
N89-16329

- THE BENEFITS BOTTOM-UP DESIGN

Gregory McFarland

Grumman Data Systems
1000 Woodbury Rd.

Woodbury, N.Y. 11797

ABSTRACT

This paper examines an inconsistency in generic
’top-down’ design methods and standards employed in
the implementation of reliable software. Many design
approaches adopt top-down ordering when defining the
structure, interfaces, and processing of a system.
However, strict adherence to a top-down sequencing
does not permit accurate description of a system’s
error handling functions. The design of a system’s
response to errors is becoming critical as the
reliability requirements of systems increase. This
paper describes how top-down methods such as Object
Oriented Design and Structured Design do not
adequately address the issues of error handling, and
suggests using a bottom-up substep within these
methods to eliminate the problem.

1. INTRODUCTION -
This paper describes the inability of top-down design
techniques to allow for accurate design of the error handling
features of a system. The primary concern involves what is
tentatively termed the ’detailed design phase’ of the software
development process. This is the portion of the design process
which provides a description of the system used as input to the
implementation phase of the software life cycle. We believe
that this design must accurately describe all the intended
operations of the system to avoid the risk of ’interpretation’
by programmers. Our discussion will make it clear that strict
top down design techniques do not provide the designer an
opportunity to specify the error handling features of a system.
Acknowledging the mounting interest in ’structured design
methods,’ we must be certain that these methods address all of
our requirements as designers, and that adopting them would not
preclude certain design decisions. Additionally, the
heightened reliability requirements of our systems necessitate
that design methods provide the opportunity to address error
handling issues.

D.4.4.1

The Benefits of Bottom-Up Design

I
Section 2 describes the software design environment we are
considering. Section 3 defines techniques, standards, and
tools often applied in the detailed design phase. The software
design process is investigated by examining the activities
performed during that effort in section 4 . Section 5 details
the problem encountered when using generic top-down methods in
relation to the design of error handling facilities. Finally,
section 6 describes how a bottom-up substep can be incorporated
into existing methods to eliminate the problem.

- 2 . SOFTWARE DESIGN ENVIRONM%NT

For purposes of this paper, we will adhere to definitions
for ’life cycle’ and ’method’ found in [MCDE84]. The software
life cycle defines a series of system views, each progressing
from the abstract to the more concrete. A development method
is concerned with the activities on one or more of these levels
aad comprises three distinct pieces: notation, guidelines, and
analysis. The guidelines define rules for transforming the
system at the previous level to the system at the current
level. The current level is expressed in the notation defined
by the method. Analysis is used to verify consistency within a
level as well as that between levels.

the

A software development effort includes selection of a method to
be applied in each life cycle phase. AB indicated in the
introduction, we are primarily concerned with the ’detailed
design phase’ where a representation of the system that can be
used as a baseline for the coding or implementation phase is
produced. According to the above definition of ’method,’ few
design techniques described in the literature today are
’methods.’ Quite often only guidelines and/or notation are
defined. Analysis techniques are rarely included.
Additionally, individual efforts will normally modify the
notation used baaed on past experience and tool availability.
For this paper, we will concentrate our attention on the
guidelines portion of the method. Therefore, we will assume
that the final notation of the system after this phase is some
form of M a * PDL, that a PDL processor or M a compiler is
utilized to verify internal consistency, and some sort of
structured design review is employed to verify the correctness
of the resulting design in relation to previous design phases.
We do not preclude the use of graphics during the design
process, or as an additional output, but it will be the PDL
that the programming staff utilizes during the implementation
phase, and therefore this will be the final design notation.
The final PDL representation of the system typically will
define the system’s modular structure, its data, and the
processing to be performed by each module.

* M a is a registered trademark of the U.S. Government, A J P O

D.4.4.2

The Benefits of Bottom-Up Design

- 3. SOFTWARE DESIGN TECHNIQUES, STANDARDS, TOOLS

The software development process is a complex combination of
techniques, standards, and tools. Techniques are defined by
the selected method and dictate the design steps. Standards
are often dictated by contracts and impose additional
constraints on the process. Tools can be automated aids such
as editors, or logical tools such as the use of abstraction or
information hiding. The combination of the various techniques,
standards, and tools involved in each part of the design
process can lead to problems like those described below.

