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Abstract. A global land–ocean temperature record has been created by combining the Berkeley Earth monthly

land temperature field with spatially kriged version of the HadSST3 dataset. This combined product spans the

period from 1850 to present and covers the majority of the Earth’s surface: approximately 57 % in 1850, 75 %

in 1880, 95 % in 1960, and 99.9 % by 2015. It includes average temperatures in 1◦ × 1◦ lat–long grid cells for

each month when available. It provides a global mean temperature record quite similar to records from Hadley’s

HadCRUT4, NASA’s GISTEMP, NOAA’s GlobalTemp, and Cowtan and Way and provides a spatially complete

and homogeneous temperature field. Two versions of the record are provided, treating areas with sea ice cover

as either air temperature over sea ice or sea surface temperature under sea ice, the former being preferred for

most applications. The choice of how to assess the temperature of areas with sea ice coverage has a notable

impact on global anomalies over past decades due to rapid warming of air temperatures in the Arctic. Account-

ing for rapid warming of Arctic air suggests ∼ 0.1 ◦C additional global-average temperature rise since the 19th

century than temperature series that do not capture the changes in the Arctic. Updated versions of this dataset

will be presented each month at the Berkeley Earth website (http://berkeleyearth.org/data/, last access: Novem-

ber 2020), and a convenience copy of the version discussed in this paper has been archived and is freely available

at https://doi.org/10.5281/zenodo.3634713 (Rohde and Hausfather, 2020).

1 Introduction

Global land–ocean temperature indices combining 2 m sur-

face air temperature over land with sea surface temperatures

(SSTs) over oceans are commonly used to assess changes in

the Earth’s climate. While it is a less physically meaning-

ful metric than Earth system total heat content, it is well-

measured with reliable data extending back to ca. 1850 for

oceans (Kennedy et al., 2011b) and as far back as ca. 1750

for land (Rohde et al., 2013a), and it is the part of the Earth

system most relevant for impacts on human civilization. Sea

surface temperatures are used in lieu of marine air tempera-

tures due to scarcity and inhomogeneity of marine air temper-

ature data (Kent et al., 2013), though it is only an imperfect

proxy and may be subject to slightly slower warming rates

than marine air temperatures in recent decades (Cowtan et

al., 2015; Richardson et al., 2016; Jones, 2020).

A number of prior groups have developed global land–

ocean surface temperature indexes, including NASA’s GIS-

TEMP (Hansen et al., 2010; Lenssen et al., 2019),

Hadley/UEA’s HadCRUT4 (Morice et al., 2012), NOAA’s

GlobalTemp (Smith et al., 2008; Vose et al., 2012; Huang

et al., 2020), and the Japan Meteorological Agency (JMA)

(Ishihara, 2006). Additionally, Cowtan and Way (2014) pro-

vide a spatially interpolated variant of HadCRUT4 featuring

greater spatial coverage, hereafter denoted CW2014. These

series differ in a number of respects. They all largely utilize

the same set SST measurements drawn from the ICOADS

database (Freeman et al., 2017) and most of the same land

temperature records contained in the Global Historical Cli-

matological Network – Monthly database (GHCNm) (Law-

rimore et al., 2011), though HadCRUT4 (and by exten-

sion CW2014) includes a more modest number of land sta-

tions than GISTEMP and GlobalTemp, which recently transi-
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tioned to using the much larger GHCNm v4 database (Menne

et al., 2018).

Both GISTEMP and GlobalTemp utilize NOAA’s pair-

wise homogenization algorithm to detect and correct inho-

mogeneities such as station moves or instrument changes in

land stations (Menne and Williams, 2009), though NASA

applies an additional satellite nightlight-based urbanity cor-

rection (Hansen et al., 2010). GISTEMP and GlobalTemp

both use NOAA’s Extended Reconstructed Sea Surface Tem-

perature (ERSST) version 5 (Huang et al., 2017) for SSTs,

HadCRUT4 and CW2014 use HadSST3 (Kennedy et al.,

2011a, b), and JMA uses COBE-SST (Ishii et al., 2005).

