
 Open access Journal Article DOI:10.1007/S11334-013-0200-4

The benefits of formalising design guidelines: a case study on the predictability of
drug infusion pumps — Source link

Paolo Masci, Rimvydas Rukšėnas, Patrick Oladimeji, Abigail Cauchi ...+4 more authors

Institutions: Queen Mary University of London, Swansea University

Published on: 01 Jun 2015 - Innovations in Systems and Software Engineering (Springer London)

Topics: Predictability and User interface

Related papers:

 Formal Verification of Medical Device User Interfaces Using PVS

 Verification of interactive software for medical devices: PCA infusion pumps and FDA regulation as an example

 Reusing models and properties in the analysis of similar interactive devices

 Safer 5-key number entry user interfaces using differential formal analysis

 Rapid Prototyping in PVS

Share this paper:

View more about this paper here: https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-
3iqunsfg3w

https://typeset.io/
https://www.doi.org/10.1007/S11334-013-0200-4
https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w
https://typeset.io/authors/paolo-masci-1kjt60pqjh
https://typeset.io/authors/rimvydas-ruksenas-3ncju4cvis
https://typeset.io/authors/patrick-oladimeji-3g0yub99f7
https://typeset.io/authors/abigail-cauchi-45nubyfmv2
https://typeset.io/institutions/queen-mary-university-of-london-2dj97w38
https://typeset.io/institutions/swansea-university-3ewlygnd
https://typeset.io/journals/innovations-in-systems-and-software-engineering-1sse5aom
https://typeset.io/topics/predictability-3fwumuz2
https://typeset.io/topics/user-interface-m9tigr1x
https://typeset.io/papers/formal-verification-of-medical-device-user-interfaces-using-2uaz5nae45
https://typeset.io/papers/verification-of-interactive-software-for-medical-devices-pca-qgjwedro9s
https://typeset.io/papers/reusing-models-and-properties-in-the-analysis-of-similar-cjpkp4sdke
https://typeset.io/papers/safer-5-key-number-entry-user-interfaces-using-differential-29bh3h2zn5
https://typeset.io/papers/rapid-prototyping-in-pvs-427g87r294
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w
https://twitter.com/intent/tweet?text=The%20benefits%20of%20formalising%20design%20guidelines:%20a%20case%20study%20on%20the%20predictability%20of%20drug%20infusion%20pumps&url=https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w
https://typeset.io/papers/the-benefits-of-formalising-design-guidelines-a-case-study-3iqunsfg3w

Innovations Syst Softw Eng (2015) 11:73–93

DOI 10.1007/s11334-013-0200-4

SI: FMIS

The benefits of formalising design guidelines: a case study
on the predictability of drug infusion pumps

Paolo Masci · Rimvydas Rukšėnas · Patrick Oladimeji ·

Abigail Cauchi · Andy Gimblett · Yunqiu Li ·

Paul Curzon · Harold Thimbleby

Received: 2 April 2012 / Accepted: 6 March 2013 / Published online: 2 April 2013

© Springer-Verlag London 2013

Abstract A demonstration is presented of how automated

reasoning tools can be used to check the predictability of a

user interface. Predictability concerns the ability of a user to

determine the outcomes of their actions reliably. It is espe-

cially important in situations such as a hospital ward where

medical devices are assumed to be reliable devices by their

expert users (clinicians) who are frequently interrupted and

need to quickly and accurately continue a task. There are sev-

eral forms of predictability. A definition is considered where

information is only inferred from the current perceptible out-

put of the system. In this definition, the user is not required to

P. Masci (B)· R. Rukšėnas · P. Curzon ·

Queen Mary University of London, School of Electronic

Engineering and Computer Science, London, UK

e-mail: paolo.masci@eecs.qmul.ac.uk

R. Rukšėnas

e-mail: rimvydas@eecs.qmul.ac.uk

P. Curzon

e-mail: paul.curzon@eecs.qmul.ac.uk

P. Oladimeji · A. Cauchi · A. Gimblett · Y. Li · H. Thimbleby

Future Interaction Technology Lab, Swansea University,

Swansea, UK

e-mail: cspo@swansea.ac.uk

URL: www.fitlab.eu

A. Cauchi

e-mail: csabi@swansea.ac.uk

URL: www.fitlab.eu

A. Gimblett

e-mail: a.m.gimblett@swansea.ac.uk

Y. Li

e-mail: yunqiu.li@swansea.ac.uk

URL: www.fitlab.eu

H. Thimbleby

e-mail: h.thimbleby@swansea.ac.uk

URL: www.fitlab.eu

remember the history of actions that led to the current state.

Higher-order logic is used to specify predictability, and the

Symbolic Analysis Laboratory is used to automatically ver-

ify predictability on real interactive number entry systems

of two commercial drug infusion pumps—devices used in

the healthcare domain to deliver fluids (e.g., medications,

nutrients) into a patient’s body in controlled amounts. Areas

of unpredictability are precisely identified with the analysis.

Verified solutions that make an unpredictable system pre-

dictable are presented through design modifications and ver-

ified user strategies that mitigate against the identified issues.

Keywords Predictability · Interactive system design ·

Model checking · Higher-order logic · SAL

1 Introduction and motivation

Infusion pumps are medical devices used to deliver drugs

to patients at controlled rates. They are “programmed” by

clinicians, and the process consists of interacting with but-

tons on the pump user interface for navigating through menus

and entering values to set the infusion parameters. Infusion

pumps are used in hospital wards, and increasingly in the

patient’s home. These devices have become a major concern

because of several unexpected accidents due to use errors. For

instance, a typical problem reported in drug adverse events

with infusion pumps is that a clinician may enter a number

ten times larger than intended [36]. Under-dosing is also a

problem: if a patient receives too little of a drug, their recov-

ery may be delayed or they may be in unnecessary pain.

Such errors, unfortunately, are not rare. In the UK, for

instance, a recent bulletin from the UK government agency

MHRA (the UK Medicines and Healthcare products Regu-

latory Agency), which is responsible for ensuring that medi-

cines and medical devices work, reports that between the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-013-0200-4&domain=pdf

74 P. Masci et al.

years 2005 and 2010, there were more than 1,000 incidents

involving infusion pumps in the UK alone (this is likely to be

under-reported). A series of the errors were due to number

entry [22]; examples include setting the wrong rate, confus-

ing primary and secondary rates, and not confirming the set

rate or the configuration.

Although use error is claimed as the primary causal factor

of many of these incidents, careful enquiries usually sug-

gest that actions carried out by clinicians typically have rea-

sonable explanations, and the combination of multiple small

failures is typically the cause of these incidents rather than

unskilled behaviour or negligence [27,28]. In the US, for

instance, the FDA has analysed incidents due to infusion

pumps, and there is evidence that these use errors are actu-

ally caused by the device design [11].

In order to contrast this negative trend, the FDA has

launched the Infusion Pump Improvement Initiative with the

aim to promote using verification techniques for analysis and

development of infusion pumps. As part of this initiative,

Kim et al. [19] have demonstrated how a model-based devel-

opment approach can be used to implement software for the

control logic of a patient-controlled analgesia (PCA) pump

prototype that is verified against the generic PCA (GPCA)

safety requirements provided by the FDA.

Our work presented in this paper complements the above

in that the focus is on the verification of user interfaces of

commercial infusion pumps. It takes a different approach

with a focus on interaction design. That is, in this work, we

demonstrate how verification tools can be used to identify

and solve problems related to predictability of a user inter-

face [12]. Predictability is a design principle concerning the

ability of a user to determine the outcomes of their actions

on a device user interface reliably. This property is espe-

cially important for safety-critical subsystems of the device

user interface (e.g., the number entry system) in situations

such as a hospital ward where medical devices are assumed

to be reliable devices by their expert users (clinicians) who

are frequently interrupted and need to quickly and accurately

continue a task.

In the next section, we motivate the choice of predictabil-

ity by illustrating how it relates to high-level design princi-

ples presented in the ANSI/AAMI HE75:2009 human fac-

tors standard. This standard is used as guidance document

by designers of user interfaces for medical devices and by

medical device regulators such as the US Food and Drug

Administration.

2 Predictability and the ANSI/AAMI HE75:2009

standard for medical devices

The ANSI/AAMI HE75:2009 standard has been developed

by the Association for the Advancement of Medical Instru-

ments (AAMI) in 2009 with the aim to create a reference doc-

ument that covers general human factors engineering princi-

ples for the development of interactive medical devices. The

principles covered in the standard have several links with the

predictability property. In the following, we provide excerpts

from the standard and discuss these links.

“Users can be forgetful, become distracted by

other tasks, or be interrupted during device use.

Therefore, designers should not depend on users

to remember information needed to perform a

task. It is far better to present to users the cru-

cial information they need to perform the task

correctly.”—HE75:2009, Chapter 4, Section 6.4

The definition of predictability that we consider ensures

that users can operate the device reliably and with confidence

without remembering the history of past actions. There is

empirical evidence that interruptions have a disruptive impact

on people’s performance and reliability [35]. If nurses are

interrupted while setting up an infusion, they need to stop

their task, turn their attention to the interrupting task, and

then resume the infusion task. If the pump user interface

does not show enough information to enable them to deter-

mine the exact device state, then they may fail to correctly

resume the task. For example, a nurse might think they com-

pleted a step that they had not and so on resumption, they

incorrectly skip that step. Laboratory evidence suggests that

being confused about the step to resume on is a common

problem on resumption [4]. Furthermore, if nurses are aware

of this potential hazard, they may try to apply workarounds,

such as resetting the device and starting over again. Such

workarounds considerably slow down the number entry task

which is a problem in itself, but may also result in new issues.

For instance, as a side-effect, such workaround actions may

reset other parameters of the device, such as the unit of mea-

surement, without the nurse realising.

“People usually have a mental model or expec-

tation of how a new device works. Usually, this

expectation is based on previous experience using

similar devices. Users might expect certain con-

trols to function in a particular manner and are

surprised if a control functions differently.”—HE75:

2009, Chapter 4, Section 8.1

Mental models are conceptual models developed by users

to explain how things work [24]. Mental models developed

by expert users it can be highly accurate. However, even with

such expertise, users frequently make errors and depart from

these procedures, particularly when situations change or fail

to meet expectations. This can occur in boundary situations

that are rarely encountered so not built in to the conceptual

model developed by users. Reliance on perceptible cues can

help users understand the situation. Predictability ensures

123

The benefits of formalising design guidelines 75

that those cues (whatever they are) are always there and are

accurate.

“One way that designers seek to simplify med-

ical devices is to incorporate multiple operational

modes. In principle, multiple operational modes

are a sensible way to facilitate context-specific

tasks and to limit user exposure to extraneous

capabilities. However, problems can arise if the

user does not realise the medical device is in the

wrong mode.”—HE75:2009, Chapter 4, Section

9.6

Predictable devices allow users to tell what mode the

device is in. The limited physical dimension of devices and

their ever-increasing number of functionalities push devel-

opers to overload the individual user interface elements. For

instance, the up button on a pump user interface, which is typ-

ically used to increase the infusion rate on these devices, may

also be used to provide other functionality in some device

modes such as, confirming the infusion rate, undoing the last

action, or recalling a rate from the device memory. How-

ever, even though the outcome of this mode-dependent func-

tionality affects the interaction, its meaning in the current

mode might not be readily visible to the user. This would

make it difficult for the user to tell what exactly, in this case,

the up button does in the current state of the system and

hence how to plan future actions. It is also worth noting that

skilled users, such as clinicians, tend to commit errors of the

“strong but wrong” type [28]. That is, they are committed

with misplaced confidence where, say, an attentional check

might be omitted or mistimed, or where some aspect of the

environment is misinterpreted. It is also worth noting that

predictability is important in situations where undo opera-

tions are not possible. This is vital for infusion pumps at

the point where an infusion is started, whatever the design.