Many design techniques found in the literature impose a
top-down order of work within the level or phase where applied.
The examples we will discuss are Object Oriented Design
[OBJE85] [BOOC83] and Composite (Structured) Design [AfYER78] .
Both of these methods are ’top-down’ since they require
recursive application of the technique on the modules or
operations that were defined in the previous step. In the case
of Object Oriented Design, once the objects and operations have
been defined, the designer must define the interfaces to these
operations, perform a stepwise decomposition of the highest
level module, and then repeat the entire design process for the
newly defined operations. The stepwise decomposition of the
highest module defines the interaction of this module with the
newly defined operations. The implementation of these
operations is not considered; they are ’abstractions.’
Structured design incorporates a similar set of tasks for the
design process, the main difference being the rules
(guidelines) used to define the modules that ’implement’ the
current module. In structured design, only the structure of
the system is defined. No method for defining the algorithmic
portion of each module is proposed. If the technique employed
to define each module’s implementation section applies a
top-down approach, then the entire detailed design phase is
considered top-down.

Additionally, DoD standards and guidelines [DOD] for developing
software systems impose a top-down structure on the development
process. Unless alternate development techniques are approved
by the contracting agency (see [SDST85]), top-down design,
top-down coding, and top-down testing are required. As will be
argued in the remainder of this paper, the use of a top-down
ordering of the entire detailed design process is not
desirable.

Many design techniques, including the two above, employ
’abstraction.’ Abstraction is a valuable tool of the software
engineer, but will be shown to be inappropriate if used
throughout the entire detailed design phase. Abstraction
allows designers to ignore the implementation details of
’other’ parts of the system. This is useful during a
decomposition process, but will lead to problems when connected
with the design of a system’s error haudling facilities.

D.4.4.3

The Benefits of Bottom-Up Design

We will see how the combination of the above three items,
top-down design techniques, contractual standards, and the
utilization of abstraction, leads to problems when designing
the error handling facilities of a system. A bottom-up
approach may be applied during one substep of the overall
detailed design process to eliminate this problem.

- 4. SOFTWARE DESIGN PROCESS

Consider the activities that occur during a typical detailed
design effort. The selected method defines a set of guidelines
which describe the steps a designer must undertake during the
design process. As stated above, the design at this level
typically includes module definitions, their relationships with
each other, data definitions, and a description of the
processing each module should undertake. The generic top-down
design techniques being considered proceed as follows. First,
select an undefined module and follow the guidelines specified
by the technique. These guidelines result in additional
modules and data definitions being defined. Second, determine
the interfaces of these new modules and data objects. The
guidelines may then suggest one of two possibilities. In the
case of Object Oriented Design, stepwise refinement or some
other technique is adopted to define the processing of the
module. Once this is accomplished, the method is recursively
applied to any resulting modules too large to be described as a
single unit. An alternative approach, which might be found in
a Structured Design, would be to first repeatedly apply the
method to any undefined modules, completely defining the
modular structure of the system and the interfaces to these
modules. Once the entire system is decomposed, each module’s
processing is described, most likely in a top-down order.

Abstraction plays a large role in these top-down techniques.
Abstraction permits the designer to utilize the interface
information of other modules in the design of any module’s
implementation section. A hierarchy of-modules is often viewed
in a top-down faahion, with each module taking an abstract view
of lower level modules in its ’implementation section.’ The
application of abstraction implies that only the interface
information is needed for correct use of a module. Top-down
implies that interface information for any module is used prior
to that module having its implementation section defined. Thus
we are relying on the premise that the design of any
implementation section will not alter the interface of a
module. In the case of error handling, this may not always be
true.

