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Abstract. The newest generation of air quality sensors is

small, low cost, and easy to deploy. These sensors are an at-

tractive option for developing dense observation networks in

support of regulatory activities and scientific research. They

are also of interest for use by individuals to characterize

their home environment and for citizen science. However,

these sensors are difficult to interpret. Although some have

an approximately linear response to the target analyte, that

response may vary with time, temperature, and/or humidity,

and the cross-sensitivity to non-target analytes can be large

enough to be confounding. Standard approaches to calibra-

tion that are sufficient to account for these variations require

a quantity of equipment and labor that negates the attractive-

ness of the sensors’ low cost. Here we describe a novel cali-

bration strategy for a set of sensors, including CO, NO, NO2,

and O3, that makes use of (1) multiple co-located sensors,

(2) a priori knowledge about the chemistry of NO, NO2, and

O3, (3) an estimate of mean emission factors for CO, and (4)

the global background of CO. The strategy requires one or

more well calibrated anchor points within the network do-

main, but it does not require direct calibration of any of the

individual low-cost sensors. The procedure nonetheless ac-

counts for temperature and drift, in both the sensitivity and

zero offset. We demonstrate this calibration on a subset of

the sensors comprising BEACO2N, a distributed network of

approximately 50 sensor “nodes”, each measuring CO2, CO,

NO, NO2, O3 and particulate matter at 10 s time resolution

and approximately 2 km spacing within the San Francisco

Bay Area.

1 Introduction

In urban environments, air quality has complex spatial and

temporal patterns. Diverse emission sources are present with

large variations in emission rate and source type on scales of

hundreds of meters. In addition, dispersion of pollutants into

the urban environment is affected by the topography of the

urban landscape and the associated wind flows, which also

vary on length scales of ∼ 100 m (Vardoulakis et al., 2003;

Lateb et al., 2016). Conventional approaches to air quality

monitoring rely on a limited number of relatively high-cost

instruments that lack the spatial resolution needed to char-

acterize these variations, opting instead to target spatial av-

erages. This averaging hampers our attempts at source attri-

bution and understanding of mixing, chemistry, and human

exposure in cities where emissions vary on spatial scales that

are small compared to typical observations or models.

One approach to obtaining higher spatial resolution obser-

vations is passive sampling, which has been implemented us-

ing inexpensive sampling devices that can be later analyzed

in bulk. Passive samplers do not require electrical power to

function properly and are collected and analyzed 1 to 2 weeks

after deployment. Such protocols provide high spatial reso-

lution but also have significant drawbacks. Spatial resolution

is gained at the expense of temporal resolution, and analysis

after collection of the samplers is time consuming; thus pas-

sive sampling has typically been used only in short-duration

experiments (e.g., Krupa and Legge, 2000; Cox, 2003). Fur-

thermore, as a result of boundary layer dynamics, passive

sampling in urban areas is likely dominated by the high con-

centrations found at night and relatively insensitive to day-

time variability.
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Figure 1. Map of San Francisco Bay Area showing current BEACO2N node sites (red), BAAQMD reference sites with O3 measurements

(blue), and the BAAQMD Bodega Bay regional greenhouse gas background site (orange). The sites used in this analysis are marked in yellow

on the detailed panel.

(a) (b) 

Figure 2. (a) Current BEACO2N node design and (b) a photo of a

node deployed.

Recent developments in low-cost sensors for trace gases

and particulate matter, as well as advances in software

and hardware enabling low-cost data communication, have

made high-density, high-time-resolution air quality monitor-

ing networks possible. Devices and networks of devices are

emerging that are low cost, report at a time resolution of sec-

onds, and are capable of long-term deployment, providing

potential for improvement over the two major weaknesses

of passive sampling. Examples include metal oxide sensors

used to measure O3, CO, NO2, and total volatile organic

compounds (e.g., Williams et al., 2013; Bart et al., 2014;

Piedrahita et al., 2014; Moltchanov et al., 2015; Sadighi et

al., 2017), and electrochemical sensors used to measure CO,

NO, NO2, O3, and SO2 (e.g., Mead et al., 2013; Sun et al.,

2015; Jiao et al., 2016; Hagan et al., 2017; Jerrett et al., 2017;

Mueller et al., 2017). These different low-cost sensor systems

have been evaluated and compared (Borrego et al., 2016; Pa-

papostolou et al., 2017). While these studies found low-cost

trace gas sensors to be successful at qualitatively characteriz-

ing the variability of air quality in an urban area, challenges

related to selectivity and stability remain, hindering more

quantitative interpretation of the data.