HadCRUT4 and JMA include no spatial interpolation out-

side of 5◦ × 5◦ latitude–longitude grid cells, while Global-

Temp includes some interpolation over land but has nearly

complete ocean temperature fields with the primary excep-

tion that sea ice regions are masked as missing. GISTEMP

and CW2014 spatially interpolate temperatures out to re-

gions with no direct station coverage (GISTEMP using a sim-

ple linear interpolation technique, while CW2014 uses krig-

ing). The upcoming HadCRUT5 will transition to HadSST4

and include spatial interpolation (Morice et al., 2020).

Here we describe the global land–ocean surface tempera-

ture product from Berkeley Earth that combines the Berke-

ley Earth land temperature data (Rohde et al., 2013a, b) with

SST data from HadSST3 (Kennedy et al., 2011a, b). It uses

a kriging-based spatial interpolation to provide an extensive

spatial coverage for the period from 1850 to present. The

land data utilize significantly more land station data (over

40 000 stations) compared to the ∼ 10 000 land stations used

by some of the other groups (though GISTEMP and Global-

Temp have both recently updated their records to include a

larger number of land stations, including more than 20 000

sites in GHCNv4). The land component also includes the

novel homogenization technique of the Berkeley Earth tem-

perature record that detects breakpoints through neighbor

difference series comparisons, cuts land stations into frag-

mentary records at breakpoints, and combines these fragmen-

tary records into a temperature field. The ocean component

of the land–ocean product uses an interpolated variant of

HadSST v3, whose construction is described below. A ver-

sion of the Berkeley Earth interpolated dataset has been pub-

licly available for some time but has not been formally de-

scribed. Lastly, we note that HadSST v3 will be replaced with

HadSST v4 once that product becomes operational (Kennedy

et al., 2019). Aside from minor differences in the way data

are communicated and formatted, HadSST v4 should be us-

able following the same steps described here.

2 Methods

The Berkeley Earth Land/Ocean Temperature Record com-

bines the Berkeley Earth land record (Rohde et al., 2013a)

with SST data from HadSST3 (Kennedy et al., 2011a, b). The

HadSST3 data are adjusted in several ways. The primary ma-

nipulation is to replace the gridded data with an interpolated

field using a kriging-based approach. The HadSST3 data set

provides grid cell averages on a 5◦ by 5◦ grid and only re-

ports monthly averages for cells where data were present dur-

ing the month in question. HadSST3 often reports no data

for ∼ 40 % of ocean grid cells. As described below, the in-

terpolation produces a more complete field and reduces the

component of uncertainty associated with incomplete cover-

age. While providing a more complete field, the interpolation

does not materially change the apparent rate of warming in

the oceans.

After interpolation, the ocean temperature anomaly field is

merged with the Berkeley Earth land anomaly field using the

fraction of land–water in each grid cell (typically reported

with a 1◦ by 1◦ latitude–longitude resolution). As described

below, two versions are considered with respect to the role

of sea ice. The version using air temperature above sea ice is

recommended for most users, though the other version may

be useful for certain specialists and diagnostic purposes.

2.1 Interpolation method

The HadSST3 gridded fields provide several critical compo-

nents, the temperature anomaly, the number of observations,

and several estimates of the uncertainty (Kennedy et al.,

2011a, b). The grid cell uncertainties and observation counts

allow one to treat some grid cells as having greater confi-

dence than others. Unlike land surface station data, where

each monthly average represents many temperature observa-

tions, the ocean observation counts are a true measure of the

number of instantaneous SST measurements.

Analogous to Rohde et al. (2013a), the core of the inter-

polation approach is to generate a kriging-based field us-

ing an assumed distance-based correlation function. As with

Rohde et al. (2013a), a correlation-based approach is used

rather than the more common covariance-based approach

to simplify the computational considerations and should be

adequate as long as the variance changes relatively slowly

with changes in position. A review of both the HadSST data

and climate model outputs suggested that the temperature-

to-distance correlation function could be modeled effectively

via the same spherical correlation function approach used for

land surface temperatures:

R(d) = R0

(

1 −
d

dmax

)2 (

1 +
d

2dmax

)

, d < dmax

R(d) = 0, d ≥ dmax. (1)

The empirically estimated distance parameter dmax was

found to have a value of 2680 km based on the spatial vari-

ance of the HadSST monthly averages. This is similar to,

though somewhat smaller than, the 3310 km scale adopted

in the land surface temperature study (Rohde et al., 2013a).