Once drug is pumped into a patient, this can only be stopped

not undone, and the effects of getting this wrong are safety

critical.

3 Overview of the approach

The predictability analysis checks whether a device user

interface enables users to tell what state the device is in sim-

ply by looking at its current persistent output and then predict

the next state generated by interacting with the device (e.g.,

by clicking a button). This analysis targets critical subsystem

of user interfaces, such as the number entry system.

This form of predictability has been formalised in [12,13]

through the program–interpretation–effect (PIE) framework

[13,14], which describes interactive systems in terms of

sequence of commands issued by users (denominated pro-

grams), device states perceived by the users (denominated

effects), and relations between command sequences and their

effects on perceived device states (denominated interpreta-

tions). Following the notation of the PIE framework, a pre-

dictable system is defined as follows:

predictable(e) � ∀p, q, r ∈ P : (I (p) = e = I (q))

⇒ (I (pr) = I (qr))

where P is the set of sequences of actions (key-presses

in this case) that can be performed through the device user

interface; I : P → E is the set of all possible computations

performed by the device, where E is the set of observable

states of the device.

A bisimulation-based approach is used in this work to

specify and verify the above definition of predictability. Two

models are specified: one model, that we call the device

model, defines the interactive behaviour of the device; the

other model, that we call the prediction model, defines the

user’s knowledge of the device. The prediction model used

in the analysis encapsulates the following hypotheses on

the user’s knowledge: (1) the user makes decisions only on

the basis of observable information provided by the device

through its user interface; (2) the user has no memory of past

device states or history of performed actions; (3) the user has

a correct understanding of the functionalities of the device.

Given the prediction and the device model, an equivalence

relation is thus established on the observable device state. If

the device model and the prediction model always match, that

is the values of the corresponding variables in the observable

state of the device and prediction models are equal in all the

reachable states of the device, then the device is predictable.

The Symbolic Analysis Laboratory (SAL) [23] is used in

Sect. 6 to perform this predictability analysis for the number

entry systems of two commercial drug infusion pumps.

Because of the hypotheses imposed on the prediction

model, that model and the device model share several behav-

iours. A procedure for building a prediction model from a

device model is the following.

The initial prediction model is a simplified device model.

The behaviour of this simplified model is obtained from the

specification of the device behaviour by removing from it

all conditions and transitions that are not observable from

the device user interface. For instance, one of the analysed

devices has an auxiliary memory for enabling undo at bound-

ary cases. If the value stored in this auxiliary memory used

by the device is not externalised on the device user interface,

then the auxiliary memory is not included in the state of the

prediction model, as well as any transition or condition based

on the value stored in memory.

Iterative model refinement is used for eliminating mis-

matches due to oversimplification of device behaviours in

the initial prediction model. This process makes explicit the

123

76 P. Masci et al.

implicit relations between observable state variables and hid-

den variables used by the device (e.g., the auxiliary memory

used by the device is always clear when the display shows

certain values). To refine the initial prediction model and

still maintain the hypotheses on the user’s knowledge, only

conditions over the current observable device state can be

introduced. New conditions are included in the prediction

model until either the prediction model and the device model

always match (in this case, the device is predictable), or until

a situation is found where a refinement cannot be found that

resolves the mismatch. In this second case, we say that the

device is not predictable.

The simplicity of the procedure described above has the

advantage that it can be easily implement in different lan-

guages and verification tools. A drawback is that several iter-

ations may be required to refine the initial prediction model.

This happens when the user interface has complex behaviours

linked to variables that are not externalised on the device user

interface. As such, the need of several iterations in itself is

a symptom that the user interface design may need to be

revised (even if predictability succeeds at the end) as the

mental model that users would need to develop is likely to

be too complex. It is worth recalling that the predictability

analysis performed here is performed to help discover poten-

tial problems with interaction design in safety-critical parts

of a user interface, such as the interactive number entry sys-

tem of an infusion pump, rather that the whole user interface

behaviour.

When predictability fails, the analysis provides a means

to generate two kinds of recommendations: verified design

solutions that allow to modify the device user interface behav-

iour and make it predictable; verified user strategies that can

be easily applied by users to avoid the area of unpredictabil-

ity in the design of the device user interface. The former is

useful for device manufacturers in that it allow to evaluate

the consequences of design alternatives that include differ-

ent features. The latter is useful for user training, in that we

can check whether a reasonably simple strategy exists (other

than resetting the device) that allows one to circumvent the

predictability issues evidenced in the analysis.

3.1 Contribution

We show via an example based on commercial devices how

formal methods can help to check whether device designs

are predictable. Specifically, an accepted definition of pre-

dictability is formalised, and a demonstration is presented

of how it can be checked against the behaviour of the num-

ber entry system of two real infusion pumps, the Alaris GP

[16] and the B-Braun Infusomat Space [3] (current models,

2011). The general style of these user interfaces is common

to many such devices and so our approach is likely to apply

more generally. The SAL [23] model checker is used to ver-

ify whether the predictability property holds for these device

models. When predictability fails, consideration of failure

traces from the model checking help discover solutions to

the identified problems. These solutions are given either via

design modifications or, if fixing the design itself is not feasi-

ble, through verified user strategies that if followed mitigate

against the problem.

The contributions of this work are therefore: (1) an

approach to verify predictability with automated verification

tools; (2) a demonstration through an example that commer-

cial devices can be very effectively analysed for their compli-

ance to predictability; (3) a demonstration that problems can

be precisely identified and hence fixed where this is deemed

appropriate given the trade-offs involved.

This paper extends our previous work [21] as follows. We

illustrate in detail the complete specification of the real num-

ber entry systems of the two considered infusion pumps. In

particular, for the Alaris-GP, we include press and hold inter-

actions where a key is pressed and held down for a certain

amount of time and then released. We make clear the hypothe-

ses behind the prediction model and present an approach for

generating the prediction model from the device model. We

present design recommendations for making the system pre-

dictable, and verified user strategies that mitigate against the

lack of predictability of the two analysed devices.

3.2 Structure of the paper

In Sect. 4, an overview of recent related work about for-

mal analysis of interactive systems is provided. In Sect. 5,

a formalisation of the interactive number entry systems of

two commercial drug infusion pumps is developed. In Sect.

6, predictability is formalised in higher-order logic, and a

predictability analysis is performed for the developed spec-

ifications. In Sect. 7, a discussion of why the property fails

for both devices is provided, and possible solutions and rec-

ommendations to avoid predictability issues are illustrated.

Conclusions are drawn in Sect. 8.

4 Related work

In this section, we illustrate some recent work that directly

relates to ours.

Campos and Harrison [8] used modal action logic (MAL)

[31] and the IVY tool [7] to analyse the interactive behav-

iour of the BBraun and Alaris pumps considered in this work.

Their motivating problem is procurement of medical devices.

They demonstrate the utility of performing a systematic

comparison between device designs with model checking—

subtle design variations can be systematically identified and

evaluated. They use a layered approach to support model

reuse: an ‘inner’ layer describes the temporal evolution of the

123

The benefits of formalising design guidelines 77

infusion process; a ‘middle’ layer describes the mode struc-

ture and the information displayed by the pump; an ‘outer’

layer describes the normative tasks typical of the clinician’s

use of the device. The inner layer is common to all pumps,

while the middle layer is device- and design-specific. The

outer layer depends on the expected context of use of the

device. A “battery” of interaction properties is then verified

on the pump model for comparing different designs. Proper-

ties include mode clarity, consistency of actions, and appro-

priate feedback for critical actions. Their work complements

ours in that they focus on device modes and other interaction

properties, such as mode clarity and consistency of functions,

while here we focus on predictability and analyse a detailed

specification of the interaction design of the number entry

system.

Thimbleby and Gimblett [34] discuss the causes of loss

of predictability in interactive user interfaces. In particular,

they argue that one of the main contributing factors of unpre-

dictability is that manufacturers use ad hoc number entry

methods—apparently identical user interfaces may therefore

have completely different behaviours. They remark how the

problem is particularly evident when considering the way

syntax errors are handled by devices. In order to mitigate

the problem, they developed an approach for implement-

ing dependable interactive number entry. Their approach,

denominated correct-by-construction user interface, is based

on finite state machines. They use regular expressions for

specifying the features of the interface, and then a compiler

for generating the finite state machine. They demonstrate

how the approach can be applied for implementing an inter-

face that follows the rules defined by the Institute for Safe

Medication Practices (ISMP) [1] for writing numbers in a

safer way (e.g., write 0.5 instead of .5, as the latter may be

easily misread as 5). This work shares with ours the concern

that dependable interactive data entry interfaces should be

predictable, and they aim to tackle the problem at the root,

by developing tools that allow developers to be clear about

their design decisions.

Rushby’s work on mode confusion [5,29] relates to our

work. He used model checking approaches for comparing

plausible mental models developed by users and the actual

implementation of the system. He argues that any strong

divergence between mental models and device models is

a potential cause of “automation surprises”, i.e., situations

where the automated system behaves in a way that is differ-

ent from that expected by the operator. He proposed a con-

structive method for deriving mental models from the spec-

ification of the interactive systems [30], and he applied the

approach to the analysis of an MD-88 autopilot system. He

generates the specification of a mental model by simplifying

the interactive system specification through rules reflecting

psychological processes, such as frequential simplification

[18]. Starting from a simple description of the dynamics of

the aircraft, when a significant divergence is found between

the abstract model and a pilot’s mental model, he refines the

model until either the divergence is discharged or a credible

anomalous scenario is found.

Degani and Heymann [10] describe a systematic approach

for evaluating whether a device interface provides the nec-

essary information. They argue that this is a necessary pre-

condition for enabling operators to perform specified tasks

correctly and reliably. They perform a systematic comparison

between the behaviour of device user interfaces and mental

models of operators. Such descriptions are both simplified

versions of the device’s behaviour, and they aim to verify

that they are correct with respect to the specification of the

device when operators perform normative tasks. They use

an approach based on state-machines, where the verification

consists in checking that the parallel and synchronised execu-

tion of the interface and mental models consistently match.

They show that they are able to identify situations where

operators are unaware that certain events can take place. They

illustrate the approach by analysing a model of the autopilot

system of a flight control system.

Our work draws ideas from Rushby’s and Degani and

Heymann’s work. In particular, we embrace the idea that

a systematic comparison between mental models and actual

device specifications is an effective way of checking proper-

ties of interest on interactive system. In our work, we system-

atically compare a prediction model with the actual interface

specification. The prediction model is essentially a mental

model of an idealised expert user that knows all function-

alities of the device, but makes decisions only on the basis

of the persistent observable state of the device (e.g., what is

shown on the device displays). The argument about using an

idealised expert user is that it allows us to perform a conserva-

tive analysis—if the idealised expert user is not able to predict

the next observable state, neither a real user could. When the

verification fails, the model checker shows a counterexample

that provides precise insights about why predictability failed.

