos θAL,R⊥ ± sin θAR,L∗⊥ . (B.4)
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In the limit ml → 0 the decay rate d4Γ becomes invariant under the transforma-
tions eq. (B.4) as well, reducing the number of 11 independent J (a)

i to 9 [25].

In terms of the Ji, the Ui read

U1 = − 4
3β2

l

Jc2 , U2 =
4

3β2
l

[2Js2 + J3] , U3 =
4

3β2
l

[2Js2 − J3] ,

U4 =
√

32
3β2

l

J4, U5 =
√

8
3βl

J5, U6 =
2

3βl
J6, (B.5)

U7 =
√

8
3βl

J7, U8 =
√

32
3β2

l

J8, U9 = − 4
3β2

l

J9.

Whereas we refer to the J
(a)
i as observables which can be extracted from the angular

analysis, the Ui greatly simplify the discussion of the form factor related uncertainties.

At high q2, where we can set ml to zero safely, the Ui factorize into the short distance
ρ1,2 and three independent form factor coefficients fi, i = 0,⊥, ‖ given in section 3.2 as

U1 = 2ρ1f
2
0 , U2 = 2ρ1f

2
⊥, U3 = 2ρ1f

2
‖ ,

U4 = 2ρ1f0f‖, U5 = 4ρ2f0f⊥, U6 = 4ρ2f‖f⊥, U7 = U8 = U9 = 0. (B.6)

The coefficients J7, J8, J9 and likewise U7, U8, U9 vanish, since they are proportional to
Im(AXi A

X∗
j ), i, j = 0, ‖,⊥ and by means of the identical short distance dependence of the

transversity amplitudes eqs. (3.13)–(3.15).

The simple and factorizable structure of eq. (B.6) allows to test at the same time
the SM and the hadronic input used. Firstly, one can construct three independent low
recoil transversity observables free of form factors in the HQET symmetry limit, which we
define as

H
(1)
T =

U4√
U1 · U3

, (B.7)

H
(2)
T =

U5√
U1 · U2

, (B.8)

H
(3)
T =

U6√
U2 · U3

, (B.9)

see eq. (3.24) and section 2.2 for their explicit expressions in terms of the Ji and the
transversity amplitudes. Secondly, ratios of the form factors fj/fk can be tested indepen-
dently of the short distance couplings ρi using the observables

f0

f‖
=
√
U1

U3
=
U1

U4
=
U4

U3
=
U5

U6
,

f0

f⊥
=
√
U1

U2
,

f⊥
f‖

=
√
U2

U3
=
√
U1U2

U4
. (B.10)
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Figure 9. The B → K∗ form factors V,A1 and A2 from [37].

C The form factors

The hadronic matrix elements of a B meson with 4-momentum p decaying into a vector
meson can be parametrized as [37]:

〈V (k, ε)| q̄γµb |B(p)〉 =
2V (q2)

mB +mV
εµρστ ε

∗ρpσkτ , (C.1)

〈V (k, ε)| q̄γµγ5b |B(p)〉 = iε∗ρ
[
2mVA0(q2)

qµqρ
q2

+ (mB +mV )A1(q2)
(
gµρ −

qµqρ
q2

)
−A2(q2)

qρ
mB +mV

(
(p+ k)µ −

m2
B −m2

V

q2
(p− k)µ

)]
,

(C.2)

〈V (k, ε)| q̄iσµνqνb |B(p)〉 = −2T1(q2)εµρστ ε∗ρpσkτ , (C.3)

〈V (k, ε)| q̄iσµνγ5q
νb |B(p)〉 = iT2(q2)

(
ε∗µ(m2

B −m2
V )− (ε∗ · q)(p+ k)µ

)
+ iT3(q2) (ε∗ · q)

(
qµ −

q2

m2
B −m2

V

(p+ k)µ

)
, (C.4)

where mV , k and ε denote the mass, 4-momentum and the polarization vector of the vector
meson, respectively. The seven form factors V,A0,1,2 and T1,2,3 are functions of the mo-
mentum transfer q2, and q = p− k. Note that by parity-invariance 〈V (k, ε)| q̄b |B(p)〉 = 0.

LCSR provide the form factors at large recoil, q2 . 14 GeV2 [37]. There, the outcome
of the LCSR calculation is fitted to a physical q2 dependence, of pole or dipole structure.
It is conceivable that the form factor parametrization obtained in this way are valid at low
recoil as well.

For completeness, we give here the parametrization of the form factors V,A1,2 from [37],
which we use at both low and large recoil.

V (q2) =
r1

1− q2/m2
R

+
r2

1− q2/m2
fit

, (C.5)

A1(q2) =
r2

1− q2/m2
fit

, (C.6)

A2(q2) =
r1

1− q2/m2
fit

+
r2

(1− q2/m2
fit)

2
, (C.7)
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r1 r2 m2
R [ GeV2] m2

fit [ GeV2]
V 0.923 −0.511 5.322 49.40
A1 — 0.290 — 40.38
A2 −0.084 0.343 — 52.00

Table 3. The parameters of the form factors V,A1,2.
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Figure 10. The form factors T1 (a) and T2 (b) for B → K∗ transitions from [37] (blue bands) and
lattice QCD results (3 data sets) [41].

where the fit parameters r1,2,m
2
R and m2

fit are given in table 3. The resulting form factors
are shown in figure 9. For the uncertainty we use 15 % as follows from the LCSR calculation.

In figure 10 we compare the LCSR fit against the lattice results, which exist for T1,2 [41].
The agreement is reasonable, given the substantial uncertainties. There is consistency as
well with the preliminary unquenched findings of ref. [42], which are not shown.

How well do the LCSR form factors from [37] satisfy the low recoil form factor rela-
tions eq. (3.6)? In figure 11 we show the ratios

R1 =
T1(q2)
V (q2)

, R2 =
T2(q2)
A1(q2)

, R3 =
q2

m2
B

T3(q2)
A2(q2)

, (C.8)

which in the symmetry limit should all equal κ, which is also shown. Note, that in the large
energy limit EK∗ � Λ the form factors obey to lowest order in the strong coupling very
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Figure 11. Comparison of the extrapolated LCSR form factors from [37] to the improved Isgur-
Wise relations eq. (3.6). Shown is R1 (blue dotted line), R2 (red dashed line) and R3 (golden solid
line) as given in eq. (C.8) and κ = 1 +O(α2

s) for µ = mb(mb) (black thick line).

similar relations R1,2 = 1 +O(mK∗/mB) and T3/A2 = 1 +O(mK∗/mB) [34, 50]. We learn
that the improved Isgur-Wise relations work reasonably well for the extrapolated LCSR
form factors with the exception of the one for T3. The agreement improves here somewhat
if the factor q2/m2

B is replaced by one, its leading term in the heavy quark expansion.
For the low q2 form factors we employ a factorization scheme within QCDF where the

ξ⊥,‖ are related to the V,A1,2 as [15]

ξ⊥ =
mB

mB +mK∗
V, ξ‖ =

mB +mK∗

2EK∗
A1 −

mB −mK∗

mB
A2. (C.9)
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