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‘Mutualism has been thought to death’- D.  H. Janzen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1985), 

‘Theoretically, the field is wide open’ - D. H. Boucher, S. James & K. H. Keeler 
( 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA982) .  

I .  INTRODUCTION 

The Australian lycaenid caterpillar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJalmenus evagoras is aggressively defended from 

parasitoid wasps and arthropod predators by ants (Iridomyrmex spp.). The caterpillars 

can not survive without the ants (Pierce et al., 1987). In exchange for their services as 

caterpillar bodyguards, the ants are fed secretions rich in carbohydrates and amino 

acids from specialized glands on the caterpillars. Although not dependent on the 

caterpillars for survival, the ants obtain a substantial nutritional benefit from the 

caterpillar secretion (Pierce et al., I 987 ; Fiedler & Maschwitz, I 988). The interaction 

between ants and caterpillars is one of the best described cases of mutualism: an 

interaction in which the inclusive fitness of each party is increased by the action of its 

partner (Janzen, 1985; Pierce et al., 1987; Pierce, 1989). 

Interspecific mutualism has received considerable theoretical interest over the last 

1-15 years (e.g. Axelrod & Hamilton, 1981; Vandermeer, 1984; Keeler, 1985; 

Templeton & Gilbert, 1985; Law & Koptur, 1986). Pierce (1989) suggests that this 

interest was prompted by the return to a Darwinian focus on the fitness of individuals 

rather than groups (Williams, 1966). The return to thinking about individuals focused 

attention on the problem of altruism: Why do organisms act in ways that benefit others 

at a cost to themselves? The theories of kin-selection (Hamilton, 1964) and reciprocal 

altruism (Trivers, I 97 I )  dominated thinking about intraspecific beneficence through 

the 1970s. Neither of these theories was widely applied to interspecific interactions; 

kin-selection for obvious reasons and reciprocal altruism, I suspect, because the need 

to remember individuals implied cognitive abilities beyond the capabilities of plants 

and caterpillars. The lack of common evolutionary mechanisms supporting inter- and 

intra-specific mutualisms is reflected in disagreement over whether the term mutualism 

should even be applied to intraspecific interactions (e.g. contrast Boucher, 1985 with 

West-Eberhard, 1975 and Janzen, 1985). In his discussion of the natural history of 

mutualisms, Janzen ( I  985) disregards conspecific mutualisms ‘ as they generally involve 

parent-offspring and other kin selection subjects amply treated elsewhere ’. 
Recently, more attention has focused on mechanisms other than kin-selection and 

reciprocity by which benefits are exchanged between conspecifics (Brown, 1983 ; 
Connor, 1986; Connor, 1992; Rothstein & Pierotti, 1988; Mesterton-Gibbons & 
Dugatkin, 1992). Of primary interest here are: ( I )  by-product benefits, which are 

incidental outcomes of the selfish behaviours of others (Brown, 1983 ; West-Eberhard, 

I 975), and (2) investment in by-product benefits, in which individuals perform costly 

acts for others to increase the probability of receiving by-product benefits (Connor, 

1986). Further, Axelrod and Hamilton (1981) suggested that the ‘ Tit-for-Tat ’ model 

of reciprocity does not require advanced cognitive skills and might apply to a variety of 

interspecific interactions such as the fig-fig wasp, cleaner fish, lichens, and ant-acacia 
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mutualisms. Thus, kin-selection is not the only way in which benefits may be 

transferred among conspecifics and the other mechanisms may be common to intra- and 

interspecific mutualisms. 

Previous attempts to bring order to the enormous variety of interspecific interactions 

that fall under the rubric of mutualism have generally resulted in descriptive 

classifications along such axes as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I )  whether the mutualism is facultative or obligate; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) whether the mutualism is diffuse or one-to-one; (3)  the duration of the mutualism 

(transient or permanent), etc. (Starr, 1975; Lewis, 1985). Classifications based on the 

functions of the benefits exchanged in interspecific mutualisms have also been offered 

(e.g. Janzen, 1985; Addicott, 1984). For example, Janzen (1985) observes five major 

classes of terrestrial allospecific mutualisms : (i) harvest mutualisms (including gut flora 

and fauna, lichens, epiphytes, root rhizospheres, etc.) ; (ii) pollination mutualisms ; 
(iii) seed dispersal mutualisms; (iv) protective mutualisms; and (v) human agri- 

culture/animal husbandry. 

A descriptive or functional system will not suffice; different mechanisms may 

underlie functionally similar traits and the same mechanism may be operating in 

functionally dissimilar traits. To borrow an example from intraspecific interactions, 

grooming may be based on kin-selection in one species (e.g. Kurland, 1977) but some 

form of reciprocity in another (e.g. Hart & Hart, 1992). Clearly, different mechanisms 

will evolve under different conditions; (e.g. by-product benefits versus reciprocity). 

Here I present a conceptual framework based on the mechanisms by which benefits 

are transferred. This framework builds on a foundation laid by others, notably 

Thompson (1982). The payoff may be more than heuristic as the conceptual approach 

adopted here should aid those attempting to model the evolution of any particular 

mutualism. Further, a focus on mechanisms should improve our understanding of the 

ecological conditions that generate interspecific mutualisms, just as it did for our 

understanding of intraspecific mutualisms (e.g. Wrangham, I 982). 
I will begin by defining what might be considered to be the fundamental elements of 

mutualism : the mechanisms by which benefits are transferred between individuals. 

There are three such mechanisms which can be combined in pairs to produce six 

possible origins of mutualism, referred to here as ‘basal mutualisms’. A review of the 

literature on interspecific interactions yields candidates for five of the six basal 

mutualisms. Selection may promote new mutualistic traits in a basal mutualism, 

resulting in a ‘ derived ’ mutualism. I present plausible examples of mutualisms that 

may be derived from four kinds of basal mutualisms. In an attempt to unite intra- and 

interspecific mutualisms in a common framework, I also present examples of 

intraspecific analogs for both basal and derived mutualisms where possible. To 
demonstrate the value of this scheme, I conclude with a reconsideration of two models 

of interspecific mutualism ; the ‘ Tit-for-Tat ’ model of reciprocity and Roughgarden’s 

model for the evolution of the damselfish-anemone mutualism. 

11. THE BENEFITS OF MUTUALISM 

There are three mechanisms by which one organism may acquire benefits from 

another. Benefits may be ( I )  by-products, (2) invested, or ( 3 )  purloined. An individual 

may pass benefits on to others as a by-product of acts performed for itself. Investment 
denotes a mechanism in which selection favours an individual performing a costly act 

to benefit another individual. The return on that investment may take several forms, 
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which provide the basis for several kinds of interactions that we observe between 

conspecifics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPurloined benefits include those acquired via parasitism or predation. 

A complete list of interactions (excluding ‘mistakes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ and deceit) in which benefits 

flow from an individual A to another individual B is provided below. Some of the 

mechanisms in the list require that benefits flow both ways (A-B and B-A) to evolve and 

are thus mutualisms by definition. Other mechanisms listed here do not require a two- 

way flow of benefits to evolve (e.g. parasitism) but may account for the flow of benefits 

in one or both directions in a mutualism. 

( I )  By-product benefits 

(a)  By-product benefits 

Behaviours or other attributes of A designed to benefit A incidentally benefit B. The 

benefit to B comes at no additional cost to A (Brown, 1987; Rothstein & Pierotti, 1988). 

( 2 )  Invested benefits 

Benefits may be invested in another organism because such investments tend to yield 

fitness returns which exceed the cost of the initial investment. 

(a )  Nepotism 

An individual A directs beneficence toward an individual B according to ‘Hamilton’s 

Rule’: Beneficence is favoured as long as the cost to A is less than the benefit to B 
devalued by the coefficient of relatedness between A and B (Cost < r * Benefit). A will 

attempt to maximize ‘ Br-C ’ (Hamilton, 1964). 

( b )  Reciprocity 

Individual A directs costly beneficence toward B in expectation that B will 

subsequently invest in A. B’s ‘return’ act may be different in kind from A’s initial act. 

A and B will alternate turns or periods as investor and recipient. In most cases, both A 

and B can ‘cheat’ by failing to reciprocate or by reciprocating with less investment than 

expected by the other (Trivers, 1971 ; Axelrod & Hamilton, 1981). 

( c )  Pseudo-reciprocity 

Individual A directs beneficence toward another individual B increasing the 

probability that B will perform acts which benefit B directly and A incidentally. A is 

investing in by-product benefits. Neither A nor B can cheat (Connor, 1986). 
Note that in two cases of investment, reciprocity and pseudo-reciprocity, the 

interactions are mutualisms by definition as both parties’ fitness is increased by the 

interaction (unless deceit or cheating occur). Single acts of nepotism should not be 

considered mutualistic because only one individual benefits. However, to the extent 

that associations between two or more relatives are based on opportunities for 

individuals to be both recipients and donors of nepotistic acts, I would consider the 

association mutualistic. 

( 3 )  Purloined benefits 

Many mutualisms have evolved from antagonistic interactions in which one party 

purloins benefits from the other (Thompson, 1982). Obviously, for the interaction to be 
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considered a mutualism, the individual being purloined must receive by-product or 

invested benefits that exceed the cost of being purloined. 

(a )  Parasitism 

Individual B parasitizes individual A. Many of the classic cases of interspecific 

parasitism involve B parasitizing A’s somatic investment (e.g. tapeworms). By-product 

benefits may lead to parasitism of this kind. If B initially inflicts no cost on A but 

receives by-product benefits from A, selection may act on B to increase the benefits it 

obtains from A, thereby inflicting a cost on A. We can also expect to find cases where 

B parasitizes A’s investment in B, particularly in intraspecific interactions ; (i) 

nepotism: B may provide false information about B’s relatedness to A (see Connor & 
Curry, in press, for an example where B may use altruism to deceive A about 

relatedness); (ii) reciprocity: B may provide false information about B’s ability or 

inclination to reciprocate investment from A; (iii) pseudo-reciprocity : B may provide 

false information about the amount of investment needed from A. 

