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THE BERRY-ESSEEN BOUND FOR CHARACTER RATIOS
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Abstract. Let λ be a partition of n chosen from the Plancherel measure
of the symmetric group Sn, let χλ(12) be the irreducible character of the
symmetric group parameterized by λ evaluated on the transposition (12), and
let dim(λ) be the dimension of the irreducible representation parameterized by

λ. Fulman recently obtained the convergence rate of O(n−s) for any 0 < s < 1
2

in the central limit theorem for character ratios (n−1)√
2

χλ(12)
dim(λ)

by developing a

connection between martingale and character ratios, and he conjectures that
the correct speed is O(n−1/2). In this paper we confirm the conjecture via a
refinement of Stein’s method for exchangeable pairs.

1. Introduction and main result

Let n ≥ 1, let λ = (λ1, λ2, · · · , λp) be a partition of n, i.e., λ1 +λ2 + · · ·+λp = n,
and write simply λ � n. Denote by dim(λ) the number of standard Young tableaux
associated with the shape λ. By the Robinson-Schensted-Knuth correspondence
[18], we have ∑

λ�n

dim(λ)2 = n!.

Thus we produce the so-called Plancherel measure

P ({λ}) =
dim(λ)2

n!
.

Recently there has been intensive interest in the statistical properties of partitions
chosen from the Plancherel measure. We refer the reader to the surveys by Al-
dous and Diaconis [1], Defit [4] and the seminal papers of Borodin, Okounkov and
Olshanski [2], Johansson [14], and Okounkov and Pandharipande [16] for details.

It turns out that the Plancherel measure can also be regarded as a probability
measure on the irreducible representation of the symmetric group Sn. Observe
that the irreducible representation of the symmetric group Sn is parameterized by
partitions λ of n and dim(λ) is just the corresponding dimension of the irreducible
representation.
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Let χλ(12) be the irreducible character parameterized by λ evaluated on the
transposition (12). The quantity χλ(12)

dim(λ) is called a character ratio and is crucial
for analyzing the convergence rate of the random walk on the symmetric group
generated by transpositions in Diaconis and Shahshahani [5]. In fact, Diaconis
and Shahshahani prove that the eigenvalues for this random walk are the character
ratios χλ(12)

dim(λ) , each occurring with multiplicity dim(λ)2. Character ratios also play
an essential role in work on the moduli spaces of curves; see Eskin and Okounkov
[6], Okounkov and Pandharipande [16].

Kerov [15] first studies the asymptotic behavior for character ratios and outlines
the proof of the following central limit theorem:

(n − 1)√
2

χλ(12)
dim(λ)

d−→ N(0, 1).

A full proof of the result appears in Ivanov and Olshanski [13]; see also Hora [12]
for another proof. A more probabilistic approach to Kerov’s central limit theorem
has recently been given by Fulman [7], in which a Stein’s method for exchangeable
pairs is used to obtain for all n ≥ 2, z ∈ R,

|P (
(n − 1)√

2
χλ(12)
dim(λ)

≤ z) − Φ(z)| ≤ 40.1n−1/4

where Φ(z) is the standard normal distribution function.
More recently Fulman [8] developed a connection between martingales and char-

acter ratios of the symmetric group, and thereby improved the above speed of
convergence to O(n−s) for any s < 1

2 . He also conjectured that the correct speed
is O(n−1/2).

The main aim of this note is to confirm the following conjecture.

Theorem 1.1. We have

(1.1) sup
z

|P (
(n − 1)√

2
χλ(12)
dim(λ)

≤ z) − Φ(z)| ≤ An−1/2

where A is an absolute constant.

The proof of Theorem 1.1 will be given in Section 2. The main technique is
a refinement of Stein’s method for exchangeable pairs (see Theorem 2.1 below).
Recall that two random variables W, W ∗ are called exchangeable if (W, W ∗) and
(W ∗, W ) have the same joint distribution function. In order to apply Stein’s ap-
proach for exchangeable pairs, one needs to construct a W ∗ such that (W, W ∗) is
exchangeable and the difference W − W ∗ is small. Fulman [7] uses the theory of
harmonic functions on Bratelli diagrams and shows how it can be applied to gen-
erate a natural exchangeable pair (W, W ∗). The basic idea is to use a reversible
Markov chain on the set of partitions of size n whose stationary distribution is the
Plancherel measure. Let λ∗ be obtained from λ by one step in the chain, and then
set (W, W ∗) = (W (λ), W ∗(λ)). This construction also has the merit of being appli-
cable to more general groups [9] and to measures arising from symmetric functions
[10].