By contrast, the local correlation parameter R0 = 0.47 was
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Figure 1. Empirically estimated correlation versus distance for monthly average sea surface temperatures. Correlation was estimated by

comparing root-mean-square differences for all possible pairs of HadSST grid cells and all months and binning the population by distance.

The black curve reflects a best fit for the spherical correlation function model. The red dashed curve shows the corresponding correlation

model derived for land-based measurements (Rohde et al., 2013a).

estimated to be much lower in the oceans (compared to 0.86

on land). This is due to two factors. Firstly, ocean observa-

tions are individual measurements whereas land observations

reflect monthly averages. Secondly, the typical monthly fluc-

tuations in the oceanic environment are much smaller than on

land, causing a reduced signal-to-noise ratio. The estimation

of R0 was based on a comparison of the variance in HadSST

grid cells with a single measurement to those with > 100

observations. The latter condition provides a proxy for cells

where the random portion of measurement and sampling un-

certainty could plausibly be neglected.

Figure 1 shows an empirically estimated average correla-

tion versus distance between HadSST grid cells. This shows

the empirical length scale, though a larger intercept is used

(∼ 0.75), reflecting the fact that the average HadSST grid

cell incorporates many observations. The lower value for R0

represents the typical relationship between a single measure-

ment and the monthly average.

This treatment, using a single scale length for the whole

ocean, simplifies the analysis; however, it does ignore some

of the real variations across the oceans. For example, in

regions with boundary currents, upwelling–downwelling,

or complex ocean-to-land geographies, the scale length of

monthly average temperature variations may be smaller than

suggested here. In practice, the 5 ◦ × 5◦ gridding of HadSST

already precludes a detailed analysis of most small features.

The interpolation presented here primarily serves to improve

the representation by smoothing over noise and filling gaps,

but it will not necessarily capture the smallest features.

The distance correlation function gives rise to a kriging

formulation.

T (x, t) = θt +
∑

j

(

K(xj ,x, t)(SST(xj , t) − θt )
)

(2)







K(x1,x, t)
...

K(xN ,x, t)






=












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.

.

.
. . .
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
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R(‖x1 − x‖)
...

R(‖xN − x‖)







(3)

D(xj , t) =
1 + (Neff(xj , t) − 1)R0

Neff(xj , t)
(4)

Neff(xj , t) = max

(

s2
m

(σm(xj , t))2
, 1

)

. (5)
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Here t is the current month, T (x, t) is the interpolated tem-

perature at a general location x, SST(xj , t) is the HadSST

anomaly value in the grid cell centered at location xj ,

σm(xj , t) is the measurement uncertainty associated with lo-

cation xj , and sm is the average measurement uncertainty of

a single measurement. Neff(xj , t) is then an effective number

of independent measurements associated with the grid cell.

Though HadSST provides the true number of observations

per cell, N (xj , t), we found that Neff(xj , t), which incorpo-

rates the measurement uncertainty, appeared to give superior

results than simply relying on the reported number of ob-

servations. The incorporation of Neff(xj , t) into the determi-

nation of the kriging coefficients K has the effect of giving

greater weight to grid cells with less uncertainty. For integer

values of Neff(xj , t), the formulation of D(xj , t) is mathe-

matically equivalent to having xj appear Neff(xj , t) indepen-

dent times in the correlation matrix. Note also that any empty

HadSST grid cells at time t are omitted from the matrix for-

mulation for K .

θt is a free parameter at each time t and effectively rep-

resents the global ocean-average temperature anomaly. Its

value is found iteratively by insisting that the spatial average

of T (x, t) − θt = 0.