Bolton and Bass [6] used SAL [23] to verify a model

of the Baxter iPump. They verify whether some basic nor-

mative tasks (i.e., sequences of actions described in written

documents, such as user manuals) are properly supported by

the device. Examples of properties include: turning on and

off the pump, stopping the infusion, and entering a volume to

be infused. They developed a graphical modelling language,

denominated enhanced operator functional model (EOFM),

for specifying tasks in such a way that non-experts of formal

methods could be able to inspect the specifications and the

traces generated by the model checker. Their paper mainly

focuses on the technical lessons learnt when modelling an

interactive drug infusion pump. They illustrate that they had

to reduce the model in order to tackle state space explosion,

and argue that the verification approach they have used needs

to be revised if a real system is to be verified. In our work,

123

78 P. Masci et al.

rather than considering a simplified model of the pumps, we

focus on a detailed model of the interactive number entry

system. Although we do not explicitly model tasks and work

environment, some aspects of them are captured implicitly by

the interaction design principle we consider. The verification

approach we used that systematically compares a prediction

model and the specification of the interactive number entry

system allowed us to consider the full range of values, with-

out the need of specific simplifications.

Kim et al. [19] applied a model-based engineering

approach for generating software codes for a prototype infu-

sion pump from verified specifications. Their work has been

carried out within the generic infusion pump (GIP) [2]

project, whose aim is to develop a set of generic safety

requirements for the software codes executed by program-

mable drug infusion pumps. In their work, they start from

a formal specification given as timed automata, then verify

safety requirements and, if the requirements are successfully

verified, they automatically translate the timed automata into

C code. They demonstrate the approach by generating soft-

ware codes for a prototype infusion pump. Our work comple-

ments this work in that we focus on predictability of the inter-

action design, and our analysis aims also to verify whether

appropriate user strategies can be defined for mitigating defi-

ciencies in existing pumps designs.

5 Formal specification of the interactive number entry

systems of two infusion pumps

A detailed specification of the behaviour of the interactive

number entry systems of two real medical devices is now

developed. The considered devices are the B-Braun Infu-

somat Space [3] and the Alaris GP [16] infusion pumps.

These devices were chosen as typical examples of commer-

cial infusion pumps, though where different design decisions

have been taken in the design of their number entry systems.

Anecdotal evidence suggests similar issues are likely to arise

if other makes and models were analysed.

The actual values displayed by the devices are modelled,

as well as the actual action–effect relation of interactions

through the buttons on the device user interfaces. The devel-

oped models are state machines. Information relevant to the

display of the device user interface is modelled as part of

the device state, and functionalities of the device user inter-

face are then specified using transition functions over device

states. The higher-order logic specification language of SAL

[23] is used. It is based on typed higher-order logic, and

includes, among other types, function, tuple, and record type

constructors for the definition of new types. The function

type with domain type D and range type R is denoted [D ->
R]. Relevant features of the SAL specification language are

illustrated further as needed when presenting the developed

specifications.

Fig. 1 B-Braun Infusomat Space programmable infusion device

The specifications were obtained by reverse-engineering

the behaviour of the real devices using interaction walk-

through [33]. We thus reverse engineered the specifications

used below from the user documentation together with care-

ful manual exploration of the actual devices, following an

iterative methodology until we had accurate specifications.

This approach is potentially error-prone. Our results apply to

the specifications as reverse engineered and clearly may not

actually apply to the real devices if there are errors. Never-

theless, this is acceptable for the aim of this paper, which is

to demonstrate how verification tools can be used to verify

interaction properties on real devices. In principle, formal

specifications could have been derived from the actual soft-

ware codes of the devices if these were available, perhaps as

provided by the manufacturers. Thus if adopted by manufac-

turers this would not be a limitation in the use of the approach

described. In particular, we are showing that the analysis and

the general approach can help discover potential issues in

the details of the interaction design of devices, and can help

identify how to fix them. The predictability issues identified

by the analysis performed in Sect. 6 can be reproduced on

the real devices.

In the following, for each of the two considered drug infu-

sion pumps, a description of the behaviour of the interactive

number entry system is provided, followed by a detailed illus-

tration of the developed higher-order logic specifications. In

Sect. 6, the predictability of the behaviour described by the

developed specifications is then analysed.

5.1 B-Braun Infusomat Space

The B-Braun Infusomat Space’s number entry system is an

example of “5-keys” user interfaces [9]: four arrow keys and

a confirmation button (see Fig. 1). The up and down keys

increase or decrease the current number by 10cursor respec-

tively, where cursor denotes the cursor position. The left

and right arrow keys are used to change the cursor position.

The left key increases the cursor position and the right key

decreases the cursor position. In the developed model, the

convention is used that the cursor is (at position) 0 when it

selects the unit value on the number displayed. The cursor

123

The benefits of formalising design guidelines 79

position ranges from −2 (i.e., cursor on the thousandth digit)

to 4 (i.e., cursor on the ten-thousands digit). The cursor posi-

tion is manually selected by the user. This reflects the capa-

bilities of the real pump user interface. Initially, the cursor is

on the units digit. The device has an auxiliary memory for

restoring the last displayed value when the action–effect of

pressing a button causes the displayed number to overshoot

the maximum or the minimum values handled by the device.

The BBraun pump is capable of handling a range of infu-

sions that go beyond the display capabilities. Namely, while

the display can show up to five digits, the actual range dis-

played forms a sliding window between thousandths and

ten-thousands. A non-zero digit in some position can pre-

vent access to other positions. The window does not slide

uniformly, and there are in fact three possible ranges: hun-

dredths to tens (e.g., 99.99), tenths to hundreds (e.g., 999.9),

and units to ten-thousands (e.g., 99999); note that the first two

ranges are four digits wide, whereas the third is five wide, so

it is not possible to enter 9999.9, for example. Furthermore,

in the hundredths to tens range, the lowest non-zero value

the device allows to be displayed is 0.1, which is not the low-

est syntactically valid value in that range (i.e., 0.01); values

between 0 and 0.1 cannot be entered or displayed, in fact.

5.1.1 Specification

The device behaviour is specified as a state machine. State

transitions correspond to the action–effect of clicking one of

the four arrow buttons on the device user interface: functions

bbraun_up and bbraun_downmodel the effect of click-

ing the up and down button; the effect of clicking the left and

right buttons is modelled through functions bbraun_left

and bbraun_right. When a button is pressed and held

down, the button behaves as in the case of iterative button

clicks.

The state of the device user interface, which is shown in

Listing 1 , is a record type (bbraun_state) defining the

minimal information needed to specify the behaviour of the

number entry system of the device. Type bbraun_state

consists of three fields: the current display value, of type

bbraun_real, which defines the domain of the numbers

handled by the device when in rate mode (bbraun_real:

TYPE = [0..max_display] where max_display

= 99999); the current cursor position, of type

bbraun_cursor; and the current content of the memory,

of type bbraun_memory. In the specification, we use the

constant NA for specifying a clear memory.

Listing 1 Type definition for the BBraun state

1 bbraun_state: TYPE =

2 [# display: bbraun_real ,

3 cursor : bbraun_cursor ,

4 memory : bbraun_memory #];

The state machine defining the overall behaviour of the

device user interface is given in Listing 2 . It is specified

in SAL with a module that includes the initial state of the

device user interface (in the INITIALIZATION section),

and the state transitions, given as guarded commands (in the

TRANSITION section). The model is initialised so that the

value of the display is 0, the cursor is in the position 0 and the

memory is clear. The input variable event represents but-

ton clicks (up, down, left, right). Each guarded

command specifies a state transition that is triggered by the

corresponding event (primed variables represent new values).

Thus, our model bbraun_device generates all possible

sequences of button clicks and the associated changes of the

device state derived from a specific initial state.

Listing 2 State machine for the BBraun

1 bbraun_device : MODULE =

2 BEGIN

3 INPUT event: Event

4 OUTPUT st: bbraun_state

5 INITIALIZATION st = (# display := 0,

6 cursor := 0,

7 memory := NA #);

8 TRANSITION

9 [event = up --> st ’ = bbraun_up(st)

10 [] event = down --> st’ = bbraun_dn(st)

11 [] event = left --> st’ = bbraun_lf(st)

12 [] event = right --> st’ = bbraun_rt(st)

13] END

In the following, a detailed illustration of the developed

transition functions is presented. The functions model button

clicks. In the specification, pow10 is used to compute the

value of powers of ten to a natural number (pow10(n) =

10n).

5.1.2 bbraun_up

This function models the action–effect of clicking the up

arrow button. Up button clicks are ignored and the device

emits a beep when the number on the display is already the

maximum allowed value (99999). Otherwise, when the up

button is clicked, the device displays a new value obtained by

adding 10cursor to the value currently displayed (see Listing

3 , lines 7–15). There are a number of exceptions to this basic

behaviour. First, the precision of the value displayed by the

device after an up button click is as follows: below 100, the

precision is of two fractional digits; between 100 and 1000,

the precision is limited to one fractional digit; above 1000,

the fractional part is always discarded. The precision of the

digits is obtained with the floor function (see Listing 3,

lines 14–15) that discards the fractional part of the number.

Second, the actual number displayed after an up button click

123

80 P. Masci et al.

depends on the content of the device memory. Namely, if the

device memory is not empty, then the up button acts like a

recall memory button (see Listing 3, lines 23–26).

More precisely, the display value is updated according to

the following rules when the up button is clicked.

If the current displayed value plus 10cursor overshoots the

maximum value (99999), then the displayed value is stored

in memory and the display gets updated with the maximum

value (Listing 3, lines 17–22); for instance, when the display

shows 90010 and the cursor is on the ten thousands digit, if

the up button is clicked then 90010 is stored in memory and

the display shows 99999.

If the current displayed value plus 10cursor does not over-

shoot the maximum value, the effect of the up button click

depends on the content of the device memory (Listing 3, lines

23–27). If the memory stores a number, then the up button

acts as a recall memory button (e.g., if the memory contains

100, an up button click will change the value shown on the

display to 100, regardless of the number currently shown on

the display); otherwise, the displayed number is increased

by 10cursor (e.g., when the display is 10 and the cursor is on

the hundreds decimal, if the up button is clicked then the new

displayed value is 110). The memory is cleared in either case.

Listing 3 BBraun model, up button clicks

1 bbraun_up(st:bbraun_state):bbraun_state=

2 IF display(st) = max_display THEN st

3 ELSE

4 LET val: bbraun_real = display(st),

5 cur: bbraun_cursor = cursor(st),

6 mem: bbraun_memory = memory(st),

7 new_val: real =

8 IF val + pow10(cur) < 0.1 THEN 0.1

9 ELSIF val + pow10(cur) >= 0.1

10 AND val + pow10(cur) < 100

11 THEN val + pow10(cur)

12 ELSIF val + pow10(cur) >= 100

13 AND val + pow10(cur) < 1000

14 THEN floor ((val + pow10(cur))*10) /10

15 ELSE floor(val + pow10(cur)) ENDIF

16 IN

17 IF new_val > max_display

18 THEN st WITH .display := max_display ,

19 WITH .memory := IF valid ?(mem)

20 THEN memory(st)

21 ELSE new_mem(val)

22 ENDIF

23 ELSE st WITH .display := IF valid ?(mem)

24 THEN value(mem)

25 ELSE new_val

26 ENDIF ,

27 WITH .memory := NA ENDIF ENDIF;

5.1.3 bbraun_down

This function models the action–effect of clicking the down

arrow button. If the number displayed by the device is zero,

then down button clicks are ignored. Otherwise, when the

down button is clicked, the device computes a new value

by subtracting 10cursor to the value currently displayed (see

Listing 4, line 10). As for the up button, there are several

exceptions to this basic behaviour. First, the precision of the

value displayed by the device after a down button click has

the same constraints explained for the up button clicks (these

limits are specified in Listing 4, lines 10–18): below 100,

the precision is of two fractional digits; between 100 and

1000, the precision is limited to one fractional digit; above

1000, the fractional part is always discarded. In addition, for

the down button, the device restricts the minimum value that

can be entered according to the cursor position (see Listing 4,

lines 7–9). Namely, if the cursor is on the thousands digit, the

minimum value is 1; otherwise, the minimum allowed value

is 0.1. Second, the actual number displayed after a down

button click depends on the content of the device memory.