(b )  Predation (cannibalization) 

Individual B may prey upon individual A. In his discussion of the symbiotic 

continuum, Lewis (1985) sees no difference between predation and parasitism, except 

one of mechanism. But the prolonged contact with the host that characterizes parasitic 

interactions seems more likely to produce by-product benefits for the host which could 

lead to mutualism (Thompson, 1982). Ingestion is thought to be the route by which 

many endosymbioses arose (Boucher, I 982), but such interactions are not emphasized 

here because it is not clear whether endosymbioses are mutualisms or ‘enslavement ’ by 

the ingesting organism (Douglas & Smith, 1989). 
Before presenting the basal mutualisms, it will be useful to discuss the various ways 

in which traits associated with mutualism can be adaptively improved and the concepts 

of direct and indirect mutualism. 

111. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMUTUALISMS AND ADAPTATION 

Traits associated with mutualism can be adaptively improved in several ways. There 

can be adaptive elaboration of: (I) traits for receipt of benefits from the partner in 

mutualism; (2) cost-saving traits associated with reducing functions that are provided 

more efficiently by the partner in mutualism; (3) traits which transfer benefits to the 

partner in a mutualism. 

There are many fascinating examples of traits which increase one parties’ efficiency 

in receiving by-product benefits or investment. For example, trees in the Olympic 

rainforest support epiphyte mats up to 30 cm thick which are composed of living and 

dead epiphytes and other canopy detritus. These nutrient rich detrital mats are 

penetrated by adventitious roots which are an adaptation to increase by-product 

benefits host trees receive from epiphytes (Nadkarni, 1981). An evolutionary race may 

result in cases where traits which improve efficiency in receiving benefits in one party 

conflict with the efficient receipt of benefits by the other party. Nilsson (1988) found 

support for Darwin’s idea that the very deep corolla tubes of some flowers and long 

tongues of their pollinators might be the result of such a race. A longer tongue increases 

the ability of the pollinator to obtain investment (nectar) from the plant, but reduces the 
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transfer of pollen (by-product benefits) to the pollinator. The appearance of a deeper 

corolla tube in the plant would have improved pollen transfer but reduced the 

pollinators’ nectar gathering efficiency, producing selection for even longer tongues in 

the pollinators, and so on. Included among traits for improving the receipt of benefits 

are those which function to exclude potential third-party parasites of the mutualism. 

For example, flower structures are often adapted to allow only the most reliable 

pollinators access to nectar (reviewed in Bertin, 1989). 
Mutualists may also increase the receipt of benefits by recruiting partners for 

mutualistic interaction. Lycaenid and riodinid caterpillars are protected from predators 

by ants that obtain food secretions from the caterpillars (Pierce, 1989; Pierce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mead, 

I 98 I ; Pierce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. ,  I 987 ; DeVries, I 990). Threatened riodinid caterpillars use substrate 

borne sounds produced by vibratory papillae to attract ants (DeVries, 1990). Similar 

‘behaviour’ has been reported in a plant. Extrafloral nectaries on Catalpa speciosa 
attract predacious insects which attack or remove eggs and larvae of the primary 

herbivore, Ceratomia catalpae (Stephenson, I 982). Leaves that have been damaged by 

herbivory secrete more nectar than undamaged leaves. Paige & Whitham ( I  985) report 

a seasonal change in corolla colour in the scarlet gilia (Ipomopsis aggregata) that 

corresponds to the time when one of its two major pollinators emigrates from the area. 

In this case the adaptation is concerned with the seasonal shift from one mutualist to 

another. 

Recruitment of partners for mutualism is considered here investment, one of the 

three mechanisms involved in the transfer of benefits in mutualisms. There may also be 

adaptive traits for purloining benefits from partners in a mutualism and traits for selfish 

acts that incidentally benefit partners. Adaptations associated with the transfer of 

benefits are the major focus of this review and numerous examples are found in the 

classification of mutualisms below. 

Cost-saving adaptations may reduce or eliminate traits associated with functions that 

the partner in a mutualism provides. Presumably the loss or reduction of traits enables 

the organism to use the saved energy elsewhere or to exist on a reduced energy supply. 

For example, ant-acacias are defended from herbivores by ants and comparative 

analysis shows that they have lost the chemical defenses which are still present in 

related species that are not ant defended (Rehr et al. ,  1973). Fungus cultivated by Attine 

ants do not produce fruiting bodies (Weber, 1972). In this case the ants have not only 

invested in vegetative fungal reproduction, but by eating the fungus they may have 

effectively eliminated the benefit of producing fruiting bodies. Female treehoppers 

(Publilia retuculata) guard their egg masses and nymphs providing some protection 

from predators and parasitoids. Ants, attracted by honeydew produced by adult and 

immature treehoppers, also protect treehopper nymphs. With ants assuming her 

nymph-guarding role, the female is able to abandon her ant-tended brood to produce 

a second brood (Bristow, 1983). 

IV. DIRECT VERSUS INDIRECT MUTUALISM 

Vandermeer et al. (1985) describe effects of one party on another party as indirect if 

they are mediated through a third party. A positive indirect effect is called facilitation 

and cases of mutual facilitation are indirect mutualisms. A plant and predator have an 

indirect mutualism via the herbivore which eats the plant and is fed on by the predator 

(Vandermeer et al.,  1985). Boucher (1982) defines direct mutualisms as those involving 
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physical contact between the mutualists and indirect mutualism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas those in which the 

mutualists do not interact physically. The definitions of Boucher (1982) and 

Vandermeer et al. (1985) clearly differ. Consider an interaction in which a bird 

consumes biting flies on cows. To Boucher (1982) this is a direct mutualism if the bird 

picks the flies off of the cow’s back but indirect if the birds only pursue flies in the same 

or a neighbouring pasture. However, either scenario is equivalent to the classic plant- 

predator indirect mutualism described by Vandermeer et al. (1985). 
Because I am interested in the evolution of mutualism, I exclude from consideration 

any of the indirect mutualisms of Boucher (1982) and Vandermeer et al. (1985) that 

pertain to population level epiphenomena that are not products of individual selection 

(e.g. Waser & Real, 1979). I also exclude ‘accidental’ associations in which both parties 

benefit (e.g. two plants accidentally growing together where one leaks nutrients that 

benefit the other and is protected by thorns of the other). For my purposes, an 

association is considered adaptive if one of the parties in a mutually beneficial 

interaction exhibits some trait that appears to have been modified for obtaining benefits 

from the other. Such a trait might be as simple as attraction, as in the case of mixed 

species aggregations, or as complex as angiosperm flowers. Both parties may exhibit 

adaptively modified traits for obtaining benefits from the other, but the traits needed 

not have coevolved (e.g. Koptur, 1979). Returning to the indirect mutualism between 

the cow and the bird, I would consider the interaction to be mutualism if the cow began 

to call the bird (investment) when flies alighted on the cow. The hypothetical cow-bird 

interaction is close to the relationships between tick-eating oxpeckers (Buphagus spp.) 

and some African ungulates (Attwell, 1966). Impala (Aepyceros melampus) invest in the 

oxpeckers by performing behaviours to facilitate oxpecker access to hard-to-reach tick- 

infested areas such as inside the pinna (Hart et al., 1990). 
The convention adopted here does not mean that the lines are cleanly drawn or that 

mutualism will be recognized easily. What if our fly-pestered cow merely wandered 

over to a nearby pasture that had more resident birds? We might not recognize this 

behaviour unless it became more obvious as in the case of fish swimming to a ‘cleaning 

station’ to have ecoparasites removed by ‘cleaner fish’ (Losey, 1987). 

V. BASAL MUTUALISMS: THE ORIGINS OF MUTUALISM 

The three mechanisms for transfer of benefits between individuals, by-product 
benejits, investment, and purloined benejits, may be combined in pairs to produce six 

hypothetical routes through which mutualism may arise from an amutualistic state: 

(by-product, by-product) (by-product, invested) (by-product, purloined) (purloined, 

invested) (invested, invested) (purloined, purloined) (Fig. I ) .  It is immediately obvious 

that some of these original or ‘basal’ mutualisms are more likely than others. The 

category (purloined, purloined) is probably the most unlikely as it requires that two 

parties purloin benefits from each other in such a way that both enjoy a net benefit. 

Below I present the six kinds of original or ‘ basal ’ mutualisms and discuss plausible 

examples for five of the six categories. I also offer analogous intraspecific examples of 

each kind of mutualism where possible. I indicate the category of mutualism by 

replacing the typical (+ , +) with the evolutionary mechanism the ‘ + ’ represents. For 

example (purloined, investment) indicates that one party receives purloined benefits 

and the other party receives invested benefits. 
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Mutualist 2 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

By-product Purloined Invested 

-product Mixed species flocks, Cowbird-oropendola Ant-black cherry tree 
school, herds Original insect Yeast-spider 

cormorants 
Coordinated fishing by pollination mutualisms Ant-cynipid wasp 

Mullerian mimicry 
Strangler fig fusion 
Hermit crab shell 
exchange 

Mutualist 1 

Purloined 

Invested - 

No examples Damselfish-algal ‘lawns’ 

Syspected cases of 

including lichens, 
fig-fig-wasp, and 
ant-acacia interactions 

- tit-for-tat’ reciprocity 

Fig. I .  The three kinds of benefits, by-product, purloined, and invested, can be combined in six ways to 
derive ‘basal’ mutualisms from an amutualistic state. Four of the six possible basal mutualisms, (by- 
product, by-product), (by-product, purloined), (by-product, invested) and (purloined, invested) are 
suggested to account for the origin of all known mutualisms, including possible cases of the category 
(invested, invested). 