It is instructive to note that this kriging formulation has

the property that T (xj , t) → SST(xj , t) in the limit that

Neff(xj , t) → ∞, but will ordinarily produce a temperature

estimate based on a weighted average of multiple HasSST

grid points in the case that Neff(xj , t) is small or moder-

ate. The latter property can be useful in suppressing noise

at grid locations with high uncertainty and/or very few mea-

surements.

It is also important to recognize that though the correla-

tion function R(d) has a very long tail, this does not mean

that average necessarily extends over a large area. In general,

the kriging coefficients K(xj ,x, t) constructed in this way

will heavily favor the nearest several data points. As long as

nearby data are available, little weight will be given to distant

grid cells. However, the long tail of the correlation function

means that the kriging will attempt to fill large holes using

distant data if no nearby data are available.

An absolute value field was also created by applying a sim-

ilar interpolation to the HadSST climatology.

C(x,m) =

P (x,m) +
∑

j

(KB (xj ,x,m)(SSTCLIM(xj ,m) − P (x,m)))

(6)

C(x,m) is the interpolated climatology for month m,

SSTCLIM(xj ,m) is the reported climatology, and

KB (xj ,x,m) is a set of kriging parameters, which are

the same as K(xj ,x,m) except that R0 and D(xj , t) are both

replaced with 1, effectively treating the SSTCLIM(xj ,m) as

if it has no uncertainty. P (xm) is a background prediction

function dependent only on the month and the latitude

of x. It is described as a piecewise cubic spline with 11

knots as free parameters equally spaced in the cosine of

latitude. These free parameters are chosen to minimize

the spatial average of C(x,m) − P (x,m). By construction,

C(xj ,m) = SSTCLIM(xj ,m) for all xj values, and this

construction merely provides a way of interpolating between

grid cell centers.

In addition to the above description, a physical cutoff was

applied to the absolute temperature C(x,m) + T (x, t) at a

fixed minimum temperature of −1.8 ◦C, which is the freezing

temperature of seawater. If the interpolation would suggest

a value lower than this, T (x, t) was adjusted accordingly to

maintain the minimum value of −1.8 ◦C. Such adjustments

are rare.

Finally, one last interpolation is performed using an as-

sumption of temporal persistence. Unlike land temperature

anomalies, where the temporal correlation is often only a

couple weeks, ocean temperature anomalies typically have

a temporal correlation measured in months. This can be ex-

ploited to estimate ocean temperatures based on adjacent

months when no other information is available.

Analogous to Rohde et al. (2013a), a diagnostic criterion

can be constructed V (x, t) =
∑

j

K(xj ,x, t). Because of the

nature of the kriging coefficients, V (x, t) → 1 in the presence

of dense data and V (x, t) → 0 if there are no HadSST data

in the neighborhood of x.

The final estimate of the SST, including a temporal persis-

tence adjustment for regions of low V (x, t), is then

Tfinal(x, t) = T (x, t) + (1 − V (x, t))
(

V (x, t + 1)T (x, t + 1) + V (x, t − 1)T (x, t − 1)

V (x, t + 1) + V (x, t − 1)
− θt

)

.

(7)

Here, t−1 and t+1 refer to the temperature field 1 month ear-

lier and 1 month later, respectively. This adjustment allows

for a modest reduction in uncertainty at early times when

data are temporally sparse.

As described, this analysis is agnostic about the resolu-

tion used to sample the final temperature field. In practice,

we generally use the same 15 984-element equal-area grid

as Rohde et al. (2013a) to calculate Tfinal(x, t), though with

non-ocean elements masked out.

2.2 Ocean uncertainty

The ocean-average uncertainty in our ocean reconstruction is

estimated following essentially the same model as adopted

by HadSST3. HadSST3 estimates the total reconstruction

uncertainty as the combination of measurement uncertainty,

coverage uncertainty, and bias uncertainty (Kennedy et al.,

2011a, b). Bias uncertainty, σbias, which reflects biases cre-

ated due to variations over time in the ways that SST has

been measured, is brought forward essentially unchanged by
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Figure 2. Component uncertainties for the ocean average of HadSST v3 and the corresponding transformed forms of those components after

the application of the interpolation scheme described in the text. All uncertainties are expressed as appropriate for 95 % confidence intervals

on annual ocean averages.

our analysis process (Fig. 2). Due to its slowly varying na-

ture, this uncertainty remains the most important limitation

of the detection of long-term averages.

