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Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research 

was focused on applications for paralyzed patients, increasingly more alternative applications in 

healthy human subjects are proposed and investigated. In particular, monitoring of mental states 

and decoding of covert user states have seen a strong rise of interest. Here, we present some 

examples of such novel applications which provide evidence for the promising potential of BCI 

technology for non-medical uses. Furthermore, we discuss distinct methodological improvements 

required to bring non-medical applications of BCI technology to a diversity of layperson target 

groups, e.g., ease of use, minimal training, general usability, short control latencies.
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only through the use of modern machine learning and signal 

processing methods, that allowed to relocate the burden of train-

ing from a learning subject toward statistical learning machines 

and thereby achieve BCI communication for a naïve user already 

in the first session (Blankertz et al., 2002, 2007a, 2008b). This issue 

as well as technological requirements of non-medical BCI use are 

discussed in Section 2. In Section 3, we outline how the real-time 

decoding of mental states, such as fatigue or workload, can be used 

to optimize an operator’s performance. Then, BCI for multimedia 

applications and gaming, i.e., for a novel type of user performance 

is discussed in Section 4, and finally we briefly conclude with some 

remarks on the future of man–machine interaction.

2 IMPROVEMENTS IN BCI TECHNOLOGY

A broader applicability of BCI technology for alternative uses 

requires additional methodological steps that have not been in 

the focus of BCI research aiming at patients’ applications. Here, 

we discuss improvements in ease of use as well as broad and robust 

applicability: short preparation: Section 2.1; minimal user training: 

Section 2.2; minimal calibration of the system: Section 2.3; applica-

bility for a broad range of users: Section 2.4; practicing short latency 

BCI operation: Section 2.5; BCI control that takes into account the 

current state of the user: Section 2.6.

2.1 DRY ELECTRODES

Wet electrodes are very time-consuming to setup. This is one main 

reason why EEG technology is not adopted easily by a wider audi-

ence. Early prototypes of dry electrode technology were developed in 

the late 1960s and early 1970s (Richardson et al., 1968; Bergey et al., 

1971) and since then various dry and insulating electrode materi-

als have been tested (Searle and Kirkup, 2000) and also a capaci-

tive electrode coupling approach has been achieved (Oehler et al., 

1 INTRODUCTION

Brain–computer interfacing (BCI), i.e., the ability to transfer and 

use information from distinct brain states for communicating 

with a machine has in the past years received considerable atten-

tion (Wolpaw et al., 2002; Birbaumer, 2006; Allison et al., 2007; 

Dornhege et al., 2007a; Schalk, 2008; Krusienski and Wolpaw, 

2009). While the mainstream of research addressed improve-

ments of paradigms (Hill et al., 2005; Citi et al., 2008; McFarland 

et al., 2008; Hwang et al., 2009; Williamson et al., 2009; Höhne 

et al., 2010; Schaefer et al., 2010; Schreuder et al., 2010; Treder 

and Blankertz, 2010) and data analysis technology (Parra et al., 

2005, 2008; Dornhege et al., 2007b; Lotte et al., 2007; Blankertz 

et al., 2008a; Tomioka and Müller, 2010) as to allow for an easier, 

more convenient and faster use of BCI, this was mainly done for 

communication purposes with the overall aim to help paralyzed 

patients (Kübler et al., 1999, 2000, 2001, 2005; Birbaumer et al., 

2000, 2003; Neuper et al., 2003; Pfurtscheller et al., 2003; Birbaumer 

and Cohen, 2007; Dobkin, 2007; Müller-Putz et al., 2007; Cincotti 

et al., 2008; Daly and Wolpaw, 2008; Conradi et al., 2009). Recently 

BCI technology has also been used for a larger audience, namely for 

non-medical purposes. Here, not only communication is central, but 

BCI technology has gained popularity in the form of measurement 

devices, that allow to access respectively decode macroscopic brain 

states such as attention, performance capability, emotion etc., in 

real-time (Dornhege et al., 2007a; Müller et al., 2008). The signals 

extracted by BCI techniques are then employed to exploit this novel 

information for improved man–machine interaction. This allows 

to optimize and to enhance human performance and to achieve 

potentially novel types of skills.

This paper discusses these recent non-medical developments, 

with a focus on the work of the authors, and puts them into perspec-

tive. Clearly, a wider use of BCI technology has become  possible 
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this operant conditioning variant of BCI, the subject has to learn 

the self-control of slow cortical potentials at central scalp position 

(Elbert et al., 1980; Rockstroh et al., 1984; Birbaumer et al., 2000), 

which requires intensive training on the side of the user. Later, 

an approach was introduced relying on voluntary modulation of 

sensorimotor rhythms (SMR; Neuper et al., 1999; Pfurtscheller and 

da Silva, 1999; Wolpaw et al., 2000; Krusienski and Wolpaw, 2009), 

which substantially reduced the required training time (Vaughan 

et al., 2006). But still user training in the order of several sessions 

was necessary in most cases due to the relatively fixed way of fea-

ture extraction which does not completely account for the high 

inter-personal variability with respect to the brain signatures of 

natural (i.e., untrained) control commands. BCI systems that are 

based on the detection of potentials that are related to external 

stimuli (Wolpaw et al., 2002) typically require less user training. 

In the following we only focus on system which use endogenously 

altered mental states.

Machine learning based BCIs use EEG features of larger com-

plexity that can be fitted better to the individual characteristics 

of brain patterns of each user. To this end, there is often an initial 

calibration period, in which signals are acquired while the user 

generates control commands according to cues without receiv-

ing feedback. Machine learning algorithms are applied to these 

labeled data to infer features (e.g., spatial filters, frequency bands) 

that are optimized for the BCI performance of the individual user 

(Blankertz et al., 2002, 2007a; Parra et al., 2003; Dornhege et al., 

2007a). In Blankertz et al. (2008b) we investigated which proportion 

of naive subjects could successfully use an SMR-based system in 

the very first session. Participants of the study were 14 individuals 

who never performed in a BCI experiment before. For one sub-

ject, no distinguishable classes were identified from the calibration 

data. The other 13 subjects performed feedback: 1 near chance 

level, 3 with 70–80%, 6 with 80–90%, and 3 with 90–100% hits. 

The results of all feedback runs using the Berlin brain–computer 

interface (BBCI) are shown in Figure 1.

Instead of an offline calibration, it is also possible to start 

with BCI feedback right from the beginning by using a subject-

 independent classifier which is then adapted to the individual trial-

by-trial. Although some research groups claim that it is possible to 

do this in an unsupervised manner (Li and Guan, 2006; Blumberg 

et al., 2007), all online studies published so far use supervised 

adaptation method for the initial period (Vidaurre et al., 2006, 

2007; Wang et al., 2007; Vidaurre and Blankertz, 2010). The term 

“supervised” means that the system needs to know the true inten-

tion of the subject for adaptation, which is typically done by cue-

ing the subject to generate certain control commands. The true 

application that can be controlled by the user can start only after 

this adaptive calibration.