The current generation of low-cost sensors is not as easily

tied to a gravimetric calibration standard as many of the pas-

sive samplers. Calibration is known to vary with sensor age,

temperature, and in some cases humidity. In addition, many

of the sensors have responses to gases other than the target

analyte (Mead et al., 2013; Spinelle et al., 2015, 2017; Cross

et al., 2017; Mueller et al., 2017; Mijling et al., 2018; Zim-

merman et al., 2018). One approach to addressing this chal-

lenge is to combine periodic re-calibration and co-location

with regulatory reference instruments in the lab or the field

(Williams et al., 2013; Moltchanov et al., 2015; Jiao et al.,

2016; Mijling et al., 2018). Field calibration is preferred as

in-lab performance is often a poor approximation of sensor

behavior under ambient conditions (Piedrahita et al., 2014;

Masson et al., 2015). However, either method requires con-

siderable time investment by trained personnel, especially as

the number of sensors increases. The requirement of time-

consuming and labor-intensive calibration then offsets the

low-cost advantage of the sensors.

In this paper, we explore an automated, in situ strategy

for the calibration of individual sensors embedded in an

air quality sensor network that includes both low-cost sen-

sors and anchor points of higher-grade, well-calibrated in-

strumentation. The BErkeley Atmospheric CO2 Observation

Network (BEACO2N) is a low-cost, high-density greenhouse

gas (CO2) and air quality (CO, NO, NO2, O3, and partic-

ulate matter) monitoring network located in San Francisco

Bay Area, California (see Fig. 1 and Shusterman et al., 2016).

As of this writing, BEACO2N consists of approximately 50

sensor “nodes”, deployed with approximately 2 km horizon-

tal spacing. Most of the nodes are mounted on the roofs of

schools and museums. In previous work, we described an

approach to CO2 sensing and calibration (Shusterman et al.,

2016). Here, we focus on CO, NO, NO2, and O3.
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Figure 3. Representative temperature-dependent sensitivities (a)

and zero offsets (b) of the Alphasense electrochemical sensors cal-

culated by comparing hourly averaged measurements from Laney

College BEACO2N node to measurements from a co-located refer-

ence instrument during February to April 2016.

We begin by describing laboratory experiments and in-

field comparisons to co-located reference instruments that

give an initial characterization of the sensors and provide

insight into the effects of temperature, humidity, and cross-

sensitivity to non-target analytes. Then we describe an in

situ calibration procedure that accounts for these variables

without requiring co-location with a reference instrument.

The calibration procedure is finally verified against regula-

tory quality measurements not used in the procedure itself.

2 Instrument description

Details of the node design and deployment are described in

Shusterman et al. (2016). Briefly, each BEACO2N node con-

tains a Vaisala CarboCap GMP343 non-dispersive infrared

sensor for CO2, a Shinyei PPD42NS nephelometric particu-

late matter sensor, and a suite of Alphasense electrochemical

sensors: CO-B4, NO-B4, either NO2-B42F or NO2-B43F,

and either Ox-B421 or Ox-B431. All sensors are assembled

into compact, weatherproof enclosures as shown in Fig. 2.

Two 30 mm fans are located on either side of the enclosure

to facilitate airflow through the node. A Raspberry Pi micro-

processor collects data via a serial-to-USB converter for CO2

and an Adafruit Metro Mini microcontroller for all other sen-

sors. Then, data collected every 5 or 10 s are transmitted to a

central server using a direct on-site Ethernet connection or a

local Wi-Fi network.

The Alphasense B4 electrochemical gas sensing series that

we use employs a four-electrode approach. The electrodes

are embedded in an electrolyte solution separated from the

atmosphere by a semi-permeable membrane. The gas of in-

terest diffuses through the membrane into the electrolyte,

where it contacts a “working” electrode and is either oxi-

dized (in the case of NO and CO) or reduced (NO2 and O3).

The potential at the working electrode is maintained at a con-

stant value with respect to a “reference” electrode. Electric

charge produced at the working electrode is balanced by the

complementary redox reaction at a “counter” electrode, gen-

erating an electric current. The sensor also contains an “aux-

iliary” electrode, which shares the working electrode’s cata-

lyst structure, but is isolated from the ambient environment,

accounting for fluctuations in the background current asso-

ciated with other processes at the electrode and electrolyte.