The coverage uncertainty, σcoverage, is the uncertainty in

the large-scale average arising due to incomplete sampling of

the spatial field. As with HadSST3, our estimate of the cover-

age uncertainty is constructed by sampling a known field, ap-

plying our interpolation procedure, and seeing how well we

reproduce the underlying average of the known field. Follow-

ing HadSST3, we used the SST fields provided by HadISST

v2 as our target. The HadISST fields are spatially complete,

observation-based historical reconstructions of SST and sea

ice concentration (Titchner and Rayner, 2014). To estimate

the coverage uncertainty associated with a specified HadSST

sampling field, we mask every month of the HadISST dataset

using that sampling field, interpolate the remaining data, and

measure the error in the interpolated average relative to the

true ocean average of the whole HadISST field. The de-

viations in the ocean average are then collected across all

HadISST months, and the uncertainty for that coverage mask

is reported as the root-mean-square average of the devia-

tions. Using this technique, which is directly analogous to

the HadSST3 coverage assessment technique, we estimate

that the application of our interpolation approach typically

reduces the coverage uncertainty by 20 %–40 % (Fig. 2).

Lastly, we consider the impact of our interpolation on the

measurement and sampling uncertainty. Measurement uncer-

tainty essentially captures the errors in individual observa-

tions, while sampling uncertainty reflects the fact that water

temperatures can vary on timescales shorter than a month and

spatial scales smaller than a grid box. Though interpolation

does not change the underlying uncertainty associated with

individual measurements, by adjusting the weight of individ-

ual observations in the overall average, we affect the way

that individual measurement errors propagate into the global

average. In particular, in the presence of sparse data, lim-

ited measurements may be extrapolated over a large area. In

some circumstances, this can cause the effective uncertainty

in the global average due to these uncertainties to increase.

In essence, the interpolation may trade improvements in cov-

erage uncertainty against a greater impact for measurement

uncertainty. This largely limits our ability to reduce the over-

all uncertainty by interpolation.

The impact of measurement uncertainty on a large-scale

average depends on the error correlation. If the measurement

uncertainties were uncorrelated, then the error would gener-

ally be expected to decline with the square root of the number

of measurements. In actuality, the measurement uncertainties

are frequently correlated. In most cases, single ships report

many measurements per month. Each of those measurements

can have both random errors and a potential for systematic

bias. For a single ship, we cannot expect this bias compo-

nent of a measurement error to be reduced by increasing the

number of observations. In their analysis HadSST3 models

the entire error correlation matrix to understand the effect of

measurement errors on the global average uncertainty.

For HadSST3, the error correlation matrices were not pub-

lished. As a result, it is not possible to exactly determine
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the effect of our interpolation procedure on the measure-

ment uncertainty. However, we can make a reasonable es-

timate. Since HadSST3 releases both the per-grid-cell mea-

surement uncertainties and the global average measurement

uncertainty, we can compare the expected measurement un-

certainty treating all grid cells as independent to what is actu-

ally observed by HadSST3 using the whole error correlation

matrix (Kennedy et al., 2011b).

σuncorrelated =

√

6j (A(xj )σm(xj , t))2, (8)

where A(xj ) is the fraction of the Earth’s oceans represented

by grid cell xj and σuncorrelated is the measurement uncer-

tainty resulting from assuming that the measurement errors

in individual grid cells are uncorrelated with other grid cells.

We find that the measurement uncertainty reported by

HadSST3 in the ocean average is typically ∼ 2.1 times larger

than σuncorrelated, with some variation over time.

We use this estimate as a benchmark to approximate the

effect of error correlation on our analysis of measurement

uncertainty.

