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The Bernoulli sieve is a recursive construction of a random composition (ordered partition) of an

integer n. This composition can be induced by sampling from a random discrete distribution which

has frequencies equal to the sizes of components of a stick-breaking interval partition of [0, 1]. We

exploit the Markov property of the composition and its renewal representation to study the number of

its parts. We derive asymptotics of the moments and prove a central limit theorem.
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1. Introduction

The Bernoulli sieve can be seen as a generalization of the ‘game’ found in Bruss and

O’Cinneide (1990). The first round of the game starts with n players and amounts to tossing

a coin with probability X 1 for tails. Each of the players tosses once and those getting tails

must drop out. If all n get heads the trial is disregarded and must be repeated with all n

players, as many times as necessary until some players are eliminated. If at least one player

remains after the first round, the second round continues with the remaining players, who

must toss another coin with probability X2 for tails. The game continues with probabilities

X 3, X 4, . . . for tails until all players have been sorted. It is assumed that the probabilities

X 1, X 2, . . . are independent random variables with a given distribution ø on ]0, 1[, and

that, given Xj, the individual outcomes at round j are conditionally independent. It readily

follows that, as far as only the number of players is concerned, the outcome of a round

depends on the past solely through the number of players which proceed that far.

A random composition Cn of an integer n arises, in which part j is the number of players

dropping out at round j. In this paper we shall focus on some of the properties of Cn; in

particular, we are interested in the distribution of the number of parts of the composition,

which may be thought of as the duration of the game.

There is a natural way to settle all Cns on the same probability space in a consistent

fashion. Consider a random interval partition of [0, 1] by points 1 � (1 � X 1)(1 � X 2)

. . . (1 � Xj), j ¼ 1, 2, . . . , and assign each player a random uniform tag, independent of

the Xjs. The tags group within the intervals, and recording the cluster sizes from left to

right yields a composition (intervals containing no tags are ignored). To establish

equivalence with the coin-tossing construction we only need to note that the probability of a

particular player remaining in the game for at least j rounds is precisely

(1 � X1)(1 � X2) . . . (1 � Xj).

The game considered by Bruss and O’Cinneide (1990) corresponds to ø supported by a
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single point, in which case the Xjs are all equal. The composition is induced then by

sampling from a geometric distribution and, of course, had already appeared many times in

the literature in different guises. Karlin (1967) distinguished this case in the context of a

general occupation problem with infinitely many boxes and derived distributions for the

number of parts, number of singletons, doubletons, etc. The feature studied in Bruss and

O’Cinneide (1990) and Kirschenhofer and Prodinger (1996) was the probability that there is

exactly one winner – a player remaining in the last round (that is to say, the last part of the

composition is 1).

When ø is a Beta(1, Ł) distribution the law of Cn is known as the ordered Ewens

sampling formula (ESF). This structure is well understood; see Arratia et al. (2002) for a

recent account and Pitman (2002), Gnedin (2003) and Gnedin and Pitman (2003) for

generalizations.

Our interest in the construction arose in connection with the regenerative composition

structures introduced by Gnedin and Pitman (2003). Within this more general setting the

Bernoulli sieve composition may be seen as a discretization of a subordinator with finite

Lévy measure and zero drift. In what follows we shall treat the general probability

measures, with the sole constraint that ø is not supported by a geometric sequence like

1 � x j (in particular, sampling from the geometric distribution is ruled out) and such that ø
does not settle too much mass near the end-points of [0, 1]. Our method relies on renewal

theory and the analysis of ‘divide-and-conquer’ recurrences, the techniques intended to

replace the independence-based tools available in the ESF case; see Arratia et al. (2002).

By virtue of the exchangeability among the players the compositions Cn are sampling

consistent for different values of n. That is to say, if a part of Cn is selected at random, in

a size-biased fashion, and decremented by one unit, then the resulting composition of n� 1

(possibly with fewer parts) has the same distribution as Cn�1. The sequence (Cn) forms a

composition structure (see Gnedin 1997; 1998) and determines a random exchangeable

composition of a countable set.

There are two further constructions of Cn featuring renewal and Markov properties. The

renewal representation is obtained from the stick-breaking construction by applying the

transformation �(x) ¼ � log(1 � x) which maps [0, 1] onto [0, 1]. Consider the range R
of a renewal process with initial state 0 and step distribution � ¼ ø�, and let E1, . . . , En

be increasing order statistics from the standard exponential distribution (which correspond

to exponentially distributed tags). The points of R induce a partition of [0, 1] into

intervals making up the complement Rc ¼ [0, 1]nR, and the points Ej group within the

intervals; in these terms the composition Cn becomes a record of all non-zero cluster sizes,

from left to right.