In the setting of Theorem 1.1, we let W = (n−1)√
2

χλ(12)
dim(λ) . Let parents(λ, µ) denote

the set of partitions above both λ, µ in the Young lattice (this set has size 0 or 1
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unless λ = µ ), i.e.,

parents(λ, µ) = #{τ : λ ↗ τ, µ ↗ τ}.
Define

W ∗(λ) = W (λ∗)
where, given λ, the partition λ∗ is µ with probability

J(λ, µ) =
dim(µ)|parents(λ, µ)|

(n + 1) dim(λ)
.

Then it follows from Proposition 2.1 of Fulman [7] that (W, W ∗) is an exchangeable
pair.

2. Proof

The proof is based on the following refinement of Stein’s result [20] for exchange-
able pairs.

Theorem 2.1. Let (W, W ∗) be an exchangeable pair of real-valued random variables
such that

(2.2) EW (W ∗) = (1 − τ )W

with 0 < τ < 1, where EW (W ∗) denotes the conditional expected value of W ∗ given
W . Assume E(W 2) ≤ 1. Then for any a > 0,

sup
z

|P (W ≤ z) − Φ(z)|

≤
√

E
(
1 − 1

2τ
EW (∆2)

)2

+
0.41a3

τ
+ 1.5a +

1
2τ

E∆2I{|∆|≥a},(2.3)

where ∆ = W − W ∗.

If ∆ is bounded, say |∆| ≤ a0 for a constant a0, then (2.3) reduces to

sup
z

|P (W ≤ z) − Φ(z)| ≤
√

E
(
1 − 1

2τ
EW (∆2)

)2

+
0.41a3

0

τ
+ 1.5a0.

Similar results for the bounded case were obtained by Rinott and Rotar [17] and
Rinott and Goldstein [11].

Theorem 1.1 is an easy consequence of Theorem 2.1.

Proof of Theorem 1.1. By [7], we can choose

τ =
2

n + 1
,

√
E

(
1 − 1

2τ
EW (∆2)

)2

≤
√

3
2n1/2

.

Let a = 4e
√

2n−1/2. Then, by the proof of Proposition 4.6 in [7],

E∆2I{|∆|>a} ≤ 8P (|∆| > a)

≤ 8P (max(λ1, λ
′
1) > 2e

√
n)

≤ 16e−2e
√

n,

and hence
1
2τ

E∆2I{|∆|>a} ≤ 4(n + 1)e−2e
√

n

≤ n−1/24(n + 1)3/2e−2e
√

n

≤ 0.05n−1/2.
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Therefore, by Theorem 2.1,

sup
z

|P (W ≤ z) − Φ(z)|

≤
√

3
2n1/2

+ 0.205(n + 1)(4e
√

2)3n−3/2 + 4e
√

2n−1/2 + 0.05n−1/2

≤ An−1/2,

where A is an absolute constant. �

We remark that if one uses

P (λ1 ≥ k) ≤
(

n

k

)
/k!

for 1 ≤ k ≤ n (see Lemma 1.4.1 in [19]) and chooses a = δn−1/2 with δ > 0
properly, then the constant A can be reduced to 150.

Now we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. For any measurable function f with E{(|W |+ 1)|f(W )|} <
∞, exchangeability and (2.2) imply

0 = E{(W − W ∗)(f(W ) + f(W ∗))}
= 2E{f(W )(W − W ∗)} + E{(W − W ∗)(f(W ∗) − f(W ))}
= 2τE{Wf(W )} − E{(W − W ∗)(f(W ) − f(W ∗))},

and hence

(2.4) E{Wf(W )} =
1
2τ

E{(W − W ∗)(f(W ) − f(W ∗))}.

Now let f = fz be the solution of the following Stein equation:

(2.5) f ′
z(x) − xfz(x) = I{x≤z} − Φ(z).