As for up button clicks, if the device memory is not empty,

then the down button acts like a recall memory button.

In more detail, the display value is updated according to

the following rules when the down button is clicked.

If either the current display value is the minimum allowed

rate or the current display minus 10cursor is zero then the

display value is updated to zero and the device memory is

cleared (see Listing 4, lines 20–22);

If the current display minus 10cursor overshoots the min-

imum allowed rate, then the display is updated to the mini-

mum allowed rate, and the device memory is either updated

with 10cursor or kept unchanged (see Listing 4, lines 23–28).

The device memory is updated with 10cursor when the mem-

ory is clear and the cursor is on an integer digit (e.g., when

the display shows 10 and the cursor is on the thousands digit,

if the down button is clicked then the display will show 0.1

and the value 1000 is stored in memory); the device memory

is unchanged when the cursor is on a fractional digit (e.g.,

when the display shows 0.11 and the cursor is on the first

fractional digit, if the down button is clicked then the display

will show 0.1 and the memory is unchanged);

If the current display minus 10cursor does not overshoot

the minimum allowed rate, the behaviour of the down button

depends on the device memory (see Listing 4, lines 29–34).

If the memory contains a number, then the down button acts

as a recall memory button (e.g., if the memory contains 910,

a down button click will change the value shown on the dis-

play to 910, regardless of the number currently shown on the

display1); otherwise, the displayed number is decreased by

10cursor.

1 Due to the constraints imposed by the functionalities of the other but-

tons, the down button may act as recall memory only when the display

shows 99999.

123

The benefits of formalising design guidelines 81

Listing 4 BBraun model, down button clicks

1 bbraun_down(st: bbraun_state):

bbraun_state =

2 IF display(st) = 0 THEN st

3 ELSE

4 LET val: bbraun_real = display(st),

5 cur: bbraun_cursor = cursor(st),

6 mem: bbraun_memory = memory(st),

7 min_val: bbraun_real =

8 IF cur >= 3 AND val >= 1

9 THEN 1 ELSE 0.1 ENDIF ,

10 new_val: real =

11 IF val - pow10(cur) < 0.1 THEN 0

12 ELSIF val - pow10(cur) >= 0.1

13 AND val - pow10(cur) < 100

14 THEN val - pow10(cur)

15 ELSIF val - pow10(cur) >= 100

16 AND val - pow10(cur) < 1000

17 THEN floor ((val - pow10(cur))*10) /10

18 ELSE floor(val - pow10(cur)) ENDIF

19 IN

20 IF val = min_val OR new_val = 0

21 THEN st WITH .display := 0

22 WITH .memory := NA

23 ELSIF new_val < min_val

24 THEN st WITH .display := min_val ,

25 WITH .memory :=

26 IF cur >= 0

27 THEN new_mem(pow10(cur))

28 ELSE mem ENDIF

29 ELSE st WITH .display :=

30 IF valid ?(mem)

31 THEN value(mem)

32 ELSE min_infuse(min_val)

33 (new_val) ENDIF ,

34 WITH .memory := NA ENDIF ENDIF;

5.1.4 bbraun_left

This function (shown in Listing 5) models the effect of click-

ing the left arrow key button. If the cursor is on the ten-

thousands digit, left button clicks are ignored (the maximum

rate that can be entered is 99999). If the cursor position is

not on the most significant (integer) digit, then left button

clicks move the cursor left one position and clear the device

memory.

Listing 5 BBraun model, left button clicks

1 bbraun_left(st: bbraun_state):

bbraun_state =

2 IF cursor(st) = 4 THEN st

3 ELSE st WITH .cursor := cursor(st) + 1

4 WITH .memory := NA ENDIF;

5.1.5 bbraun_right

This function (shown in Listing 6) models the effect of click-

ing the right arrow key button. The behaviour of the right but-

ton depends on the value currently displayed by the device.

Namely, the deviceignores right button clicks when the oper-

Fig. 2 Alaris GP programmable infusion device

ation would hide non-zero digits at the left-most position of

the display, that is either when the displayed value is above

1000 and the cursor position is on the units, or when the dis-

played value is between 100 and 1000 and the cursor position

is on the first decimal digit. The device ignores right button

clicks also when the cursor is on the second decimal digit (the

maximum precision of the device is limited to two decimal

digits). In all other cases, right button clicks move the cursor

right one position and clear the device memory.

Listing 6 BBraun model, right button clicks

1 bbraun_right(st: bbraun_state):

bbraun_state=

2 IF (display(st) >= 1000 AND cursor(st) =

0)

3 OR (display(st) >=100 AND display(st) <1000

4 AND cursor(st) = -1) OR (cursor(st) <=

-2)

5 THEN st

6 ELSE st WITH .cursor := cursor(st) - 1

7 WITH .memory := NA ENDIF;

5.2 Alaris GP

The number entry system of the user interface on the Alaris

GP has four buttons (see Fig. 2). A pair of buttons is used

to increase the value displayed and a second pair is used to

decrease the value displayed. In each pair of buttons, one

causes a change ten times bigger than the change caused

by the other button. Typically, clicking either single chevron

(arrow) key changes the last digit of the value displayed,

and clicking either double chevron key changes the second

123

82 P. Masci et al.

to last digit of the value displayed. In this device, when a

chevron button is pressed and held down, the display value

is iteratively changed, and the device dynamically selects

step multipliers to scale the amount by which the displayed

number is increased or decreased. One multiplier leads to

changes that are ten times larger than the other multiplier.

The step multipliers are automatically selected by the device

during the interaction. The selection depends on the value

currently displayed by the device and on the amount of time

a button has been held down by the user.

5.2.1 Specification

The behaviour of the Alaris pump is specified as a state

machine. Differently from the BBraun model, here state tran-

sitions correspond to the action–effect of button clicks (i.e.,

a key is pressed and released immediately), and button press

and hold (i.e., a key is pressed and held down for a certain

amount of time, and then released). A convenient way to spec-

ify these behaviours is by splitting the definition of each key k

into a pair of functions, one modelling the action of pressing

(these functions will be named alaris_press_k in the

model) and the action of releasing (alaris_release_k
in the model) the button.

The device state, is a record type (alaris_state)

defining the minimal information needed to specify the

behaviour of the number entry system of the device. Type

alaris_state, as shown in Listing 7, consists of three

fields: display, which models the current display value;

timer, a discrete timer with resolution of seconds whose

value is used to model the amount of time a button is held

down;multiplier, which models the step multiplier used

by the interactive number entry system of the device. The dis-

play value is of typealaris_real, a bounded real number

that models the actual domain handled by the device when in

rate mode (alaris_real:TYPE = [0..max_rate],

where the maximum rate max_rate is 1200). The discrete

timer is of type alaris_timer, a natural number below

max_timer (5, in this case). The multiplier can be either

small or large: the small multiplier is the constant 1 (the sym-

bolic namex1will be used in the model for this constant), the

large multiplier is 10 (the symbolic name x10 will be used

in the model for this constant). Initially, the display shows

the number 0, the multiplier is x1, and the timer is 5.

Listing 7 Type definition of the alaris state

1 alaris_state: TYPE =

2 [# display : alaris_real ,

3 timer : alaris_timer ,

4 multiplier: alaris_multiplier #];

The state machine defining the overall behaviour of

the device is in Listing 8. The transition system is ini-

tialised so that the value displayed is 0, the initial timer is

max_timer and the step multiplier isx1. The input variable

event represents key presses (press_up, press_down,

press_UP, press_DOWN) and key releases

(release_key). At each step, event can take any of

theses values, thus modelling arbitrary key sequences. The

output variable st represents the pump state. Each guarded

command specifies a state transition that is triggered by the

corresponding event (primed variables represent new values).

Listing 8 State machine for the Alaris

1 alaris_device : MODULE =

2 BEGIN

3 INPUT event: Event

4 OUTPUT st: alaris_state

5 INITIALIZATION

6 st = (# display := 0,

7 timer := max_timer ,

8 multiplier := x1 #);

9 TRANSITION

10 [event = release_key

11 --> st ’ = alaris_release_key (st);

12 [] event = press_up

13 --> st ’ = alaris_press_up (st);

14 [] event = press_down

15 --> st ’ = alaris_press_down(st);

16 [] event = press_UP

17 --> st ’ = alaris_press_UP (st);

18 [] event = press_DOWN

19 --> st ’ = alaris_press_DOWN(st)] END

The model generates all possible sequences of key press

and key release and the associated changes of the device state

derived from a specific initial state. For a correct definition

of the transition system, we need to consider key press and

release sequences such that no two keys are being pressed

at the same time—the real device enforces this constraint by

ignoring subsequent key presses until the first key has been

released. For that to be the case, a key release event must pre-

cede any press of a different key in our model. This constraint

can be imposed through an observer module that encapsulates

the constraints and allows only legal press-release sequences.

The observer module is shown in Listing 9. In the module,

the output variable prev_event represents the previous

event (either press or release) and the output variable ok is

true only for legal sequences. The observer is thus composed

to the device model for enforcing these constraints (this will

be done when creating the Alaris system model for the pre-

dictability analysis, in Sect. 6.3).

Listing 9 Alaris observer module

1 alaris_constraint : MODULE =

2 BEGIN

3 INPUT event: Event

4 OUTPUT prev_event: Event

5 OUTPUT ok: boolean

6 INITIALIZATION

7 ok = true; prev_event = release;

8 TRANSITION

9 [ok AND event /= prev_event -->

10 ok’ = (event = release

11 XOR prev_event = release);

123

The benefits of formalising design guidelines 83

12 prev_event ’ = event

13 [] ELSE -->] END

In the following, the transition functions for key presses

and key releases are illustrated in detail. In the specification

function,trim is used to enforce the range limits imposed by

the real device when in rate mode. Namely,trim(x) returns

x if 0 ≤ x ≤ max_rate, otherwise the function returns either

0 (if x < 0) or max_rate (if x > max_rate).

5.2.2 alaris_press_up

This function (shown in Listing 10) models the action–effect

of pressing the slow up chevron key, which increases the

number shown on the display of the device according to the

following rules:

– if the number on the display is below one hundred, then

the fractional part of the number is increased to the next

decimal (see Listing 10, lines 5–6); for instance, if the

display shows 9.1 and the small increase button is clicked,

the display becomes 9.2;

– if the number is between one hundred and one thou-

sand, then the unit digit of the number is increased to the

next unit digit (see Listing 10, lines 7–9); for instance,

if the display shows 123 and the small increase button is

clicked, the display becomes 124);

– if the number is above one thousand, then the tens digit

of the number is increased to the next tens digit (see

Listing 10, lines 10–11); for instance, if the display shows

1080 and the small increase button is clicked, the display

becomes 1090).

When pressed and held down, the slow up button itera-

tively executes button clicks. The step multiplier is always

x1 when interacting with this button.

Listing 10 Alaris model, slow up button presses

1 alaris_press_up (st: alaris_state)

2 : alaris_state =

3 LET m: alaris_multiplier = x1,

4 d: alaris_real =

5 IF display(st) < 100

6 THEN trim(floor ((display(st)*10)+m) / 10)

7 ELSIF display(st) >= 100

8 AND display(st) < 1000

9 THEN trim(floor ((display(st)) + m))

10 ELSE trim((floor(display(st)/10)+m)

11 * 10) ENDIF

12 IN st WITH .display := d;

5.2.3 alaris_press_UP

This function (shown in Listing 11) models the action–effect

of pressing the fast up chevron key, which increases the

number shown on the display of the device. The increase

is larger than that of the slow up key, and depends on the

value of a step multiplier that is automatically selected by

the device depending on the interaction. If the fast up button

is pressed and held down for more than five consecutive dis-

play changes, then the multiplier changes from small (x1)

to large (x10) either when the displayed number is below

one hundred and a multiple of ten, or when the display is a

multiple of one hundred. The discrete timer included in the

alaris_state is used to support modelling this behav-

iour. When the fast up button is clicked (instead of press and

hold actions) the multiplier never changes. In the following,

the action–effect of pressing the fast up key when a given step

multiplier is selected by the device is explained in detail.