The Markov chain representation of Cn stems from the following first-part deletion

property of Cn. Given that the first part of Cn is m, the composition of n� m obtained by

removing this part has the same distribution as Cn�m. This property is obvious in the

renewal context: it follows from the regenerative property of R (applied at the leftmost point

of R to the right of E1) taken together with the memorylessness property of the exponential

distribution. The deletion property implies that the parts of Cn can be viewed as decrements

of a decreasing Markov chain Qn which has state space f0, 1, . . . , ng, starts at state n and

eventually gets absorbed at 0. The one-step transition probability from n to n� m is
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q(n, m) ¼ w(n, m)

1 � w(n, 0)
, m ¼ 1, . . . , n: (1)

where

w(n, m) ¼ n

m

� �ð1

0

xm(1 � x)n�mø(dx), m ¼ 0, 1, . . . , n,

are the binomial moments of ø. A similar expression can be given in terms of �, with

1 � e�z in place of x. The quantity 1 � w(n, 0) ¼ w(n, 1) þ . . . þ (n, n) will appear

throughout as a normalizing factor, so we write W (n) ¼ 1 � w(n, 0). In other words,

W (n) ¼
ð1

0

(1 � e�nz)�(dz)

is the characteristic exponent of the measure � thought of as a Lévy measure associated with

R.

For a given composition (n1, . . . , nk) of n, the probability that Cn assumes this value is

of the product form

p(n1, . . . , nk) ¼ q(n1 þ . . . þ nk , n2 þ . . . þ nk)q(n2 þ . . . þ nk , n3 þ . . . þ nk)

� � � q(nk , nk), (2)

because this is the probability that the chain Qn has decrements n1, . . . , nk before absorption

in 0.

2. Basic recursions

We will be interested in the first instance in the number of parts Kn of the composition Cn.

It follows from øf1g ¼ 0 that q(n, m) . 0 for all n > m > 1 and Kn goes to infinity with

n.

Observe that the sizes of intervals comprising the partition of [0, 1] are Yj ¼
(1 � X1) . . . (1 � X j�1)Xj. Rephrasing the stick-breaking interpretation, Kn is the number

of boxes occupied by at least one of n balls, with probability Yj of being in the jth box.

Karlin (1967) is a basic reference on the model with infinitely many boxes and non-random

frequencies, and some information on Kn can be extracted from Karlin’s results by

conditioning on (Yj).

Consider two conditions on ø which limit concentration of mass near 1 and 0:

� :¼
ð1

0

jlog(1 � x)jø(dx) , 1, (3)

ð1

0

jlog xjø(dx) , 1: (4)

Reformulated, condition (3) says that the first moment of � is finite:
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� ¼
ð1

0

z�(dz) , 1: (5)

The unconditional law of large numbers from Karlin (1967) implies the following

proposition:

Proposition 1. If conditions (3) and (4) are satisfied then, as n ! 1,

Kn �
1

�
log n

with probability one.

Proof. By the strong law of large numbers we have, for j ! 1,

� 1

j
log Yj ¼ � 1

j

Xj�1

i¼1

log(1 � Xj)
1

j
log Xj !

1

�

(condition (4) is necessary and sufficient for the second term to be negligible). From this

relation we have, for Karlin’s (1967, p. 376) function Æ,

# j : Yj .
1

x

� �
� 1

�
log x, as x ! 1

almost surely. By Theorem 19 in Karlin (1967),

E(Knj(Yj)) �
1

�
log n,

and by Theorem 8 in that paper the statement holds conditionally on (Yj), hence also

unconditionally. h

Note that ‘deconditioning’ itself does not allow one to draw any conclusions about the

asymptotics for EKn (see Proposition 3 below). The methods of Karlin (1967) could be

used further to show that the conditional variance of Kn converges to ��1 log 2 almost

surely. We will not dwell on converting these results into their unconditional counterparts,

rather we will take an approach based on the renewal features of our model.

Let Fn be the first part of Cn, with distribution P(Fn ¼ m) ¼ q(n, m). The Markov

property of the composition implies that Kn satisfies a distributional equation

Kn ¼d 1 þ K9n�Fn
, (6)

where Fn, K91, K92, . . . are independent and each K9j has the same distribution as Kj.

Averaging in (6), we see that an ¼ EKn satisfies a linear recursion

an ¼ 1 þ
Xn
m¼1

q(n, m)an�m (7)

with boundary value a0 ¼ 0.
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Remark. Recursions akin to (7) are common in the average-case analysis of algorithms; see

Rösler and Rüschendorf (2001). The dissertation by Bruhn (1996) is devoted solely to them.

