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The Benefits of Dense Stereo
for Pedestrian Detection

Christoph G. Keller, Markus Enzweiler, Marcus Rohrbach, David Fernández Llorca,
Christoph Schnörr, and Dariu M. Gavrila

Abstract—This paper presents a novel pedestrian detection sys-
tem for intelligent vehicles. We propose the use of dense stereo for
both the generation of regions of interest and pedestrian classi-
fication. Dense stereo allows the dynamic estimation of camera
parameters and the road profile, which, in turn, provides strong
scene constraints on possible pedestrian locations. For classifica-
tion, we extract spatial features (gradient orientation histograms)
directly from dense depth and intensity images. Both modalities
are represented in terms of individual feature spaces, in which
discriminative classifiers (linear support vector machines) are
learned. We refrain from the construction of a joint feature space
but instead employ a fusion of depth and intensity on the classifier
level. Our experiments involve challenging image data captured
in complex urban environments (i.e., undulating roads and speed
bumps). Our results show a performance improvement by up
to a factor of 7.5 at the classification level and up to a factor
of 5 at the tracking level (reduction in false alarms at constant
detection rates) over a system with static scene constraints and
intensity-only classification.

Index Terms—Active safety, computer vision, intelligent vehi-
cles, pedestrian detection.

I. INTRODUCTION

V ISION-BASED pedestrian detection is a key problem in

the domain of intelligent vehicles (IVs). Large variations

in human pose and clothing, as well as varying backgrounds

and environmental conditions, make this problem particularly

challenging. The first stage in most systems consists of iden-

tifying generic obstacles as regions of interest (ROIs) using

some computationally efficient method. Subsequently, a more

expensive pattern classification step utilizing features from

intensity images (gray scale or color) is applied.
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Previous IV applications have typically used sparse feature-
based stereo approaches (e.g., [1], [15], and [30]) because
of lower processing cost. However, with recent hardware ad-
vances, real-time dense stereo has become feasible [41] (here,
we use a hardware implementation of the semiglobal matching
(SGM) algorithm [13], [20]).

Both sparse and dense stereo approaches have proved suit-
able to dynamically estimate camera height and pitch angle to
deal with road imperfections, speed bumps, car accelerations,
etc. However, dense stereo also holds the potential to reliably
estimate the vertical road profile. The more accurate estimation
of ground location of pedestrians can be expected to improve
system performance, particularly when considering undulating
hilly roads.

Dense stereo can, furthermore, provide additional cues for
pedestrian recognition. Up to now, the use of stereo information
has been mainly limited to recovering 3-D scene structure [11],
[25] and partial occlusion [8] and providing a focus-of-attention
mechanism (e.g., [15], [17], [30], and [50]).

In this paper, we propose the use of dense stereo information
in two modules of our pedestrian detection system: First, we
estimate the varying road profile and camera orientation from
dense stereo to refine ROIs with respect to possible pedestrian
locations (see Section IV). Second, we enrich an intensity-
based feature space with features operating on dense depth
images to improve pedestrian classification performance (see
Section V).

II. PREVIOUS WORK

Many interesting approaches for pedestrian detection have
been proposed. See [6], [9], [14], [16], [21], and [29] for
relevant surveys and benchmark studies. Most benchmark stud-
ies have dealt with monocular pedestrian detection. Recently,
Keller et al. [22] have introduced a large publicly available
stereo-based pedestrian data set, involving a 27-min test drive
through urban environment, including vehicle data. In terms of
methods, previous work has mostly followed a module-based
strategy comprising generation of possible pedestrian locations
(ROIs), followed by pedestrian classification and tracking.

Various modalities (e.g., intensity, motion, and depth) are

used in ROI generation to extend the sliding-window tech-

nique, where detector windows at various scales and locations

are shifted over the image to obtain object hypotheses for

classification. This preprocessing step is applied to reduce the

number of hypotheses that are processed by a more powerful

but computationally expensive classifier. In [15], the locations

where the number of depth features exceeds a percentage of the

1524-9050/$26.00 © 2011 IEEE
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search window area are added to the ROI list for the subsequent

shape detection module. In [50], a foreground region is obtained

by clustering in disparity space. In [3] and [18], it is proposed

that ROIs be selected by considering the x- and y-projections

of the disparity space following the v-disparity representation

[24]. In [1], object hypotheses are obtained by using a subtrac-

tive clustering in the 3-D space in world coordinates. Motion

information is utilized in [10] as a preprocessing step for ROI

generation.