( I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABasal- I mutualism (by-product, by-product) 

Mutualisms can originate when both parties receive by-product benefits. 

Interspecific. Examples are found where individuals form groups because each 

individual receives by-product benefits from the selfish behaviour of others. By- 

product benefits may take the form of increased information about the presence of 

predators or food (e.g. Brown, 1986). Brown (1983) calls this ‘ byproduct’ mutualism 

and it was West Eberhard’s (1975) ‘mutualism maintained by ordinary selfish 

behaviour incidentally benefiting neighbours ’. I suggest that all forms of cooperation 

that do not involve investment are examples of this kind of mutualism. Mixed species 

flocks, schools, or herds where members of both species enjoy reduced predation risk 

are (by-product, by-product) mutualisms (e.g. Ehrlich & Ehrlich, I 973 ; FitzGibbon, 

1990). Mullerian mimicry in the butterfly genus Heliconius provides an example where 

the mutualism is maintained by convergent wing colour patterns (Brown, 1981 ; 
Turner, 1981). In basal- I mutualisms, the benefits passed between individuals are often 

of the same ‘currency’ or ‘coinage’, and thus form an important exception to Janzen’s 

( I  985) generalization that : ‘ Mutualists never pay each other in the same physical 

coinage at the same time’. 

This category provides a clear justification for my restricting mutualisms to adaptive 

and not accidental transfers of benefits. It is easy to imagine that accidental transfers of 

by-product benefits may occasionally flow in both directions. For example, alarm calls 
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given at different times by members of two species which are in proximity may benefit 

both parties. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Intraspecijic. The common currency in basal- I mutualisms may explain why these 

mutualisms are relatively common intraspecifically. Individuals in basal- I mutualisms 

may be able to increase the exchange of by-product benefits by coordinating or 

synchronizing their behaviour with other group members. Fish schooling behaviour 

helps individuals avoid predators or food competitors (Barlow, 1974; Major, 1976; 
Pitcher & Parrish, 1993). Coordinated fish driving by cormorants is a classic case in 

which individuals coordinating their behaviour results in more effective food acquisition 

(Bartholomew, 1942). Such coordination may take on unusual forms. By swimming in 

tight formation toward a seal trapped on an ice flow, five killer whales (Ordinus orca) 
created a wave which washed the seal off the ice (Smith et al., 1981). Synchronized 

production of offspring (seeds or calves) which results in satiated predators is a basal- 

I mutualism (e.g. Janzen 1971;  Waller, 1993). Strangler figs (Ficus spp.) grow up 

around a host tree, ensheathing and often killing it, leaving a hollow, freestanding 

strangler fig. Young strangler figs with different genotypes growing up around the same 

host tree may fuse, providing each individual with better structural support and 

possibly more light and soil resources if by fusing the figs hasten the demise of the host 

tree (Thomson et al., 1991). Mating behaviour is an obligate basal-1 mutualism because 

both individuals acquire by-product benefits from the selfish behaviour (mating) of 

their partners. It has not been generally appreciated that such disparate phenomena 

arise from the same evolutionary mechanism, distinguished only by where they lie on 

a continuum of increasing coordination of behaviour by participating individuals. 

Coordinated behaviour may also produce sequential or alternating exchanges of 

beneficence among basal-I mutualists. Hazlett (1983, 1987) found that members of two 

genera of hermit crabs (Pagurus, Clibinarius) exchange shells, both intra- and 

interspecifically, according to a ‘negotiations’ model, in which a shell exchange is most 

likely to take place only if both crabs will acquire a better fitting shell. Given that an 

exchange will take place, aggression may determine which crab abandons its shell first, 

thus suffering a 1-2 s period of exposure to predators (Hazlett, 1983). 

(2) Basal-2 mutualism (purloined, by-product) 

Mutualisms can originate when a parasite confers by-product benefits on its host. 

Interspecific. Thompson ( I 982) discusses extensively the evolution of mutualism 

from initially antagonistic relationships. In some situations, the by-product benefits 

passed to the host might be larger than the cost inflicted by the parasite resulting in an 

overall ‘ + , + ’ interaction. Insect pollination mutualisms almost certainly began as 

basal-2 mutualisms with pollination occurring as a by-product of insects feeding on 

pollen and other plant structures (Crepet, 1983 ; Bertin, 1989). Likewise, seed predators 

which benefit the host plant though dispersal of some of the seeds fit this category (in 

cases where the plants do not invest in the seed predator). A case of basal-2 mutualism 

is that between cowbirds and their oropendola and cacique hosts (Smith, 1968). 
Cowbird nestlings protect oropendola and cacique nestlings from botfly larvae by 

eating the larvae on their nestmates. Nests built in association with certain 

hymenopteran nests are relatively free of botfly attacks and the hosts discriminate 

against mimetic cowbird eggs. It is only away from the hymenopteran nests that the 
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orpendola-cowbird interaction becomes a mutualism, and the hosts not only fail to 

discriminate, but the cowbirds lay non-mimetic eggs. 

(3 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABasal-3 mutualism (purloined, purloined) 

Mutualisms can originate when a host begins to parasitize the parasite. 

Interspecific. This category may be theoretically possible but seems implausible and 

is listed here because it is one of the logical basal mutualisms. Such an interaction could 

be maintained if the benefit each party accrued from its parasitic effects was larger than 

the cost inflicted by the other party. Has an adaptation ever appeared in a host enabling 

it to purloin the parasite resulting in a net zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( + , +) interaction? Typically the parasite 

is very small relative to the host so this category seem unlikely. 

(4) Basal-4 mutualism (purloined, investment) 

Mutualisms can originate when a dependent parasite begins to invest in its host. 

Interspecific. Selection may favour a parasite, who yields no by-product benefits to 

the host, investing in the host that the parasite has come to depend on. Roughgarden 

( I  975) modelled the evolution of damselfish-anemone interactions from an initial state 

where the damselfish were parasitic to a mutualistic state where the dependent 

damselfish invest in their host anemones. Investment by the damselfish ranges from 

catching food for the anemone to deepening holes for the anemone to attach in. 

Janzen (1985) states that ‘ I disregard husbandry as its traits are generated through 

replacement of genetic fitness by the desires of humans’. Certainly humans breed 

animals for all sorts of reasons, but cases where we breed them to feed upon them may 

fit the basal-4 category. A possible example of such ‘farming’ in a non-human species 

is the phenomenon of damselfishes farming ‘algal lawns’ (Eakin, 1987). The territorial 

damselfish defend their laws from potential herbivores and ‘weed out ’ undesirable algal 

species. 

The famous obligate mutualism between the yucca and yucca moth is a case where 

one party invests in the party it purloins (Addicott, 1986; Pellmyr & Thompson, 1992; 
reviewed by Powell, 1992). The larvae of yucca moths are seed predators on the yucca 

plant. The female yucca moth oviposits into the ovary of a yucca flower where the 

emerging larvae will find a meal of yucca seeds waiting for them. Pollination is critical 

for seed production so, following oviposition, the yucca moth ‘ provisions ’ her eggs by 

actively pollinating the yucca flower using highly derived structures to gather and 

transfer the pollen (but see Tyre & Addicott, 1993). The active pollination is an 

investment by the moth in the yucca plant, and is critical insurance that the flower will 

produce seeds which her offspring will be able to purloin. Enough seeds are left by the 

developing larvae to render an overall benefit to the plant and thus the interaction is a 

mutualism. At least one species of yucca may combine high rates of fruit abortion with 

an unpredictable pattern of fruit production to limit seed predation by its pollinator 

(James et al. 1994). 
It seems unlikely that the active pollination (investment) exhibited by yucca moths 

would have originated denovo, without being preceded by a period of passive 

pollination (by-product benefits = basal-z mutualism) during the early evolution of the 
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mutualism. Greya politella, a seed-predator on a member of the Saxifragaceae, belongs 

to the sister group to the yucca genus in the family Prodoxidae. G. politella is also a 

major, but passive, pollinator of its host, indicating that active pollination was derived 

from passive pollination in the yucca lineage (Pellmyr & Thompson, 1992). Even 

passive pollination may include investment, as Janzen (1985) points out, if the external 

coating of the insect is modified to make pollen grains stick better. In the case of G. 
politella, this hypothesis may be tested by comparisons with non-pollinating members 

of the genus. 

Evidence of investment replacing by-product benefits is found in another well known 

obligate seed predator-pollination mutualism, between figs and fig wasps (reviewed by 

Bronstein, 1992). There are over 700 species of figs, most pollinated by a single species 

of agaonid wasp. Some fig wasps have morphological structures and behaviours adapted 

for pollen collection and transfer while others do not and transfer pollen passively. 

Passive pollination is thought to be the primitive state (Bronstein, 1992). 

(5)  Basal-5 mutualism (by-product, investment) 

Mutualisms can originate when a party receiving by-product benefits begins to invest 

in the other party. 

Interspecific. Tilman (1978) documented a mutualism in which ants (Formica 
obscuripes) attracted to extrafloral nectaries reduced herbivore damage by tent 

caterpillars on black cherry trees (Prunus serotina). Predation on caterpillars by ants 

incidentally benefits the trees and would have favoured the investment of extrafoliar 

nectaries to attract the ants. 