Some of Bruhn’s results are reproduced in Rösler (2001) along with distributional analysis

of equations more general than (6). The class of recursions treated in the work cited relates

to the assumption that the weights q(n, :), considered as measures with support

f1=n, 2=n, . . . , n=ng, satisfy an equiboundedness condition and converge weakly to some

measure on [0, 1].

In our case the convergence of q(n, :) to ø is clear from the convergence of moments

(which amounts to Bernstein’s trick used to prove the Weierstrass uniform approximation

theorem). Beyond that, the Bruhn–Rösler conditions certainly hold when ø has a smooth

density. However, we have been unable to check their (very technical) conditions for the

general measure ø and will rely on the special structure (1). A specific feature of the class

of recursions studied here is that we have a canonical renewal process as a part of the

model, while Bruhn and Rösler needed to construct an auxiliary renewal process to ‘mimic’

the recursion.

We formulate the next fact as L1([0, 1], ø)-approximability of the logarithm by the

(ordinary) Bernstein polynomials, but we will also make use of the formula (8). There is a

variety of closely related results in the literature: the best known is the aforementioned

argument due to Bernstein, then there are a number of L1-results on generalized Bernstein

polynomials (see Lorenz 1953), and pointwise asymptotic expansions are found in Flajolet

(1999) and Jacquet and Szpankowski (1999). Still, the summation formulae (8) and (18)

below seem to be new.

The Bernstein polynomial of degree n for log(1 � x) is

Bn(x) ¼
Xn�1

m¼1

n

m

� �
xm(1 � x)n�m log 1 � m

n

� �
:

Lemma 2. If ø satisfies (3), then

lim
n!1

ð1

0

jBn(x) � log(1 � x)jø(dx) ¼ 0:

Proof. There is no simple formula for the expectation of the logarithm of binomial random

variable, but replacing the logarithms with the harmonic numbers and noting that

log(1 � m=n) ¼ hn�m � hn þ o((n� m)�1), hn ¼ 1 þ n�1 þ . . . þ 3�1 þ 2�1 being the nth

harmonic number, we have the explicit summation formula

Xn�1

m¼0

n

m

� �
xm(1 � x)n�m(hn�m � hn) � xnhn ¼ � x

1
� x2

2
� . . . � xn

n
: (8)

By monotone convergence the series on the right-hand side approaches log(1 � x) in the

sense of L1(ø, [0, 1]) whatever ø. This easily yields the claim. h

Proposition 1 strongly suggests the logarithmic asymptotics for an. Our proof of this fact
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will rely on the following simple observation. Given n0 . 1, suppose that (an) satisfies (7)

for n > n0; then an þ c also satisfies the recursion for n > n0, whatever the constant c.

Proposition 3. If ø satisfies (3) then any sequence (an) satisfying (7) for n > n0 > 1 has

asymptotics

an �
log n

�
:

In particular, this holds for the sequence an ¼ EKn which is the unique solution which

satisfies (7) for n . 0 and has the boundary value a0 ¼ 0.

Proof. Assume that there exists E . 0 such that an . (1 þ E)��1 log n for infinitely many

values of n. Our proof is by contradiction. Selecting E smaller, for any fixed c we can obtain

the inequality an . (1 þ E)��1 log nþ c for infinitely many values of n. Let n(c) be the

minimum such n; then n(c) ! 1 as c ! 1. Thus, for n , n(c) we have

an , (1 þ E)��1 log nþ c, which implies

1 þ
Xn(c)

m¼1

q(n(c), m)an(c)�m , 1 þ cþ (1 þ E)
�

Xn(c)

m¼1

q(n(c), m) log(n(c) � m):

Now from (7) and the definition of n(c) we derive

(1 þ E)
log n(c)

�
þ c , 1 þ cþ 1 þ E

�

Xn(c)

m¼1

q(n(c), m) log(n(c) � m), (9)

where c itself cancels but n(c) can be taken arbitrarily large by the choice of c.