Subtracting the auxiliary current from the working current

gives a corrected current dependent on the gas concentration.

The working and auxiliary currents detected by the sen-

sors are converted to working and auxiliary voltages using

amplifiers in the individual sensor boards (ISBs) provided

by Alphasense. Over the mixing ratio range of interest, the

sensors’ responses to the gases of interest are approximately

linear. We derive mixing ratios from the observed voltages by

subtracting an offset and then scaling by a constant (Eqs. 1–

4):

COambient = (VCO-zeroCO)/kCO, (1)

NOambient = (VNO-zeroNO)/kNO, (2)

NO2ambient
= (VNO2

-zeroNO2
)/kNO2

− (rNO-NO2
× NOambient), (3a)

NO2ambient
= (VNO2

-zeroNO2
)/kNO2

+ (rCO2-NO2
× CO2ambient

), (3b)

O3ambient
= (VO3

-zeroO3
)/kO3

− (rNO2-O3
× NO2ambient

). (4)

Here, CO, NO, NO2, and O3 with the subscript “ambient” re-

fer to the gas mixing ratios (ppb) in air; VCO, VNO, VNO2
and

VO3
are the signals (mV) measured by each sensor, which

is the voltage of the auxiliary electrode subtracted from the

voltage of the working electrode; zeroCO, zeroNO, zeroNO2

and zeroO3
indicates the voltage measured in the absence

of analyte; and kCO, kNO, kNO2
and kO3

represent the linear

sensitivity factor that converts mV to ppb. Additional terms

corresponding to the cross-sensitivities of the NO2 and O3

sensors appear in Eqs. (3a), (3b), and (4), where rNO-NO2

is the cross-sensitivity of the NO2-B42F sensor to NO gas,

rCO2-NO2
is the cross-sensitivity of the NO2-B43F sensor to

CO2 gas, and rNO2-O3
is the cross-sensitivity of both the O3-

B421 and O3-B431 sensors to NO2 gas.

There are a total of eight sensitivities and zero offsets, as

well as two cross-sensitivity terms. All of these may also vary

with time, temperature, and humidity. Thus we need a cali-

bration strategy that constrains 10 parameters in a single in-

stant as well as the variation of those 10 parameters in re-

sponse to the environmental variables and time. We begin by

characterizing the sensors in both laboratory and outdoor en-

vironments.

www.atmos-meas-tech.net/11/1937/2018/ Atmos. Meas. Tech., 11, 1937–1946, 2018
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Table 1. Zero offsets and sensitivities of a representative quartet of

Alphasense B4 electrochemical sensors derived via comparison to

delivered reference gases during two separate laboratory calibration

separated by an approximately 10-week interlude.

May August

O3 Zero offset (mV) −34.6417 −42.7629

Sensitivity (mV ppb−1) 0.6404 0.2997

CO Zero offset (mV) 108.9770 89.5812

Sensitivity (mV ppb−1) 1.2192 1.0301

NO Zero offset (mV) −14.2030 −17.7801

Sensitivity (mV ppb−1) 1.5758 1.2972

NO2 Zero offset (mV) −13.7159 −6.0649

Sensitivity (mV ppb−1) 0.4842 0.3843

We evaluate BEACO2N in terms of four factors: drift,

noise, cross-sensitivity, and temperature dependence. The

humidity dependence is included in the temperature depen-

dence, as there is no evidence for independent humidity de-

pendence and relative humidity exhibits an anti-correlation

with temperature in the field. In the laboratory, a range of

mixing ratios of target gases were delivered to a chamber

containing the full suite of four Alphasense B4 sensors:

CO, NO, NO2, and O3. Zero air was supplied by a Sabio

1001 compressed zero-air source and blended with calibra-

tion gases using a Thermo Scientific model 146i multi-gas

calibrator.

Noise. Alphasense reports 2σ noise of ±4, ±15, ±12, and

±15 ppb for CO, NO, NO2, and O3, respectively over con-

centrations from 0 to 200 ppb at time resolution of a sec-

ond. In our laboratory, noise (±2σ) was measured for am-

bient ppb levels with 10 s time resolution and was seen to

be ±10 ppb for CO, ±3 ppb for NO, ±6 ppb for NO2 (NO2-

B42F and NO2-B43F), and ±12 ppb for O3 (O3-B421 and

O3-B431).