Beccera & Venable (1989) suggest that the initial adaptation of some extrafloral 

nectaries was in thwarting ant-homoptera mutualisms. Extrafloral nectaries provided a 

cheaper source of nutrient or ‘bribe’ for the ant, who then incidentally benefited the 

plants by failing to care for or killing the homopterans. Note that, in contrast to the ant- 

black cherry mutualism in which the by-product benefits would have preceded the 

investment, both the investment and the by-product benefit appeared simultaneously 

in this model, with the first mutant plant that possessed an incipient extrafloral nectary. 

However, Del-Claro & Oliveira (1993) found that the presence of an alternative sugar 

source did not cause ants (Camponotus spp.) to abandon tree-hopper (Guayaquila 
xiphias) aggregations. Rather, the new sugar source prompted an increase in ant 

recruitment which somehow stimulated the treehoppers to greater honeydew 

production so that ant-tending remained constant (see also Fiala, I 990). 
Thompson (1982) suggested a scenario for the evolution of extrafloral nectaries that 

does not include by-product benefits. If ants were initially feeding on the growing tips 

of plants, then an incipient extrafloral nectary could have provided an alternative that 

was preferable to the ant and cheaper for the plant. The  extrafloral nectary would, in 

this case, represent novel investment to reduce the cost of being purloined in an 

antagonistic relationship. However, a preferable food source would likely increase ant 

visitation rates making such a scenario unlikely without compensating by-product 

benefits from the ants in the form of anti-herbivore behaviour. 

The cynipid wasp, Disholcaspis eldoradensis, is also protected by ants in a mutualism 

with a particularly interesting twist (Washburn, I 984). D .  eldoradensis forms galls on 
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the valley oak zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQuercus lobata. The galls are tended by ants which attack other insects 

visiting the gall, including hymenopteran parasitoids that attack D.  eldoradensis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. 
eldoradensis survive better with attending ants than without them (Washburn, 1984). 

The ant ‘reward’ is not provided directly by the cynipid but by the oak in the form of 

honeydew secreted by the gall. Because the oak secretes the honeydew, Washburn 

(1984) states that the honeydew is ‘free for the cynipid’ and is not an ‘evolutionary 

investment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ like the extrafloral nectar secretions of ant-acacias. It is possible, but 

unlikely, that honeydew secretion is an incidental effect of gall formation. About 35 
cynipid species form galls on Quercus lobata but only D. eldoradensis induces galls that 

secrete honeydew (Washburn, 1984). It seems more likely that D. eldoradensis has some 

adaptation which causes the oak to secrete the honeydew. If so, the secretion is no more 

‘free’ than the gall tissue the cynipid feeds upon, or the food pursued by any predator 

or parasite. The cost of catching prey or parasitizing a host is usually somatic 

investment, but in the case of D.  eldoradensis, the returns are directed toward the 

tending ants. Further work on the mechanism of honeydew production may elucidate 

whether the honeydew is investment or an incidental byproduct of the cynipid’s gall- 

inducing actions. 

The social spider Mallos gregalis apparently invests in yeast growing on prey remains 

in the M .  gregalis webs (Tietjen et al . ,  1987). A sweet odour produced by yeast cultures 

on the prey remains attracts additional prey (flies) to the web. Experiments by Tietjen 

et al. suggest that the spiders somehow alter the environment of the prey remains to 

favour yeast relative to bacterial growth. The spiders are essentially using a ‘scented 

bait’ to attract prey. 

Intraspeci’c. This is pseudo-reciprocity : an individual A invests in another individual 

B to increase the probability of receiving by-product benefits from B. T o  maintain the 

parallel with interspecific interactions we again seek relationships that are asymmetrical ; 
that is, where A invests in B to receive by-product benefits from B and the roles are 

unlikely to be reversed. Connor (1986) gave an example of pseudo-reciprocity in which 

a subordinate individual of a cooperatively breeding species of bird might be expected 

to assist an unrelated offspring if the subordinate could expect to benefit at a later date 

from the selfish territorial efforts of the offspring. Assuming (hypothetically) that the 

by-product benefits go only from the offspring to the helper, then their relationship 

would fit this category. 

(6) Basal-6 mutualism (investment, investment) 

Mutualisms can originate when each party invests in the other, providing safeguards 

against ‘cheating’ are possible. 

Interspecific. This kind of mutualism has been modelled as ‘ Tit-for-Tat ’ reciprocity 

(Axelrod & Hamilton, 1981). Axelrod & Hamilton (1981, see also Enquist & Leimar, 

1993) suggested that Tit-for-Tat might be operating in a number of well known 

mutualisms, including fig wasp-fig, cleaner-fish, lichens, ant-ant acacias : ‘ symbioses 

mainly illustrate the other (than kin selection) recent extension of evolutionary theory, 

the theory of reciprocation’. The possibility that ‘ Tit-for-Tat ’ is found in interspecific 

interactions is examined in the discussion section. 

IntraspeciJic. The Tit-for-Tat model of reciprocity has been offered as an explanation 
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for a variety of apparently cooperative behaviours among conspecifics. Examples 

include blood sharing among female vampire bats (Wilkinson, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1984), the behaviour of 

guppies and sticklebacks during predator inspections (Milinski, 1987 ; Dugatkin, I 988), 
coalition formation among male baboons (Packer, I 977) and common chimpanzees (de 

Waal, 1992), mutual restraint in tree swallows (Lombardo, 1985)’ and egg-trading in 

simultaneous hermaphrodites (Fischer, 1988). However, most of the claims for ‘Tit-for- 

Tat’ reciprocity remain controversial so it is unclear how widespread the phenomenon 

is (for reviews of intraspecific reciprocity and alternative explanations see Connor, 

1986; Koenig, 1988; Rothstein & Pierotti, 1988; Wilkinson, 1988; Friedman & 
Hammerstein, 1991 ; No& et al., 1991 ; Boyd, 1992; Connor, 1992; de Waal, 1992; 
Emlen, 1991 ; Mesterton-Gibbons & Dugatkin, 1992). 

VI. DERIVED MUTUALISMS: INVESTMENT IN A BASAL MUTUALISM 

In many classic examples of mutualism both parties receive investment (e.g. ant- 

acacia, ant-gardens). Given the interest in how such mutualism can evolve and in 

particular the persistent suggestion that such mutualisms might be examples of 

cooperation based on the Prisoner’s Dilemma or related models (Axelrod & Hamilton, 

1981 ; Enquist & Leimar, 1993 : Leimar & Axen, 1993), it is useful to consider the most 

direct routes by which basal mutualisms can evolve to the point at which both parties 

invest. Selection may favour investment by one or both of the parties that were not 

investing in the original mutualism. Any basal mutualism potentially may evolve to the 

point where each party invests. For example, a (by-product, investment) mutualism 

may become a (by-product-investment, investment) mutualism. This scheme is 

illustrated in Fig. 2;  stages are added to each of the six basal mutualisms until each 

party invests. As with the case for basal mutualisms, it is unlikely that real mutualisms 

exist for each of the derived categories in Fig. 2, but candidates for five categories 

derived from four basal mutualisms are given in Fig. 3.  Of course, mutualisms may 

become much more complex than this scheme allows. New forms of by-product 

benefits may arise, new opportunities to extract purloined benefits from partners 

(which could potentially disrupt the mutualism) may arise, third parties may parasitize 

the mutualism, etc. However, this scheme offers a useful framework within which we 

can consider the further evolution of investment in basal mutualisms. 

Below I discuss examples or possible examples from six of the nine categories of 

derived interspecific mutualism listed in Fig. 2, and offer analogous intraspecific 

examples where possible. Derived mutualisms are represented by hyphenating 

‘ investment ’ with the original benefit. For example (purloined, by-product-investment) 

indicates an original mutualism (purloined, by-product) that evolved into a (purloined, 

by-product-investment) mutualism when the party receiving by-product benefits 

began to receive investment. 

( I )  Mutualisms derived from basal- I mutualisms (by-product, by-product) 

( a )  By-product, by-product-investment 

Interspecifc. A fascinating example of this kind of mutualism is the hornbill-dwarf 

mongoose interaction, described by Rasa (1983). Both hornbills and dwarf mongooses 
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Probable 
precursor Basal Derived 1 Derived 2 

Neutral (0,O) (B, B ) d ( B ,  BV- (BV, BV) 

Antagonistic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+, -1 (P, P) -(PV, P)------) (PV, PV) 

Commensal (0, +) (B, V ) d ( B V ,  V) 

Neutral (0.0) (V, V) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  Each of the six basal mutualisms may evolve to the point in which each party receives investment, 
as indicated by the arrows. (B = by-product; V = invested; P = purloined). However, such investment 
may obscure the origin of the mutualism by replacing or rendering obsolete the benefits that originally 
gave rise to the mutualism. 

derive by-product benefits from their association. Hornbills gain access to prey 

disturbed by the foraging activities of the mongooses and the mongooses benefit when 

the hornbills respond to mutual predators. Further, when foraging with mongooses, 

hornbills warn of the presence of raptors that prey on mongooses irrespective of 

whether they prey on the hornbills themselves. Raptors that do not prey on the 

mongooses or hornbills do not elicit a response from either. By warning of the presence 

of raptors which do not prey on hornbills, the hornbills are investing in by-product 

benefits they receive from the mongooses. 

Striking examples of interspecific cooperative feeding have been reported between 

humans and dolphins (Busnel, 1973; Pryor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal., 1990). On the coast of Mauretania, 

the local people fish with hand held nets for mullet which migrate seasonally along the 

coast very close to the beach. Sighting a school of mullet, one of the fishermen wades 

into the water and hits the surface with a stick repeatedly. This apparently attracts 

dolphins (Tursiops sp. and Sousa sp.), which feed on the mullet next to the fishermen 

(Busnel, 1973). Evidently the nets serve as a barrier the dolphins can trap the fish 

against to the benefit of both humans and dolphins. Both dolphins and humans acquire 

by-product benefits from the fishing activities of each other, but additionally the people 

invest by ‘calling’ the dolphins when fish are present. 