From Lemma 2 we see that

Xn�1

m¼1

q(n, m) log(n� m) ¼ log n� �þ o(1),

and substituting this formula into (9) and letting c ! 1 yields 0 , �E, which is the

contradiction promised. Thus the assumption was false, and because E was arbitrary we have

lim sup
an

��1 log n
< 1:

A symmetric argument proves the analogous lower bound, and the claim follows. h

Turning to the variance of the number of parts vn ¼ var Kn, we derive from (6) a

recursion

vn ¼ 2an � 1 � a2
n þ

Xn
m¼1

q(n, m)a2
n�m

 !
þ
Xn
m¼1

q(n, m)vn�m, v0 ¼ 0, (10)

which involves an ¼ EKn. Both (7) and (10) are instances of the general equation
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bn ¼ rn þ
Xn
m¼1

q(n, m)bn�m, b0 ¼ 0, (11)

where (bn) are unknowns, and (rn) is given. The proof of Proposition 3 is easily extended to

obtain the following corollary:

Corollary 4. Assume (3). For any n0 and r 6¼ 0, if (bn) satisfies (11) for n . n0 and if

rn ! r, then bn � r��1 log n an n ! 1.

With a logarithmic asymptotics for vn in mind, we aim to show the convergence of the

bracketed inhomogeneous term in (10). It is easily seen that for this purpose we need more

than just the principal-term asymptotics of the expectation, and this is exactly where the

renewal theory provides indispensable tools.

3. Renewal approximation

It is well known that a renewal process starting at 0 admits a delayed version which has

expected number of renewals within [0, z] (the potential measure) growing linearly with z;

see Feller (1971). It turns out that the stationary renewal process induces a ‘stationary’

version of the Markov chain Qn, which can be used for the asymptotic analysis of (6).

Let g(n, m) be the probability that Qn ever visits state m (which means that at some

round of the game there are exactly m players left). Since Qn can visit each non-absorbing

state at most once, g(n, m) is also the potential function, that is, the expected number of

visits to m. Interpreting rm as a ‘reward’ collected on visiting state m, we can think of bn
satisfying (11) as the total expected reward of Qn. The interpretation implies

bn ¼
Xn�1

m¼1

g(n, m)rm (12)

and reduces solving (7) to computation of the potential function. An explicit formula is

complicated (see Gnedin and Pitman (2003)). Fortunately, there is a simple asymptotic

formula.

Suppose � is not supported by a lattice and has finite first moment, so that (5) holds. For

ø this means that (3) holds and that the support is not a geometric sequence like 1 � x j (in

particular, the case of geometric frequencies, when ø is supported by a single point, is

excluded). Switching to the renewal representation, we introduce a probability distribution

�0[0, z] ¼ 1

�

ð z
0

�[�, 1]d�:

Let the overshoot B(z) be the distance from z to the leftmost point of R to the right of

z (B(z) is sometimes called the forward process, or forward recurrence time, or residual

lifetime, etc.). The renewal theory, as presented in Feller (1971), says that �0 is the limiting

distribution of the overshoot as z ! 1. Observe that Qn visits m when there is a point of R
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between En�m�1 and En�m or, equivalently, when the overshoot at En�m�1 does not exceed

En�m � En�m�1. The spacing between the two order statistics is independent of En�m�1 and

its distribution is Exponential(m). By the renewal theorem the distribution of B(En�m�1)

converges to �0 as n ! 1 because En�m�1 ! 1 (in probability), thus

g(n, m) ¼ P(B(En�m�1) , En�m � En�m�1) !
ð1

0

e�mz�0(dz) ¼ 1

�m

ð1
0

(1 � e�mz)�(dz),

where the last step follows by integrating by parts. Changing measure back to ø we obtain

the following result:

Proposition 5. If ø is not supported by a geometric sequence and satisfies (3) then, for any

m,

lim
n!1

g(n, m) ¼ W (m)

�m
:

The proposition suggests modifying the chain Qn so that the potential function becomes

exactly

g0(m) :¼ W (m)

�m
, m ¼ 1, . . . , n� 1:

We shall do this by assuming a special distribution for the first transition (which can be

thought of as a qualifying round before the game).

Remark. Another possibility would be to introduce a proper initial distribution on

f0, 1, . . . , ng so that the formula for the potential function was also valid for m ¼ n. But

this would correspond to composition of a random integer, a model we wish to avoid.

Renewal theory offers construction of a stationary version of R. Take Z0 independent of

R and with distribution �0. The shifted set R0 ¼ Z0 þR is the range of the stationary

(delayed) renewal process. For any z > 0 the overshoot distribution for R0 at z coincides

with �0.

The points of R0 induce an interval partition of [0, 1], thus also a partition of the

sequence of order statistics E1, . . . , En. Recording the sizes of blocks, we obtain a

stationary composition C0n of n. The parts of C0n are considered as decrements of a new

Markov chain Q0n. Repeating the argument which led us to Proposition 5, we derive from

invariance of the distribution of B(z) that g0 is the potential function of Q0n.