D.4.4.4

The Benefits of Bottom-Up Design

5 . THE PROBLEM --
The problem associated with top-down design techniques and the
use of abstraction becomes evident when considering the design
of a module’s processing section. This design will utilize
prior design work that has identified interfaces and
functionalities of subordinate modules. In other words, this
processing section’s design is based on the abstractions
provided by the subordinate modules. Thus, the correctness of
this design relies on the premise that these interfaces or
abstractions will not change. While change is a natural part
of the design process, attributable to designers’ discovery of
new information and backtracking to modify prior design
decisions, change and backtracking should not be a direct
consequence of the method used. Two assumptions concerning the
error handling facilities of a module, which will be justified
below, are that these facilities will not be known until the
module’s implementation is designed, and that these facilities
will change the interface of the module. Based on these two
assumptions, the design of every implementation section may
change the associated interface. Therefore, the design of the
processing section described above may become invalid when the
subordinate modules’ processing sections are defined. Since a
top-down order of design is being employed, every processing
section that causes changes in the associated interface,
invalidates the assumptions used to design the processing
section of superior modules.

First, the assumption that the error handling facilities of a
module will change that module’s interface should be
considered. Errors can not be handled entirely within the
module where they are generated. If errors were always handled
locally, either no real error processing or correction would be
performed, or each module would require knowledge of its actual
use or purpose. Thus, either the systems will not be tolerant
of errors, or the individual software within the system will
not be general or reusable. For these reasons we will allow
and even encourage that errors be propagated from modules and
be handled where it is most appropriate. Now consider that a
complete design, at the detailed level, will specify the
potential error situations as well as the desired response to
those errors. Errors may be propagated into or generated by a
module. Depending on the error handling facilities provided in
the chosen language, errors may or may not be gracefully
handled. Consider the M a programming language which provides
extensive error handling facilities. In M a , errors may be
handled by special sections of code, and propagated out of the
current module. The processing performed in response to errors
changes the functionality or effect of this module. The
possibility of errors being propagated out of a module also
changes the interface of the module. Thus, the error handling
facilities of a module add to or change the module’s interface.

D . 4 . 4 . 5

The Benefits of Bottom-Up Design

Consider also when the designer will be making decisions about
the error handling of some module. Abstraction plays an
important role in the application of the design method.
Modules are defined in terms of their function and interface,
while their implementation is not considered. These modules
are then utili~ed during the design of the processing sections
of superior modules. During the definition of a module's
function and interface it is possible to define certain error
situations that may arise. However, defining the internal
response to these errors would imply that the designer is
considering the implementation details of the modules. This is
a violation of the abstraction principle and is inappropriate.
Additionally, designers can not be cognizant of all the
possible errors a module may generate. These errors will be
discovered during the design of that module's implementation
section. Accordingly, at the outset, the response to these
errors will also be unknown. Therefore, there is a
considerable potential that the interface of a module will be
changed after that interface has been defined and used during
earlier design activities.

The basic flaw described above is a consequence of the
designer's reliance on the abstractions of other modules. The
principle of abstraction has proven very useful in defining the
structure of a system. However, it generally does not apply to
the entire design process. It is unwise to design the
implementation section of a module based on a number of
abstractions if there is a likelihood that the abstractions
will change. Doing so creates the potential for considerable
rework and deviation from contractual standards and procedures.

The assumption made above that "a complete design, at the
detailed level, will specify the potential error situations as
well as the desired response to those errors,)l should be
discussed. The content of a detailed design is a subjective
decision. The life cycle phase considered in this paper,
labeled 'detailed design,' was more accurately defined as the
phase prior to implementation. Thus, the output of this phase,
a description of the system in the selected notation, will be
given to a programming staff for purposes of implementation.
Alternatives to the above assumption are to not specify the
error handling facilities to be incorporated by the system, or
to specify them only partly. Consequently, the programmer must
decide between not including any error handling facilities
since they were not defined, or in the case of M a , providing a
general error handler that catches any error raised in or
propagated to a module. Neither of these situations is
desirable if reliability is a goal of the software.
Alternatively, the programmer may handle those errors which he
determines are generated by this module on an individual basis,
deciding what processing is appropriate for each, and which
should be propagated to calling modules. This will cause a
module's implementation to deviate from its assigned function
and interface. Finally, the programmer may perform the
necessary work to make the following determinations:

D.4.4.6

The Benefits of Bottom-Up Design
- -

1. Which errors may be propagated into the module?

2. What processing has already been performed in response to
these errors?

3. What errors may be generated by this module?

4. What processing is necessary in response to both types of
errors? and

5. Which errors get propagated out of this module.

This alternative requires communication between programmers and
additions to the functionality and interface of the modules.
None of these alternatives is as attractive as having the error
handling facilities defined during the design process.

