THE BERRY-ESSEEN BOUND FOR CHARACTER RATIOS

QI-MAN SHAO AND ZHONG-GEN SU
(Communicated by Richard C. Bradley)

Abstract

Let λ be a partition of n chosen from the Plancherel measure of the symmetric group S_{n}, let $\chi^{\lambda}(12)$ be the irreducible character of the symmetric group parameterized by λ evaluated on the transposition (12), and let $\operatorname{dim}(\lambda)$ be the dimension of the irreducible representation parameterized by λ. Fulman recently obtained the convergence rate of $O\left(n^{-s}\right)$ for any $0<s<\frac{1}{2}$ in the central limit theorem for character ratios $\frac{(n-1)}{\sqrt{2}} \frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)}$ by developing a connection between martingale and character ratios, and he conjectures that the correct speed is $O\left(n^{-1 / 2}\right)$. In this paper we confirm the conjecture via a refinement of Stein's method for exchangeable pairs.

1. Introduction and main result

Let $n \geq 1$, let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{p}\right)$ be a partition of n, i.e., $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{p}=n$, and write simply $\lambda \vdash n$. Denote by $\operatorname{dim}(\lambda)$ the number of standard Young tableaux associated with the shape λ. By the Robinson-Schensted-Knuth correspondence [18], we have

$$
\sum_{\lambda \vdash n} \operatorname{dim}(\lambda)^{2}=n!.
$$

Thus we produce the so-called Plancherel measure

$$
P(\{\lambda\})=\frac{\operatorname{dim}(\lambda)^{2}}{n!}
$$

Recently there has been intensive interest in the statistical properties of partitions chosen from the Plancherel measure. We refer the reader to the surveys by Aldous and Diaconis [1], Defit [4] and the seminal papers of Borodin, Okounkov and Olshanski [2, Johansson [14], and Okounkov and Pandharipande [16] for details.

It turns out that the Plancherel measure can also be regarded as a probability measure on the irreducible representation of the symmetric group S_{n}. Observe that the irreducible representation of the symmetric group S_{n} is parameterized by partitions λ of n and $\operatorname{dim}(\lambda)$ is just the corresponding dimension of the irreducible representation.

[^0]Let $\chi^{\lambda}(12)$ be the irreducible character parameterized by λ evaluated on the transposition (12). The quantity $\frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)}$ is called a character ratio and is crucial for analyzing the convergence rate of the random walk on the symmetric group generated by transpositions in Diaconis and Shahshahani [5]. In fact, Diaconis and Shahshahani prove that the eigenvalues for this random walk are the character ratios $\frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)}$, each occurring with multiplicity $\operatorname{dim}(\lambda)^{2}$. Character ratios also play an essential role in work on the moduli spaces of curves; see Eskin and Okounkov [6], Okounkov and Pandharipande [16].

Kerov [15] first studies the asymptotic behavior for character ratios and outlines the proof of the following central limit theorem:

$$
\frac{(n-1)}{\sqrt{2}} \frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)} \xrightarrow{d} N(0,1)
$$

A full proof of the result appears in Ivanov and Olshanski [13] ; see also Hora 12 for another proof. A more probabilistic approach to Kerov's central limit theorem has recently been given by Fulman [7], in which a Stein's method for exchangeable pairs is used to obtain for all $n \geq 2, z \in R$,

$$
\left|P\left(\frac{(n-1)}{\sqrt{2}} \frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)} \leq z\right)-\Phi(z)\right| \leq 40.1 n^{-1 / 4}
$$

where $\Phi(z)$ is the standard normal distribution function.
More recently Fulman [8] developed a connection between martingales and character ratios of the symmetric group, and thereby improved the above speed of convergence to $O\left(n^{-s}\right)$ for any $s<\frac{1}{2}$. He also conjectured that the correct speed is $O\left(n^{-1 / 2}\right)$.