For any reward function the solution of (11) satisfies

Xn�1

m¼1

g0(m)rm ¼
Xn�1

m¼1

q0(n, m)bn�m, (13)

where q0(n, :) is the distribution of the first part of C0n. This formula follows by computing

the total expected reward of Q0n upon departure from state n. Including state n leads to
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rn þ
Xn�1

m¼1

g0(m)rm ¼
Xn
m¼0

w0(n, m)qn�m, (14)

where w0(n, :) is the distribution of the number of Ejs to the left of Z0. Explicitly,

w0(n, m) ¼ n

m

� �ð1
0

(1 � e�z)me�(n�m)z�0(dz)

and

q0(n, m) ¼ n

m

� �
w0(n, m) þ w0(n, 0)q(n, m):

When expressed via binomial moments of ø, this becomes

q0(n, m) ¼ 1

�
n

m

� � Xm
k¼0

(�1)m�k W (n� k)

n� k
þ w(n, m)

n

 !

for 1 < m < n (with the convention W (0)=0 ¼ � needed for k ¼ m ¼ n).

Remarks. The relation between compositions C0n and Cn is that they are identically

distributed given the size of the first part. The distribution of C0n is of the form (2) with the

first factor replaced by q0(n, n1).

The distributional identity (Cn) ¼d (C0n) holds if and only if � ¼ �0, in which case � is

an exponential distribution, R is a homogeneous Poisson point process and therefore Cn is

governed by the ordered ESF. This explains, to an extent, the role of ESF as a ‘central

limit’ because superposition of many rare renewal processes approaches the Poisson process.

For suitable choice of � the sums on the right-hand side of (13) or (14) become Cesàro

or Euler averages. The left-hand side is easy to analyse, but drawing conclusions directly

from these relations about the behaviour of (an) is only possible when (an) is known to

satisfy certain regularity conditions (the Tauberian conditions). The direct approach seems

hard to realize because the regularity conditions are very sensitive to the summability

method.

For rn � 1 the left-hand side of (14) is the expected number of parts of the stationary

composition, which is equal to

1 þ
Xn�1

m¼1

W (m)

m�

and, quite expectedly, is asymptotic to ��1 log n.

Example. For ESF(1) we have W (n) ¼ 1 � (nþ 1)�1 and � ¼ 1, whence the expected

number of parts is hn as is well known (Ewens and Tavaré 1997).

We have seen that g(n, m) ! g0(n, m) for n ! 1 and wish to obtain the asymptotics of

(12) by substituting g0 for g. To this end we need a stronger assumption on ø,
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� :¼
ð1

0

(log(1 � x))2ø(dx) , 1,

which in terms of � means finiteness of the second moment, � ¼
Ð1

0
x2�(dx).

Proposition 6. Suppose that ø is not supported by a geometric sequence and also � , 1.

Suppose that (rn) is such that jrnj , r9n, where (r9n) is a decreasing sequence satisfyingP
r9n=n , 1. Then for (bn) solving (12) with such (rn), we have

lim
n!1

bn ¼
1

�

X1
n¼1

W (n)rn

n
:

Proof. Given integer J , suppose that (rn) is such that rn ¼ 0 for n , J, is decreasing for

n > J and satisfies
P

rn=n , 1. We wish to show that for the sequence (bn) solving (12)

with such (rn) there is a bound

lim sup bn ,
1

�

X1
n¼1

rn

n
þ rJ�

�2
: (15)

To this end we will make use of the renewal representation.

Recall that Qn collects reward rm is the chain visits state m. This occurs when R has at

least one point between En�m and En�mþ1, in which case let us assign reward rm to the

rightmost such point (equivalently, given En�m is the leftmost point in a cluster, the point of

R in question is the left end-point of the component interval � [0, 1]nR containing

En�m). Let U be the potential measure of R, so that U [0, z] is the expected cardinality of

R \ [0, z]. The total expected reward of Qn may be written as

rnW (n) þ
ð1

0

�n(z)U (dz),

where the first term stands for the reward at 0 2 R, which is only due in the event that the

first jump of the renewal process exceeds E1, and the integrand is

�n(z) ¼
Xn
m¼1

n

m

� �
e�zm(1 � e�z)n�mrmW (m): (16)

In the same manner, we associate the rewards collected by the stationary chain Q0n with

the separating points of R0 and with 0 (an exceptional point, not in R0). The expected

reward becomes

rn
W (n)

n�
þ
ð1

0

�n(z)U0(dz),

where the first term stands for the event that E1 , Z0 (i.e., E1 falls to the left of R0). This is,

of course, yet another expression for the right-hand side of (14).