σinterpolated, measurement =

σHadSST, measurement

σuncorrelated

√

6j (K(xj , t)σm(xj , t))2 (9)

K(xj , t) =

(∫ ∫

K(xj ,x, t)dx

)

/

(∫ ∫

1dx

)

(10)

Here the double integral denotes the integral over the surface

of the ocean. Thus K(xj , t) is effectively the weight of the xj

grid point in the global average.

The total uncertainty in the ocean average is then found by

assuming the components are independent.

√

σ 2
bias + σ 2

coverage + σ 2
interpolated, measurement (11)

Over nearly all time periods, we find that interpolation does

reduce the uncertainty associated with missing coverage. In

the early period, the interpolation results in an appreciable

reduction in total uncertainty. However, the total uncertainty

in the global average is little changed in the recent period.

This is because the bias and measurement uncertainties play

a dominant role in the recent period, and the impact of these

uncertainties on the global average is little changed as a result

of the interpolation. However, even if the ocean-average un-

certainty is not changed during the recent period, the interpo-

lation may still aid in the interpretation of local- to regional-

scale features.

2.3 Land and ocean combination

The combined field is constructed by merging the Berke-

ley Earth land surface temperature with the interpolated SST

field described above. Two versions are considered that dif-

fer only in their treatment of sea ice, using either the land air

temperature (LAT) or the SST field to estimate the tempera-

ture anomaly at sea ice locations. From 1850 to near present,

the sea ice locations are estimated using the ice concentration

fields in HadISST v2 (Titchner and Rayner, 2014).

To combine LAT and SST data, both data sets are ex-

pressed on the same grid. To simplify the combination at cells

that are part land and part ocean, we have taken to adding in

the spatial climatology and doing the combination in abso-

lute temperatures.

In the case where sea ice areas are represented by SST, the

combination is straightforward:

Tcombined(x, t) = L(x)TLAT(x, t)+(1−L(x))TSST(x, t), (12)

where L(x) is the fraction of the grid cell at location x that

is land, and TLAT and TSST are respectively the LAT as esti-

mated by Rohde et al. (2013a) and the interpolated SST as

described above.

In the case where sea ice regions are treated as land,

Tcombined(x, t) =

L∗(x, t)TLAT(x, t) + (1 − L∗(x, t))TSST(x, t), (13)

L∗(x, t) = L(x) + (1 − L(x))I (x, t), (14)

where I (x, t) is the ice fraction at location x at time t as re-

ported by HadISST v2 (Titchner and Rayner, 2014). For this

purpose, HadISST is also regridded onto the same grid as

LAT and SST. As HadISST is frequently delayed by a few

months compared to other climate data, it is necessary to

supplement this data set when producing near-real-time es-

timates. For this purpose, the Sea Ice Index of the National

Snow and Ice Data Center (Fetterer et al., 2017) is used for

months that are not yet available in HadISST. The modern

ice distribution in both HadISST and the Sea Ice Index are

based on satellite observations; however, we found that the

Sea Ice Index tended to have systematically more partial

melting than HadISST. To maintain consistency, a distribu-

tion transform was applied to the sea ice fractions provided

in the Sea Ice Index based on comparing the 2014–2018 ice

fields in each dataset.

It is useful to note that regardless of whether one is us-

ing SST or LAT to estimate temperatures in association with

sea ice, most such estimates involve a considerable extrapo-

lation. In the case of LAT, for example, conditions over sea

ice in the Arctic will usually be extrapolated from Greenland,

Canada, Scandinavia, and Russia. Similarly, in the Antarc-

tic, coastal stations will be extrapolated outward over the ice.

By contrast, when using SST, one extrapolates from rare SST

measurements that may be far removed from the sea ice edge.

Or, in the case that analysis of the sea ice regions is excluded

entirely, averaging methods are effectively substituting the

ocean or global average temperature anomaly.
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It is our belief that the anomaly field generated by extrap-

olating air temperatures over sea ice locations is a more sen-

sible approach to characterizing climate change at the poles.

The air temperature changes over the sea ice can be quite

large even while the water temperatures underneath are not

changing at all. In particular, over the last decades Arctic air

has shown a very large warming trend during the winter.