When the selected step multiplier is x1 (i.e., when the fast

up button is either clicked or pressed and held down at most

five consecutive display changes), the number on the display

is modified according to the following rules (as shown in

Listing 11, lines 16–23; the multiplier is s = 1 in this case):

– if the number on the display is below one hundred, then

the number is increased to the next unit digit (see Listing

11, lines 16–17); for instance, if the display shows 9.1 and

the big increase button is pressed, the display becomes

10;

– if the number is between one hundred and one thousand,

then the tens digit of the number is increased to the next

tens digit (see Listing 11, lines 18–21); for instance, if the

display shows 123 and the big increase button is pressed,

the display becomes 130;

– if the number is above one thousand, then the hundreds

digit of the number is increased to the next hundreds digit

(see Listing 11, lines 22–23); for instance, if the display

shows 1080 and the big increase button is pressed, the

display becomes 1100.

When the selected step multiplier is x10 (i.e., when the

fast up button is pressed and held down for more than five

consecutive display changes), the number on the display is

modified as follows (as shown in Listing 11, lines 16–23; the

multiplier is s = 10 in this case):

– if the number on the display is below one hundred, then

the number is increased by tens (see Listing 11, lines

16–17); for instance, if the display shows 30 and the big

increase button is pressed, then the display becomes 40;

– if the displayed number is between one hundred and one

thousand, then the number is increased by hundreds (see

Listing 11, lines 18–21); for instance, if the display shows

300 and the big increase button is pressed, then the dis-

play becomes 400;

– if the displayed number is above one thousand, the num-

ber can be incremented by thousands (see Listing 11, lines

123

84 P. Masci et al.

22–23); due to limits imposed on infusion rates, this type

of increment is actually disabled on the real device.

For the analysed Alaris model, an additional constraint

on the behaviour of the pump user interface is that the x10

multiplier can be selected by the device only on numbers that

are either a multiple of ten (when the display value is below

100) or a multiple of one hundred (when the display value is

above 100). This is reflected in the conditions at lines 9–12

in the specification shown in Listing 11.

Listing 11 Alaris model, fast up button presses

1 alaris_press_UP (st: alaris_state)

2 : alaris_state =

3 LET t: alaris_timer =

4 IF timer(st) - 1 >= 0

5 THEN timer(st) - 1

6 ELSE timer(st) ENDIF ,

7 s: alaris_multiplier =

8 IF t = 0 AND multiplier(st) = x1

9 AND ((display(st) < 100

10 AND fractional(display(st) ,10) = 0)

11 OR (display(st) > 100

12 AND fractional(display(st) ,100)=0))

13 THEN x10

14 ELSE multiplier(st) ENDIF ,

15 d: alaris_real =

16 IF display(st) < 100

17 THEN trim(floor(display(st))+s)

18 ELSIF display(st) >= 100

19 AND display(st) < 1000

20 THEN trim((floor(display(st)/10)+s)

21 * 10)

22 ELSE trim((floor(display(st)/100)+s)

23 * 100) ENDIF

24 IN (# display := d,

25 timer := t,

26 multiplier := s #);

5.2.4 alaris_press_down

This function models the action–effect of pressing the slow

down chevron key. The function decreases the number shown

on the display of the device according to rules that are almost

symmetric to those of the slow up chevron:

– if the number on the display is below one hundred, then

the fractional part of the number is decreased to the next

decimal (see Listing 12, lines 5–6); for instance, if the dis-

play shows 9.1 and the small decrease button is pressed,

the display becomes 9;

– if the number is between one hundred and one thou-

sand, then the unit digit of the number is decreased to the

next unit digit (see Listing 12, lines 7–9); for instance, if

the display shows 123 and the small decrease button is

pressed, the display becomes 122;

– if the number is above one thousand, then the tens digit

of the number is decreased to the next tens digit (see

Listing 12, lines 10–11); for instance, if the display shows

1080 and the small decrease button is pressed, the display

becomes 1070.

When pressed and held down, the slow down button iter-

atively executes button clicks. The step multiplier is always

x1 when interacting with this button.

Listing 12 Alaris model, slow down button presses

1 alaris_press_down(st: alaris_state)

2 : alaris_state =

3 LET m: alaris_multiplier = x1 ,

4 d: alaris_real =

5 IF display(st) < 100

6 THEN trim((ceil(display(st)*10)-m) / 10)

7 ELSIF display(st) >= 100

8 AND display(st) <1000

9 THEN trim(ceil(display(st)-m))

10 ELSE trim((ceil(display(st)/10)-m)

11 * 10) ENDIF

12 IN st WITH .display := d;

5.2.5 alaris_press_DOWN

The function models the action–effect of pressing the fast

down chevron key, which decreases the number shown on

the display. Similarly to the fast up key, the actual decrease

depends on a step multiplier, which is automatically selected

by the device as the button is pressed and held down. The

multiplier is automatically changed from small (x1) to large

(x10) either when the displayed number is below one hun-

dred and a multiple of ten, or when the display is a multiple

of one hundred. In the following, a detailed illustration of

the action–effect of pressing the fast down key when a given

step multiplier is selected by the device is presented.

When the selected step multiplier is x1 (i.e., when the fast

down button is either clicked or pressed and held down up

to five consecutive display changes), the function decreases

the number shown on the display of the device according to

the following rules (as shown in Listing 13, lines 21–28; the

multiplier is s = 1):

– if the number on the display is below one hundred, then

the fractional part of the number is decreased to the next

unit digit (see Listing 13, lines 21–22); for instance, if the

display shows 9.1 and the big decrease button is pressed,

the display becomes 9;

– if the number is between one hundred and one thousand,

then the tens digit of the number is decreased to the next

tens digit (see Listing 13, lines 23–26); for instance, if the

display shows 123 and the big decrease button is pressed,

the display becomes 120;

– if the number is above one thousand, then the hundreds

digit of the number is decreased to the next hundreds digit

(see Listing 13, lines 27–28); for instance, if the display

shows 1080 and the big decrease button is pressed, the

display becomes 1000.

123

The benefits of formalising design guidelines 85

When the selected step multiplier is x10 (i.e., when the

fast down button is pressed and held down more than five

consecutive display changes), the number on the display is

modified as follows (as shown in Listing 13, lines 21–28; the

multiplier is s = 10):

– if the number on the display is below one hundred, then

the number is decreased by tens (see Listing 13, lines

21–22); for instance, if the display shows 30 and the big

decrease button is pressed, then the display becomes 20;

– if the displayed number is between one hundred and one

hundred, then the number is decreased by hundreds (see

Listing 13, lines 23–26); for instance, if the display shows

300 and the big decrease button is pressed, then the dis-

play becomes 200.

– if the displayed number is above one thousand, the num-

ber can be decremented by thousands (see Listing 11,

lines 27–28); due to limits imposed on infusion rates, this

type of increment is actually disabled on the real device.

Listing 13 Alaris model, fast down button presses

1 alaris_press_DOWN(st: alaris_state)

2 : alaris_state =

3 LET t: alaris_timer =

4 IF timer(st) - 1 >= 0

5 THEN timer(st) - 1

6 ELSE timer(st) ENDIF ,

7 s: alaris_multiplier =

8 IF t = 0 AND multiplier(st) = x1

9 AND ((display(st) > 10

10 AND display(st) < 100

11 AND fractional(display(st) ,10) = 0)

12 OR (display(st) > 100

13 AND fractional(display(st) ,100)=0))

14 THEN x10

15 ELSIF t = 0 AND multiplier(st) = x10

16 AND (display(st) = 10

17 OR display(st) = 100)

18 THEN x1

19 ELSE multiplier(st) ENDIF ,

20 d: alaris_real =

21 IF display(st) < 100

22 THEN trim(ceil(display(st)) - s)

23 ELSIF display(st) >= 100

24 AND display(st) < 1000

25 THEN trim((ceil(display(st)/10)-s)

26 * 10)

27 ELSE trim((ceil(display(st)/100) -s)

28 * 100) ENDIF

29 IN (# display := d,

30 timer := t,

31 multiplier := s #);

5.2.6 alaris_release_key

In the considered Alaris pump, the action–effect of releasing

a button is identical for all buttons. A single function is there-

fore used to model the effect of releasing any chevron key:

the displayed value is left unchanged and the timer is reset to

its initial value (max_timer). The higher-order logic spec-

ification is in Listing 14.

Listing 14 Alaris model, release key

1 alaris_release_key (st: alaris_state):

2 alaris_state =

3 st WITH .timer := max_timer

4 .WITH multiplier := x1;

6 Analysis

The considered definition of predictability concerns whether

it is possible to tell what state the number entry system of the

device is in from the current state externalised by the device

through the user interface. The number entry system of the

device is not predictable if there is more than one possible

state the device could move to as a result of some action

when decisions are taken solely on the basis of the current

observable state.

This form of predictability has been formalised in [12,13]

through the PIE framework [13,14], which describes inter-

active systems in terms of sequence of commands issued by

users (denominated programs), device states perceived by

the users (denominated effects), and relations between com-

mand sequences and their effects on perceived device states

(denominated interpretations). Following the notation of the

PIE framework, predictability is defined as follows:

predictable(e) � ∀p, q, r ∈ P : (I (p) = e = I (q))

⇒ (I (pr) = I (qr))

where P is the set of sequences of key-presses that can be

performed on the device user interface; I : P → E is the set

of all possible computations performed by the device, where

E is the set of observable states of the device.

A bisimulation-based approach is used to analyse pre-

dictability. A model, hereafter called the prediction model,

that encapsulates the user’s knowledge of the device accord-

ing to considered definition of predictability is defined. An

equivalence relation is thus established between the observ-

able device states specified in the prediction model and in

the device models. If the two models always match, that is

the values of the corresponding variables in the device and

prediction models are equal in all the reachable states of the

device, then the (number entry system of the) device is pre-

dictable.

In the following, an approach is presented for deriving a

prediction model from a device model.

123

86 P. Masci et al.

6.1 Prediction model

The prediction model is a deterministic model that describes

the behaviour of the system on the basis of information

resources externalised by the device through its user inter-

face (e.g., visible and audible cues). The prediction model

can be assimilated to a mental model (i.e., a representation

of the users’ understanding of the system behaviour) of an

idealised expert user that knows the functionalities of the

device perfectly but makes decisions only on the basis of

the current observable state. The concern with an idealised

expert user means that, if predictability fails, any user equal

or less experienced than the ideal (that is, any normal human

user) will certainly be unable to predict the next state—thus

the definition is conservative.

The prediction model encapsulates the following hypothe-

ses about the user’s knowledge: (1) the user makes decisions

only on the basis of observable information provided by the

device through its user interface; (2) the user has no memory

of past device states or history of performed actions; (3) the

user has a correct understanding of the functionalities of the

device.

The prediction model and the device model share several

behaviours. A procedure for building the prediction model

from a device model follows.

The initial prediction model is a simplified device model.