We now modify the reward processes for chains Qn and Q0n by deleting the first term

(reward at 0) and by replacing �n with another function ~��n, defined by (16) but with

factors W (m) deleted. Deleting the first term has no asymptotic effect because rn goes to 0
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as n ! 1. We also have �n(z) < ~��n(z), thus �n(z) corresponds to a more generous

reward structure, with reward at z being rm if En�m , z , En�mþ1 (thus there is no other

constraint on z except that z 2 R or z 2 R0). The modified reward associated with R0 is

the sum on the left-hand side of (15).

The function ~��n(z) is unimodal, with unique maximum attained at z�, which is the

unique positive solution of the equation

�rJ
n� 1

J

� �
þ
Xn�1

m¼J

(rm � rmþ1)
n� 1

m

� �
e�z

1 � e�z

� �m�J

¼ 0

(the uniqueness follows from the monotonicity of (rj), j . J ). For n ! 1, Poisson

approximation provides asymptotics ne�z� ! �, where � is the unique positive root of the

transcendental equation

� rJ

J !
þ
X1
m¼J

(rm � rmþ1)
�m�J

m!
¼ 0:

In the following argument it is only important that z� ! 1 as n ! 1.

Because R0 is R shifted to the right, R0 ¼ Z0 þR, there is a one-to-one correspondence

between the sets R\](z� � Z0)þ, z�] and R0\]0, z�]. Furthermore, because ~��n is

increasing on [0, z�], the total (modified) reward of R0 over ]0, z�] is larger than that

of R on ]0, (z� � Z0)þ]. On the other hand, the expected reward of R on ](z� � Z0)þ, z�]

has an asymptotic bound rJ�=(2�2); indeed, rJ ¼ max rj is an upper bound for the

instantaneous reward and the potential U ](z� � Z0)þ, z�] is asymptotic to

E
Z0

�
¼ 1

�

ð1
0

z�[z, 1] dz ¼ 1

2�

ð1
0

z2�(dz),

as follows from the two-term expansion in the renewal theorem, in the case � , 1 (see

Feller 1971, Section XI.4).

Since the function ~��n is decreasing, to the right of z� the relation is reversed. Shifting

the origin to the leftmost point of R0 \ [z�, 1] enables one to view R on the new scale as

the range of a delayed renewal sequence. Thus the expected reward of R0 on [z�, 1] is

larger than that of R, up to a term estimated by rJ�=(2�2), exactly as above. Putting the

two parts together shows that the expected modified reward is bounded by the right-hand

side of (15). The unmodified reward is smaller, hence (15).

Now suppose that (rn) is decreasing and satisfies
P

rn=n , 1. We split the sequence at

J and decompose it into rn ¼ rn1fn,Jg þ rn1fn>Jg. Since recursion (12) is linear, the

decomposition forces the representation of the solution to take the form, say, bn ¼ b9n þ b 0n.

Applying the renewal theorem, we get b9n ! ��1
PJ

n¼1 rnW (n)=n. As for the second part,

lim sup b 0n is estimated with the help of (15) and approaches zero when J ! 1, because

both rJ and the tail sum of the series vanish.

For an arbitrary sequence satisfying the condition of the proposition, splitting at J yields

one part converging to ��1
PJ

n¼1 rnW (n)=n and another part estimated by a solution with

reward sequence decreasing for n . J, thus going to 0 as J grows. h
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4. Asymptotics of moments

We are now in a position to improve on the asymptotics of an ¼ EKn. Recall that the

asymptotic expansion of the harmonic number starts with hn ¼ log nþ ªþ O(n�1).

Proposition 7. Suppose that ø is not supported by a geometric seqeunce and satisfies (4),

and that � , 1. Then

an ¼
log n

�
þ ª

�
þ bþ o(1),

where ª is the Euler constant and

b ¼ 1

�

ð1

0

log xø(dx) þ �

2�2
:

Proof. Writing an ¼ ��1hn þ bn, substituting this into (7) and using the summation formula

(8), we find that (bn) satisfies (11) with

rn ¼ 1 � 1

�W (n)

ð1

0

x

1
þ x2

2
þ . . . þ xn

n

� �
ø(dx),

which can also be written as

rnW (n) ¼ �
ð1

0

(1 � x)nø(dx) þ 1

�

ð1

0

xnþ1

nþ 1
þ xnþ2

nþ 1
þ . . .

� �
ø(dx):

Using monotone convergence and manipulating the series, we find that

X1
n¼1

rnW (n)

n�
¼ 1

�

ð1

0

log xø(dx) þ 1

2�2

ð1

0

(log(1 � x))2ø(dx) ¼ b:

Since W (n) ! 1 and rnW (n) is the difference between two terms which decrease in n,

application of Proposition 6 yields bn ! b. h

With no additional assumptions we will derive asymptotics of the variance vn ¼ var Kn.