Most approaches for ROI generation involve the assumption

of a planar road, as well as constant camera height and pitch.

Violations of these constraints are typically handled by relax-

ing the scene constraints, e.g., allowing a certain amount of

deviation from the ground-plane assumption. Recently, some

approaches for estimating road shape and camera parameters

have been presented. To estimate camera height and pitch,

linear fitting in the v-disparity space [32], in world coordinates

[12], [17], and in the so-called virtual-disparity image [39] has

been proposed. In [24], the road surface is modeled by fitting

piecewise linear functions in the v-disparity space. Other ap-

proaches involve fits of quadratic polynomials [34] or clothoid

functions [32] in the v-disparity space.

Regarding pedestrian classification, most approaches use

discriminative models comprising a combination of intensity-

based feature extraction and classification. Such features can

be categorized into texture based and gradient based. Nonadap-

tive Haar wavelet features have been popularized by [35] and

adapted by many others [28], [42], with manual [28], [35] and

automatic feature selection [42]. Adaptive feature sets were

proposed, e.g., local receptive fields (LRFs) [45], where the

spatial structure is able to adapt to the data. Another class

involves code-book patches that are extracted around salient

points in the image, e.g., [25]. Gradient-based features have

focused on discontinuities in image brightness. Normalized

local histograms of oriented gradients have found wide use in

both sparse (scale-invariant feature transform) [26] and dense

representations [histogram of oriented gradient (HOG)] [4],

[8], [33], [46], [49], [51]. Spatial variation and correlation

of gradients have been encoded using covariance descriptors

enhancing robustness toward brightness variations [40].

In terms of discriminative models, support vector machines

(SVMs) are widely used in both linear [5], [8], [46], [49],

[51] and nonlinear variants [28], [35]. Other popular classifiers

include neural networks [15], [45] and AdaBoost cascades [27],

[40], [42], [46], [47], [49], [51]. Some approaches additionally

apply a component-based representation of pedestrians as an

ensemble of body parts [8], [27], [28], [47].

Cascaded architectures for pedestrian detection, involving

modules using different cues to narrow down the image search

space, have been prevalent (e.g., [15], [17], [30], and [31]). A

recent trend involves the integration of multiple features (Haar

wavelets, HOG, LRF, etc.) or/and modalities (intensity, depth,

motion, etc.) into a single pattern classification module [8],

[33], [37], [38], [43], [46], [48]. One fusion approach involves

integration of all cues into a single joint feature space [38], [43],

[46]. Here, the enlarged dimensionality of the joint space can

cause overfitting problems or is practically intractable, cf., [38].

Boosting approaches have also been proposed to automatically

Fig. 1. Overview of the dense-stereo-based ROI generation and high-
level fusion of intensity and depth classifiers. For depth images, warmer
colors represent closer distances to the camera. Dense stereo is used for pitch
estimation, B-Spline road profile modeling, obstacle detection, and depth-based
classification.

select the “best” features from a pool of different features and

modalities [46], [48]. In contrast, [8], [33], and [37] utilize

fusion on the classifier level by training a specialized classifier

for each feature or modality. Classifier fusion is done using

fuzzy integration [33], simple classifier combination rules [37],

or a mixture-of-experts framework [8].

There has been extensive work on the tracking of pedes-

trians to infer trajectory-level information. Most approaches

apply recursive filtering of frame-level detections with addi-

tional information from different cues. For a detailed overview,

see [9].

We consider the main contribution of this paper to be the use

of dense stereo information in two modules of our pedestrian

detection system: ROI generation and pedestrian classification.

For ROI generation, we recover scene geometry in terms of

camera height, camera pitch, and road profile from dense

stereo information on a frame-by-frame basis. Constraints on

possible pedestrian locations are dynamically derived from the

recovered models of camera and road geometry. With regard

to pedestrian classification, we extract spatial features from

dense depth images at medium resolution (pedestrian heights

up to 80 pixels) and fuse them with an intensity-based feature

set on the classifier level. This paper builds upon our earlier

work [23], [37] and presents an integrated pedestrian system

that significantly outperforms the state of the art.

See Fig. 1 for a system overview. First, the camera pitch

angle is estimated by determining the slope with the highest

probability in the v-disparity map, for a reduced distance range.