It is known (see [20, p.22]) that f is given by

fz(x) =

⎧⎪⎪⎨
⎪⎪⎩

√
2πex2/2Φ(x)[1 − Φ(z)] if x ≤ z,

√
2πex2/2Φ(z)[1 − Φ(x)] if x ≥ z,

satisfying

|xfz(x)| ≤ 1, 0 < fz(x) ≤
√

2π/4,(2.6)

|f ′
z(x)| ≤ 1, |f ′

z(x) − f ′
z(y)| ≤ 1,(2.7)

|(x + u)fz(x + u) − xfz(x)| ≤ (|x| +
√

2π/4)|u|(2.8)

for all real x, y, and u. For the proofs of the above inequalities, we refer to [20,
p.23] for (2.6) and the first inequality of (2.7), and to Chen and Shao [3] for the
second inequality of (2.7). (2.8) is a consequence of (2.6), (2.7) and the mean value
theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE BERRY-ESSEEN BOUND FOR CHARACTER RATIOS 2157

By (2.5), we have

P (W ≤ z) − Φ(z) = Ef ′
z(W ) − EWfz(W )

= Ef ′
z(W ) − 1

2τ
E{(W − W ∗)(fz(W ) − fz(W ∗))}

= E
{
f ′

z(W )
(
1 − 1

2τ
∆2

)}

− 1
2τ

E{∆(fz(W ) − fz(W − ∆) − ∆f ′
z(W ))}

:= J1 + J2.(2.9)

It follows from (2.6) that

|J1| = |E
{
f ′

z(W )
(
1 − 1

2τ
EW (∆2)

)}
|

≤ E|1 − 1
2τ

EW (∆2)|

≤
√

E
(
1 − 1

2τ
EW (∆2)

)2

.(2.10)

To bound J2, write

E{∆(fz(W ) − fz(W − ∆) − ∆f ′
z(W ))}

= E
{
∆

∫ 0

−∆

(f ′
z(W + t) − f ′

z(W ))dt
}

= E
{
∆I{|∆|>a}

∫ 0

−∆

(f ′
z(W + t) − f ′

z(W ))dt
}

+E
{
∆I{|∆|≤a}

∫ 0

−∆

(f ′
z(W + t) − f ′

z(W ))dt
}

:= J2,1 + J2,2.(2.11)

By (2.7),

(2.12) |J2,1| ≤ E∆2I{|∆|>a}.

Using (2.5) again, we have

J2,2 = E
{
∆I{|∆|≤a}

∫ 0

−∆

((W + t)fz(W + t) − Wfz(W ))dt
}

+E
{
∆I{|∆|≤a}

∫ 0

−∆

(I{W+t≤z} − I{W≤z})dt
}

:= J2,2,1 + J2,2,2.(2.13)

By (2.8),

|J2,2,1| ≤ E
{
∆I{|∆|≤a}

∫ 0

−∆

(|W | +
√

2π/4)|t|dt
}

≤ E
{
0.5|∆|3I{|∆|≤a}(|W | +

√
2π/4)

}

≤ 0.5a3(
√

2π/4 + E|W |)
≤ 0.5a3(

√
2π/4 + 1) ≤ 0.82a3.(2.14)
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As for J2,2,2, observe that

J2,2,2 ≤ E
{
∆I{0≤∆≤a}

∫ 0

−∆

I{z≤W≤z−t}dt
}

≤ E
(
∆2I{0≤∆≤a}I{z≤W≤z+a}

)
≤ 3aτ,(2.15)

where in the last inequality we used the concentration inequality in Lemma 2.1
below.

Similarly, we have
J2,2,2 ≥ −3aτ.

This proves Theorem 2.1. �
Lemma 2.1. Under the assumption of Theorem 2.1, we have

(2.16) E
(
∆2I{0≤∆≤a}I{z≤W≤z+a}

)
≤ 3aτ

for a > 0.

Proof. Let

f(x) =

⎧⎨
⎩

−1.5a for x ≤ z − a,
x − z − a/2 for z − a ≤ x ≤ z + 2a,
1.5a for x ≥ z + 2a.

By (2.4),

3aτ ≥ 2τE(Wf(W ))
= E{(W − W ∗)(f(W ) − f(W ∗))}

= E
{
∆

∫ 0

−∆

f ′(W + t)dt
}

≥ E
{
∆

∫ 0

−∆

I{|t|≤a}I{z≤W≤z+a}f
′(W + t)dt

}

= E
(
|∆|min(a, |∆|)I{z≤W≤z+a}

)

≥ E
(
∆2I{0≤∆≤a}I{z≤W≤z+a}

)
as desired. �
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