Regardless of the approach used, the spatial climatology

can then be calculated and removed (differing from the orig-

inal only in cells with a mix of land and water/sea ice). Then

the long-term trend in the climate can be computed using the

spatial average of the anomaly fields.

Uncertainties for the combined record are calculated by

assuming the uncertainties in LAT and SST time series are

independent and can be combined in proportion to the rela-

tive area of land and ocean. In the case that LAT is used over

sea ice, the uncertainties for both LAT and SST have to be

slightly recalculated by assuming that the time-varying mask

L∗(x, t) is applied the relevant spatial averages in the uncer-

tainty estimations described in Rohde et al. (2013a) and in

the SST section above. Doing this adjustment causes a slight

increase in LAT uncertainty (due to the extrapolation over

sea ice) and a similar small decrease in SST uncertainty.

3 Data availability

The Berkeley Earth Land/Ocean temperature product will

be updated monthly on the berkeleyearth.org website and is

freely available for use to all interested researchers. A con-

venience copy of the dataset available at the time this paper

was created has been registered with Zenodo and is avail-

able at https://doi.org/10.5281/zenodo.3634713 (Rohde and

Hausfather, 2020).

4 Results and conclusions

The global mean anomalies obtained from the Berkeley Earth

Land/Ocean Temperature Record are quite similar to other

published records, as shown in Fig. 3. With the exception of

some short periods prior to 1880 and before and after World

War 2, all four other temperature records examined lie within

the uncertainty envelope of the Berkeley Earth record. Differ-

ences around World War 2 relate primarily to differences in

adjustments to ERSST v5 and HadSST3 sea surface tempera-

ture records during that period (Huang et al., 2017; Kennedy

et al., 2019; Cowtan et al., 2017).

Berkeley Earth has the highest trend of any temperature

record examined for the period from 1880 to 2015, largely

due to lower surface temperature estimates prior to 1900.

These differences are driven both by increased spatial cover-

age from the inclusion of additional land records and by the

spatial interpolation of both land and ocean records (which

are more limited in both the NOAA and Hadley records).

Similarly, Berkeley Earth has among the highest warming

Figure 3. Comparison of published global surface temperature

records. The top panel shows annual anomalies (relative to a 1961–

1990 baseline period), with the Berkeley Earth uncertainty as the

shaded area. The bottom panel shows trends and two-sigma trend

uncertainties (calculated using an autoregressive–moving average,

ARMA(1,1), approach to account for autocorrelation) for various

starting dates through the end of 2015 based on monthly anomalies.

rates in the recent period (1979–2015) due primarily to

greater Arctic coverage (where warming was unusually rapid

during that period). The other records that provide robust

Arctic interpolation, CW2014 and NASA GISTEMP, also

show higher trends during this period.

From 1955 to present (after the availability of data in

Antarctica), Berkeley Earth provides globally complete cov-

erage via spatial interpolation, similar to NASA’s GISTEMP

and CW2014. This contrasts with HadCRUT4 which ex-

cludes any grid cells lacking station coverage or SST mea-

surements, or NOAA GlobalTemp where interpolation is

more limited. As shown in Fig. 4, the patterns of spatial

anomalies between the different groups tend to be quite sim-

ilar, apart from differences due to spatial coverage or gridded

field resolution.

When constructing a global surface temperature record,

sea ice produces a challenging edge case. The water tem-

perature under sea ice is tightly constrained by the freez-

ing point of water and can only change with changes in sea

ice cover. Air temperatures over sea ice are less well con-

strained and can vary significantly over time. Whether areas

with sea ice coverage are estimated using sea surface temper-

atures or surface air temperatures will have a notable effect

on the record. While most groups (GISTEMP, CW2014) that

interpolate temperatures over areas with sea ice cover use air

temperatures, Berkeley Earth has provided both variants to

https://doi.org/10.5194/essd-12-3469-2020 Earth Syst. Sci. Data, 12, 3469–3479, 2020

https://doi.org/10.5281/zenodo.3634713


3476 R. A. Rohde and Z. Hausfather: Berkeley Earth Land/Ocean Temperature Record

Figure 4. Global gridded temperature anomalies for December 2015 relative to a 1961–1990 baseline for each global temperature dataset.