Second, a corridor of predefined width is computed using the

vehicle velocity and the yaw rate. Only points that belong to that

corridor will be used for subsequent road surface modeling. The

ground surface is represented as a parametric B-Spline surface

and tracked using a Kalman filter [44]. Reliability on the road

profile estimation is an important issue that has to be considered

for real implementations. ROIs are finally obtained by ana-

lyzing the multiplexed depth maps as in [15]. The remaining

ROIs are classified using linear SVM classifiers operating on

HOG features, extracted from both intensity and dense depth
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data. We follow a classifier-level fusion strategy that bases the

final decision on a combined vote of the individual classifiers.

As opposed to fusion approaches using a joint feature space,

e.g., [38], [43], and [46], this strategy does not suffer from

the increased dimensionality of the joint space; see [37] and

[38]. We assume our approach to generalize to other state-of-

the-art features and classifiers, which are complex enough to

capture the appearance of the pedestrian class; see [9]. Finally,

the detected pedestrians are tracked over time.

III. DENSE STEREO

With two (or more) cameras, 3-D information of the envi-

ronment can be derived by finding the corresponding points

across multiple cameras. A known stereo camera configuration

constraints the location of corresponding image points to be on

a single epipolar line. To simplify the matching process, camera

images are often rectified, resulting in epipolar lines that are

parallel to image lines. For a point l(u, v) in the left image and

the corresponding point r(u, v) in the right image, the disparity

d(u, v) can be computed using

d(u, v) = l(u, v) − r(u, v). (1)

Feature-based stereo vision systems typically provide depth

measurements at points with sufficient image structure, whereas

dense stereo algorithms estimate disparities at every pixel,

including untextured regions. Only for regions that are visible

in only one image can no disparity values be computed causing

a “stereo shadow.” Here, we use a hardware implementation of

the SGM [20] algorithm that provides dense disparity maps in

real time; see Fig. 7(b).

Given the camera geometry with focal length f and the dis-

tance between the two cameras B, dense depth maps containing

distance information can be computed using

Z(u, v) =
fB

d(u, v)
at pixel (u, v). (2)

These dense disparity/depth maps are used for the following

ROI generation, road profile estimation, obstacle detection, and

pedestrian classification.

IV. DENSE STEREO-BASED

REGION-OF-INTEREST GENERATION

A. Modeling of Nonplanar Road Surface

Before computing the road profile, the camera pitch angle

α is estimated using the v-disparity space. We assume that the

camera is installed in a way that the roll angle is insignificant.

A planar road surface in the camera coordinate system can be

described using

Y (Z) = e · Z − H (3)

with e = tanα and camera height H . In v-disparity space, this

road is described using

v(d) = ad + c (4)

where v is the image row, and a and c are the slope and

the offset that depend on the camera height and tilt angle,

Fig. 2. Road surface modeling. Distance grid and their corresponding height
values along with camera height and tilt angle.

respectively. With the assumption of a fixed camera height H ,

only the offset c of the line needs to be estimated in v-disparity

space. Integrating the camera projection formula allows the

computation of the slope

e(u, v) =
v0 − v

f
+

H

Bf
d(u, v) (5)

with the camera principal point v0. Results are accumulated into

a slope histogram, and the slope with the highest probability is

selected for obtaining a first estimation of the camera pitch an-

gle. Outliers are suppressed by computing a maximum disparity

deviation for each image row, depending on the tolerance of the

camera height and tilt angle.

The next step consists of computing the predicted driving

corridor in front of the vehicle. This is particularly important

when the vehicle is taking a curve, since most of the points

in front of the vehicle do not correspond to the road. Using a

single-track model with yaw-rate measurements ψ̇ and velocity

v from onboard sensors, the vehicle path can be predicted.

Moving on the curve radius r = v · ψ̇, the lateral (X) and

longitudinal (Z) positions in the future t are calculated as

X(t) = v(ψ̇)−1

[

1 − cos(ψ̇t)
]

(6)

Z(t) = v(ψ̇)−1 sin(ψ̇t). (7)

The ROI for selecting disparity values is computed by project-

ing the corridor into image space using the estimated camera

pitch. Here, we use a corridor of width ±1.5 m and distance

range 3–40 m in the camera coordinate system.

The road profile is represented as a parametric B-Spline

surface as in [44]. B-Splines are a basis for the vector space of

piecewise polynomials with degree d. The basis functions are

defined on a knot vector c using equidistant knots within the

observed distance interval. A simple B-Spline least square fit

tries to approximate the 3-D measurements optimally. However,

a more robust estimation over time is achieved by integrating

the B-Spline parameter vector c, the camera pitch angle α, and

the camera height H into a Kalman filter. Finally, the filter

state vector is converted into a grid of distances Zi and their

corresponding road height values hi, as depicted in Fig. 2. The

number of bins of the grid will be as accurate as the B-Spline

sampling.