Cross-sensitivity. We measured the cross-sensitivity of all

four of the trace gas sensors to the non-target gases. The

NO2 sensors and O3 sensors were the only ones to exhibit

sensitivity to other species. The O3 sensor (O3-B421 and

O3-B431) demonstrated 100 % sensitivity to NO2. This sen-

sor is now being marketed by Alphasense as an odd-oxygen

(Ox ≡ O3 + NO2) sensor. In addition, the NO2-B42F sensor

was found to possess a significant NO sensitivity (130 %)

that exceeds the cross-sensitivity specified in the Alphasense

documentation (< 5 %). The NO2-B43F sensor was found to

have 0.002 % sensitivity to CO2 gas, which is in the range of

the cross-sensitivity specified in the Alphasense documenta-

tion (< 0.1 %). However, given that typical ambient CO2 con-

centrations are 4 orders of magnitude larger than NO2 con-

centrations, this relatively small cross-sensitivity to CO2 gas

manifests as a significant interference in the NO2 sensors.

These cross-sensitivities are represented in Eqs. (3) and (4).

Temperature dependence. Electrochemical sensors are

known to have temperature-dependent sensitivities and zero

offsets. Alphasense reports sensitivities and zero offsets for

a temperature range between −30 and 50 ◦C. The sensitiv-

ities in their data sheets vary with temperature by +0.1 to

+0.3 % K−1 (referenced to sensitivity at 20 ◦C) and the zero

offsets are indicated to vary little except at high tempera-

tures. We observed similar but slightly larger variations via in

situ comparison to co-located reference instruments. We ob-

served temperature dependence in the sensitivities of +0.3

to +5 % K−1 and no variation in the zero offset of the CO,

NO2, and O3 sensors from 10 to 24 ◦C (Fig. 3). However, the

zero offset of the NO sensor exhibited a strong temperature

dependence of 0.34 mV K−1.

Drift. Two laboratory calibrations were performed roughly

10 weeks apart and the zero offsets and sensitivities are

shown in Table 1. Over the 10-week interval, zero drift was

equivalent to −15.9, −2.3, +15.8, and −12.7 ppb for CO,

NO, NO2, and O3, respectively. Alphasense reports the sta-

bility over time for the zero offset to be < ±100, 0 to 50,

0 to 20, and 0 to 20 ppb yr−1 for these sensors, respectively;

over this 10-week interval, the observed zero drift was within

the range of these specifications. However, it is a large frac-

tion of the annual drift specification and further experiments

would be warranted to test whether the zero measured is sta-

ble over a full year within the specified tolerances. The drift

in the sensitivity (in % of kX) was −15.9, −17.7, −20.6,

and −53.2 %. Alphasense reports < 10, 0 to −20, −20 to

−40, and < −20 to −40 % yr−1 for CO, NO, NO2, and O3

calibration factors, respectively. We find that drift for the

CO and O3 sensitivities exceeded the manufacturer specifica-

tions, but that the NO and NO2 sensitivity drifts were within

the specified tolerances.

3 Model for field calibration

Here, we propose a model for field calibration that lever-

ages (1) useful cross-sensitivities, (2) chemical conservation

equations, (3) knowledge of the global and/or regional back-

ground of pollutants, and (4) assumptions based on well-

known characteristics of urban air quality and local emis-

sions. The result is a calibration procedure for the drift and

temperature dependencies of the 10 calibration parameters

that does not require co-location with a reference instrument

or prior laboratory experiments for each sensor. The first con-

straint we apply is the O3 sensors’ cross-sensitivity to NO2.

Laboratory measurements indicate that this cross-sensitivity

is 100 % and we fix it at that value.

3.1 Regional ozone uniformity to calibrate the NO2

and O3 sensors’ sensitivities

The NO, NO2, and O3 sensitivity can be derived from ob-

servations with higher-quality instruments at nearby loca-

Atmos. Meas. Tech., 11, 1937–1946, 2018 www.atmos-meas-tech.net/11/1937/2018/
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Table 2. Reported emission factors of diesel and gasoline vehicles (Dallmann et al., 2011, 2012, 2013). Emissions from medium-duty and

heavy-duty diesel trucks, which account for < 1 % of all vehicles, were removed to give the value for light-duty gasoline vehicles.