Relying on an adaptive calibration users can be led efficiently 

and fast to a successful BCI control within their first session. As an 

illustrative example, Figure 2 shows the feedback performance of 

a naive subject within her very first session from the very first trial 

on (using the technique presented in Section 2.4). Dots indicate the 

average performance of 20 trials. Runs of adaptive calibration are 

show in magenta and orange color. After only 20 trials, performance 

is at 85%, and after 60 trials performance is almost perfect for the 

rest of the session. More details about the method can be found 

2008). Since this technology represents an easy-to-use  alternative to 

 classical wet electrodes, dry electrodes are still a sought-after solution 

today. Besides the shortened setup time there are also other benefits 

for long-term monitoring. Electrodes, dependent on gel could dry 

up, while dry electrodes can stay functional. For example, long-term 

ECG measurements for patient monitoring could indicate potential 

cardio-vascular problems for patients in high risk groups and vari-

ous attempts have been made to increase practicability by combining 

it with wireless technology (Catrysse et al., 2004; Coosemans et al., 

2006), flexible electrodes (Hoffmann and Ruff, 2007; Baek et al., 

2008) and by including such devices into wearable textiles (Muhlsteff 

and Such, 2004; Carpi and Rossi, 2005).

A recent development (Gargiulo et al., 2010) uses little dry sen-

sors made of silicone conductive rubber that are attached to the 

scalp using a skin compatible super glue. Although BCI paradigms 

have been used, data is not evaluated in the sense of BCI perform-

ance but rather as correlation coefficient between signals recorded 

from the novel dry sensors and concurrently acquired standard 

EEG. At the optimal delay of 50 samples, a mean correlation coef-

ficient of 0.76 was found.

A different development was evaluated in Sellers et al. (2009) in 

the context of the matrix speller (Farwell and Donchin, 1988). EEG 

signals were acquired concurrently with a novel hybrid dry elec-

trode sensor array (HESA) and conventional wet electrodes (Cz, Pz, 

PO7, PO8 from each system with a spatial distance of about 4 cm). 

Data recorded from both type of sensors during a standard spelling 

task was classified offline using the same algorithm. Performance 

was comparable for both systems (mean accuracy across eight par-

ticipants was 67.5 vs. 70.5% for dry vs. wet sensors).

Two dry sensor systems have been evaluated with respect to an SSVEP 

(Morgan et al., 1996; Middendorf et al., 2000; Cheng et al., 2002; Allison 

et al., 2008) paradigm: Luo and Sullivan (2010) used a single-channel 

dry sensor in a four-class setting. An average detection rate of 75.8% was 

obtained in offline analysis for the best parameter setting with a very 

high variability between participants ranging from 5 to 100%. A helmet 

with 28 capacitive sensors is used in (Oehler et al., 2008) for a two-class 

SSVEP setting. The mean detection accuracy across four participants 

was 81% for the classification of 7 s long-time windows. Both report 

about online BCI operation restricted to one participant.

The only systematic study to date in which dry sensor technology 

was used to provide online BCI feedback is (Popescu et al., 2007). 

Here, a prototype solution with six dry electrodes was evaluated 

with respect to motor imagery driven BCIs. The electrodes were 

gold-coated and had a square shape of 0.5 × 0.5 cm2 with multiple 

pins attached. Various springs and joints were necessary to ensure 

a comfortable fit. A classic BCI 1D feedback paradigm was tested 

and compared to the results of a cap with 64 wet electrodes. While 

the information rate was approx. 20% lower for the dry electrodes, 

peak information rates of 36 bits/min were reached on occasion, 

which is on par with state-of-the-art gel-based BCI performance. 

Note that the use of only six electrodes would easily allow to run 

the new system with a tiny EEG amplifier and a pocket PC.

2.2 MINIMAL USER TRAINING

The first approach to establish a pure BCI communication channel, 

which does not rely on any neuromuscular output pathways was 

described in Birbaumer et al. (1999) and Elbert et al. (1980). In 
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were shown to provide better generalization properties compared 

to single-session filters and could therefore be used in following ses-

sions without the need to recalibrate the system for these subjects. 

The offline results were confirmed by online experiments and no 

loss of classification performance was observed. However, still a 

fairly large number of sessions of the same subject were required. 

More recently, a subject-independent zero-training SMR-based 

BCI system was developed by harvesting a large library of previ-

ous BCI experiments (Fazli et al., 2009). This large library allowed 

to combine a very large set of subject-dependent classifiers into 

a single subject-independent classifier by choosing appropriate 

weights for creating a very sparse set of voting classifiers. Among 

several tested methods (such as k-nearest neighbor (kNN), sup-

port vector machines (SVMs), linear discriminant analysis (LDA) 

and others) l
1
 regularized regression performed best. The resulting 

subject-independent classifier performed almost as well as stand-

ard, state-of-the-art subject-calibrated methods across the data 

from 91 participants.

A different approach is presented in Lotte et al. (2009). In the 

offline evaluation which is limited to data sets of nine subjects, the 

best subject-independent classifier obtains on average 10% less in 

accuracy compared to the best subject-specific classifier.

2.4 BCI DEFICIENCY AND COUNTERMEASURES

One of the major obstacles before BCI technology can be widely 

applied in non-medical fields is the problem of “BCI Deficiency,” 

meaning that for a non-negligible portion of users, BCI systems 

cannot detect their intentions accurate enough to let them control 

applications. Gaining a deeper understanding of this phenomenon 

and finding approaches to broaden the efficiency of BCI systems to 

all potential users is one pivotal challenge in BCI research.

Note that the problem of deficiency is less prominent, but still sig-

nificantly existing, in some BCI approaches based on event- related 

potentials. For results on large-scale studies and performance-re-

lated demographics, see Allison et al. (2009) for an SSVEP- and 

Guger et al. (2009) for a P300-based system. In SMR-based BCI 

in Section 2.4. These studies show that a machine learning based 

approach to BCI is able to let BCI novices perform well from the 

first session on. Still, we would like to remark that there is a non-

negligible portion of users, for which this quick-start approach is 

not successful, see Section 2.4.

2.3 MINIMAL CALIBRATION: SUBJECT-INDEPENDENT CLASSIFIERS

Even when user training is avoided by taking a machine learning 

approach to BCI, see Section 2.2, there remains a reduced but still 

time-consuming preparatory step: the calibration of the system 

to the user’s characteristic activation pattern. Lately, a number of 

attempts have been made to overcome the calibration by means of 

specifically developed machine learning techniques, e.g., Kaper and 

Ritter (2004), Lu et al. (2009) for P300 and Allison et al. (2008), 

Cecotti (2010) for SSVEP as well as Krauledat et al. (2008) for 

SMR-based BCIs where feedback and calibration data of multiple 

sessions of BCI-experienced subjects were employed to identify 

subject-dependent prototypical spatial filters. These spatial filters 
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FIGURE 1 | Left: Feedback accuracy of all runs (gray dots) and intra-subject averages (black crosses). Right: Histogram of accuracies obtained in BBCI-

controlled cursor movement task in all feedback runs of the study.
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FIGURE 2 | The graph shows the feedback performance of one BCI-naive 

subject from the very first trial on. Results are from one single session in 

which 8 runs of 100 trials (about 15 min) each have been recorded. There was 

no calibration period before. Feedback started with a general, subject-

independent classifier which was adapted trial-by-trial. Dots indicate the 

average feedback performance (1D cursor control) of 20 trials. The mean 

performances of each run of 100 trials is shown as bars. The three colors relate 

to three different processing methods, which are explained in Section 2.4.
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a  subject- independent classifier pretrained on simple features 

(band-power in alpha-frequency (8–15 Hz) and beta-frequency 

(16–32 Hz) ranges in three Laplacian channels at C3, Cz, C4) was 

used and adapted (covariance matrix and pooled mean; Vidaurre 

et al., 2008) to the subject after each trial. For the subsequent three 

runs, a classifier was trained on a more complex band-power fea-

ture in a subject-specific narrow band composed from optimized 

CSP filters in six Laplacian channels. While CSP filters were static, 

the position of the Laplacians was updated based on a statistical 

criterion, and the classifier was retrained on the combined CSP 

plus Laplacians feature in order to provide flexibility with respect 

to spatial location of modulated brain activity. Finally, for the last 

two runs, a classifier was trained on CSP features, which have been 

calculated on runs 4–6. The pooled mean of the linear classifier was 

adapted after each trial (Vidaurre et al., 2008).