B. Outlier Removal

In general, the method in [44] works well if the measure-

ments provided to the Kalman filter correspond to actual road

points. The computation of the corridor removes a considerable

amount of object points. However, there are a few cases in

which the B-Spline road modeling still leads to bad results.
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Fig. 3. Wrong road profile estimation when a vertical object appears in the
corridor for a consecutive number of frames. The cumulative variance for the
bin in which the vertical object is located increases, and the object points are
eventually passed to the Kalman filter.

These cases are mainly caused by vertical objects (cars, motor-

bikes, pedestrians, cyclists, etc.) in the vicinity of the vehicle.

Reflections in the windshield can cause additional correlation

errors in the stereo image. If we include these points, the

B-spline fitting achieves a solution that climbs or wraps over

the vertical objects.

To avoid this problem, the variance of the road profile for

each bin σ2
i is computed. Thus, if the measurements for a spe-

cific bin are out of the bounds as defined by the predicted height

and the cumulative variance, they are not added to the filter.

Although this alternative can deal with spurious errors, if the

situation remains for a consecutive number of iterations (e.g.,

when there is a vehicle stopped in front of the host vehicle), the

variance increases due to the inavailability of measurements,

and the points pertaining to the vertical object are eventually

passed to the filter as measurements. This situation is depicted

in Fig. 3.

Accordingly, a mechanism is needed in to ensure that points

corresponding to vertical objects are never passed to the filter.

We compute the variance of all measurements for a specific bin

and compare it with the expected variance in the given distance.

The latter can be computed by using the associated standard

deviations σm via error propagation from stereo triangulation

[34], [44]. If the computed variance σ2
i is greater than the

expected one σ2
ei, we do not rely on the measurements but on

the prediction for that bin. This is useful for cases in which there

is a vertical object like the one depicted in Fig. 4.

However, in cases in which the rear part of the vertical

object produces 3-D information for two consecutive bins, this

approach may fail, depending on the distance to the vertical

object. For example, in Fig. 5, the rear part of the vehicle yields

3-D measurements in two consecutive bins Zi and Zi+1 whose

variance is lower than the expected one for those bins. In this

case, measurements will be added to the filter, which will yield

unpredictable results.

Fig. 4. Rejected measurements for bin i at distance Zi since measurement
variance σ

2
i

is greater than the expected variance σ
2
ei

in that bin.

Fig. 5. Accepted measurements for bins i and i + 1 at distances Zi and
Zi+1 since measurement variances σ

2
i

and σ
2
i+1

are lower than the expected

variances σ
2
ei

and σ
2
ei+1

in these bins.

Fig. 6. Second-order polynomial function used to accept/reject measurements
at all distances.

We therefore define a fixed ROI, in which we restrict mea-

surements to lie. To that effect, we quantify the maximum

road height changes at different distances and fit a second-

order polynomial; see Fig. 6. The fixed region can be seen as

a compromise between filter stability and response to sharp

road profile changes (undulating roads). Apart from this ROI,

we maintain the aforementioned test on the variance to see if

measurements corresponding to a particular grid are added to

the filter or not.

C. System Integration

Initial ROIs Ri are generated using a sliding-window tech-

nique where detector windows at various scales and locations

are shifted over the depth map. In previous work [15], the

flat-world assumption along with known camera geometry

restricted the search space. Pitch variations were handled by

relaxing the scene constraints [15], e.g., camera pitch and

camera height tolerances. In our approach, the use of dense

stereo allows a reliable estimation of the vertical road profile,

camera pitch, and tilt angle (see Fig. 7).

To adapt the subsequent detection modules, we compute new

camera heights H ′

i and pitch angles α′

i for all bins of the road

profile grid. After that, standard equations for projecting 3-D

points into the image plane are used.