The key issue is the asymptotic evaluation of the inhomogeneous term of the recursion.

Lemma 8. Under the assumptions of Proposition 7, the expectation an ¼ EKn satisfies

lim
n!1

2an � 1 � a2
n þ

Xn�1

m¼1

q(n, m)a2
n�m

 !
¼ �

�2
� 1:

Proof. For bn, rn having the same meaning as in Proposition 7, we have

bn ! b, W (n) ! 1, bn �
Xn
m¼1

q(n, m)bn�m ¼ rn,
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and integrating by parts yields

rnW (n) ¼ �n

ð1

0

ø[0, x](1 � x)n�1dxþ 1

�

ð1

0

ø[x, 1]xn

1 � x
dx:

Further useful estimates follow from the n ! 1 asymptoticsð1

0

xnø(dx) ¼ o
1

log n

� �
,

ð1

0

(1 � x)nø(dx) ¼ o
1

log n

� �
, rn ¼ o

1

log n

� �
: (17)

To justify the first relation, observe that integrability and monotonicity of log (1 � x) imply

that ø[x, 1] ¼ o(jlog(1 � x)j�1) for x " 1 (in fact, the relation is equivalent to the

integrability). Integrating by parts and using monotonicity, we haveð1

0

xnø(dx) ¼
ð1

0

nxn�1ø[x, 1]dx , const:

ð1

0

nxn�1jlog xj�1 dx,

and by a Tauberian argument this is o(jlog nj�1). The second relation follows in the same way

from ð1

0

(1 � x)nø(dx) ¼ n

ð1

0

(1 � x)n�1ø[0, x] dx , const:

ð1

0

n(1 � x)n�1jlog(1 � x)j�1 dx

and ø[0, x] ¼ o(jlog xj�1) for x # 0. The third relation follows from the first two.

Substituting an ¼ ��1hn þ bn and grouping terms, we have

2an � 1 � a2
n þ

Xn
m¼1

q(n, m)a2
n�m ¼ T1 þ T2 þ T3 � 1

with three terms to be evaluated:

T1 ¼ �b2
n þ

Xn
m¼1

q(n, m)b2
n�m,

T2 ¼ 2bn � 2bn
hn

�
� 2

�

Xn
m¼1

q(n, m)bn�mhn�m,

T3 ¼ 2hn

�
� h2

n

�2
þ 1

�2

Xn
m¼1

q(n, m)h2
n�m:

From bn ! b it is obvious that T1 ! 0 as n ! 1. To see that T2 also vanishes, write

bn�mhn�m ¼ bn�mhn þ (bn�m � b)(hn�m � hn) þ b(hn�m � hn);

then from (8) and (17) we obtain

Xn�1

m¼1

q(n, m)(hn�m � hn) ¼
1

W (n)

ð1

0

hnx
n �

Xn
j¼1

x j

j

 !
ø dx,

hence by (17) and Lemma 2,
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b
Xn
m¼1

q(n, m)hn�m � hn) ! �b�,

Xn
m¼1

q(n, m)(bn�m � b)(hn�m � hn) ! 0,

Xn
m¼1

q(n, m)bn�mhn ¼ (bn � rn)hn ¼ bnhn þ o(1),

which indeed implies T2 ! 0. To evaluate T3 we need a summation formula similar to (8),

but this time we should take a combinatorial analogue of log2 in place of log. To this end,

introduce

sn ¼
X

1<i< j<n

1

ij
,

then there is a summation formula

Xn�1

m¼0

n

m

� �
xm(1 � x)n�msn�m ¼ sn �

Xn
j¼1

x j

j
(hn � hj�1) (18)

where we recognize a partial sum of the Taylor series

1

2
(log(1 � x))2 ¼

X1
j¼1

x j

j
hj�1:

It follows that

Xn�1

m¼1

q(n, m)sn�m ¼ sn �
1

W (n)

ð1

0

Xn
j¼1

x j

j
(hn � hj�1)

 !
ø(dx),

and because h2
n differs from 2sn by the partial sum of a converging series,

h2
n ¼ 2sn �

Xn
j¼1

1

j2
,

we conclude that

Xn�1

m¼1

q(n, m)h2
n�m ¼ h2

n �
2

W (n)

ð1

0

Xn
j¼1

x j

j
(hn � hj�1)

 !
w(dt) þ o(1)

¼ h2
n �

2�hn
W (n)

þ �

W (n)
þ o(1) ¼ h2

n � 2�hn þ �þ o(1),
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where we have exploited monotone convergence and (17). Now it is easily seen that

T3 ! �=�2.