Intraspecijic. Investing in by-product benefits is pseudo-reciprocity (Connor, I 986). 
T o  find an intraspecific equivalent of this type of mutualism we need to consider 

asymmetrical relationships in which both individuals receive by-product benefits but 

only one of the individuals invests (or engages in pseudo-reciprocity). An example 

where investment is unidirectional is the case where a male provides for a female who, 
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Fig. 3 .  Each of the four basal mutualisms with real counterparts in nature may give rise to derived 
mutualisms when one or both parties begin to invest in the other. See text for a description of each 
mutualism. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

using the male's ability to provide for her as an index of male quality, then mates with 

him (Connor, 1986) .  
Another case where investment is likely to be unidirectional is communal nursing in 

the evening bat, Nycticeius humeralis. After an unsuccessful foraging trip, an evening 

bat can improve its prey capture by following a successful forager (Wilkinson, 1992a).  
Wilkinson ( 1 9 9 2 b )  suggested that female evening bats nurse unrelated female pups (the 

philopatric sex), to increase the pup's chance of survival. The female, or her pups, may 

later enjoy by-product benefits in the form of information about the location of food 

from that bat she nursed as a pup. 

(b )  By-product-investment, by-product-investment 

InterspeciJic. I know of no mutualisms that fall into this category. If it were found, 

hypothetically, that the mongooses in the mongoose-hornbill mutualism continued to 

forage after they were satiated for the hornbills benefit, then the interaction would be 

mutualism of this kind. 

Intraspecific. Symmmetrical relationships are more likely to produce intraspecific 

mutualisms in this category. Connor ( I  986) and Smith ( I  986)  suggested that individuals 
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might invest in group members in cases where ( I )  the by-product benefits each 

individual receives are substantial; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  individuals are not easily replaced and (3) a small 

investment can greatly benefit group members. A possible example given by Smith 

(1986) is alarm calling. T o  the extent that any two individuals would both alarm call or 

provide aid if the other were threatened, their relationship would fit this kind of 

mutualism. 

Colonially nesting cliff swallows, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHirundo pyrrhonota, use a vocalization to alert 

conspecifics that food, in the form of an insect swarm, has been found. Brown et al .  
(1991) suggest that callers increase their own foraging efficiency by attracting other 

birds. The insect swarms are ephemeral and foraging time is limited. The feeding 

efforts of birds attracted by the calling bird may allow the caller to track the insects and 

feed for a longer period of time. Presumably roles are often reversed as birds attracted 

to calls later find food and alert others. 

( 2 )  Mutualisms derived from basal-a mutualism (purloined, by-product) 

(a )  Purloined-investment, by-product 

InterspeciJic. Fruit represents investment in seed dispersers (e.g. Janzen, 1971 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; 
Thompson, I 982 ; Sallabanks & Courtney, I 992). The original mutualism undoubtedly 

began as a basal-2 mutualism when vertebrates consumed plant tissue containing seeds 

and incidentally dispersed some proportion of seeds that survived the assault. 

Myrmecochores, plants whose seeds are ant dispersed, tempt ants with food bodies 

(elaiosomes) attached to the seeds (e.g. Bond et al. ,  1991). The seed is dispersed because 

the ants carry the seed back to the nest before chewing off the elaiosome. An elaiosome 

like structure (capitulum) is also found on the ant-dispersed eggs of an African stick 

insect, Bacillus? coccyx (Compton & Ware, 1991). Using the capitulum as a handle, the 

ants carried the eggs back to the nest before chewing off the capitulum. Compton & 
Ware (1991) found that capitulum removal did not effect egg viability and that first 

instar larvae from eggs hatching in colonies of one of the egg-carrying species, 

Acantholepsis capensis, were not molested by the ants. 

(b)  Purloined-investment, by-product-investment 

Interspeci5c. A promising candidate for this category is the bizarre symbiosis between 

the scale insect Aspidiotus osborni and the fungus Septobasidium burtii living on oak 

trees (Couch, 1938, summarized by Trivers, 1985). The fungal body of S. burtii is 

complicated in structure, with two layers around a ‘labyrinth of chambers and tunnels’ 

(Couch, 1938). The scale insects feed and reproduce under the fungal mat which 

provides protection from predators and parasitoid wasps. Embedded in the lower layer 

of the fungal mat are smaller scale insects that are heavily parasitized by the fungus. A 

dense fungal mat surrounds but is not in direct contact with the parasitized scale 

insects, giving the insect ‘freedom of movement to breathe so that it will not suffocate’ 

(Couch, I 938). Fungal threads originating from the mat penetrate through ‘natural 

apertures’ in the insect body wall linking the mat with extensive fungal coils (haustoria) 

within the haemocoel of the scale insect. The parasitized scale insects continue to suck 

juices from the host plant even after the circulatory system is nearly filled with the 

fungal haustoria. All of the interpenetrated scale insects are females whose sacrifice may 

be analogous to non-reproductive female workers in ants, bees, and wasps (Trivers, 
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1985). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn addition to serving as a food source, the scale insects also provide the fungus 

with a means of dispersal. Some young insects become infected as they are leaving the 

fungal colony by crawling across the spore bearing surface. The description by Couch 

(1938) suggests that both fungus and scale insect are modified in ways that benefit their 

partners. Further study is required to determine if such modifications represent 

investment by both parties. 

( 3 )  Mutualisms derived from basal-4 mutualism (purloined, investment) 

( a )  Purloined-investment, investment 

Interspecific. The algal lawns farmed by damselfish are impressive, but not nearly as 

elaborate as the fungus gardens tended by attine ants (reviewed by Cherrett et al. ,  
1989). The interaction likely began with the ants feeding on mycorrhizal fungi or fungi 

growing on ant faeces (Garling, 1979). In the ‘leaf cutter’ ants ( A t t a  and Acromyrmex) 
the ants provision the fungus with fresh leaves, stems, fruit, and flowers cut from living 

plants. The ants invest further in the fungus by altering food items in ways that benefit 

the fungus, propagating the fungus vegetatively within colonies, carrying the fungus to 

new locations during the founding of new colonies, and helping to eliminate competing 

species that overwhelm fungus gardens if the ants are removed. Thus the ants purloin 

from and invest in the fungus just as damselfish purloin from and invest in their algal 

lawns. However, unlike the algae, which are not dependent on the damselfish for 

reproduction, the fungi also invest in the ants by providing specialized structures, 

swollen hyphae called ‘gongylidia’, that the ants eat and feed to larvae. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(4) Mutualisms derived from basal-5 mutualism (by-product, investment) 

( a )  By-product-investment, investment 

Interspecific. Some ant-plant mutualisms may fit this category. Ants which feed at 

extrafloral nectaries of the bush morning glory, Ipomoea leptophylla, reduce plant 

damage by grasshoppers and bruchid beetles, Megacerus discoidus (Keeler, I 980). The 

larvae of the bruchid beetles bore into the seeds of the plant and are preyed upon by the 

ants. This is the kind of by-product benefit that may have selected for investment 

(extrafloral nectaries) by the plant. Keeler (1989) reports that the ants repeatedly 

attacked the feet of the grasshoppers, causing the grasshoppers to leave the flower. The 

ants’ defence against the grasshoppers is unlikely to be an attempt at predation and may 

thus be an example of investment rather than by-product benefits. Both ants and plants 

clearly invest in the obligate ant-acacia mutualism described by Janzen (1966). The ants 

receive investment in the form of domiciles (swollen thorns) and food (Beltian bodies) 

and the plants receive investment from the ants’ efforts at defence against herbivores 

(Janzen, 1966). In this case by-product benefits (which may have initiated the 

mutualism) are not apparent; the ants do not consume insect hervibores but invest by 

merely tossing them off the plant (Janzen, 1966). The ants also prune encroaching 

vines, which may have originated as investment in the host plant (Janzen, 1966) or as 

an ant defence against competing and predatory ant species (Davidson & McKey, 

1993). 
hack & Reyer (1989) studied the remarkable relationship between the greater 

honeyguide (Indicator indicator) and the Boran people of Kenya (see also Dean et al., 
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I 990). A honeyguide leads people to bee colonies, even revealing information about 

distance to the colony by the distance it flies between consecutive perches. A change in 

call type and flight pattern signal the honeyguide’s arrival in the vicinity of the bee 

colony. The honeyguide derives by-product benefits when it feeds on the pieces of 

honeycomb left behind by the people who opened the nest. hack zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Rayer (1989) found 

that 96% of nests were accessible to the birds only after the nests were opened by 

humans. The honeyguides invest in humans by attracting their attention by close flights 

and calling. Once people approach the bird it initiates the trip to the bee colony by 

directional flights over tree-tops only to return to conspicuous perches to await a new 

approach. People guided to bee colonies enjoyed at least a 64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyo reduction in search time 

compared to people searching without honeyguides. It is not surprising then that 

people seeking honey also invest (however slightly) in the honeyguides by trying to 

attract them with a loud whistle that can be heard over I km. The  honey-guide-human 

interaction is similar to the dolphin-human interaction discussed above except that 

both honeyguides and humans attempt to alert each other to foraging opportunities 

but in the dolphin interaction only the humans are known to call. 

VII .  DISCUSSION 

By-product benefits, purloined benefits, and investment are presented here as the basic 

elements of mutualism, the mechanisms that produce the benefits in ‘+ ,  f ’  
interactions. Combining these three elements into pairs produces the six possible ways 

that mutualism can evolve. This review produced strong candidates for several of these 

possible origins, as well as cases in which selection has favoured further investment in 

existing mutualism. 