First, dense depth maps are filtered as follows: Points Pr =
(Xr, Yr, Zr) under the actual road profile, i.e., Zi < Zr <
Zi+1 and Yr < hi, and over the actual road profile plus the
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Fig. 7. System example with estimated road profile and pedestrian detection.
(a) Final output with detected pedestrian marked red. The magenta area
illustrates the system detection area. (b) Dense stereo image. (c) Corridor used
for spline computation after outlier removal. (d) Spline (blue) fitted to the
measurements (red) in system profile view.

maximum pedestrian size, i.e., Zi < Zr < Zi+1 and Yr > hi +
Hmax, are removed since they do not correspond to obstacles

(possible pedestrians). The resulting filtered depth map is mul-

tiplexed into N discrete depth ranges, which are subsequently

scanned with windows related to minimum and maximum

extent of pedestrians. Possible window locations (ROIs) are

defined according to the road profile grid (we assume that the

pedestrian stands on the ground). Each pedestrian candidate

Fig. 8. Intensity and depth images for (a) pedestrian and (b) nonpedestrian
samples. From left to right: intensity image, gradient magnitude of intensity,
depth image, gradient magnitude of depth. (a) Pedestrian. (b) Nonpedestrian.

region Ri is represented in terms of the number of depth

features DFi. A threshold θR governs the amount of ROIs,

which are committed to the subsequent module. Only ROIs with

DFi > θR trigger the evaluation of the next cascade module.

Others are rejected immediately.

V. MULTI-MODALITY CLASSIFICATION

A. Spatial Depth and Intensity Features

Dense stereo provides disparity and depth information for

most image areas, apart from regions that are visible only by

one camera (stereo shadow). See the dark red areas to the left of

the pedestrian torso in Fig. 8(a). Spatial features can be based on

either depth Z (in meters) or disparity d (in pixels). As shown

in Section III, both are inversely proportional given the camera

geometry with focal length f and the distance between the two

cameras B.

Objects in the scene have similar foreground/background

gradients in depth space, irrespective of their location relative

to the camera. In disparity space, however, such gradients are

larger the closer the object is to the camera. To remove this

variability, we base our spatial features on depth instead of

disparity.

A visual inspection of the depth images versus the intensity

images in Fig. 8 reveals distinct properties that are unique to

each modality. In intensity images, lower body features (shape

and appearance of legs) are the most significant features of a

pedestrian (see results of part-based approaches, e.g., [28]). The

texture of the pedestrian exhibits lots of gradients and charac-

teristic structure resulting from clothing. In contrast, the upper

body area has dominant foreground/background gradients and

is particularly characteristic for a pedestrian in the depth image.

There are no significant depth gradients on areas corresponding

to the pedestrian body (we assume pedestrians to be in an up-

right position). Additionally, the stereo shadow is clearly visible

in the upper body area (to the left of the pedestrian torso) and

represents a significant local depth discontinuity. This might not



KELLER et al.: BENEFITS OF DENSE STEREO FOR PEDESTRIAN DETECTION 1101

Fig. 9. Average gradient magnitude and SVM weights averaged over HOG
blocks for (a) intensity and (b) depth images in the training set. (a) Intensity
features. (b) Depth features.

be a disadvantage but, rather, a distinctive feature. The various

salient regions in depth and intensity images motivate our use

of fusion approaches between both modalities to benefit from

the individual strengths; see Section V-B.

To instantiate feature spaces involving depth and intensity,

we utilize well-known state-of-the-art features, which focus on

local discontinuities: HOG features with a linear SVM classifier

(HOG/linSVM); see [5]. We assume our approach to generalize

to other state-of-the-art features and classifiers; see [9]. To get

an insight into the resulting HOG features, Fig. 9 depicts the

average gradient magnitude of all pedestrian training samples

for both intensity and depth. We observe that the gradient

magnitude is particularly high around the upper body contour

for the depth image while being more evenly distributed for

the intensity image. Furthermore, almost no depth gradients are

present on areas corresponding to the pedestrian body. Fig. 9

further shows the weights of the linear SVM classifier after

training on the corresponding feature sets. In this visualization,

each “pixel” results from averaging the SVM weights over the

underlying block of HOG features. In the intensity domain,

HOG blocks corresponding to head/shoulder and leg regions

have the highest weight. In the case of the depth features,

the upper body (coarse depth contrast between foreground

and background) and torso areas (uniform texture) are most

indicative of a pedestrian.

B. Classifier-Level Fusion Approach

A popular strategy to improve classification is to split up

a classification problem into more manageable subparts on

the data level, e.g., using mixture-of-experts or component-

based approaches [9]. A similar strategy can be pursued on the

classifier level. Here, multiple classifiers are learned on the full

data set, and their outputs are combined to a single decision.