Initially, we verified the novel experimental design with six sub-

jects of Cat. I. Here, very good feedback performance was obtained 

within the first run after 20–40 trials (3–6 min) of adaptation, and 

further increased in subsequent runs. In the present pilot study, two 

subjects of Cat. II and three subjects of Cat. III took part. All those 

five subjects did not have control in the first three runs, but they 

became able to gain it when the machine learning based techniques 

came into play in runs 4–6 (a jump from run 3 to run 4 in Cat. II, 

and a continuous increase in runs 4 and 5 in Cat. III, see Figure 3). 

This level of performance could be kept or even improved in runs 

7 and 8 which used unsupervised adaptation. Summarizing, it was 

demonstrated that subjects suffering from BCI deficiency before 

could gain BCI control within one session. In particular, one subject 

who had no SMR idle rhythm in the beginning of the measure-

ment could develop it with the feedback training, see Figure 3. This 

fundamental finding provides a perspective for the development 

of neurofeedback training (NFT) procedures that might help to 

alleviate BCI deficiency.

2.5 GUIDED PRACTICE FOR A FAST-DECISION BCI

Typically SMR-based BCIs suffer from a long latency between 

intention of the user and actual BCI control. Here, we introduce 

a “goalkeeper paradigm” that aims at improving online BCI per-

formance by subject training under time pressure conditions (cf. 

Ramsey et al., 2009).

Multi-channel EEG of eight BCI-experienced subjects was 

acquired while they were playing three runs (100 trials each) of 

a BCI-controlled computer game that imitated the task of a goal-

keeper during a penalty kick. During a trial, a ball was moving from 

the top of the screen toward one of its bottom corners. Using two 

different types of motor imagery (chosen from left hand, right hand, 

and foot) the subjects had to control the horizontal movements of a 

bar at the bottom of the screen in order to block the ball. Consistent 

with the goalkeeper metaphor, the bar could only be moved once 

(like a jump) into one or the other corner. The speed of the ball 

increased linearly from trial to trial and over the three runs. Subjects 

had to catch the ball within 2500 ms (at the beginning of run 1) 

to 1250 ms (at the end of run 3). Late arrival in a correct corner or 

arrival in a wrong corner were interpreted as misses.

In order to achieve a constant goalkeeping performance, the 

subjects were thus required to generate faster and/or stronger ERD 

responses in the later runs to steer the bar quickly into the correct 

systems deficiency is encountered regardless of whether a machine 

learning or an operant conditioning approach is used (Kübler and 

Müller, 2007). The actual rate of deficiency is difficult to determine, 

in particular since only a few BCI studies are published that have a 

sufficiently large number of participants who were not prescreened 

for being potentially good performers. There rate of deficiency in 

SMR-based non-invasive BCI systems can roughly be estimated to 

be about 15–30% and therefore poses a major obstacle for general 

broad BCI deployment. Still, very little is known about possible 

reasons of such failures in BCI control. A deeper understanding 

of this phenomenon requires determining factors that may serve 

to predict BCI performance and developing methods to quantify 

a predictor value from given psychological and/or physiological 

data. Such predictors may then help to identify strategies for future 

development of training methods to combat BCI deficiency and 

thereby provide more people with BCI communication.

With respect to SMR-based BCI systems, there is recent evidence 

that gamma oscillations play an important role. In a study with 

N = 10 participants, a relationship between gamma-power dur-

ing motor imagery and classification accuracy (left hand vs. right 

hand) was found (Grosse-Wentrup et al., 2010). In particular, the 

probability of correct offline classification of a motor imagery trial 

was positively correlated with power in a broad gamma-frequency 

range (55–85 Hz) during that trial in frontal and occipital areas. 

Note, however, that these findings do not give rise to a predictor 

of BCI performance.

Such a neurophysiological predictor of BCI performance was 

proposed in Blankertz et al. (2010a). It is computed as band-power 

in physiologically specified frequency bands (below 50 Hz) from 

only 2 min of recording in a “relax with eyes open” condition using 

two Laplacian channels selectively placed over motor cortex areas. 

A correlation of r = 0.53 between the proposed predictor and BCI 

feedback performance was obtained on a large data base with 

N = 80 BCI-naive participants.

In a screening study, N = 80 subjects performed motor imagery 

first in a calibration measurement (i.e., without feedback) and then 

in a feedback measurement in which they could control a 1D cur-

sor application. Basically, we observed three categories of subjects: 

subjects for whom (I) a classifier could be successfully trained and 

who performed feedback with good accuracy; (II) a classifier could 

be successfully trained, but feedback did not work well; (III) no 

classifier with acceptable accuracy could be trained. While subjects 

of Cat. II had obviously difficulties with the transition from offline 

to online operation, subjects of Cat. III did not show the expected 

modulation of SMRs: either no SMR idle rhythm was observed over 

motor areas, or this idle rhythm was not attenuated during motor 

imagery. For the latter case, a novel motor instruction for “quasi-

movements” (i.e., movement intentions minimized to the extent 

that neither a mechanical limb change nor even an EMG activation 

remain detectable) has been proposed which led to a significant 

improvement of BCI performance (Nikulin et al., 2008).

Here, we present preliminary results of a pilot study (Vidaurre 

and Blankertz, 2010; Vidaurre et al., 2010) that investigated 

whether co-adaptive learning using machine learning techniques 

could help subjects suffering from BCI deficiency (i.e., being Cat. 

II or III) to achieve successful feedback. In this setup, the session 

immediately started with BCI feedback. In the first three runs, 
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a task on outcome performance has been extensively studied 

and different effects have been reported. A first body of evidence 

links medium and lower amplitudes in the alpha-frequency band 

(7–14 Hz) to better perception in somatosensory and visual dis-

crimination tasks (Pfurtscheller and da Silva, 1999; Hanslmayr 

et al., 2005; Palva and Palva, 2007; van Dijk et al., 2008). As high 

activity in this frequency band is hypothesized to represent an idle 

state of cortical structures, i.e., no active processing (Pfurtscheller 

and da Silva, 1999), this effect can be explained by the fact that the 

sensory cortices involved in the task need to be in an appropriate 

excitation stage to process the upcoming stimulus. On the other 

hand, higher amplitudes over the sensorimotor cortices are cor-

related with better sensorimotor processing (Del et al., 2007), but 

less accurate inhibition of motor responses (Mazaheri et al., 2009). 

This suggests that a higher relaxation state of the motor system 

leading to higher inhibition could cause the motor system to be 

less responsive to signals from other regions and thus induce more 

straight forward processing. Concerning cognition, better perform-

ance has also been shown in the case of stronger prestimulus alpha-

frequency band amplitude (Neubauer and Freudenthaler, 1995; 

Klimesch, 1999). Some groups even demonstrated that cognitive 

performance could be increased if the amplitude of the prestimulus 

corner. In an offline analysis, the goalkeeping performance, the 

reaction times (defined as the time needed to reach the correct 

corner) and EEG features were analyzed in relation to the block 

design of the experiment.

The goalkeeper paradigm effectively increased time pressure 

over the three runs. Performance was measured in terms of balls 

caught within the first 1250 ms. Seven out of eight subjects managed 

to respond with increased performance from run 1 to 3 (average of 

33.8 balls caught in run 1 to 41.6 in run 3, see Figure 4A).