The main aim of this note is to confirm the following conjecture.
Theorem 1.1. We have

$$
\begin{equation*}
\sup _{z}\left|P\left(\frac{(n-1)}{\sqrt{2}} \frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)} \leq z\right)-\Phi(z)\right| \leq A n^{-1 / 2} \tag{1.1}
\end{equation*}
$$

where A is an absolute constant.
The proof of Theorem 1.1 will be given in Section 2. The main technique is a refinement of Stein's method for exchangeable pairs (see Theorem 2.1 below). Recall that two random variables W, W^{*} are called exchangeable if (W, W^{*}) and $\left(W^{*}, W\right)$ have the same joint distribution function. In order to apply Stein's approach for exchangeable pairs, one needs to construct a W^{*} such that $\left(W, W^{*}\right)$ is exchangeable and the difference $W-W^{*}$ is small. Fulman [7] uses the theory of harmonic functions on Bratelli diagrams and shows how it can be applied to generate a natural exchangeable pair (W, W^{*}). The basic idea is to use a reversible Markov chain on the set of partitions of size n whose stationary distribution is the Plancherel measure. Let λ^{*} be obtained from λ by one step in the chain, and then set $\left(W, W^{*}\right)=\left(W(\lambda), W^{*}(\lambda)\right)$. This construction also has the merit of being applicable to more general groups [9] and to measures arising from symmetric functions 10.

In the setting of Theorem 1.1, we let $W=\frac{(n-1)}{\sqrt{2}} \frac{\chi^{\lambda}(12)}{\operatorname{dim}(\lambda)}$. Let parents (λ, μ) denote the set of partitions above both λ, μ in the Young lattice (this set has size 0 or 1
unless $\lambda=\mu$), i.e.,

$$
\operatorname{parents}(\lambda, \mu)=\#\{\tau: \lambda \nearrow \tau, \mu \nearrow \tau\}
$$

Define

$$
W^{*}(\lambda)=W\left(\lambda^{*}\right)
$$

where, given λ, the partition λ^{*} is μ with probability

$$
J(\lambda, \mu)=\frac{\operatorname{dim}(\mu)|\operatorname{parents}(\lambda, \mu)|}{(n+1) \operatorname{dim}(\lambda)}
$$

Then it follows from Proposition 2.1 of Fulman [7] that $\left(W, W^{*}\right)$ is an exchangeable pair.

2. Proof

The proof is based on the following refinement of Stein's result [20] for exchangeable pairs.
Theorem 2.1. Let $\left(W, W^{*}\right)$ be an exchangeable pair of real-valued random variables such that

$$
\begin{equation*}
E^{W}\left(W^{*}\right)=(1-\tau) W \tag{2.2}
\end{equation*}
$$

with $0<\tau<1$, where $E^{W}\left(W^{*}\right)$ denotes the conditional expected value of W^{*} given W. Assume $E\left(W^{2}\right) \leq 1$. Then for any $a>0$,

$$
\begin{align*}
& \sup _{z}|P(W \leq z)-\Phi(z)| \\
& \quad \leq \sqrt{E\left(1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right)^{2}}+\frac{0.41 a^{3}}{\tau}+1.5 a+\frac{1}{2 \tau} E \Delta^{2} I_{\{|\Delta| \geq a\}} \tag{2.3}
\end{align*}
$$

where $\Delta=W-W^{*}$.
If Δ is bounded, say $|\Delta| \leq a_{0}$ for a constant a_{0}, then (2.3) reduces to

$$
\sup _{z}|P(W \leq z)-\Phi(z)| \leq \sqrt{E\left(1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right)^{2}}+\frac{0.41 a_{0}^{3}}{\tau}+1.5 a_{0}
$$

Similar results for the bounded case were obtained by Rinott and Rotar [17] and Rinott and Goldstein [11.