Particularly, when the classifiers involve uncorrelated features,

benefits can be expected. We follow a parallel combination

strategy [7], where multiple feature sets (i.e., based on depth

and intensity; see Section V-A) are extracted from the same

underlying data. Each feature set is then used as input to a

single classifier, and their outputs are combined. As opposed

to creating a joint feature space, classifier-level fusion does not

suffer from effects related to the increased dimensionality of the

joint space; see [37] and [38].

For classifier fusion, we utilize a set of fusion rules that

are explained below. An important prerequisite is that the

individual classifier outputs are normalized so that they can

homogeneously be combined. The outputs of many state-of-

the-art classifiers can be converted to an estimate of posterior

probabilities [36]. We use this in our experiments.

Let xk, k = 1, . . . , n denote a (vectorized) sample. The

posterior for the kth sample with respect to the jth object class

(e.g., pedestrian and nonpedestrian), which is estimated by the

ith classifier i = 1, . . . , m, is given by pij(xk). Posterior prob-

abilities are normalized across object classes for each sample

so that
∑

j

(pij(xk)) = 1. (8)

Classifier-level fusion involves the derivation of a new set of

class-specific confidence values for each data point qj(xk) out

of the posteriors of the individual classifiers pij(xk). The final

classification decision ω(xk) results from selecting the object

class with the highest confidence

ω(xk) = arg max
j

(qj(xk)) . (9)

We consider the following fusion rules to determine the

confidence qj(xk) of the kth sample with respect to the jth

object class:

1) Product Rule: Individual posterior probabilities are mul-

tiplied to derive the combined confidence

qj(xk) =
∏

i

(pij(xk)) . (10)

2) Linear SVM Rule: A linear SVM is trained as a fusion

classifier to discriminate between object classes in the space of

posterior probabilities of the individual classifiers.

Let pjk = (p1j(xk), . . . , pmj(xk))T denote the m-

dimensional vector of individual posteriors for sample xk with

respect to the jth object class. The corresponding hyperplane

is defined by

fj (pjk) = wj · pjk + bj . (11)

Here, wj denotes the linear SVM weight vector, bj is a bias

term, and · is the dot product. This linear SVM fusion rule

equals a weighted sum of the individual classifier outputs,

with weights and an additional bias term learned from the

training set. The SVM decision value fj(pjk) (distance to the

hyperplane) is used as confidence value

qj(xk) = fj(pjk). (12)

VI. EXPERIMENTS

We tested our integrated pedestrian detection system on a

6:40 min (5919 images) sequence recorded from a vehicle

driving through the canal area of the city of Amsterdam during

the daytime. Because of the many bridges and speed bumps, the

sequence is quite challenging for the road profiling module. Ad-

ditionally, due to the complexity of the scenery, this sequence

is very demanding for a pedestrian classifier.

Our training samples comprise nonoccluded pedestrian (in an

upright position) and nonpedestrian cutouts from both intensity

and corresponding depth images, which are captured from a

moving vehicle in an urban environment. See Table I and
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TABLE I
TRAINING SET STATISTICS. THE NUMBER OF PEDESTRIAN SAMPLES IS

IDENTICAL FOR DEPTH AND INTENSITY IMAGES. NONPEDESTRIAN

SAMPLES FOR INTENSITY AND DEPTH SLIGHTLY VARY DUE

TO THE BOOTSTRAPPING PROCESS

Fig. 10. Overview of (a) pedestrian and (b) nonpedestrian samples (intensity
and corresponding depth images). (a) Pedestrian samples. (b) Nonpedestrian
samples.

Fig. 10 for an overview. All samples are scaled to 48 × 96 pixels

with an eight-pixel border to retain contour information. For

each manually labeled pedestrian cutout, we randomly created

18 samples by horizontal mirroring and geometric jittering.

Nonpedestrian samples were the result of a pedestrian shape

detection preprocessing step with a relaxed threshold setting,

i.e., containing bias toward more difficult patterns. We further

applied an incremental bootstrapping technique, e.g., [10], by

collecting additional false positives of the corresponding clas-

sifiers on an independent sequence and retraining the classifiers

on the increased data set.

HOG features are extracted from those samples using 8 ×

8 pixel cells, accumulated to 16 × 16 pixel blocks with eight

gradient orientation bins. Identical feature/classifier parameters

were used for intensity and depth modalities.

In our test sequence, pedestrian bounding boxes were man-

ually labeled. Their 3-D position is obtained by triangulation

in the two camera views. Only pedestrians with a distance

of 12–27 m in longitudinal and ±4 m in lateral direction

were considered required. Pedestrians beyond this detection

area were regarded as optional, i.e., the systems are not re-

warded/penalized for correct/missing detections. This results in

1684 required pedestrian single-frame instances in 66 distinct

trajectories, which are required to be detected by our pedestrian

detection system.