A close analysis of time-frequency EEG features between suc-

cessful trials of run 1 and 3 revealed changing EEG signs of motor 

activation, i.e., earlier ERD or stronger ERD in the alpha-band under 

time pressure, cf. Figure 4B. As a side effect, the training introduced 

for some subjects an additional ERD in the beta-band (which had 

not been used for feedback). Earlier re-synchronization (ERS) could 

be observed for some subjects in run 3, where trials were shorter.

2.6 EXPLOITING PRESTIMULUS MENTAL STATES FOR BETTER BCI 

PERFORMANCE

Quantification of oscillatory brain activity in different frequency 

bands has already been widely used in the investigation of mental 

states. More precisely, the influence of these rhythms  preceding 
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the ERD/ERS patterns over the whole scalp, clearly shows that the 

ipsilateral hemisphere stays in a higher synchronization level in the 

high group, that is not reach in the low-group.

Although the reason for better discriminability in the high group 

still has to be explored in detail, we conjecture it to be due to a bet-

ter relaxation state of the sensorimotor system leading to an ERD 

focalized to the contralateral hemisphere and an ERS (idling) over 

the ipsilateral one. These observations are in line with the findings 

by Mazaheri et al. (2009): high power in the alpha-frequency band 

makes the motor cortices immune to external inputs and thus are 

expected to generate clearer spatial patterns, which implies that 

they are also easier to classify.

Our findings suggest to explore NFT to increase users’ SMR 

amplitude and thus take advantage of the faster and more accurate 

classification in later BCI applications. But the effectiveness of the 

neurofeedback procedure, as well as the stability of its effects will 

have to be investigated thoroughly.

3 MENTAL STATE MONITORING

In the context of BCI technology, it is crucial to deal with the fact 

that brain signals exhibit an enormous trial-to-trial variability, even 

for constant behavioral performance. But when we turn to more 

difficult sensorimotor or cognitive tasks like the detection of peri-

threshold stimuli, to decisions in just-notable difference discrimi-

nation, or to high-load memory tasks, also on the behavioral level 

we can observe considerable moment-to-moment fluctuations in 

reaction to the very same stimuli. Many studies in cognitive neu-

roscience have set out to find neuronal correlates that explain this 

variability (e.g., Fernández et al., 1999; Thut et al., 2006; Chen et al., 

2008; Mathewson et al., 2009; Schubert et al., 2009). In particular, 

those studies that identify predictors from prestimulus intervals in 

the ongoing EEG for the performance in the subsequent task are 

potentially relevant for novel applications of BCI technology.

alpha rhythm was enhanced artificially, e.g., by external  stimulation 

(Klimesch et al., 2003; Hanslmayr et al., 2005). This is in line with 

the idea that more inhibition allows less signals from other brain 

regions to reach the neuronal network performing the task and 

thus induces better processing. Put together, this demonstrates a 

clear difference in the activation requirements of the involved brain 

networks between strictly perceptual tasks and more complex cog-

nitive or motor processing tasks. In this subsection and later on, 

we will focus on complex cognitive and motor tasks for example 

motor imagery (cf. Maeder et al., 2010).

In BCI technology, SMR modulations induced by motor imagery 

are commonly used as task. However, performance varies exten-

sively from trial to trial and also between sessions in the same sub-

ject. According to evidence presented here, part of this variability 

could be attributed to ongoing fluctuations in the SMR rhythm, 

see also Section 2.4.

To investigate in detail the effect of prestimulus mental states on 

BCI classification performance, we conducted a study analyzing the 

influence of prestimulus SMR amplitude on timing and strength 

of motor imagery induced SMR modulations.

We used data from 30 naive subjects performing left and right 

motor imagery in a standard cued paradigm and split feedback trials 

into two groups on their prestimulus band-power (high- and low-

group). All trials were classified offline in sliding time intervals of 

1000 ms duration as used, e.g., in cursor control, and classification 

accuracies were averaged within the two groups and across subjects.

We found that the classification error for the high group was 

lower than for the low-group over the whole trial length, see Figure 5 

(left). Interestingly, this effect can be attributed to the ipsilateral 

rather than to the contralateral hemisphere, see the grand average 

ERD curves in Figure 5 (right), where the curves representing the 

ipsilateral side exhibit a higher difference in the post-stimulus inter-

val than the one for the contralateral class. Figure 6 (left) displaying 
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 suboptimal user interfaces reduces the number of critical mental 

states of the operators. Thus, it could lead to an increase in produc-

tion yield, less errors and accidents, and avoid user frustration.

Typically, information collected about mental states of interest 

is exploited in an offline data analysis and leads to a redesign of 

task or interface. In addition, a method for mental state monitor-

ing that can be applied online during the execution of a task might 

be desirable. Traditional methods for capturing mental states and 

user ratings are questionnaires, video surveillance of the task, or 

the analysis of errors made by the operator. However, question-

naires are of limited use for precisely assessing the information of 

interest, as the reported answers are often distorted by subjective-

ness. Questionnaires cannot determine the quantities of interest in 

real-time (during the execution of the task) but only in retrospect; 

moreover, they are intrusive because they interfere with the task.

As a new approach, we propose the use of EEG signals for mental 

state monitoring and combine it with BCI technology for real-time 

data analysis and classification. With this approach, the brain sig-

nals of interest can be isolated from background activity as in BCI 

systems; this combination allows for the non-intrusive evaluation 

of mental states in real-time and on a single-trial basis such that 

an online system with feedback can be built.

3.1 ATTENTION

Mental state monitoring is of particular interest in safety-critical 

applications where human performance is often the least control-

lable factor. For example, consider that fatal car accidents are one 

of the leading causes of death in the United States (Mokdad et al., 

2004; Mokdad et al., 2005; Subramanian, 2007), and the leading 

cause among children (9–18 years) worldwide (Xu et al., 2010). The 

two main causes for crashes are distraction of (visual) attention and 

Combining such results from cognitive neuroscience with sys-

tems that allow the detection of specific mental states in real-time 

may eventually lead to devices that allow to optimize human per-

formance. For example, a neurotec-enhanced vocabulary trainer 

may adapt the presentation of new word pairs to a moment of time 

in which the user is in a good mental state for memory encoding, 

see Guderian et al. (2009). During periods of attenuated attention, 

a learning game is probably more effective than drilling vocables.

On a more basic side, the way of how neuroscience and psy-

chophysics experiments are performed may be extended in an 

important aspect. While upto now, participants are presented with 

a more or less preprogrammed sequence of stimuli (subject to some 

random factors), it becomes possible to adjust the presentation of 

stimuli to the momentary mental state of the subject.

While this area is still largely to be explored, we review here some 

initial approaches that show the application of BCI technology for 

mental state monitoring in settings that are relevant for real-world 

applications. See Zander and Jatzev (2009) for a general discussion 

of usage of BCI technology to detect covert user states. Note, that 

mental state monitoring has also medical use, like treating ADHD 

patients with neurofeedback based on an attention monitoring 

system, see Hamadicharef et al. (2009).

When aiming to optimize the design of user interfaces or, more 

general, of a work flow, the mental state of a user during task execu-

tion can provide valuable information. This information can not 

only be exploited for the improvement of BCI applications, but 

also for improving industrial production environments, the user 

interface of cars and for many other applications. Examples of these 

mental states are the levels of arousal, fatigue, emotion, workload 

or other variables the brain activity correlates of which are (at 

least partially) accessible by measurement. The improvement of 
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on the factors reaction time (40% fastest/slowest), condition and 

electrode location (subdivision into groups of 22 frontal/central/

parieto-occipital electrodes) was investigated. Band-power was cal-

culated in the theta-, alpha-, beta-, and gamma-band by applying 

an FFT within the 3500 ms prestimulus interval.