Grid resolution is based on the highest-resolution dataset provided by each group: 1◦×1◦ lat–long for Berkeley Earth, 5◦×5◦ for HadCRUT4,

1◦×1◦ for NASA GISTEMP, 5◦×5◦ over land and 2◦×2◦ over oceans for NOAA GlobalTemp, and 5◦×5◦ for Cowtan and Way (CW2014).

Figure 5. (a) Two variants of the Berkeley Earth global surface temperature product estimating temperatures under sea ice based on SSTs

(red) or proximate air temperature measurements (blue), as well as the HadCRUT temperature series for comparison. (b) The same two

versions of the Berkeley Earth data set with the HadCRUT time series subtracted.

Earth Syst. Sci. Data, 12, 3469–3479, 2020 https://doi.org/10.5194/essd-12-3469-2020
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Figure 6. Berkeley Earth average absolute climatology for the period from 1951 to 1980 with the air temperature at sea ice (a) and ocean

temperature under sea ice (b) variants shown.

Figure 7. Comparison of published annual uncertainty estimates (two sigma) for Berkeley Earth, HadCRUT4 (Morice et al., 2012), GIS-

TEMP (Lenssen et al., 2019), GlobalTempv5 (Vose et al., 2012), and Cowtan and Way (2014).

allow researchers to select the series that best supports their

needs. We consider the variant using air temperature above

sea ice to be a better description of global climate change,

but the ocean temperature variants may be useful for compar-

ison and for certain specialists. Both variants of the Berkeley

Earth record are shown in Fig. 5 as well as the HadCRUT

temperature series for comparison. When SSTs under sea ice

are used, the apparent warming trend in recent years is lower

than when air temperatures are used. Comparing these ver-

sions helps to reveal the contribution of sea ice areas to the

overall global warming rate.

Figure 5 also aids in understanding the difference between

Berkeley Earth and HadCRUT. The interpolated SST field

adopted here has a nearly identical trend to the HadSST field,

differing by less than 0.01 ◦C per century. Part of the dif-

ference between Berkeley Earth’s global temperature series

and HadCRUT is due to differences in the amount of warm-

ing estimated to have occurred over land. This is the primary

https://doi.org/10.5194/essd-12-3469-2020 Earth Syst. Sci. Data, 12, 3469–3479, 2020
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source of difference when comparing the Berkeley Earth se-

ries with SST at sea ice to the HadCRUT series (blue line in

Fig. 5). While this difference is not insignificant, the larger

overall difference is due to the incorporation of air tempera-

ture warming in sea ice regions, especially in the Arctic (red

line in Fig. 5). Inclusion of the rapid warming above Arctic

sea ice suggests the global average has increased an addi-

tional ∼ 0.1 ◦C during the last 100 years compared to esti-

mates that do not include the changes in this region.

In addition to monthly temperature anomalies, Berkeley

Earth produces monthly absolute temperature fields. A cli-

matology field is estimated via kriging observations, using

elevation as a factor in the kriging process over land. Both ab-

solute temperature variants with air temperature over sea ice

and water temperature under sea ice are available, as shown

in Fig. 6. Absolute temperatures are created by adding the

climatology field to monthly anomalies.

Figure 7 provides a comparison between published un-

certainties (two sigma) for each of the major global land–

ocean temperature series. The Berkeley Earth, GISTEMP,

and CW2014 records have the lowest uncertainty of the

groups providing annual values, in part due to their spatial

interpolation reducing the uncertainty associated with cover-

age.

The Berkeley Earth Land/Ocean surface temperature

record presented here has already been used by a number of

publications (e.g., Jones, 2015; Thorne et al., 2016; Sutton et

al., 2015). It joins a number of existing land–ocean surface

temperature products that help provide a diverse examination

of the Earth’s changing climate since 1850 and can be used

for diverse applications including climate model validation,

estimating transient climate response, examining changes in

extreme events, and other research areas.
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