The match of a ground-truth bounding box gi to a system

alarm aj involves bounding box coverage Γ(gi, aj) = A(gi ∩

aj)/A(gi ∪ aj). If this ratio of intersection area and union area,

is above θn, the ground-truth object is regarded as detected. In

our experiments, we chose θn = 0.25.

We evaluate the benefit of dense stereo on ROI gen-

eration and pedestrian classification both in isolation (see

Fig. 11. Receiver operating characteristic (ROC) performance of different
variants of stereo-based ROI generation combined with an intensity-only
HOG/linSVM pedestrian classifier.

Sections VI-A and B) and in an integrated system variant (see

Section VI-C). Our baseline system involves static scene geom-

etry (flat-world assumption with fixed camera height and pitch)

combined with intensity-only HOG/linSVM classification (we

use the original code provided in [4]).

A. ROI Generation

The performance of the ROI generation module is evaluated
in combination with the HOG/linSVM pedestrian classifier on
intensity features only. Fig. 11 compares the performance of
the baseline system (flat-world assumption with fixed camera
height and pitch) with the proposed ROI generation technique
using 1) pitch estimation with a flat-world assumption and
2) pitch estimation with road profiling. It is observed that pitch
estimation (magenta ×) already improves the performance over
the baseline (blue +), by distributing ROIs on a more adequate
ground. An additional improvement is obtained by disregarding
the flat-world assumption and estimating the actual road profile
in front of the vehicle (green �). For a detection rate of,
for example, 60%, the number of false positives is reduced
by a factor of 2.3 using integrated pitch estimation and road
profiling, compared with the baseline.

B. Multimodality Classification

Fig. 12 compares the performance of classifiers in different
modalities (depth and intensity), as well as fusion strategies.
All classifiers are used with the base assumption of flat world
and fixed camera height and pitch, i.e., the proposed dense-
stereo-based dynamic scene constraints are not (yet) in place.
Our results show that a HOG/linSVM classifier on intensity
features (blue +) outperforms the corresponding classifier on
depth features (red ×).

The application of any proposed multimodality fusion strate-

gies (see Section V-B) results in a significant performance

boost (magenta ⋄ and green �). The performance difference

between both fusion strategies is only minor. At a detection rate

of 60%, for example, the combined intensity–depth classifier

reduces false positives by a factor of 3.3 over the intensity-only

classifier. This clearly shows that the different characteristics of

depth and intensity can indeed be exploited; see Section V-A.
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Fig. 12. ROC performance of stereo-based ROI generation combined with
intensity–depth HOG/linSVM pedestrian classification.

Fig. 13. ROC performance comparing the baseline system using an HOG/
linSVM classifier on intensity images with the proposed system using road
profiling, pitch estimation, and HOG/linSVM classifiers on depth and intensity
images with SVM fusion.

C. Combined System Performance

In our next experiment, we combine the two best performing

variants for ROI generation and pedestrian classification from

our previous experiments: ROI generation using dense stereo

based dynamic scene geometry and intensity-depth classifi-

cation. Results are given in Fig. 13. The integrated system

(green �) significantly boosts performance over the baseline

system (blue +). At a detection rate of 60% for example, the

number of false positives is reduced by a factor of 7.5, which

almost equals the product (a factor of 7.6) of the individual

benefits shown (factors of 2.3 for ROI generation and 3.3

for classification, respectively). This shows that the obtained

performance boosts in the two different system modules are

highly orthogonal to each other.
In our final experiment, we add a (rather simple) tracker

to the system to obtain results on the trajectory level. We
distinguish between two types of trajectories (see [15]): “class-
B” and “class-A” trajectories that have at least one or at least
50% of their events matched. “class-A” trajectories include
“class-B” trajectories, but the former demand stronger appli-
cation performance. We compare the performance of the in-
tegrated system (dynamic scene geometry and intensity–depth

TABLE II
SYSTEM PERFORMANCE OF THE INTEGRATED SYSTEM VERSUS

THE BASELINE SYSTEM AFTER TRACKING

Fig. 14. Examples of system detections (red), false positives (yellow), and
missed pedestrians (blue).