Reaction times were significantly larger in the driving condi-

tion than during fixation, and reactions to frequent stimuli were 

significantly faster compared to infrequent stimuli. Alpha- and 

gamma-power decreased gradually from K0 to K2 conditions. Most 

importantly, within each condition alpha-power was significantly 

higher for short, compared to long auditory reaction times. At first 

sight, this seems in conflict with the established role of high alpha-

power as a marker of fatigue, as introduced above. However, it is in 

line with a study, in which a positive correlation was found between 

alpha-power and increasing task demand (Cooper et al., 2003). We 

suggest that for competing auditory and visual tasks, fast reactions 

to auditory stimuli can be performed only at the expense of a less 

efficient engagement of visual processing as revealed by a dimin-

ished alpha suppression. Our data show also that the potential range 

for attention-related alpha modulation gets smaller with increas-

ing visual flow, i.e., during driving a large amount of attention is 

inevitably bound to the visual system.

While this study is itself not an application of BCI technology, it 

points a way for future applications in driving assistance systems, 

and the results point out why subtle methods, as developed in the 

field of BCI, are required: inattentiveness cannot be detected as 

such, but only with respect to a certain input modality which in 

case of driving is the visual domain. Furthermore, the neural cor-

relates differ considerable between individuals, such that a specific 

calibration of the detector is needed.

3.2 MONITORING PERFORMANCE CAPABILITY

Monitoring of mental states such as performance capability or task 

engagement can be of interest for industrial applications. A pilot 

study (Müller et al., 2008) with four participants evaluated the 

use of EEG signals in such a setting. The aim was to investigate 

the net effect of performance in a application oriented scenario. 

By choosing to simulate a real-world application, we accepted that 

different psychological concepts were lumped together, amongst 

those fatigue, concentration, task engagement. The design was not 

intended to disentangle those states, but rather to monitor the con-

tinuous performance capability of an operator.

The experimental paradigm simulates a security surveillance 

system where the sustained performance ability of the user in a 

monotonous task is crucial. The objective was to calibrate the BCI 

system to the individual user in order to recognize and predict 

mental states that correlate with a high or a low number of per-

formance errors of the subject. In the following we will use the 

term concentration for this concept.

Participants had to rate 2000 (simulated) X-ray images of lug-

gage objects as either dangerous or harmless by a key press with  the 

left or right index finger after each presentation, see Figure 7. EEG 

was recorded from 128 channels at 1000 Hz. The session was divided 

into 10 runs of 200 trials each. Due to the monotonous nature of the 

task and the long duration of the experiment, they were expected 

to show a fading level of arousal, which impairs concentration and 

leads to more and more erroneous decisions during later blocks.

lapses in vigilance due to fatigue. For assessment of such mental 

parameters, physiological measures have been developed, blink and 

heart rate being the most widely used among them (e.g., Papadelis 

et al., 2007). Although EEG-based markers might more directly 

reflect cognitive processing, they have been considered less often 

in driving applications so far (see Brookhuis and de Waard, 1993; 

Otmani et al., 2005; for EEG-based investigation of attention in car 

driving, and the reference in Section 3.3 concerning workload).

Parieto-occipital alpha-waves are believed to be linked to idling 

of the visual cortex, which is the assumed default mode if no vis-

ual information is processed. Thus, high alpha-power signifies 

potentially dangerous brain states with reduced visual attention. 

In the extreme case of sleep, alpha activity is most pronounced, 

and so-called sleep spindles can be observed even by the naked 

eye. However, microsleep detection from EEG is uncalled-for, since 

technically more simple systems based on eyelid closure detection 

already achieve good results.

On the other hand it is understood that the danger of driving 

errors increases already a certain time before microsleep onset. 

During that period, responsiveness to sudden unexpected events 

will be degraded due to the driver’s drowsiness. A similar degrada-

tion is expected to happen during longer periods of monotonous 

driving. The challenge for driving assistance systems is to detect 

such subtle deficiency in vigilance occurring while driver’s eyes 

are open. Importantly, incidence of being in such an inattentive 

mode might be hard to infer from facial expression and eye move-

ments alone, while neurophysiological measures could provide 

added value.

In a recent study the potential use of EEG-derived oscillatory 

features for driving assistance applications was investigated by relat-

ing band-power to driving performance in a realistic simulated 

scenario (Schubert et al., 2008). The experiment was designed to 

account for the complexity of driving, which requires attentiveness 

to both visual and auditory stimulation. Consequently, our investi-

gation included a whole range of frequency bands and topographic 

regions-of-interest, covering alpha activity from visual cortex as 

well as oscillatory signals related to other cognitive systems.

Eleven right-handed male subjects, all possessing a driver’s license, 

participated in the study. They had to perform three different primary 

tasks. In the first condition (K0) the task was simply to fixate at a 

cross placed in front of the subject. In the second condition (K1) the 

cross was replaced by a video presentation of a driving scene (passive 

driving). The third condition (K2) finally required active driving, 

using a steering wheel. The subject had to perform lane changes as 

quickly as possible upon presentation of corresponding signs. In all 

three conditions, high/low tone auditory stimuli (oddball, ratio 1:5, 

ISI 5–6 s randomized) had to be responded to as quickly as possible 

as a secondary task by pressing buttons attached at left/right thumbs, 

respectively. The time needed for pressing the appropriate button was 

regarded as a substitute for driving performance. The experiment 

was divided into four blocks, each containing 10 min intervals under 

K0 and K1 conditions, as well as 20 min of K2 driving. During the 

whole experiment, EEG from 128 channels was acquired.

The data underwent post hoc statistical analysis using repeated 

measures ANOVA. For the response times of the secondary task, a 

model with factors stimulus (frequent vs. infrequent) and condi-

tion was considered. Furthermore, the dependence of band-power 
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of high and low error index, a so-called concentration insufficiency 

index (CII) was derived from EEG data. The output of the CII meas-

ure for each trial is plotted in Figure 8 together with the correspond-

ing error index. It can be observed that the calculated CII mirrors the 

error index for most blocks. More precisely, the CII mimics the error 

increase inside each block, and in blocks 3 and 4 it can anticipate the 

increase of later blocks, i.e., out-of-sample. For those later blocks, 

the CII reveals that the subject could not recover full arousal during 

the breaks. Instead, (s)he shows a short-time arousal for the time 

immediately after a break, but the CII accumulates over time.

The correlation coefficient of both time series with varying tem-

poral delay is shown in the right plot of Figure 8. The CII inferred by 

the classifier and the errors that the subject had actually produced 

correlate strongly. Furthermore, the correlation is high even for 

predictions that are upto 50 trials into the future.

Using a more abstract experimental paradigm, Makeig and Jung 

found increased theta (4–6 Hz) and decreased gamma (>35 Hz) 

activity to be predictive of upcoming failures in a difficult audi-

tory detection task, see Makeig and Jung (1996). More recently, the 

The time course of erroneous decisions taken by a participant 

was smoothed in order to form a continuous measure for arousal. 

This measure is hereafter called the error index and reflects the 

subject’s inability to concentrate and fulfill the security task. To 

enhance the contrast of the discrimination analysis, two thresholds 

were introduced for the error index and set after visual inspection. 