Vehicle type CO emission factor NOX emission factor

(g kg fuel−1) (g kg fuel−1)

Heavy-duty diesel trucks 8.0 ± 1.2 28.0 ± 1.5

Light-duty gasoline vehicles 14.3 ± 0.7 1.90 ± 0.08

99 % gasoline vehicles, 1 % diesel trucks 14.2 ± 0.7 2.29 ± 0.12

Table 3. Mean absolute error of comparison between regional O3 and hourly averaged BEACO2N O3 measurements derived from multiple

linear regression models of increasing complexity between February and April 2016.

Regression Models Mean absolute error

(ppb)

O3true
=

VO3
kO3

− offset Linearity of observed voltages and gas concentration 14.4063

O3true
=

VO3
kO3

−
VNO2
kNO2

− offset O3 sensor’s cross-sensitivity correction 10.6795

O3true
=

VO3
kO3

−
VNO2
kNO2

+ rNO-NO2

VNO
kNO

− offset NO2 and O3 sensor’s cross-sensitivity correction 8.8172

O3true
=

VO3
kO3

−
VNO2
kNO2

+ rNO-NO2

VNO
kNO

− offset Adding temperature correction 8.1360

Figure 4. Example of CO plume identification and regression

against CO2 to find the CO emission factor using raw, 10 s data.

The derived CO emission ratio (CO / CO2) for this example is

9.7 ppb ppm−1.

tions. Ozone is a secondary pollutant with small local-scale

variation, except in the very near field of NO emissions.

The Bay Area Air Quality Management District (BAAQMD)

maintains four TECO model 49i ozone analyzers within the

BEACO2N study area (see Fig. 1). We choose the closest

site among these four regulatory monitoring sites to pro-

vide O3ambient
as a constraint for multiple linear regression of

Eq. (5) (derived from Eqs. 2–4). Different BEACO2N nodes

are thus referenced to different reference instruments.

O3ambient
=

VO3

kO3

−
VNO2

kNO2

+ rNO-NO2

VNO

kNO
− offset. (5)

Here, offset is a combination of the zero offsets of the NO,

NO2, and O3 sensors, all of which can be constrained as de-

tailed in Sect. 3.2 below. The sensitivity of the O3 and NO2

-5 0 5 10 15
NO(ppb)

-10

0

10

20

30

40

50

O
3(
pp
b)

Figure 5. Representative month of 1 min averaged NO and O3 mea-

surements taken between 00:00 and 03:00; plumes excluded.

sensors (kO3
and kNO2

) and relationship between the NO-

NO2 cross-sensitivity and the sensitivity of the NO sensor

(rNO-NO2
/kNO or rCO2-NO2

) are obtained by multiple linear

regression of Eq. (5).

3.2 Use of co-emitted gases in plumes to calibrate the

CO and NO sensors’ sensitivity

The CO and NO sensor cannot be constrained by cross-

sensitivity to the other gases. Instead, we constrain the sensi-

tivity by insisting that the median emission factor of CO (or

NO) per unit CO2 corresponds to median values reported for

the U.S. vehicle fleet. We express the emission factor (EFX,

www.atmos-meas-tech.net/11/1937/2018/ Atmos. Meas. Tech., 11, 1937–1946, 2018
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Figure 6. Time series (top), direct comparison (bottom left), and

histogram (bottom right) of hourly averaged (a) NO, (b) NO2,

(c) O3, and (d) CO mixing ratios from a representative week of cal-

ibrated BEACO2 N and BAAQMD reference data. The black lines

in the bottom left plots indicate the 1 : 1 line.

ppb ppm−1) of gas X, which is CO or NO, as in Eq. (6):

EFX =
1Xambient

1CO2ambient

=
1

kX

1VX

1CO2ambient

. (6)

Our measurements of the concentration of CO2 are described

in Shusterman et al. (2016) and values for EFCO and EFNOx

are reported in (Dallmann et al., 2013; see Table 2). We con-

strain the sensitivity of the CO and NO sensors in the net-

work such that the median 1X/1CO2 of the plumes is equal

to emission factors characteristic of the average vehicle fleet.

The NO sensors’ sensitivity is constrained by the emission

factor of NOX, estimating the upper limit of NO concentra-

tion.

Figure 4 shows an example of a measured plume and the

derived 1CO / 1CO2 ratio. We identify plumes as the local

maximum found in a 10 min moving window, starting and

ending at the local minima. Each plume is a few minutes in

duration, representing an emission ratio averaged over sev-

eral vehicles. Since diesel trucks have an order of magnitude

higher NOX emission factors compared to gasoline vehicles,

the percentage of truck traffic near each site affects the me-

dian emission factors. The median freeway truck ratio varies

little across the BEACO2N network; however, regions with

a larger range of median truck ratios will have larger uncer-

tainties or require a calibration approach that accounts for

this variation.