The behaviour if this simplified model is obtained from the

specification of the device behaviour by removing from it

all behaviours that are not observable from the device user

interface. For the definition of predictability considered here,

the observable state includes only the persistent state of the

devices: the display value for the Alaris GP; the display value

and the cursor position for the BBraun Infusomat Space. For

these devices, therefore, transition functions in the prediction

model are defined on the basis of information on the displays.

They are obtained from the transition functions of the device

by discarding all effects and all conditions over resources

other than those included in the observable state.

Iterative model refinement is performed for eliminating

mismatches due to oversimplification of the device behaviour

in the initial prediction model. In some situations, discarding

all conditions over hidden resources may lead to false pos-

itive, as the conditions discarded could have been replaced

by additional conditions over the current observable state.

Because of the hypotheses encapsulated in the prediction

model, new conditions can be added that use only the current

observable state of the device. For the considered devices,

new behaviours added in the refinement steps are therefore

still based on information reported on the device displays

only. New conditions are included in the prediction model

until either the prediction model and the device model always

match (in this case, the device is predictable), or until a situa-

tion is found where a refinement cannot be found that resolves

the mismatch. In this second case, we say that the device is

not predictable.

Any divergence between the two models corresponds to a

situation where two observationally equivalent device states

lead to different observational states (when hidden state vari-

ables are not considered). That is a transition from two states

that are identical when comparing just observable infor-

mation resources leads to two states with different observ-

able information. This corresponds to situations where the

system given by the parallel composition of the prediction

model and the device model has non-deterministic behaviour.

Dix calls ambiguous these states causing non-deterministic

behaviour in the composed system model, because more than

one observable state can be mapped to them [12]. The set

of ambiguous states define the areas of unpredictability of

the device. In order to identify precisely the areas of unpre-

dictability, a systematic exploration of the state space of the

composed system is required. In the following section, the

SAL model checker is used for this purpose.

Before proceeding with the verification in SAL, it is worth

noting that the approach for building the prediction model

can be easily implemented in different languages and verifi-

cation tools. A drawback of the approach is that several iter-

ations may be required to refine the initial prediction model.

This typically happens when the user interface has complex

behaviours linked to hidden state variables. The need of sev-

eral iterations is therefore a symptom that the user interface

behaviour may need to be revised in any case (even if pre-

dictability succeeds at the end), as the mental model that

users would need to develop is likely to be too complex. We

recall that the predictability analysis performed here is per-

formed to help discover potential problems with interaction

design in safety-critical parts of a user interface, such as the

interactive number entry system of an infusion pump, rather

that the whole user interface behaviour.

It is also worth noting that the procedure that refines the

initial prediction model is essentially discovering invariants

of the model (i.e., relations that always holds on all reach-

able states) between the values of fields in the observable

state and the values of fields in the hidden state. All these

invariants could have been found through static analysis of

the specification of the device model rather than through iter-

ative refinement. We have chosen the iterative procedure as

it keeps the approach simple. Counterexamples generated by

the model-checker are used as the basis for identifying the

invariant—we will demonstrate how this can be done during

the analysis of the Alaris pump in Sect. 6.3.

6.2 Verification of the B-Braun number entry system

We describe here the analysis we carried out on the

BBraun number entry model. The first step is to speci-

fying the prediction model as a reduced version of the

123

The benefits of formalising design guidelines 87

device model. To this aim, a new type is defined that

models information resources in the observable device

state (bbraun_observable_state, see Listing 15).

For the BBraun, the observable state contains two fields:

display of type bbraun_real and cursor of type

bbraun_cursor.

Listing 15 Observable state of the BBraun

1 bbraun_observable_state : TYPE =

2 [# display: bbraun_real ,

3 cursor : bbraun_cursor #];

The action–effect of button clicks are then defined as tran-

sition functions over observable states. The specification of

the prediction model is obtained by discarding all predicates

over resources other than the observable state (which is given

by the display value and the cursor position for the BBraun),

and all effects on resources other than those of the observ-

able state. For the BBraun, predicates and effects on device

memory are therefore removed.

The state machine of the prediction model is shown in List-

ing 16. Similarly to the device model, the overall behaviour

of the prediction model is specified in SAL with a module,

which defines the initial state of the prediction model (in the

INITIALIZATION section), and the transitions, given as

guarded commands. The initial state of the prediction mod-

ule initially matches that of the device model. The input vari-

able event represents button clicks, the input variable st is

used to determine the current values of the display and cursor,

and the output variable predicte represents the expected

display value and cursor position as a result of button clicks

according to the prediction model.

Listing 16 Prediction model for the BBraun

1 bbraun_prediction : MODULE =

2 BEGIN

3 INPUT event: Event , st: bbraun_state

4 OUTPUT predicted: bbraun_observable_state

5 INITIALIZATION

6 predicted = (# display := display(st),

7 cursor := cursor(st) #);

8 TRANSITION

9 [event = up -->

10 predicted ’= prediction_up(

11 (# display := display(st),

12 cursor := cursor(st) #))

13 [] event = down -->

14 predicted ’= prediction_down (

15 (# display := display(st),

16 cursor := cursor(st) #))

17 [] event = left -->

18 predicted ’= prediction_left (

19 (# display := display(st),

20 cursor := cursor(st) #))

21 [] event = right -->

22 predicted ’= prediction_right(

23 (# display := display(st),

24 cursor := cursor(st) #))

25] END

The specification of transition functions modelling up,

down, left, and right button clicks is thus developed from the

corresponding functions of the device model. As explained

in Sect. 6.1, conditions on state variables that are not part

of the observable state are removed. The specification of

prediction_up is shown in Listing 17. The specifica-

tion of the other transition functions for the prediction model

are omitted as they are obtained in a similar way.

Listing 17 Prediction model, up button clicks

1 prediction_up(st: bbraun_observable_state

):

2 bbraun_observable_state =

3 IF display(st) = max_display THEN st

4 ELSE

5 LET val: bbraun_real = display(st),

6 cur: bbraun_cursor = cursor(st)

7 new_val: real =

8 IF val + pow10(cur) < 0.1 THEN 0.1

9 ELSIF val + pow10(cur) >= 0.1

10 AND val + pow10(cur) < 100

11 THEN val + pow10(cur)

12 ELSIF val + pow10(cur) >= 100

13 AND val + pow10(cur) < 1000

14 THEN floor ((val + pow10(cur))*10) /10

15 ELSE floor(val + pow10(cur)) ENDIF

16 IN

17 IF new_val > max_display

18 THEN st WITH .display := max_display

19 ELSE st WITH .display := new_val ENDIF;

From the specification above it can be noted that the cal-

culation of predicted is based solely on the display value

and the cursor position. When the calculation performed by

the device model only uses information from the observ-

able state, the logic behind the calculation in the prediction

model is identical to that of the device model. That is, it is

done according to the same rules as specified by the transition

functions of the device model. This captures the hypothesis

encapsulated in the definition of predictability that the user

has a complete and correct understanding of the functionali-

ties of the device but decisions are made only on the basis of

the current observable device state.

Now, predictability can be checked by verifying that the

device model and the prediction model match in all reachable

states with respect to the observable state. The parallel com-

position of the two models generates all reachable states.

In SAL, this can be done by specifying a composed mod-

ule, bbraun_system, given by the synchronous compo-

sition of bbraun_device and bbraun_prediction.

The specification of the composed system is then given in

Listing 18 (the parallel composition is the symbol ||).

Listing 18 BBraun system model

1 bbraun_system:

2 MODULE = bbraun_device ||

bbraun_prediction;

123

88 P. Masci et al.

The predictability property can be then specified as a lin-

ear temporal logic (LTL) property over all states reached

by the composed system module. The verification checks

that all reachable states have the same value for the observ-

able components of the two models (predicted of the predic-

tion model and the pair (display(st), cursor(st)) of the device

model).

Listing 19 Predictability for the BBraun

1 bbraun_predictable :

2 CLAIM bbraun_system |-

3 G (predicted =

4 (# display := display(st),

5 cursor := cursor(st) #));

The verification of this property with SAL produces a

counterexample when display(st) = 10. Namely, starting

from the initial state when the display is 0, the cursor is at

position 0, and the memory is empty, the sequence of button

clicks up, left, down, up produces the following state changes:

– on the device model: starting from 0, the up button click

increments the number on the display by 1; then, by click-

ing the left button, the cursor highlights the tens digit (the

display is still 1); by clicking the down button, the device

overshoots the minimum value (1−10 < 0), thus the dis-

play shows a default minimum value (0.1) and stores 10

(i.e., pow10(cursor)) in memory; finally, by clicking the

up button, the button click recalls and clears the memory,

thus the display shows 10.

– on the prediction model: starting from 0, by clicking the

up button, the device displays goes to 1; the left button

click moves the cursor to the tens digit. Then, the down

button click causes an overshoot of the minimum value

(1−10 is a negative number), and the device displays the

minimum default value (0.1). At this point, the cursor is

still selecting the tens digit, and the display shows 0.1. If

the decision is based on this information only, a up button

click produces 10.1 (10 + 0.1)

6.3 Verification of the Alaris number entry system

We describe here the analysis carried out on the Alaris num-

ber entry model. Refinement is needed for the verification of

the Alaris pump.

As for the verification of the other device, the first step

is again to specifying the prediction model. The observ-

able state (shown in Listing 20) is defined by a new type,

alaris_observable_state, which includes only the

value shown on the display in this case.

Listing 20 Observable state of the Alaris

1 alaris_observable_state : TYPE =

alaris_real;

The action–effect of key presses are specified as transition

functions over observable states. All predicates and all effects

over step multipliers and timers are discarded in this case, as

they are not externalised on the device user interface. The

transition system of the Alaris prediction model (shown in

Listing 21) is a state machine with an initialisation that copies

the corresponding initial values of the device model, and a

set of transition functions modelling the prediction for the

press and release actions.

Listing 21 Prediction model for the Alaris

1 alaris_prediction : MODULE =

2 BEGIN

3 INPUT

4 event: Event; st: alaris_state;

5 OUTPUT

6 predicted: alaris_observable_state ;

7 INITIALIZATION

8 predicted = display(st);

9 TRANSITION

10 [event = press_UP -->

11 predicted ’ =

12 prediction_press_UP(display(st))

13 [] event = press_DOWN -->

14 predicted ’ =

15 prediction_press_DOWN (display(st))

16 [] event = press_up -->

17 predicted ’ =

18 prediction_press_up(display(st))

19 [] event = press_down -->

20 predicted ’ =

21 prediction_press_down (display(st))

22 [] event = release_key -->

23 predicted ’ =

24 prediction_release_key (display(st))

25]

26 END

The specification of the transition functions is thus gen-

erated from the corresponding function of the device model.

The specification of prediction_press_UP is shown

in Listing 22. It can be noted that the step multiplier is con-

sidered in the computation but its value is derived solely

from the current observable display value. The specification

of this transition function will be used throughout the rest of

this section in the verification example. The specification of

the other transition functions is omitted.

Listing 22 Prediction model, fast up button presses

1 prediction_press_UP

2 (val: alaris_observable_state)

3 : alaris_observable_state =

4 LET s: alaris_multiplier =

5 IF (display(st) < 100

6 AND fractional(display(st) ,10) = 0)

7 OR (display(st) > 100

8 AND fractional(display(st) ,100) = 0)

9 THEN x10 ELSE x1 ENDIF

10 IN

11 IF display(st) < 100

12 THEN trim(floor(display(st))+s)

13 ELSIF display(st) >= 100

14 AND display(st) < 1000

123

The benefits of formalising design guidelines 89

15 THEN trim((floor(display(st)/10)+s)

16 * 10)

17 ELSE trim((floor(display(st)/100)+s)

18 * 100) ENDIF

The specification of the whole system is the module

composition (as shown in Listing 23, lines 1–3, where

alaris_constraint is the observer module illustrated

in Sect. 5.2 that enforces legal keypress sequences). The

predictability condition is formulated as a LTL formula

(as shown in Listing 23, lines 4–6) that checks the behav-

iour of the Alaris number entry system for all keypress

sequences.