Trials outside these thresholds defined two sets of trials with either 

a rather high or low value. The EEG data of the trials were labeled 

as sufficiently concentrated or insufficiently concentrated depend-

ing on these thresholds for later analysis. Figure 8 shows the error 

index. The subject did perform nearly error-free during the first 

blocks, but then showed increasing errors beginning with block 

four. However, as the blocks were separated by short breaks, the 

subject could regain concentration at the beginning of each new 

block at least for a small number of trials.

As neuronal correlate of decreased concentration, a left parieto-

occipital increase of power in the alpha-frequency range was found. 

For a more detailed physiological analysis please refer to the original 

paper (Müller et al., 2008). Based on the contrast between periods 

FIGURE 7 | Stimuli used for the suitcase inspection study. The upper row shows three examples of (simulated) X-rays of suitcases that do not contain a weapon. 

They had to be discriminated from suitcases in which there is a weapon hidden, like the three in the lower row (machine pistol, knife, and axe).
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German words links (left) and rechts (right)) which was given every 

7.5 s. This secondary task mimicked the interaction with a car’s 

electronic device. Furthermore, the obtained reaction times were 

used as a measure of the driver’s free cognitive capacity. This task 

was chosen to be simple and to have long inter-task periods such 

that it would not contribute substantially to the overall workload. 

Finally, in every second block of 2 min there was a tertiary task to 

induce workload. Two different conditions were used.

Mental calculation task (MC): Silently subtract iteratively 27 

starting from a given number, that was randomly chosen between 

800 and 999.

Auditory task (AT): Follow the story of an audio book while 

ignoring a simultaneously played news broadcast. For verification, 

a question related to the content of the audio book was ask after 

the end of the block.

These tasks had to be performed during blocks of 2 min duration 

(high workload condition) which were followed by blocks without 

tertiary task (load workload condition), see Figure 9.

In initial calibration phase (two runs with auditory task and two 

runs with calculation task), the developed BBCI workload detec-

tor was adapted to the individual driver. Roughly, the workload 

detector classified spatial patterns of band-power in subject-specific 

frequency band. Initially, unstable channels and channels presum-

ably containing muscle or eye movement artifacts were removed. 

Then different parameter configurations (frequency bands, sets of 

channels, spatial filters, hysteresis thresholds) have been validated 

and the setting that provides the best discrimination of the high vs. 

low workload conditions was selected. For a detailed description 

of the algorithms, see Kohlmorgen et al. (2007).

Using this approach, the system was able to continuously predict 

the cognitive workload of the driver online. The accuracy of the 

detector with respect to the induced levels of workload was on aver-

age above 70% but varied considerably between participants from 

50% (chance level) to 95.6%, see the example output in Figure 10 

for the participants with the best detection results. This information 

was used in the application phase (also two runs with auditory and 

two with calculation task) to switch off the auditory reaction task 

when high workload was detected (“mitigation”).

As a result of the mitigation strategy, the reaction time in 

the application phase was on average 100 ms faster than in the 

(un-mitigated) calibration phase (Kohlmorgen et al., 2007). The 

improvement in performance during the application phase can 

 so-called error-preceding potentials have been investigated, which 

are (changes in) event-related potentials that foreshadow behavio-

ral errors, see Eichele et al. (2010).

3.3 WORKLOAD

In the previous sections we exemplified ways in which BCI tech-

nology may help to improve human performance. In contrast, the 

approach presented here can be used to improve the design of 

products. We discuss a method for real-time monitoring of mental 

workload, and how it can be used for neuro-usability. Beyond this 

aspect, there is also a long-term perspective in which the work-

load monitor technology could also be used to improve the human 

performance: real-time measures of mental workload could be 

incorporated in future cars in order to reduce distractions (e.g., a 

navigation system is switched off during periods of high workload) 

to a minimum when the driver’s brain is already over-loaded by 

other demands during potentially hazardous situations.

In the development of many new products or in the improvement 

of existing products, usability studies play an important role. They are 

performed in order to measure to what degree a product meets the 

intended purpose with regard to the aspects effectiveness, efficiency 

and user satisfaction. A further goal is to quantify the joy of use. While 

effectiveness can be quantified quite objectively, e.g., in terms of task 

completion, the other aspects are more intricate to assess. Even psy-

chological variables consciously inaccessible to the subjects themselves 

might be involved. Furthermore, in usability studies it is of interest to 

perform an effortless continuous acquisition of usability parameters 

whilst not requiring any action on side of the subject as this might 

interfere with the task at hand. For these reasons, BCI technology 

could become a crucial tool for usability studies in the future.

One criterium for the usability of a car is the mental workload 

that is required from the car driver. If the manufacturer plans to 

endow the car with a new feature that uses an elaborate man–

machine interface technology, the producer should demonstrate 

that it does not distract the driver from the traffic (i.e., mental 

workload should not be unduly increased when the feature is used). 

If a manufacturer claims that a novel device relieves the driver from 

workload (e.g., by means of an automatic distance control), this 

effect should be “proven.” In both cases, neurophysiological moni-

toring of mental workload could provide an objective measure.

Since there is no ground truth available on the cognitive work-

load to which the driver is exposed, we designed a study1 in which 

additional workload was induced in a controlled manner. For 

details, confer Kohlmorgen et al. (2007). There are several precur-

sory studies that derived measures of workload under laboratory 

conditions (e.g., Gevins et al., 1998; Berka et al., 2007; Sassaroli 

et al., 2008) or in the context of real operational environments (e.g., 

Sterman and Mann, 1995; Hankins and Wilson, 1998; Lin et al., 

2005), but these have all been limited to offline analyses.

In our study, EEG was acquired from 12 male and 5 female sub-

jects while driving on a highway at a speed of 100 km/h (primary 

task). Second, the subjects performed an auditory reaction task: one 

of two buttons mounted on the left and right index finger had to be 

pressed as quick as possible according to a given vocal prompt (the 

FIGURE 9 | Experimental paradigm. The tertiary task was used to induce 

two different types of cognitive workload. An auditory task (AT) or mental 

calculation (MC) had to be performed in blocks of 2 min (high workload 

condition) interleaved with blocks of two duration without tertiary task (low 

workload condition). One run consisted of three pairs of blocks of high and low 

workload condition.
1This study was performed in cooperation with the Daimler AG. For further infor-

mation, we refer to Kohlmorgen (2007).
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Consonance between chords plays an important role in the 

perception of the complex concept of tonality. From a sensory 

point of view, degrees of consonance can be distinguished regard-

ing psychoacoustic features, e.g., pitch distance, pitch common-

ality or sensory dissonance within each chord. From a cognitive 

point of view the consonance of chords can be judged regarding 

concepts from music theory like key relations or musical syntax. 

Inspired by Krumhansl’s probe tone experiments (Krumhansl and 

Kessler, 1982), the goal of this study is to find neural correlates of 

the processing of consonance in chord progression and the related 

perception of musical structure. As differences in corresponding 

ERP components are on a very small scale, advanced methods for 

ERP single-trial analysis, as developed within BCI research, are 

required for the extraction of the neuronal correlates.

Thirteen subjects, all musically active to a varying extent, took part 

in the study. Experiments consisted of several blocks of acoustic pres-

entation of continuous sequences of major triads in root position. A 

chord was repeated 7–11 times before changing to a new chord of the 

chromatic scale in a random fashion. The subject’s task was to rate 

the goodness of fit of the new chord with respect to the preceding 

chords on a scale from 1 to 7. This resulted in a modified oddball 

paradigm with the new chord as deviant and the last preceding chord 

as standard stimulus in a continuous sequence of chords.