3.3 Use of chemical conservation equations near

emissions to calibrate the NO, NO2, and O3

sensors’ zero offsets

We are able to constrain the zero offsets of NO, NO2 and O3

sensors by taking advantage of proximity to local emission

sources and the following chemical conservation equations.

NO + O3 → NO2 + O2 (R1)

NO2 + hv → NO + O (R2)

O + O2 + M → O3 + M (R3)

These three reactions result in a steady-state relationship

among the nitrogen oxides (NOX ≡ NO + NO2) and ozone.

At nighttime, Reaction (R2) does not occur due to the ab-

sence of sunlight. In the absence of emissions, the NO con-

centration goes to zero on nights with sufficient O3. Con-

versely, near strong emission sources, NO is found in excess

of ozone and the O3 concentration goes to zero (see Fig. 5).

Using this logic, we identify times between 00:00 to 03:00,

when there is zero NO or O3 to define the zero offsets of the

NO and O3 sensors, using 1 min averaged data with plumes

excluded (see Sect. 3.3 for details of the plume identification

procedure).

The NO2 offset can be determined using the pseudo-

steady-state (PSS) approximation. We estimate the NO2 con-

centration through Eq. (7):

jNO2
[NO2] = kNO-O3

[NO][O3]. (7)

Atmos. Meas. Tech., 11, 1937–1946, 2018 www.atmos-meas-tech.net/11/1937/2018/
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Here, jNO2
(in units of s−1) is the photolysis rate constant for

Reaction (R2) and kNO−O3
(in units of cm3 molecule−1 s−1)

is the rate constant for Reaction (R1). [X] expresses the con-

centration of gas X in units of molecules cm−3. We use sensi-

tivity corrected (see Sect. 3.1 and 3.2), 1 min average NO and

O3 concentrations measured from 12:00 to 15:00, and select

data with a time derivative of O3 near zero to ensure that the

measurements reflect air that has achieved steady state. The

NO2 concentration at PSS is derived using Eq. (7) and the

NO2 offset is chosen to ensure the calculated and observed

NO2 are equal. NO2 is also produced through the reaction of

HO2/RO2 with NO, but this is omitted from the right-hand

side of Eq. (7), resulting in a lower bound of the true NO2

concentration. Estimated NO2 is therefore low by about 5 %

in winter and as much as 30 % in summer. If higher accu-

racy is needed, the reaction of HO2/RO2 with NO could be

considered to reduce this bias.

3.4 Use of global background to calibrate the CO

sensors’ zero offset

To infer the zero offset of the CO sensor, we follow the pro-

cedure outlined in Shusterman et al. (2016) for CO2 sensors.

We assume the signal measured at a given site is decomposed

as in Eq. (8):

[CO]ambient = [CO]background + [CO]local + offset. (8)

The measurement of the pollutant CO ([CO]ambient) is

the sum of regional and local signals ([CO]background and

[CO]local, respectively), as well as some offset from the true

concentration (offset). Assuming the monthly minimum con-

centration measured at a given site represents [CO]background,

this background signal is compared to that measured at a “su-

persite” of reference instruments located within the network

domain, allowing the offset to be derived. We also assume

that when [CO]ambient, as well as [CO]local, is minimum in

each day, the concentration measured at a given site has a

constant deviation from the background signal. This is a rea-

sonable assumption for the BEACO2N domain as the dom-

inant wind pattern frequently brings unpolluted air from the

Pacific Ocean.

3.5 Temperature dependence and temporal drift

In order to account for the temperature and time dependence

of calibration parameters, we apply the calibration process

described in Sect. 3.1 through 3.4 for temperature increments

of 1 ◦C within a 3-month running window. Then, we are able

to define a temperature-dependent sensitivity and zero off-

set, which is used to convert the measured voltages to mix-

ing ratios. In this way, we can also evaluate temporal drift

with monthly resolution. The calibration procedure can be

repeated for shorter time intervals if wider temperature win-

dows are used.