classification) versus the baseline system (static scene geome-
try and intensity-only classification). Inputs to the tracker are
pedestrian detections that were obtained from both systems by
setting the classifier thresholds to correspond to a detection rate
of 50% at the frame level. Nonmaximum suppression using
the classifier outputs is applied to overlapping detections with
a bounding box coverage of 50%. Remaining detections are
tracked using a 2.5-D α–β tracker; see [15]. New tracks are
started after three continuous detections and closed after two
successive missed detections. Table II summarizes the perfor-
mance of the two systems. The frame-level sensitivity of the
system using stereo information is slightly increased compared
to the baseline system. However, the main benefit lies in the
reduction of false positives by a factor of approximately five.
The use of dense stereo information for both road profiling and
classification reduces the number of false positives per frame
from 0.336 to 0.066. A comparison of the observed benefit
(factor of five) to the system performance without tracking
(benefit of factor 7.5) shows that tracking reduces the absolute
performance differences of the systems. Similar effects have
been observed in [9]. Fig. 14 illustrates system performance,
including typical false positives in a cluttered image region and
a missed pedestrian in a not fully upright pose.

D. Processing Time

The hardware implementation of our SGM stereo requires

17 ms/frame. Other system components run in (unoptimized)

C/C++ code on a single-core 2.66-GHz Intel CPU. Camera

pitch estimation requires 3.5 ms/frame on the average with

the additional road profiling taking 26 ms. With a static pitch

and flat-world assumption, the ROI grid is generated only
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once and reused in every frame. Incorporating pitch or road

profile information requires an adjustment of the grid that takes

4 ms/frame. Depending on the configuration of earlier mod-

ules, the number of ROIs passed to the classifier varies. For

the system using static pitch and flat world, about 700 ROIs

per frame need to be classified on the average. Using pitch

and road profile estimation, this number is reduced to about

600 ROIs per frame. HOG features need to be extracted and

classified from the depth and intensity data, which doubles

the costs for classification. On a multiprocessor architecture,

feature extraction and classification for each modality could be

processed in parallel. The processing time for any of the de-

scribed rules to fuse the classifier decision values is minor and,

hence, neglected. In our setup, feature extraction, classification,

fusion, and tracking require approximately 500 ms/frame on the

average. Note that processing costs do scale sublinearly with

the number of ROIs, since feature computation can be shared

among several overlapping ROIs (in the same modality), e.g.,

using integral histograms [51].

VII. DISCUSSION

Our performance evaluation focused on demonstrating the

relative improvements arising from the use of dense stereo, i.e.,

the reduction of false positives at constant sensitivity levels by a

factor of 7.5 after the classification module and by a factor of 5

after the tracker, respectively. On absolute terms, the (class-B)

trajectory-level system performance of approximately 80% sen-

sitivity and 8 false detections per minute (cf. Table II) seems far

from performance levels that would be necessary in a realistic

application. However, this perceived performance gap, for the

most part, stems from the exceeding difficulty of our test

sequence (undulating roads, bridges, speed bumps, and very

complex urban scenery), which was specifically chosen as a

challenging test bed for the proposed road profiling module;

see Section VI. Other studies have demonstrated differences of

orders of magnitude in the performance of otherwise identical

systems resulting from the use of different data sets, e.g., [6]

and [42].

In this paper, we did not heavily optimize the feature sets

with regard to the different modalities. Instead, we transferred

general knowledge and experience from the behavior of fea-

tures and classifiers from the intensity domain to the depth

domain. At this point, it is not clear if (and how) additional

modification and adaptation of the feature sets could further

improve performance.

We did not particularly focus on processing time constraints

in this paper. However, we do expect that software optimization

and hardware implementation (e.g., digital signal processor and

field-programmable gate array) can result in real-time applica-

bility of the proposed algorithms, cf., [2] and [19]. Future work

includes dealing with partially occluded pedestrians explicitly

and integrating [8] into the current system.

VIII. CONCLUSION

We have investigated the benefits of dense stereo for a

pedestrian detection system on challenging real-world data (i.e.,

undulated roads, bridges, and speed bumps). The improved

ROI generation utilizes dense stereo data for pitch estimation,

road profiling, and obstacle detection. Compared with our base

system with flat-world assumption and fixed pitch, a reduction

of false positives by a factor of 2.3 at similar detection rates

has been demonstrated. By fusing classifier responses from

different modalities (intensity and depth), we have additionally

obtained a reduction of false positives by a factor of 3.3.

Combining the proposed ROI generation and high-level fusion

resulted in a reduction of false positives by a factor of 7.5 at

the classification level and by a factor of 5 at the tracking level,

respectively.
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