The subjects’ ratings were inhomogeneous but can be attrib-

uted to two main influences: (1) pitch distance and (2) structures 

related to models of music theory. Analysis of ERP data revealed 

that the N2b-P3 complex shows the differences between the classes 

deviant and standard most pronounced. A state-of-the-art classi-

fier (Blankertz et al., 2010b), borrowed from BCI technology, was 

trained to discriminate deviant vs. standard ERPs. This classifier was 

then applied to deviant trials only and the output was averaged for 

the 11 subgroups according to the ascending interval between the 

root of the standard stimulus and of the deviant stimulus, resulting 

in an 11 dimensional profile – the neuronal correlate of a subject’s 

rating profile. These neuronal profiles formed for most subjects 

the same structure as in models of music theory. Strikingly, these 

structures were also found in subjects, whose behavioral data did 

not reveal them, suggesting an unconscious perception at this stage 

of processing, see Figure 11.

be explained by the fact that the workload detector successfully 

predicted periods of potentially reduced reactivity and exempted 

drivers from reacting during increased workload.

In this study, separate classifiers have been used for the workload 

induced by the AT and the MC type of tertiary task. The spatial maps 

of the classifier weights differed between those modes, but there was no 

systematic evaluation to dissociate between those types of workload.

Note that the high inter-subject variability, which is a challenge 

for many BCI applications, comes as an advantage here: for neuro-

usability studies, top subjects (with respect to the detectability of 

relevant EEG components) of a study can be selected according to 

the appropriateness of their brain signals.

3.4 COGNITION OF MUSIC

In this section, we show how BCI technology can be applied to 

study the cognition of music. In particular, it is demonstrated that 

an advanced method for single-trial ERP classification, that was 

developed in BCI research (Blankertz et al., 2010b) allows to reveal 

unconsciously perceived structures of music (Sturm et al., 2010).

Time (min)

FIGURE 10 | The exact time course of the classifier output for the best 

performing subject (lower panel), and the corresponding binary high/

low workload indication used to control the mitigation (middle panel), in 

comparison with the true high and low workload conditions (upper 

panel) for auditory workload (95.6% correct).

(
)

(
)

FIGURE 11 | Left: Chord distances according to Lerdahl’s theory of tonal 

pitch space (Lerdahl, 2001). Right: The blue colored curve shows the 

subjective rating of participant VPcab which reflects only the distance of the 

fundamental tones, but does respect harmonical aspects. The orange 

colored line shows the output of the classifier. If reflects much better the 

musical structure of the stimuli than the behavioral data. (In the labels on 

the x-axis small and large font size corresponds to minor and 

major intervals).
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the set of selectable items is reduced until a single link is chosen. 

More, (Scherer et al., 2007) reports Google Earth to be control-

led by BCI.

Creative activity is supported by a BCI-controlled brain painting 

application that exploits visual P300 signals. By concentration on 

selectable fields of a tool matrix the user can select simple paint-

ing tools, colors, shapes, etc., position the tools on a digital canvas 

and paint geometric shapes (Kübler et al., 2008). The application 

has been used by a number of ALS patients and a healthy artist. 

Although restricted in the type of tools, it enables an expression 

of creativity while by-passing motor pathways.

4.2 GAMES

There is a wide range from strictly medical to completely non-

medical BCI-controlled gaming applications. The design can be 

such that the applications is controlled by BCI alone, or that BCI 

is an additional input which augments a classical control. A sur-

vey that discusses approaches and requirements of BCI-controlled 

games on a general level is given in Nijholt (2009) and Lécuyer et al. 

(2008) provides a nice overview of several BCI games and virtual 

environment applications.

4.2.1 Games controlled by BCI only

The medical use of BCI-controlled games is quite obvious – gaming 

can be an excellent motivation to spend time with a BCI system 

in order to achieve better control. These improvements can be 

expected by playing games that demand long-time concentration 

by the subject if the game rewards a subject for an increased SNR 

of the EEG signal exploited for BCI control. This can be realized, 

e.g., by high scores for increased control speed or by a more precise 

timing of the control signals. Abilities acquired during gaming will 

have an immediate impact on the performance of the subject in 

other BCI applications, like spelling, environmental control, etc.

Gaming applications of this type typically have the simple char-

acter of a neuro-feedback training. Many of them are used in a 

research context and only a few examples can be mentioned here. 

The BrainBall game (Hjelm and Browall, 2000) was introduced to 

learn the control of the level of relaxation expressed by the occipital 

alpha intensity. To improve the concentration ability on blinking 

areas on the computer screen, e.g., an SSVEP game (Lalor et al., 

2005) can be used. Event-related potentials are exploited in the 

MindGame (Finke et al., 2009) which translates detected P300 com-

ponents into movements of a character on a three-dimensional 

game board. General control via motor paradigms can be trained 

with, e.g., BCI-PacMac (Krepki et al., 2007), the quick generation of 

brisk motor imagery based BCI-commands is used as feedback to 

train BCI reaction time in a goalkeeper game (Ramsey et al., 2009). 

Apart from their novel control concept (compared to standard 

games), these approaches do not have an outstanding attractiveness 

or long-time immersive character due to their simplicity whereas 

their usefulness for the training of patients is obvious.

A recently published gaming application that requires simple two-

class control but is more complex with respect to requirements for 

timing precision and its physical interactions, is a BCI-controlled pin-

ball machine (Tangermann et al., 2009), see Figure 12. This applica-

tion has proven that BCI control signals derived from motor imagery 

can be precise enough in timing to play a fast and reactive game in 

Different complex acoustical features of chords are processed 

in a sensory and a cognitive way in the brain. The inhomogeneity 

of the subjects’ behavior, however, suggests that the ability to uti-

lize these processes substantially differs between subjects even in a 

subgroup of 13 musicians. Utilizing machine learning based ERP 

analysis, developed in the framework of BCI research, can reveal 

at which stage of neuronal processing the perception of music is 

affected differently in certain subjects.

4 BCI FOR ENTERTAINMENT

Finally, we discuss applications of BCI technology that have a dif-

ferent flavor than the ones discussed above. Here, we present some 

entertainment applications in which the appeal arise through the 

fact that they are controlled directly from the brain, like brain paint-

ing or games involving BCI control.

4.1 MEDIA APPLICATIONS

Media applications are equally attractive to use for healthy sub-

jects and patients. It is worth to take a closer look at typical media 

of activities like the managing of photo-, video-, and music col-

lections, web surfing, the sharing of media with friends and rela-

tives, painting, presenting photos or videos in small shows to 

others, preparing playlists for later use, and of course the con-

sumption of music and media for pure self-entertainment or 

edutainment. On a more conceptual level, these activities can 

be categorized in exploration, social interaction, self-expression 

and consumption.

For severely paralyzed patients who are dependent on assistive 

technology like BCI to use media applications, the media applica-

tions have to take the limitations of control signals into consid-

eration. Ideally, the user should be enabled to express himself by 

creative or hedonic interaction with the media, and enjoy social 

activities triggered by the results of his interaction with the media, 

although the complexity of the user interface is limited and control 

signals are not fully reliable. As these restrictions are very similar 

to those that apply to mobile media applications on small hand-

held devices (Murray-Smith, 2009; Williamson et al., 2009), the 

development of BCI-controlled applications can profit from the 

community in the field of human–computer interaction (HCI) that 

constantly develops new interaction models for mobile use.