Theorem 1.1 is an easy consequence of Theorem 2.1.
Proof of Theorem 1.1. By [7, we can choose

$$
\tau=\frac{2}{n+1}, \quad \sqrt{E\left(1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right)^{2}} \leq \frac{\sqrt{3}}{2 n^{1 / 2}}
$$

Let $a=4 e \sqrt{2} n^{-1 / 2}$. Then, by the proof of Proposition 4.6 in [7,

$$
\begin{aligned}
E \Delta^{2} I_{\{|\Delta|>a\}} & \leq 8 P(|\Delta|>a) \\
& \leq 8 P\left(\max \left(\lambda_{1}, \lambda_{1}^{\prime}\right)>2 e \sqrt{n}\right) \\
& \leq 16 e^{-2 e \sqrt{n}}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\frac{1}{2 \tau} E \Delta^{2} I_{\{|\Delta|>a\}} & \leq 4(n+1) e^{-2 e \sqrt{n}} \\
& \leq n^{-1 / 2} 4(n+1)^{3 / 2} e^{-2 e \sqrt{n}} \\
& \leq 0.05 n^{-1 / 2}
\end{aligned}
$$

Therefore, by Theorem 2.1.

$$
\begin{aligned}
& \sup _{z}|P(W \leq z)-\Phi(z)| \\
& \quad \leq \frac{\sqrt{3}}{2 n^{1 / 2}}+0.205(n+1)(4 e \sqrt{2})^{3} n^{-3 / 2}+4 e \sqrt{2} n^{-1 / 2}+0.05 n^{-1 / 2} \\
& \leq A n^{-1 / 2}
\end{aligned}
$$

where A is an absolute constant.

We remark that if one uses

$$
P\left(\lambda_{1} \geq k\right) \leq\binom{ n}{k} / k!
$$

for $1 \leq k \leq n$ (see Lemma 1.4.1 in [19]) and chooses $a=\delta n^{-1 / 2}$ with $\delta>0$ properly, then the constant A can be reduced to 150 .

Now we turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. For any measurable function f with $E\{(|W|+1)|f(W)|\}<$ ∞, exchangeability and (2.2) imply

$$
\begin{aligned}
0 & =E\left\{\left(W-W^{*}\right)\left(f(W)+f\left(W^{*}\right)\right)\right\} \\
& =2 E\left\{f(W)\left(W-W^{*}\right)\right\}+E\left\{\left(W-W^{*}\right)\left(f\left(W^{*}\right)-f(W)\right)\right\} \\
& =2 \tau E\{W f(W)\}-E\left\{\left(W-W^{*}\right)\left(f(W)-f\left(W^{*}\right)\right)\right\},
\end{aligned}
$$

and hence

$$
\begin{equation*}
E\{W f(W)\}=\frac{1}{2 \tau} E\left\{\left(W-W^{*}\right)\left(f(W)-f\left(W^{*}\right)\right)\right\} \tag{2.4}
\end{equation*}
$$

Now let $f=f_{z}$ be the solution of the following Stein equation:

$$
\begin{equation*}
f_{z}^{\prime}(x)-x f_{z}(x)=I_{\{x \leq z\}}-\Phi(z) \tag{2.5}
\end{equation*}
$$

It is known (see [20, p.22]) that f is given by

$$
f_{z}(x)= \begin{cases}\sqrt{2 \pi} e^{x^{2} / 2} \Phi(x)[1-\Phi(z)] & \text { if } x \leq z \\ \sqrt{2 \pi} e^{x^{2} / 2} \Phi(z)[1-\Phi(x)] & \text { if } x \geq z\end{cases}
$$

satisfying

$$
\begin{gather*}
\left|x f_{z}(x)\right| \leq 1,0<f_{z}(x) \leq \sqrt{2 \pi} / 4 \tag{2.6}\\
\left|f_{z}^{\prime}(x)\right| \leq 1,\left|f_{z}^{\prime}(x)-f_{z}^{\prime}(y)\right| \leq 1 \tag{2.7}\\
\left|(x+u) f_{z}(x+u)-x f_{z}(x)\right| \leq(|x|+\sqrt{2 \pi} / 4)|u| \tag{2.8}
\end{gather*}
$$

for all real x, y, and u. For the proofs of the above inequalities, we refer to [20, p.23] for (2.6) and the first inequality of (2.7), and to Chen and Shao [3] for the second inequality of (2.7). (2.8) is a consequence of (2.6), (2.7) and the mean value theorem.