4 Evaluation with reference observations

We evaluate the efficacy of our calibration method using a

BEACO2N node co-located with reference instruments at the

Laney College monitoring site maintained by the Bay Area

Air Quality Management District (BAAQMD). Here we con-

sider data collected from February to April 2016, calibrate

them according to the procedure described above (follow-

ing Sect. 3.1 to 3.5), and compare it against the BAAQMD

data. Reference data are collected by a TECO 48i CO ana-

lyzer and a TECO 42i NOx analyzer. Ozone data from the

“Oakland West” location, the closest ozone-monitoring site

maintained by BAAQMD, were used for multiple linear re-

gression of Eq. (5). The zero offset for CO was calculated

using BAAQMD data from the Bodega Bay background site

(see Fig. 1; Guha et al., 2016) as local “supersite” data were

unavailable during this period. A background site closer to

the network would likely improve our ability to constrain the

CO zero offset; a reference instrument for that purpose was

installed in summer 2017.

In our calibration procedure, the cross-sensitivities and

temperature dependence are corrected for better accuracy.

Table 3 shows the reduction in mean absolute error (MAE)

that results when cross-sensitivity and temperature depen-

dence issues are considered during multiple linear regres-

sion of Eq. (5). Here, MAE is calculated after conducting

the sensitivity correction explained in Sect. 3.1, but before

the offset correction in Sect. 3.3. Fully calibrated, hourly

averaged BEACO2N sensor data are compared to reference

data in Fig. 6. For NO, NO2, O3, and CO the mixing ratio

measured agrees reasonably well with the reference instru-

ment with correlation coefficients of 0.88, 0.61, 0.69, and

0.74 and MAE of 3.63, 4.12, 5.04, and 54.93 ppb, respec-

tively. The noise (±2σ) in the differences between the cali-

brated hourly BEACO2N data and reference data is 9.74 ppb

for NO, 9.97 ppb for NO2, 13.04 ppb for O3, and 116.23 ppb

for CO. These noise values are dominated by the Alphasense

noise except in the case of CO, where noise is evenly split be-

tween the low-cost electrochemical sensors and the reference

instruments.

5 Examples of network performance

Figure 7 shows a week-long time series of fully calibrated air

quality data from four BEACO2N sites in 2017 (see Fig. 1).

BEACO2N nodes capture the short-term variability associ-

ated with local emissions, superimposed on the diurnal vari-

ation caused by mixing and changes in the height of the

boundary layer. Large mixing ratios of NO, NO2, and O3

are observed at the Hercules and Ohlone sites, likely repre-

senting strong NOx emissions from an oil refinery nearby.

The spatial variability of trace gases observed at these four

BEACO2N sites provides a more diverse perspective on
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Figure 7. Time series of fully calibrated 5 min averaged BEACO2N data from a representative week at four sites deployed in 2017. Obser-

vations from the Hercules, Ohlone, Washington, and Madera sites are plotted in red, green, orange, and blue, respectively. Particulate matter

is converted to units of mass concentration according to Holstius et al. (2014).

Slope = 4.34 

R2 = 0.67 

Figure 8. CO vs. NOx measured at Laney College between 08:00

and 10:00.

emissions compared to that provided by the one regulatory

monitoring site in the vicinity.

The emission ratios of CO and NOx were also investigated

using the BEACO2N data from sample locations. Figure 8

shows ratios observed at the Laney College site. The slope of

CO / NOx varies from 4.43 to 12.99 across five BEACO2N

sites, reflecting spatial variations in local sources. Sites near

roads with more diesel vehicles, such as Laney College, show

lower CO / NOx ratios, as expected given diesel vehicles’

higher NOx emissions. The range of observed CO / NOx

emission ratios is similar to the values reported by McDonald

et al. (2013).

6 Conclusions

Calibration of low-cost sensors is necessary for quantitative

analysis. In this paper, we have described a truly low cost,

routine in-field calibration method and the evaluation of a

fully calibrated low-cost, high-density air quality sensor net-

work. The Alphasense B4 electrochemical gas sensors are

able to detect typical diurnal cycles in gas concentrations

as well as short-term changes corresponding to chemical re-

actions and local emissions. These capabilities of the sen-

sors are utilized for a field calibration protocol that does

not require co-location with reference instrumentation, but

does require reference instruments to be sited within the net-

work domain. The calibrated dataset demonstrates the accu-

racy required to resolve information relevant to urban emis-

sion sources, such as CO / NOx emission ratios. Through this

work, we can realize the promise of low-cost, high-density
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sensor networks as a viable approach for atmospheric moni-

toring.
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