The idea that mutualism has multiple origins involving the exchange of different 

kinds of benefits is certainly not new (e.g. Thompson, I 982) but has not been presented 

previously in a complete conceptual framework. Problems with using this framework 

to evaluate the origin and nature of any given mutualism and other general issues are 

discussed below in the section on interspecific mutualism. Following this discussion, I 
demonstrate the value of this framework by reconsidering two well-known models for 

the evolution of mutualism. 

Before turning to interspecific mutualism, it will be useful to briefly review 

intraspecific mutualism. The two mechanisms investment and by-product benefits can 

be combined into three basic kinds of intraspecific mutualism. Focusing on these three 

categories, I compare my scheme with that of two recent reviews of intraspecific 

mutualism (Rothstein & Peirotti, I 988 ; Mesterton-Gibbons & Dugatkin, I 992). 

( I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIntraspeci’c mutualism 

(a)  By-product, by-product : ‘ by-product mutualism ’ 

by coordinated action. 

Both individuals received by-product benefits which, in some cases, may be increased 

(b)  By-product, investment : ‘pseudo-reciprocity ’ 
One individual invests, and receives by-product benefits in return. Neither can 

cheat: if the investing individual withholds benefits, it will not receive by-product 

benefits produced by the other’s selfish acts. 
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( c )  Investment, investment : ‘ reciprocity ’ or ‘reciprocal altruism ’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Both individuals invest. The option to cheat may be constrained by punishment or 

subsequent defection by the partner (Trivers, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1971 ; Axelrod & Hamilton, 1981) or 

other members in the group (Trivers, 1971 ; Alexander, 1987). In the parcelling model 

(Connor, 1992, in press), individuals are never in a prisoner’s dilemma so cheating is 

not an option. 

Rothstein & Pierotti’s ( I  988) classification was of cooperative and beneficent 

behaviours rather than mutualism so they considered cases in which one or both parties 

benefit. Thus they present ‘by-product benefits ’ (benefits in one direction) and 

‘ simultaneous cooperation ’ (both parties benefit) as two categories. The classification 

given here is very close to Rothstein & Pierotti’s (1988) but further clarifies the 

distinction they made between reciprocity and ‘ simultaneous cooperation ’ (approxi- 

mately equivalent to my basal- I mutualism). The critical distinction is whether both 

parties invest (Tit-for-Tat) or exchange by-product benefits (basal- I mutualism/ 

simultaneous cooperation). Basal- I mutualism is more general than ‘ simultaneous 

cooperation’ (Rothstein & Pierotti, 1988). ‘ Simultaneous cooperation’ is one end of the 

continuum of basal-I mutualisms. Acts of vigilance in mixed species flocks that 

generate by-product benefits for others may be performed sequentially or randomly, 

whereas fish-driving by cormorants is a good example of by-product benefits that are 

exchanged simultaneously. 

Mesterton-Gibbons & Dugatkin ( I 992) present three categories of cooperation 

among unrelated individuals : ( I )  group-selected behaviour; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 2 )  reciprocity and (3) by- 

product mutualism. My classification differs from theirs in two fundamental respects. 

First, my scheme does not include group-selected behaviours. Secondly, my concept of 

by-product mutualism ( = basal- I mutualism) differs substantially from theirs. By 

confounding the concepts of investment and by-product benefits, Mesterton-Gibbons 

& Dugatkin ( I  992) obscure the distinction between pseudo-reciprocity and by-product 

mutualism offered by Connor (1986) and Rothstein & Pierotti (1988). Following West- 

Eberhard (1975) and Brown (1983 ; see also Williams 1966), Mesterton-Gibbons & 
Dugatkin define by-product mutualism as occurring when cooperation is an outcome 

of the ‘ ordinary selfish behaviour ’ of individuals. By-product mutualism, by anyones’ 

definition, includes such phenomena as cooperative hunting where individuals can 

capture more prey by hunting together than alone, or forming groups to take advantage 

of the vigilance of others. In both of these cases the mutualism is ‘maintained by 

ordinary selfish behaviour incidentally benefiting neighbours ’ (West-Eberhard, I 975). 
However, Mesterton-Gibbons & Dugatkin (1992) also include such phenomena as 

alerting conspecifics to the presence of a food source to reduce the risks, from predators, 

of feeding alone. Such food-calling clearly is not a by-product of selfish behaviour, but 

an investment in other individuals for which the return benefit derives from the 

ordinary selfish behaviour (feeding) of those alerted to the presence of food. Thus, 

pseudo-reciprocity is not simply ‘ asymmetric by-product mutualism (with asymmetry 

caused by sequential action) ’ as claimed by Mesterton-Gibbons & Dugatkin (1992). 
Some interactions may not fit cleanly into one of these three categories. Consider, for 

example, Gaston’s (1978) ‘ pay-to-stay ’ hypothesis for cases where breeding birds allow 

unrelated birds to remain on their territory (and thus have access to resources and 



446 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. C. CONNOR 

perhaps the breeder’s mate) in exchange for help in feeding offspring. Is ‘pay-to-stay’ 

reciprocity? It is difficult to model the interaction as a series of moves by each player. 

Rather, once the breeder allows the unrelated bird into its territory, it has only the 

option to evict the bird if sufficient help is not forthcoming. Perhaps the interaction 

should be considered one rather lengthy move in which each party invests in the other 

simultaneously. The breeder can not cheat during the interaction as it is never in the 

position of ‘owing’ the helper. The helper can cheat by attempting to feed less than 

required by the breeder. If the flow of benefits from the helper falls below a certain level 

then the breeder no longer allows the helper to remain. 

(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInterspeciJic mutualism 

(a )  Past and present zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: distinguishing classes of beneJits 

One of the major difficulties with evaluating interspecific mutualism is that once 

conditions reach the point where one or both parties invest, the character of an 

interaction may change to the point where the origins of the mutualism are obscured. 

Janzen (1985) observes that ‘The coinage that initiated a mutualism may not necessarily 

remain with that interaction over evolutionary time. Escalation (further evolution) of 

the interaction, once established, may involve structures that would not be initially of 

sufficient importance to have led to the bond’. For some of the derived mutualisms 

discussed here, benefits which initially started the ball rolling might have long since 

disappeared. A possible example of this phenomenon is in ant-acacia mutualisms. This 

currently obligate mutualism may have been initiated by by-product benefits the ants 

conferred on the plants by eating herbivorous insects on the plants. The plants then 

began investing in the ants via a food source (extrafloral nectaries and Beltian bodies). 

In fact the ants do not prey on the insects but merely toss them off the plant (Janzen, 

I 966). The original by-product benefit may have been lost as the ants became 

dependent on the food provided by the plants. A different hypothesis for the initiation 

of the mutualism also suggests the occurrence of such a shift. Beccara & Venable (1989) 

suggest that the initial benefit to the plant was in disrupting ant-homoptera mutualisms. 

The ants readily shift to feeding on their ‘provisions’ and cease tending the 

homopterans (but see Fiala, 1990; Del-Claro & Oliveira, 1993). 

In another kind of ant-plant mutualism, the ‘ ant-fed plants ’, the original benefits 

that led to investment by both parties are even less apparent than in the ant-acacia 

mutualism. Ant-fed plants are a phylogenetically diverse group of epiphytes with a 

range of plant organs that have been modified into ant domiciles (Janzen, 1974; Huxley, 

I 980 ; Thompson, I 98 I ; Benzing, I 99 I) .  The rubiaceaus ant-epiphytes (genus 

Hydnophytum) provide ants with the most elaborate living quarters. The large cavity 

filled tuber that houses the ants has both rough-walled chambers with absorbent 

surfaces and smooth-walled chambers with non-absorbent walls. The plants absorb 

nutrients from debris ants deposit in the rough-walled chambers and the ants keep their 

brood in the smooth-walled chambers (Janzen, 1974; Huxley, 1980). It  is not presently 

clear what initial benefits led to the evolution of ant-fed plants, or whether the same 

evolutionary pathway was taken each time the phenomenon arose (Benzing, 1991). 

For some mutualisms it will be difficult to decide whether current benefits are 

investment or by-product or purloined benefits. Janzen (1985) offers examples from 
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‘harvest’ mutualisms; we may never know if detoxification of plant poisons and vitamin 

production by gut symbionts are by-product benefits or evolved investment. Other 

cases are more clear cut; we can see no self-serving purpose, in the absence of a 

mutualist, for acacia ant-domiciles or Beltian bodies. 

The comparative method has become an extremely useful tool to help answer 

questions about mutualisms such as the evolutionary origins of benefits and the nature 

of current benefits (Armbruster, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1992). For example, Rehr et al. (1973) used the 

comparative method to deduce that the absence of chemical defences in ant-acacias is 

a derived condition. Modelling an interaction may also help determine if a benefit is a 

by-product or investment. Would the return benefit for vitamin production by a gut 

symbiont, based on host health and survival, make the investment worthwhile ? 
There remains a danger of falling into a semantic quagmire. What do we consider 

pollen carried by butterflies, a by-product of selfish behaviour (feeding) by the butterfly 

or a benefit purloined by the plant? Insect pollination probably originated as a by- 

product benefit of insects feeding on pollen (and this may have been true for early 

butterflies as well, Crepet, I 983). Modern butterflies, however, are specialized for 

feeding on nectar, a form of investment by the plant, and pollen, especially to the extent 

that it has been modified to stick to floral visitors, represents only a potential cost to 

butterflies. 