As the social interaction and embedding of a patient plays a 

crucial role for his/her quality of life, media applications have a 

high potential to improve the life of a patient, although they are 

of non-medical nature.

Although BCI-controlled media applications currently still are 

in their infancy, a number of interesting applications has been 

reported so far that go beyond the scope of text input applications 

like Hex-o-Spell (Blankertz et al., 2007b; Williamson et al., 2009), 

Dasher (Wills and MacKay, 2006), or applications inspired by the 

original P300 speller grid of Farwell and Donchin (1988).

The BCI-controlled web browser interface (Nessi, Bensch et al., 

2007) enables users not only to browse web pages, but to access 

web-based services and applications in general. It is platform-

independent and open source and has been used, e.g., with a two-

class motor imagery paradigm. Selectable items are highlighted 

by a color code. To select an item the user has to generate the type 

of control command with the corresponding color. Step by step, 
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imagery commands and mental rotation) trained on an offline 

calibration run was applied online in sliding windows every 40 ms 

during the gaming phase. For each movement step within the tetris 

game, classifier outputs were accumulated and the action corre-

sponding to the highest value was triggered in case the probability 

exceeded a certain threshold. This game was not systematically 

evaluated in a study.

However, BCI-controlled gaming applications can provide even 

more added value in terms of social integration, as a paralyzed 

player can cooperate or compete with other, possibly healthy gam-

ers. In the simplest possible scenario, a slow strategic game like, e.g., 

chess that does not require fast decisions, a patient and a healthy 

player will meet on common ground, express and compare their 

cognitive abilities, learn about each other via the game. By empha-

sizing the interaction on a mental level, the degree of virtual dis-

ability is reduced during these interactions. Cooperational games, 

of course, where both players interact to reach a common goal, will 

provide even stronger added value in this respect.

Artificially biased gaming scenarios can provide for a fair bal-

ance: in a game like speed chess or tetris, where a player clearly 

profits from fast and precise-in-time control commands, healthy 

players can deliberately be slowed down until both gamers have 

approximately the same level of control. This can be accomplished, 

e.g., by adding delays to keyboard inputs of the able-bodied person 

and by adding an amount of uncertainty to each control decision. 

Although this might not look appealing to a healthy person on a 

first glance, it would be a good opportunity for healthy persons 

in the social environment of the patient to understand better the 

degree of handicap that the patient has to cope with.

Both approaches (slow strategic games and quick reactive 

games) open up the possibility to play remotely over the inter-

net. Joining a gaming community has the potential to create new 

contacts. Interaction via BCI-controlled gaming could build up 

patient- or mixed communities.

Planning the creation of a new game, the restricted information 

transfer rate has to be taken into account. The greatest challenge 

is to design a user interface for the game that hides the input 

complexity good enough from the user to be suitable, e.g., for a 

slow two-class control signal, but still to provide a rich enough 

decision space to be appealing. Partly, the lack of control accuracy 

can be compensated by rich and timely feedback during every 

control decision initiated by the user. This is a fruitful field of 

cooperation for the BCI research community with designers from 
the HCI community.

4.2.2 Games with additional input from BCI

Although using a BCI as the only source of control input for a game 

can be very appealing as it is considered a “cool” and still new form 

of interface (cf. for example the BCI-controlled pinball machine), 

it is, of course, possible to use BCI-control as an additional control 

channel for all types of games. In the near future, when hardware 

costs will have decreased to a suitable level, and when robustness 

of the EEG recording devices is increased to meet the expectations 

on the gaming market, healthy users will be able to explore BCI in 

addition to game-pad, mouse or keyboard input devices in order 

to enrich the interaction space. A further boost is to be expected, 

when sensitive and robust dry electrode systems appear on the 

real-time. Although a trade-off between timing precision and classifi-

cation precision had to be found individually even for good subjects, 

the game was perceived as highly immersive and motivating.

Brain–computer interfacing games involving other mental 

strategies for control can be used to confirm neurophysiological 

findings in a rigorous manner. An example that is appealing due 

to its ecological validity of the control paradigm is the video game 

Tetris (Wikipedia, 2009). In this game pieces which are falling down 

slowly can be moved horizontally either to the left or to the right 

and can be rotated in steps of 90° by the player. In the BCI-version 

of the game, left and right hand motor imagery is used to move 

the pieces and mental rotation (Ditunno and Mann, 1990) lets the 

piece rotate clockwise and foot motor imagery allows to drop it. 

While the motor commands have been extensively used in many 

BCI applications, the use of the cognitive task mental rotation adds 

in very naturally in the Tetris game. In our pilot study, we could 

confirm the right parietal focus (Farah, 1989; Harris et al., 2000; 

Heil, 2002; Roberts and Bell, 2003; Windischberger et al., 2003; 

Gootjes et al., 2008; depending on task and gender it may also be 

left parietal, Mehta and Newcombe, 1991; see also the discussion 

of laterality in Milivojevic et al., 2009) of neuronal activity during 

mental rotation, see Figure 13. A four-class classifier (three motor 

FIGURE 12 | Overview of a BCI system for the control of a pinball machine 

by motor imagery of, e.g., left and right hand imagined movements.

FIGURE 13 | Brain–computer interfacing controlled tetris game. Left: A 

volunteer is playing a BCI-controlled version of the Tetris computer game. He 

uses left and right hand motor imagery to move the falling pieces horizontally, 

mental rotation to rotate it clockwise and foot motor imagery to let it drop. 

Right: The map shows the activation pattern during mental rotation in the 

tetris game (band-power in the beta-band 18–24 Hz with red color indicating 

event-related desynchronization, i.e., activation of the corresponding cortical 

area). The right parietal focus is in line with the literature.
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sider also applications that are beyond the classical paradigms 

for the disabled where BCI systems have helped to restore 

 communication ability.

Recently, building on BCI technology more general measure-

ment devices are developed capable of assessing and decoding more 

generic brain states in real-time. Successful examples of such brain 

state detection that have been outlined in this paper are seam-

less measurements of workload and performance capability. An 

accurate analysis of the human brain state can be employed to 

optimize state dependent man–machine interaction. Recent studies 

go beyond this by indicating that it might become possible to detect 

states that foreshadow errors during complex cognitive decision 

tasks (Eichele et al., 2010) with BCI technology.

We conclude that non-invasive BCI technology may change the 

way that we will in the future interact with computers. This will 

hold for both, healthy and disabled users.
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market that are capable of recording neural signals beyond occipi-

tal alpha or muscle artifacts only. However, it is yet unclear how 

smoothly the simultaneous use of traditional input devices and BCI 

can be coordinated, and what kind of BCI paradigms prove stable 

enough in such an environment. Significant further research will 

be required that allows to correlate activities between modalities 

(see Bießmann et al., 2009) and moreover that can compensate 

selectively non-stationarities within the different modalities (see 

von Bünau et al., 2009).

Given the availability of affordable recording devices, meth-

ods for mental state monitoring might have a strong impact for 

gaming. Mental state monitoring is a field strongly related to 

BCI, as it uses similar analysis methods to estimate user states 

in real-time. Examples are the monitoring of the level of mental 

workload, concentration ability, the ability to react quickly, etc. 

(see Section 3.2). If a game engine can make use of this additional 

user state information, the course of the game can be changed 

appropriately, the complexity level of tasks can be adapted, etc., 

in order to increase the level of immersion and entertainment. 

Applying this technique would enable to tailor a game individu-

ally to the gamer.

5 CONCLUSION

In the past years, BCI systems have become significantly more 

usable and accurate through the use of modern machine learn-

ing and signal processing technology. This has allowed to con-
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