Listing 23 Alaris, system model & predictability

1 alaris_system: MODULE =

2 alaris_constraint || alaris_device

3 || alaris_prediction;

4 alaris_predictable : CLAIM

5 alaris_system

6 |- G (ok => (display(st)=predicted));

When verifying the predictability property with the above

specification, the model checker immediately finds a coun-

terexample after the initial state: the prediction model expects

the display to show 10 (the step multiplier is x10 according

to the conditions in the press up function in the prediction

model), while the display in the device model is actually 1

(the step multiplier isx1 according to the press up function in

the device model). This counterexample is an artefact of the

model, and it is discharged by adding a condition when the

display is zero—when the display is zero, the step multiplier

is x1 (see Listing 24, line 5).

Listing 24 Prediction model, first refinement

1 prediction_press_UP

2 (val: alaris_observable_state)

3 : alaris_observable_state =

4 LET s: alaris_multiplier =

5 IF display(st) = 0 THEN x1 % 1st

refinement

6 ELSIF (display(st) < 100

7 AND fractional(display(st) ,10) = 0)

8 OR (display(st) > 100

9 AND fractional(display(st) ,100) = 0)

10 THEN x10 ELSE x1 ENDIF

11 IN ...

When performing a subsequent new verification with the

refined prediction model, SAL identifies another counter

example at a different observable state. The new counter

example generated shows that, when the device is in a state

where display(st) = 10, multiplier(st) = x1, and timer(st)

= 5, if the fast up button is clicked (i.e., the sequence

press_UP, release_key is performed in the model), then

the device display becomes 11, while the prediction model

expects 20. This counterexample is discharged by adding a

relation between the display value and the multiplier: when

the display is 10 then the step multiplier is x1 (see Listing

25, line 5).

Listing 25 Prediction model, second refinement

1 prediction_press_UP

2 (val: alaris_observable_state)

3 : alaris_observable_state =

4 LET s: alaris_multiplier =

5 IF display(st) = 10 % 2nd refinement

6 OR display(st) = 0 THEN x1

7 ELSIF (display(st) < 100

8 AND fractional(display(st) ,10) = 0)

9 OR %...

After the second refinement, a new verification with SAL

identifies another counterexample at the same observable

state. This time, the prediction model expects 11 while

the device model provides 20. This happens because of a

sequence where the fast up button is pressed and held long

enough to make the internal timer of the device 0. Therefore,

this counterexample cannot be discharged if the decision is

to be taken solely on the value of the current display—when

the display is 10, the multiplier can be either x1 or x10

depending on the value of an hidden state variable.

7 Generating recommendations

Given that the modelled interactive number entry systems are

not always predictable, two interesting question are worth

answering:

(i) What design changes could be applied to make the design

predictable? An answer to this question may provide use-

ful insights to device manufacturers about the effect of

different features in interaction design.

(ii) Under what conditions do they become predictable? An

answer to this question would provide insights for user

training, in that we can check whether a reasonably sim-

ple strategy exists (other than resetting the device and

restart the programming task from the beginning) that

allows one to circumvent the predictability issues evi-

dent in the analysis of the two pumps.

Based on these questions, recommendations can be given

in the form of verified design solutions and verified user

strategies.

7.1 Verified design solution for Alaris

The predictability issues of the Alaris pump analysed here

are essentially linked to the step multiplier. The step multi-

plier is automatically selected by the device during the inter-

actions according to rules linked to the interaction history

and the current display value. Information about the selected

123

90 P. Masci et al.

step multiplier cannot be derived from the current persistent

output of the device. Three possible design solutions follow.

For each proposed solution, we checked with SAL that the

predictability property holds.

7.1.1 Avoid using step multipliers

The simplest way to fix the interaction design of the pump and

make it predictable in any situation would be to avoid the use

of step multipliers. This solution would be consistent with

the classic user interface design principle of making critical

actions (in this case, programming the pump with a high rate)

more difficult to perform [24,25]: the higher the number to

be entered, the longer the interaction. The solution might be

judged inconvenient by designers or operators, as it would

increase the time to enter certain values in the pump, and thus

make the overall programming task less efficient in certain

situations. Though, an experiment run by Oladimeji et al. to

compare error detection of two number entry interface styles

pointed out that users frequently overshoot and undershoot

their target numbers when using the specific Alaris interface

considered in this work [26]. This hunt for the target number

could be attributed to the use of step multipliers in the Alaris

system.

7.1.2 Enhance the feedback

The feedback about the result of actions could be enhanced

by providing information about the effect of key-presses on

the step multiplier. The feasibility of this solution should be

carefully evaluated, because the capabilities of the physical

display might not allow a proper visualisation. There is exper-

imental evidence that humans have numerous bottlenecks

in performing simultaneous processing of several pieces of

information, especially if the information is gathered from

a single channel, e.g., only from the auditive or from the

visual channel. A typical failure due to these bottlenecks is

known as attentional tunnelling, i.e., the user “locks in” on

specific information and inadvertently drops other (possibly

relevant) information [15]. Therefore, in such cases, rather

than enhancing the feedback, a better solution is to reduce

the functionalities of the device.

It is worth noting that a variant of the Alaris pump with an

enhanced feedback has been actually implemented in a recent

release of the firmware of this pump. Namely, in the new

firmware, indicators in the form of double and single under-

lines are shown on the display to highlight which digit would

change when any of the four chevron buttons are pressed.

The fast up and fast down (i.e., the double chevron keys) will

change the digit highlighted by the double underline, while

the slow up and slow down (i.e., the single chevron keys) will

change the digit highlighted by the single underline.

7.1.3 Allow users take active control of step multipliers.

Changing the control widget used for number entry into one

which would allow the user to explicitly control the step

multipliers could also render the system predictable. Exam-

ples of such widgets are those used in traditional document

scrolling tasks. These include but are not limited to pressure

sensitive buttons, isometric joysticks or rotary encoders [17].

Using these types of widgets, the changes in the step mul-

tiplier could be mapped to active user actions of applying

more pressure on a button or quickly turning a knob rather

than the passive changes where changes in the step multiplier

depends on the duration of the interaction.

7.2 Verified design solutions for BBraun

The predictability issues of the BBraun pump analysed here

derive from the use of memory. In particular, the problem lies

in the fact that the user is not able to tell whether the mem-

ory has been cleared or not from the persistent state of the

device. Three possible design solutions follow. For each pro-

posed solution, we checked with SAL that the predictability

property holds.

7.2.1 Don’t use memory

The use of memory usually makes devices unpredictable

[12]. Without memory, the functionality of the device at cer-

tain boundary cases may need to be revised. For instance,

when overshooting the maximum value, the undo feature

available when using memory would not be available. This

solution is thus linked to the following one, which deals with

overshooting the maximum and minimum values that can be

entered in the device.

7.2.2 Avoid overshooting

Overshooting can be avoided by ignoring or blocking the

button presses that cause overshooting. The specific solution

for ignoring or blocking button presses needs to be carefully

evaluated as there is a trade-off between permissiveness [32]

and the number and types of audible/visual cues needed for

capturing the user attention when overshooting. This solution

implies that setting the maximum and minimum values on the

interfaces would require more effort from the user in that it

would need to be done by using a precise sequence that take

the device to that value. However the possible consequence

would be that they are more aware of setting values at these

boundaries. This solution therefore supports the classic user

interface design principle of making critical actions more

difficult to perform so as to ensure when done they are done

deliberately [24,25].

123

The benefits of formalising design guidelines 91

7.2.3 Increase the visibility of the system state

This ensures that the display of the device shows sufficient

information to understand the current state of the device. For

instance, an indication that the memory of the device is not

empty would help users identify situations where the device

seamlessly changes the function associated to the buttons

(e.g., when the down button becomes a recall memory but-

ton). As discussed for the other pump, this solution should

be carefully evaluated in order to avoid attentional tunnelling

[15].

7.3 Verified user strategies

When the design of a device cannot be changed (e.g., because

the manufacturer has consciously chosen to lose predictabil-

ity in favour of other features, or because the hospital ward

needs to use the pumps while waiting the problem to be fixed),

an important alternative is to offer verified users strategies to

mitigate against the consequences of that loss. Strategies can

be obtained by reasoning about the features driving the inter-

active behaviour of the pumps. In the following, we discuss

simple verified strategy that can be used to make the analysed

devices predictable.

It is worth remarking that the interaction strategies we

define here are in fact workarounds to avoid certain unwanted

behaviours of the device. As such, if the definition of pre-

dictability considered here is a desired feature of the device,

the manufacturer should modify the interaction design to

enable predictability without workarounds—systems that

rely on error-free performance are doomed to failure [20].

7.3.1 BBraun user strategy

From the developed specification we can notice that, if the

memory is clear, then the interactions with the pump become

predictable. We verified this claim in SAL with the LTL prop-

erty shown in Listing 26.

Listing 26 Verification of the BBraun user strategy

1 bbraun_predictable_weak : CLAIM

2 bbraun_system |-

3 G (NOT valid ?(memory(st))

4 => display(st) = predicted);

The claim is successfully verified. By studying the speci-

fication, we can notice that a simple strategy can be defined

to clear the content of the memory and hence guarantee

predictable interactions in any situation with this model

of the BBraun pump—clear the memory by changing the

cursor position with the left and right arrow keys. It is

interesting to note here that another simple strategy, one

where the user remembers the previous state, fails with this

design.

7.3.2 Alaris user strategy

From the developed specification, we can notice that the step

multiplier can change only during press and hold interactions

with the fast up and fast down keys. Therefore, if we limit

the possible interactions by avoiding press and hold actions

on the fast up and fast down buttons, the interaction becomes

always predictable. We can verify this claim in SAL by defin-

ing a new module (alaris_strategy) that imposes such

constraints on the interactions:

Listing 27 User strategy as observer module

1 alaris_strategy : MODULE =

2 BEGIN

3 INPUT event: Event

4 OUTPUT prev_event: Event

5 OUTPUT ok: boolean

6 INITIALIZATION

7 ok = true;

8 prev_event = release;

9 TRANSITION

10 [ok AND (prev_event = press_UP

11 OR prev_event = press_DOWN) -->

12 ok ’ = (event = release);

13 prev_event ’ = event

14 [] ELSE -->] END

The predictability claim can then be verified against a sys-

tem given by the parallel composition of the device model,

the prediction model, and alaris_strategy (as shown

in Listing 28).

Listing 28 Verification of the Alaris user strategy

1 alaris_system_new: MODULE

2 = alaris_constraint || alaris_device

3 || alaris_prediction

4 || alaris_strategy ;

5 alaris_predictable_new : CLAIM

6 alaris_system_new |-

7 G (ok => (display(st) = predicted));

The claim is successfully verified—if only button clicks

are used to interact with the device, then the device is pre-

dictable. We can notice also that, since the slow up and slow

down chevron keys do not change the multiplier in any sit-

uation, an alternative strategy is also to use only such two

keys.

8 Discussion and conclusions

In this paper, we have shown that formal methods can be

used for studying predictability of detailed specifications of

commercial interactive number entry systems: on the one

hand, the mere exercise of building a formal specification

of the interface gave us useful insights on possible design

issues, even before performing the analysis with the model

checking tool; on the other hand, the formal tool enabled us

123

92 P. Masci et al.

to explore all possible behaviours, thus allowing us to explore

the validity of the proposed design modifications.