(b)  Some types of mutualisms seem to be more common than others 

In spite of the difficulties outlined above, it is important to have a clear conceptual 

framework which distinguishes the different possible origins of mutualism and routes 

to investment. Although we are a long way from understanding the origin or nature of 

every mutualism, some cases will cleanly fall into one category and for others at least 

some categories can be eliminated. Thus, while attempting a quantitative assessment of 

the relative abundance of each type of mutualism does not seem prudent at this point, 

it does seem obvious that all categories are not equally represented in nature. It also 

seems obvious that not all origins of mutualism are equally likely. 

The three basal mutualisms that have by-product benefits flowing in at least one 

direction [(by-product, by-product), (purloined, by-product), and (invested, by- 

product)] may account for the origin of most or all interspecific mutualism. The 

evolution of basal- I (by-product, by-product) and basal-5 (invested, by-product) 

mutualisms which involve only by-product benefits and investment in by-product 

benefits is easy to understand. The evolution of mutualism from antagonistic 

interactions occurs in part because the predictable association between individuals of 

two species can promote selection to enhance the receipt of by-product benefits and 

minimize the impact of negative effects (Thompson, 1982). This may often be the case 

in host-parasite interactions relative to interactions between species in which are brief 

or in which neither is dependent on the other for survival. 

Three kinds of basal mutualisms do not include by-product benefits. The basal-4 

category (purloined, investment) has reasonable candidates in the damselfish farming of 

algal lawns and the origin of ant ‘fungus farming’. A challenge will be to determine if 

any (purloined, investment) mutualisms exist in which investment was not preceded by 

by-product benefits. 
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Basal-3 mutualism (purloined, purloined) in which each party obtains its benefits 

by purloining the other, is theoretically possible but seems implausible given the typical 

physical asymmetry between host and parasite. Perhaps where the typical size 

relationship between host and parasite is reversed, as has been suggested for some 

endosymbiotic relationships (see Douglas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith, 1989), might one hope to find such 

an interaction. Basal mutualism-6 (investment, investment), which originates with each 

party investing in the other (interspecific reciprocity, Axelrod & Hamilton, 1981) is 

discussed further below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( c )  The evolution of mutualism : considering the alternatives 

The conceptual framework offered here is a useful starting point for those wishing to 

model the evolution of mutualism. An inadequate consideration of the possible 

evolutionary routes to a given mutualism may result in a wrong or less parsimonious 

choice of the possible models. This in turn may lead to a flawed understanding of the 

ecological conditions that favour the evolution of mutualism. 

Consider again the traits associated with mutualism. Some traits of a mutualist A 
exist because they benefit A directly. These traits can be divided into four categories: 

( I )  traits which produce by-product benefits for the partner; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) traits for purloining 

benefits from the partner; (3) traits which improve an individual’s ability to utilize 

investment or by-product benefits provided by the partner and (4) cost-saving traits. 

Other traits of A may exist because they benefit A indirectly via a positive effect on A’s 

partner in the mutualism, B. This kind of trait has been referred to here as investment. 

By obscuring the distinction between traits that benefit mutualist A directly and 

indirectly many authors give the impression that mutualism requires that each party 

suffer a cost for the benefit of the other party. 

Wilson (1983) studied the interaction between the burying beetle Nicrophous 
tomentosus and its phoretic mite Poecilochirus necrophori. N .  Tormentosus provision their 

brood with small carcasses, such as dead mice, which they bury in an underground 

chamber. Fly larvae compete with burying beetle larvae for the carcass and can have a 

detrimental effect of the number of adult burying beetles that emerge. The mites 

destroy fly eggs on the carcass which benefits the beetle. Referring to the interaction 

between burying beetles and their phoretic mites, Wilson (1983) equates evolved 

mutualism with investment: ‘it is possible that the mites pierce fly eggs only to feed 

themselves, in which case the beneficial effect on the beetle might not be an evolved 

mutualism, but merely the coincidental side effect of more narrowly selfish behaviour ’. 
However, as many examples of mutualism indicate (e.g. ants eating caterpillars on black 

cherry trees), even ‘coincidental side effects of more narrowly selfish behaviours ’ can 

be half of an ‘evolved mutualism’. 

Keeler (1985) models several kinds of mutualism and states that the cost to a 

mutualist in each case is ‘the investment in the mutualistic trait or service’. One of the 

mutualisms Keeler modelled is mixed species feeding flocks in which individuals enjoy 

more efficient feeding and spend less time being vigilant for predators but suffer costs 

of competition for food (Keeler, 1985). Individuals in mixed species flocks do not invest 

in other flock members so Keeler’s use of the term ‘investment’ apparently includes 

traits of A that benefit A directly and confer by-product benefits on B. 
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Janzen ( I 985) uses the term ‘ payment’ in the same manner that Keeler uses the term 

‘investment’, to include costs that A suffers for itself as well as costs that A suffers for 

B. Janzen views seeds and fruit as examples of payment by the plant in seed-dispersal 

mutualisms and time to spit out seeds, tooth wear, and gut space as payment by animals. 

In pollination mutualisms plants pay pollen and floral glandular secretions while 

animals pay ‘the structures and behaviours of gathering and depending on florals 

resources ’ (Janzen, I 985). A seed predator who confers by-product benefits on a plant 

by sloppy handling of seeds is ‘paying’ only in the sense of a carnivore who hunts and 

captures prey, then spits out unedible parts. On the other hand, once an interaction is 

established, selection to increase the by-product benefits received by one party may 

inflict a greater cost on the other party (e.g. harder seeds, stickier pollen). 

Two models of mutualism which do not incorporate by-product benefits are the Tit- 

for-Tat model of interspecific reciprocity and Roughgarden’s (1975) model of the 

evolution of damselfish-anemone interactions. I suggest that more parsimonious 

alternatives that include by-product benefits can be constructed in both cases. 

( i )  Thefish and the anemone 

Damselfish of the genera Amphiprion and Premnas associate with species of the 

anemone genus Stoichactis in the Indo-pacific. The damselfish find safety from 

predators among the anemone tentacles. Striking cases of investment by the damselfish 

have been reported in some of these associations, such as the fish deepening holes for 

the anemone to attach in and bringing food to the anemone (Verwey, 1930; 
Roughgarden, 1975). Roughgarden ( I  975) modelled the evolution of damselfish- 

anemone interactions from parasitism to mutualism. The only mutualistic behaviour 

considered by Roughgarden is investment by the damselfish which enters into his 

equations as a cost to the damselfish referred to as the ‘sacrifice of the mutualist ’. Such 

sacrificial behaviour could ‘take the form of the guest catching additional food with 

concurrent exposure to predation hazard in order to feed (or farm) its host’ 

(Roughgarden, I 975). However, the damselfish-anemone mutualism may have been 

initiated with the fish conferring by-product benefits on the anemone by, for example, 

by-product provisioning when feeding around the anemone. Verwey ( I  930), whose 

detailed study of damselfish-anemone interactions in Indonesia is used by Roughgarden 

to illustrate his model, suggests as much: “ I t  is true, that sometimes the fish eats of the 

food brought to the anemone by itself, but this is not the rule, the contrary being true. 

There is no doubt the feeding of the anemone is ‘primair’ here, though it may have 

originated (if it did originate in Darwinian way) as a bringing of food to the sheltered 

house.” If the mutualism began without investment by the damselfish, Roughgarden’s 

(1975) conclusions are altered. For example, his equations suggest that we should 

observe mutualism only on hosts of intermediate survivability. Potential hosts with low 

survivability are not good candidates because they may die before yielding sufficient 

benefits to make the association worthwhile. Further, for investment (= sacrifice) to be 

worthwhile, it must substantially improve host survivability, and this is unlikely for a 

host that already has a high survivability. However, if initially benefits are incidental, 

the sacrifice by the damselfish is zero, and mutualism can be expected with hosts of both 

intermediate and high survivabilities. The survivability of the host may even be raised 

from low to intermediate or high from the beginning of the association, at no cost to the 

. 
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damselfish. This could immediately select for investment to increase the probability 

that host survival increases. What if host survivability is already high? In 

Roughgarden’s model, once mutualism is in place the guest may become increasingly 

dependent on the host which can favour further (or new) investment in the host. 

Roughgarden ( I  975) concludes that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ true mutualism requires not merely an optimum 

guest sacrifice to be greater than zero, but to be large enough that the host survives 

better with a guest than without. In view of these restrictive conditions it is surprising 

that mutualism is as common as it appears to be’. The frequency of mutualism is not 

surprising if by-product benefits play the substantial role in their evolution and 

maintenance that this review suggests. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(i i) Tit-for-Tat : mutualism and the Prisoner’s Dilemma 

The Tit-for-Tat model of reciprocity (Axelrod & Hamilton, 1981) is based on an 

iterated Prisoner’s Dilemma game played between two individuals. In a single ‘play’ or 

‘move’ each individual either cooperates or defects. If both cooperate they each receive 

a payoff of R, the ‘reward for cooperation’ but if both defect each receives P, the 