- - 6. A SOLUTION

A simple solution to this problem is to design the processing
sections of a system’s modules in a bottom-up order. As each
module has its processing section designed, appropriate changes
can be made to the interface and functional description of the
module. Thus, higher level modules utilize a more complete
description of lower level modules. Performing this bottom-up
substep within a design phase is compatible with both Object
Oriented Design and Structured Design. This substep only
requires that implementation sections are not designed until
the structure and data definitions of the entire system have
been defined. Once this is accomplished, the bottom-up order
of processing section design may begin.

A bottom-up design order does not define any additional
guidelines for the design of the error handling facilities of a
system. At most, this will allow the designer the opportunity
to consider the issue, and specify the required functionality
prior to when that information is used in other design work.
This will reduce the amount of change and wasted effort that
results from basing design decisions on incomplete information.

- 7 . SUMMARY

This paper defines a problem engendered by the top-down
structure imposed by software design methods and standards
applied during the detailed design of a software system.
Designers whose techniques rely on abstract modules defined in
a top-down order will find that the design of the
implementation section of these modules will result in changes
to their interfaces attributable to error situations defined,

D.4.4.7

The Benefits of Bottom-Up Design

handled, and propagated. Changes to these interfaces
invalidate assumptions made by higher level modules’
implementation sections. One solution is to design modules’
implementation sections in a bottom-up order, making the
necessary changes to the interfaces of the modules.

This paper is not meant to criticize current methods imply
that they should be abandoned. Instead, it criticizes the ways
in which these methods are applied. What is desired is am
understanding that application of ’design methods’ does not
solve all the problems of software design. In addition to
being executed correctly, design methods must be applied only
where appropriate. Careful analysis is needed to determine
what must be accomplished during each phase of the software
life cycle, and how well the selected method or methods address
these needs. It will often be found that existing design
methods can not address all the activities required within even
a single phase of the life cycle. For this reason, methods
must be augmented with additional techniques or considerations
to ensure the design process is complete and correct. The
example described in this paper demonstrated that the design of
error handling facilities of a system is not adequately
addressed by generic top-down methods. Thus, special
consideration is required to ensure that the overall design
approach addresses this portion of the software system.

or

ACKNOWLEDGEMENTS

The author gratefully acknowledges the encouragement and
helpful comments of John D. Litke.

REFERENCES

[BOOCSS] Booch, Grady; Software En ineerin With -, M a *
Benjamin/Cunrmings Publishing Company, P-7-F- nc., Ca i ornia, 1983.

[DOD] DOD-HBK-287 Defense Department Software Development
Handboo-

POD] DOD-STD-2167 Defense System Software Development
[MCDE84] McDennid, John, aad Ripken, b u t ; Life Cycle Su ort
- - in the M a Environment; The M a Companion Series; Cam 73%- ri ge
Universit-ress, Great Britain; 1984.

[MYER78] Myers, Glenford, J.; Composite/Structured Desi-; Van
Nostrand Reinhold Company, New York; 18’78.

D.4.4.8

The Benefits of Bottom-Up Design

[OBJESS] Ob'ect Oriented Design Haadbook; EVB Software
Engineering + nc., 1985.

[SDSTSS] SDS 1 TailorinK Provisions - for -8 Ada* Technical Report
E-98044: mc t r o n i c System Division, Air Force Systems Command,
Hanscom'Air Force Base, Bedford, MA, April 1985.

D.4.4.9

~~ ~