The increasing demand for advanced functionality forces

single devices to be used for a wide variety of tasks, but

under the fixed physical constraints of the devices. It is

understandable that over time users (or organisations) would

require more sophisticated interactive systems that assist

their varied tasks. However, the required generality intro-

duces inconsistent behaviour to the user interface, which is

sometimes an obstacle to the user’s mental model develop-

ment. In addition, even if users have a complete and sound

mental model of the system, the increasing number of hid-

den states that are inevitable with general-purpose systems

makes it harder for them to predict the consequences of

their actions. In fact, when devices are closely examined,

there are many boundary cases where interactive function-

ality seems awkward; this compromises the predictability of

the devices, and hence may lead to unnecessary hazards in

use.

Several frameworks have been presented in the litera-

ture for human-machine interaction and human error in the

context of interface design. However, none of them is cur-

rently widely accepted as a reference. Most of these frame-

works are based on psychological assumptions. Although

they help identify issues, of the human factors kind, only few

of them provide means to identifying engineering solutions

that can be used for improving device designs. Our work

on predictability is a first step towards addressing this gap.

As we have shown, the predictability analysis links to sev-

eral high-level design principles illustrated in the HE75:2009

standard for human factors. The analysis can be mechani-

cally performed with a verification tool. The analysis results

help designers understand how to fix identified design prob-

lems and help users overcome predictability issues when the

design cannot be modified.

Failure of the predictability property holding is not nec-

essarily in itself a criticism of any design. There are many

trade offs in design, and loss of predictability because of the

presence of other features may be less important in practice

than the value of some other features to the user. Indeed there

may be better definitions of predictability than we consider

in this paper. The point of the paper, however, is to show that

plausible interaction design properties can be formalised, that

real devices can be very effectively analysed for their com-

pliance to such properties, and that problems can be precisely

identified and hence fixed where this is deemed appropriate

given the trade-offs involved. Our definition of predictability

is taken from the HCI research literature, so it is a meaningful

property, and it is clear that loss of predictability as we define

it will increase specified hazards in operation. Whether those

hazards are somehow compensated for by other design fea-

tures is an important question that lies beyond the scope of

this paper.

In an idealised world many definitions of predictability

would be compared, and the formal analyses based on them

compared with empirical experiments. That would allow one

to say definitively that certain conceptions of predictability

are correlated with user performance and hence that specific

design features can be identified to improve performance.

However with human error rates being so low and devices

so complex, it is unlikely that valid experiments could be

performed—there are no easy empirical experiments that can

explore the non-occurrence of problems! As an alternative,

here we argue that what is important is that a formal analysis

of predictability allows one to reason about performance. If

certain features are identified as problematic or potentially

problematic, then a developer can take steps to better manage

these features. Relative to the definition of predictability one

then avoids identified design problems.

In future, we plan to use empirical evaluation and hence

develop an evidence-based balance between predictability

and functionality. In particular, we aim to validate to which

extent predictable number entry systems makes a difference

when taken into account in the design.

Acknowledgments Funded as part of the CHI+MED: Multidiscipli-

nary Computer-Human Interaction research for the design and safe

use of interactive medical devices project, EPSRC Grant Number

EP/G059063/1, and Extreme Reasoning, Grant Number EP/F02309X/1.

References

1. List of errorprone abbreviations, symbols and dose designations

(2006). http://www.ismp.org/tools/abbreviations/

2. Arney D, Jetley R, Jones P, Lee I, Sokolsky O (2007) Formal meth-

ods based development of a PCA infusion pump reference model:

generic infusion pump (GIP) project. In: Joint Workshop on High

Confidence Medical Devices, Software, and Systems and Medical

Device Plug-and-Play Interoperability 0, pp 23–33. doi:10.1109/

HCMDSS-MDPnP.2007.36

3. B-Braun Melsungen AG: Infusomat space and accessory: Instruc-

tion for use

4. Back J, Brumby DP, Cox AL (2010) Locked-out: investigating the

effectiveness of system lockouts to reduce errors in routine tasks. In:

Proceedings of the 28th of the international conference extended

abstracts on Human factors in computing systems, CHI EA ’10.

ACM, New York, pp 3775–3780. doi:10.1145/1753846.1754054

5. Bass EJ, Feigh KM, Gunter EL, Rushby JM (2011) Formal mod-

eling and analysis for interactive hybrid systems. ECEASST 45

6. Bolton ML, Bass EJ (2010) Formally verifying human–automation

interaction as part of a system model: limitations and tradeoffs.

Innov Syst Softw Eng 6(3):219–231. doi:10.1007/s11334-010-

19730129-9

7. Campos JC, Harrison MD (2009) Interaction engineering using the

ivy tool. In: Proceedings of the 1st ACM SIGCHI symposium on

Engineering interactive computing systems, EICS ’09. ACM, New

York, pp 35–44. doi:10.1145/1570433.1570442

8. Campos JC, Harrison MD (2011) Modelling and analysing the

interactive behaviour of an infusion pump. ECEASST 45

9. Cauchi A, Gimblett A, Thimbleby A, Curzon P, Masci P (2012)

Safer “5-key” number entry user interfaces using differential for-

mal analysis. In: 26th Annual Conference on Human–Computer

Interaction, BCS-HCI

123

http://www.ismp.org/tools/abbreviations/
http://dx.doi.org/10.1109/HCMDSS-MDPnP.2007.36
http://dx.doi.org/10.1109/HCMDSS-MDPnP.2007.36
http://dx.doi.org/10.1145/1753846.1754054
http://dx.doi.org/10.1007/s11334-010-19730129-9
http://dx.doi.org/10.1007/s11334-010-19730129-9
http://dx.doi.org/10.1145/1570433.1570442

The benefits of formalising design guidelines 93

10. Degani A, Heymann M (2002) Formal verification of human–

automation interaction. Human Factors 44(1):28–43

11. Department fo Health and Human Services, US Food and Drug

Administration (2010) Total Product Life Cycle: Infusion Pump—

Premarket Notification [510(k)] Submissions—Draft Guidance,

April 2010

12. Dix AJ (1991) Formal methods for interactive systems. Computers

and people series. Academic Press, San Diego. http://www.hiraeth.

com/books/formal/

13. Dix AJ, Runciman C (1985) Abstract models of interactive sys-

tems. People and computers: designing the interface. Cambridge

University Press, Cambridge, pp 13–22

14. Harrison MD, Thimbleby H (1985)Abstract models of interactive

systems. In: Proceedings British Computer Society Conference

on Human Computer Interaction (HCI’85). Cambridge University

Press, Cambridge, pp 161–171

15. Endsley MR, Bolte B, Jones DG (2003) Designing for situation

awareness: an approach to user-centered design. Taylor and Fran-

cis, Boca Raton

16. Health C (2006) Alaris GP volumetric pump: directions for use

17. Hinckley K, Cutrell E, Bathiche S, Muss T (2002) Quantitative

analysis of scrolling techniques. In: Proceedings of the SIGCHI

conference on Human factors in computing systems: changing our

world, changing ourselves, CHI ’02. ACM, New York, pp 65–72.

doi:10.1145/503376.503389

18. Javaux D (1998) Explaining sarter and woods’ classical results. In:

Second Workshop on Human Error, Safety, and Software Design

19. Kim B, Ayoub A, Sokolsky O, Lee I, Jones P, Zhang Y, Jetley R

(2011) Safety-assured development of the GPCA infusion pump

software. In: Proceedings of the ninth ACM international con-

ference on Embedded software, EMSOFT ’11. ACM, New York,

pp 155–164. doi:10.1145/2038642.2038667

20. Leape L (1994) Error in medicine. J Am Med Assoc 272(23):1851–

1857

21. Masci P, Rukšėnas R, Oladimeji P, Cauchi A, Gimblett A, Li Y,

Curzon P, Thimbleby H (2011) On formalising interactive number

entry on infusion pumps. ECEASST

22. Medicines and Healthcare products Regulatory Agency (MHRA)

(2010) Device bulletin, infusion systems, db2003(02) v2.0. http://

www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/

CON007321

23. de Moura L, Owre S, Ruess H, Rushby J, Shankar N, Sorea M,

Tiwari A (2004) SAL 2. In: Alur R, Peled DA (eds) Computer

aided verification: CAV 2004, Lecture Notes in Computer Science,

vol 3114. Springer, Berlin, pp 496–500

24. Norman DA (1983) Design rules based on analyses of human error.

Commun ACM 26(4):254–258. doi:10.1145/2163.358092

25. Norman DA (2002) The Design of Everyday Things, reprint paper-

back edn. Basic Books, New York

26. Oladimeji P, Thimbleby H, Cox A (2011) Number entry interfaces

and their effects on error detection. In: Proceedings of the 13th IFIP

TC 13 international conference on Human–computer interaction—

Volume Part IV, INTERACT’11. Springer, Berlin, pp 178–185.

http://dl.acm.org/citation.cfm?id=2042283.2042302

27. Perrow C (1984) Normal accidents: living with high-risk technolo-

gies. Basic Books, New York

28. Reason J (1990) Human error, 1st edn. Cambridge University Press,

Cambridge

29. Rushby J (2002) Using model checking to help discover mode

confusions and other automation surprises. Reliab Eng Sys-

tem Safety 75(2):167–177. http://www.csl.sri.com/users/rushby/

abstracts/ress02

30. Rushby JM (2001) Modeling the human in human factors. In: Pro-

ceedings of the 20th International Conference on Computer Safety,

Reliability and Security, SAFECOMP ’01. Springer, London,

pp 86–91. http://dl.acm.org/citation.cfm?id=647399.724851

31. Ryan M, Fiadeiro JL, Maibaum TSE (1991) Sharing actions and

attributes in modal action logic. In: TACS, pp 569–593

32. Thimbleby H (2001) Permissive user interfaces. Int J Human Com-

put Studies 54(3):333–350. doi:10.1006/ijhc.2000.0442

33. Thimbleby H (2007) Interaction walkthrough: evaluation of safety

critical interactive systems. In: Doherty G, Blandford A (eds)

DSVIS 2006, The XIII International Workshop on Design, Speci-

fication and Verification of Interactive Systems, Lecture Notes in

Computer Science, vol 4323. Springer, Berlin, pp 52–66

34. Thimbleby HW, Gimblett A (2011) Dependable keyed data entry

for interactive systems. ECEASST 45

35. Trafton GJ, Monk CA (2007) Task interruptions. Rev

Human Factors Ergonomics. 3(16):111–126. doi:10.1518/

155723408X299852. http://www.ingentaconnect.com/content/

hfes/rhfe/2007/00000003

36. Vincent (2011) Patient safety, 2nd edn. Wiley, New York

123

http://www.hiraeth.com/books/formal/
http://www.hiraeth.com/books/formal/
http://dx.doi.org/10.1145/503376.503389
http://dx.doi.org/10.1145/2038642.2038667
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON007321
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON007321
http://www.mhra.gov.uk/Publications/Safetyguidance/DeviceBulletins/CON007321
http://dx.doi.org/10.1145/2163.358092
http://dl.acm.org/citation.cfm?id=2042283.2042302
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://www.csl.sri.com/users/rushby/abstracts/ress02
http://dl.acm.org/citation.cfm?id=647399.724851
http://dx.doi.org/10.1006/ijhc.2000.0442
http://dx.doi.org/10.1518/155723408X299852
http://dx.doi.org/10.1518/155723408X299852
http://www.ingentaconnect.com/content/hfes/rhfe/2007/00000003
http://www.ingentaconnect.com/content/hfes/rhfe/2007/00000003