‘punishment for defection’, where R > P. However, if one cooperates and the other 

defects, then the defector receives T ,  the ‘temptation to defect’ and the cooperator is 

left with ‘ S’, the ‘sucker’s’ payoff, where T > S. An interaction is a prisoner’s dilemma 

if T > R > P > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and R > ( T +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS)/z .  For a single interaction, or an interaction with a 

known number of moves, the only evolutionarily stable strategy is to defect. However, 

if the number of moves is unknown but there is a high enough probability of a further 

interaction, then successful cooperative strategies are possible. The most famous 

cooperative strategy is ‘ Tit-for-Tat ’, in which individuals cooperate on their first move 

then copy the previous move of the other player on each subsequent move (Axelrod & 
Hamilton, 1981). For example, in an interaction with an individual that always defects, 

an individual playing Tit-for-Tat will cooperate on the first move but defect on each 

move thereafter. The most recent cooperative strategy to emerge as champion of 

computer simulations is ‘ Pavlov’ (Nowak & Sigmund, 1993), a win-stay, lose-shift 

strategy. Pavlov stays with the winning payoffs of T or R, thus taking advantage of a 

sucker that always cooperates, but shifts if it gets the losing payoff of P or S. 
The success of Tit-for-Tat derives from the benefits of repeated interactions with 

other cooperators (receiving the payoff R, and avoiding more than one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS payoff). Tit- 

for-Tat is a successful strategy because the interaction is iterated : an individual could 

still win on a given interaction by defecting if the other player cooperates. Thus, Tit- 

for-Tat could be applied to cases where each individual either invests or purloins and 

could defect by investing less or purloining more. We are not concerned here with by- 

product benefits. By-product benefits are the product of selfish acts so an individual 

would not benefit by ‘withholding’ them. Also, an individual investing in by-product 

benefits would not profit from withholding the investment, as that would decrease the 

probability that its partner would be able to engage in the selfish behaviour which 

produces the by-product benefit. Discussions of the role Tit-for-Tat and similar 

strategies play in the evolution of mutualism pay insufficient attention to by-product 

benefits, arguably the most important and widespread of the three kinds of benefits of 

mutualism. Leimar & Axen (1993) state that, ‘ In  cases where at least one participant 

pays a cost to provide something that solely benefits a partner, there is clearly a conflict 
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of interest. The benefit of the interaction to this individual comes only from services 

provided by the partner. Without being subject to some form of social control, i.e. 

punishment and reward delivered by the partner, the individual would benefit most by 

not providing anything’. This statement is clearly not true for mutualisms involving 

investment in by-product benefits. The mutualisms mentioned by Axelrod & Hamilton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( I  981) as possible examples of Tit-for-Tat probably originated from by-product 

benefits as in basal-z (purloined, by-product) and basal-5 (investment, by-product) 

mutualisms. The conditions are much less stringent for evolving investment in by- 

product benefits than investment with no existing by-product benefits as in Tit-for-Tat 

(see also Keeler, 1985). 

We can consider whether Tit-for-Tat occurs in mutualisms where by-product 

benefits are not a factor. Mutualists with the opportunity to withhold (investment) or 

extract (purloin) benefits might find themselves in a prisoner’s dilemma where selection 

could favour cooperative strategies such as Tit-for-Tat. Basal mutualism-6 (investment, 

investment), which originates with each party investing in the other is theoretically 

possible (Axelrod & Hamilton, 1981) but seems unlikely. Any of the basal mutualisms 

may evolve to the point where both parties invest and once both parties invest, the 

original by-product or purloined benefits may be eliminated. 

This is the route to interspecific reciprocity suggested by Pierce (1987) for the 

lycaenid-ant interaction. Pierce ( I  987) suggests that the lycaenid-ant mutualism 

originated with the caterpillars producing a secretion that foraging ants found valuable 

as food. Presumably the secretion had other functions initially and was a by-product or 

purloined benefit to the ants. The ants may have began to invest in this new resource 

by protecting the caterpillars or perhaps the mere presence of the ants incidentally 

reduced predation on the caterpillars. In either case, protection by the ants selected for 

investment by the caterpillars and the interaction took off from there in a variety of 

directions (Pierce, 1987). 
Given that the lycaenid larvae secrete substances that control ant aggression, Pierce 

(1987) suggests that lycaenids and ants may be in a game resembling an iterated 

Prisoner’s Dilemma. Lycaenids could defect by not feeding the ants and the ants could 

defect by not protecting the caterpillars. It seems unlikely, however, that either party 

is ever in a Prisoner’s Dilemma. As Pierce (1987) notes, caterpillars that don’t feed ants 

expose themselves to predators while the ants seek food elsewhere and ants that don’t 

protect caterpillars lose their food-source to predators. Thus, it is likely that neither 

party in this or other similar situations is in a Prisoner’s Dilemma, and that the payoff 

for cooperation is greater than for defection (R > T). 
Axelrod & Hamilton (1981) suggest that antagonism in mutualisms may represent 

cheating or retaliation against cheaters which is expected if individuals are in a 

Prisoner’s Dilemma and playing (mostly) cooperative strategies. However, antagonism 

in mutualism can be explained readily without recourse to the Prisoner’s Dilemma. 

First, mutualisms are subject to parasitism by individuals of other species (e.g. DeVries 

& Baker, 1989, reviewed by Mainer0 & del Rio, 1985), and in such cases we should 

expect individuals to safeguard their investments if expected by-product benefits are 

not forthcoming. 

Secondly, we can expect safeguards even in cases where mutualisms do not originate 

from antagonistic interactions, and where there are no parasites of the mutualism, if 
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varying ecological conditions create situations where by-product benefits can not 

always be expected. For example, Risch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Rickson ( I  98 I )  report a ‘ safeguard ’ in an 

ant-plant mutualism in which the production of food bodies by the plant requires the 

presence of the ants. 
Third, many mutualisms originate from antagonistic interactions (e.g. Basal-2 

mutualisms ; reviewed by Thompson, I 982) ; purloined benefits are required to produce 

the fitness increase for one party in several mutualisms. Smith’s (1968) study of the 

oropendola-cowbird-botfly interaction elegantly points out the fine line between 

antagonism and mutualism. In the presence of hymenopteran nests the oropendola- 

cowbird interaction was parasitic while in the absence of hymenopteran nests the 

interaction was mutualistic. 

Figs and fig-wasps are in conflict over the number of inflorescences that the wasps 

‘infect’ with eggs. Although infected seeds still produce pollen vectors (= mature 

wasps), the wasps and figs are in conflict over the proportion of seeds to be infected 

(Janzen, I 979 ; Murray, 1985 ; Bronstein, I 988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa).  Axelrod & Hamilton ( I  98 I )  suggested 

that selective abortion of over-infected syconia (structures which enclose the 

inflorescences) can serve as a check against cheating in a Tit-for-Tat interaction. There 

is no evidence, however, that such selective abortion occurs in figs (Bronstein, 19886, 
1992). If fecundity is related to body size in wasps, figs may be able to roughly control 

the level of infection simply by the size of the entrance to the syconium relative to the 

number of inflorescences housed inside (see Bronstein, 1992 for other possible 

limitations on wasp fecundity). 

Selective abortion of heavily oviposited flowers may occur in the yucca Tegeticula 
yuccasella (Fuller, 1990; cited in James et al., 1994). While there may be conflict 

between the yucca and moth over the proportion of seeds the moth larvae consume, 

there is no indication that the yucca and moth are in a Prisoner’s Dilemma. Fruit 

production in yuccas appears to be resource limited (James et al., 1994) so it is not 

surprising that Yuccas should abort fruits that will predictably produce a relatively 

small number of seeds. 

Axelrod & Hamilton ( I 98 I )  also cite the preponderance of mutualisms in ants versus 

bees, suggesting that the relative lack of site stability in bees may preclude the stable 

associations needed for Tit-for-Tat to evolve. However, the site stability that may be 

requisite for Tit-for-Tat to evolve may also be an important precursor to many other 

kinds of mutualisms ; any investment requires a reasonable probability of a return. 

Thus the difference between bees and ants’ participation in mutualism is no more 

suggestive of Tit-for-Tat than many other types of mutualistic interaction. 

In sum, it is unlikely that interspecific mutualisms are cooperative interactions based 

on the Prisoner’s Dilemma. For the prisoner’s dilemma to apply, there must be 

symmetrical interactions in which the payoff for each party on a given move or during 

a discreet time period is T > R > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP > S and R > (T+S)/2. The period defining an 

interaction must take into account each mutualist’s ability to effect a response to the 

other. Many kinds of investment in interspecific mutualism (e.g. ant domiciles) do not 

allow for a rapid response comparable to behavioural interactions. In mutualisms in 

which one party purloins from the other, conflicts are typically one-sided. Selection on 

one party to purloin additional benefits may produce defensive adaptations in the other 

party (e.g. the size of the entrance to the fig syconia). Adaptations which appear to be 



The benefits of mutualism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: a conceptual framework zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA45 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

retaliation against defection (e.g. abortion of hyper-oviposited yucca flowers) may 

represent nothing more than channelling available resources to fruits that will 

predictably yield more seeds. In cases where individuals invest in the other party, 

defection by withholding investment would amount to biting the hand that feeds you. 

VIII. SUMMARY 

There are three general mechanisms by which phenotypic benefits are transferred 

between unrelated organisms. First, one organism may purloin benefits from another by 

preying on or parasitizing the other organism. Second, one organism may enjoy benefits 

that are incidental to or a by-product of the self-serving traits of another organism. 

Third, an organism may invest in another organism if that investment produces return 

benefits which outweigh the cost of the investment. Interactions in which both parties 

gain a net benefit are mutualistic. The three mechanisms by which benefits are 

transferred between organisms can be combined in pairs to produce six possible kinds 

of original or ‘basal ’ mutualisms that can arise from an amutualistic state. A review of 

the literature suggests that most or all interspecific mutualism have origins in three of 

the six possible kinds of basal mutualism. Each of these three basal mutualisms have by- 

product benefits flowing in at least one direction. The transfer of by-product benefits 

and investment are common to both intra- and interspecific mutualisms, so that some 

interspecific mutualisms have intraspecific analogs. A basal mutualism may evolve to 

the point where each party invests in the other, sometimes obscuring the nature of the 

original interaction along the way. Two prominent models for the evolution of 

mutualism do not include by-product benefits : Roughgarden’s model for the evolution 

of the damsel-fish anemone mutualism and the ‘ Tit-for-Tat ’ model of reciprocity. Using 

the conceptual framework presented here, including in particular by-product benefits, 

I have shown how it is possible to construct more parsimonious alternatives to both 

models. 
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