Putting the terms together, we arrive at T1 þ T2 þ T3 � 1 ! 1 � �=�2. h

Remark. The summation formula (18) implies an analogue of Lemma 2: for arbitrary

normalized weight ø, the square of logarithm is L2([0, 1], ø)-approximable by its Bernstein

polynomial.

Appealing to Corollary 4, we obtain the desired asymptotics of variance. Define

� 2 ¼ �� �2, that is, � 2 ¼
Ð

[0,1(z� �)2�(dz) is the variance of distribution �.

Proposition 9. Under the assumptions of Proposition 7,

var Kn �
� 2

�3
log n:

5. A central limit theorem

We turn next to the central limit theorem (CLT) for Kn. Neininger and Rüschendorf (2002)

derived a general CLT for solutions of equations such as (6) (with an error estimate in a

suitable probability metric). In our context, the assumptions of their Theorem 2.1 are easily

checked, with the only exception that their result requires some expansion

var Kn ¼ ��1 log nþ O((log n)1�E), which is not guaranteed by the integrability of

(log(1 � x))2 but rather relies on integrability of a higher power of the logarithm. We

shall see that in our situation no additional assumptions are necessary and the CLT follows

by a simple comparison with the number of renewals.

Given n, define a cell to be a component interval of [0, 1]nR containing at least one Ej,

j < n. Clearly, the total number of cells is Kn. Let Ln be the number of cells which have

left end-point smaller than log n, and let Rn be the number of renewals on [0, log n]

(including 0), that is Rn ¼ #(R \ [0, log n]). It is an easy matter to see that Ln < Rn and

Ln < Kn. Moreover, since ther expected number of order statistics that exceed log n is 1,

we have E(Kn � Ln) , 1.

Proposition 10. Under the assumptions of Proposition 7,

Kn � ��1 log n

(� 2��3 log n)1=2
(19)

converges weakly to the standard normal randon variable.

Proof. From Feller (1971, Section XI.5) we know that Rn is asymptotically normal with

expectation ��1 log n and variance � 2��3 log n, and from Feller (1971, Section XI.3) that

ERn ¼ ��1 log nþ �(2�2)�1 þ o(1). By asymptotics of moments (Propositions 7 and 9) and
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the above inequalities, the L1-distance between any two of the three random variables

(Kn � an)v
�1=2
n , (Ln � an)v

�1=2
n and (Rn � an)v

�1=2
n goes to zero. It follows that Ln and Kn are

also asymptotically normal. h

In fact, the renewal theorem, taken together with a Poisson limit for the number of Ejs

exceeding log n, implies weak convergence of Kn � Ln. Asymptotics of the expectation

involves the exponential integral function

I(z) ¼
ð1
z

e� y y�1 dy:

Proposition 11. We have

lim
n!1

E(Kn � Ln) ¼
ª

�
þ 1

�

ð1

0

log xø(dx) þ 1

�

ð1

0

I(x)ø(dx):

Proof. Recalling (16), using Poisson approximation and the renewal theorem, and changing

the variable of integration for � ¼ ne�z, we compute

E(Kn � Ln) ¼
1

�

ð1
log n

�n(z)dzþ o(1) ¼
ð1

0

e��
X1
m¼1

�mW (m)

m!

d�

��
þ o(1)

¼
ð1

0

ð1

0

1 � e�zx

�z
dzø(dx) þ o(1) ¼ ª

�
þ 1

�

ð1

0

log xø(dx) þ 1

�

ð1

0

I(x)ø(dx) þ o(1),

where we have also used

e��
X1
m¼1

�m(1 � (1 � x)m)

m!
¼ 1 � e��x

and the well-known formula ðx
0

1 � e� y

y
dy ¼ I(x) þ log xþ ª:

h

Now recalling

EKn ¼
log n

�
þ ª

�
þ 1

�

ð1

0

log xø(dx) þ �

2�2
þ o(1)

and comparing the expectations

ELn ¼
log n

�
þ �

2�2
� 1

�

ð1

0

I(x)ø(dx) þ o(1), ERn ¼
log n

�
þ �

2�2
þ o(1),

we not only confirm ‘by computation’ the inequality ELn < ERn (¼ U [0, log n]) but also

come to the conclusion that the number of interval components of [0, log n]nR which
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contain no Ejs, j < n, remains bounded as n ! 1. This conclusion is in good accord with

a general point that the composition Cn is a proper combinatorial analogue of the

regenerative set R, as in Gnedin (2003), Gnedin and Pitman (2003) and Gnedin et al.

(2003).
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