By (2.5), we have

$$
\begin{align*}
P(W \leq z)-\Phi(z)= & E f_{z}^{\prime}(W)-E W f_{z}(W) \\
= & E f_{z}^{\prime}(W)-\frac{1}{2 \tau} E\left\{\left(W-W^{*}\right)\left(f_{z}(W)-f_{z}\left(W^{*}\right)\right)\right\} \\
= & E\left\{f_{z}^{\prime}(W)\left(1-\frac{1}{2 \tau} \Delta^{2}\right)\right\} \\
& -\frac{1}{2 \tau} E\left\{\Delta\left(f_{z}(W)-f_{z}(W-\Delta)-\Delta f_{z}^{\prime}(W)\right)\right\} \\
:= & J_{1}+J_{2} . \tag{2.9}
\end{align*}
$$

It follows from (2.6) that

$$
\begin{align*}
\left|J_{1}\right| & =\left|E\left\{f_{z}^{\prime}(W)\left(1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right)\right\}\right| \\
& \leq E\left|1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right| \\
& \leq \sqrt{E\left(1-\frac{1}{2 \tau} E^{W}\left(\Delta^{2}\right)\right)^{2}} \tag{2.10}
\end{align*}
$$

To bound J_{2}, write

$$
\begin{align*}
E\{ & \left.\Delta\left(f_{z}(W)-f_{z}(W-\Delta)-\Delta f_{z}^{\prime}(W)\right)\right\} \\
= & E\left\{\Delta \int_{-\Delta}^{0}\left(f_{z}^{\prime}(W+t)-f_{z}^{\prime}(W)\right) d t\right\} \\
= & E\left\{\Delta I_{\{|\Delta|>a\}} \int_{-\Delta}^{0}\left(f_{z}^{\prime}(W+t)-f_{z}^{\prime}(W)\right) d t\right\} \\
& +E\left\{\Delta I_{\{|\Delta| \leq a\}} \int_{-\Delta}^{0}\left(f_{z}^{\prime}(W+t)-f_{z}^{\prime}(W)\right) d t\right\} \\
:= & J_{2,1}+J_{2,2} . \tag{2.11}
\end{align*}
$$

By (2.7),

$$
\begin{equation*}
\left|J_{2,1}\right| \leq E \Delta^{2} I_{\{|\Delta|>a\}} \tag{2.12}
\end{equation*}
$$

Using (2.5) again, we have

$$
\begin{align*}
J_{2,2}= & E\left\{\Delta I_{\{|\Delta| \leq a\}} \int_{-\Delta}^{0}\left((W+t) f_{z}(W+t)-W f_{z}(W)\right) d t\right\} \\
& +E\left\{\Delta I_{\{|\Delta| \leq a\}} \int_{-\Delta}^{0}\left(I_{\{W+t \leq z\}}-I_{\{W \leq z\}}\right) d t\right\} \\
:= & J_{2,2,1}+J_{2,2,2} \tag{2.13}
\end{align*}
$$

By (2.8),

$$
\begin{align*}
\left|J_{2,2,1}\right| & \leq E\left\{\Delta I_{\{|\Delta| \leq a\}} \int_{-\Delta}^{0}(|W|+\sqrt{2 \pi} / 4)|t| d t\right\} \\
& \leq E\left\{0.5|\Delta|^{3} I_{\{|\Delta| \leq a\}}(|W|+\sqrt{2 \pi} / 4)\right\} \\
& \leq 0.5 a^{3}(\sqrt{2 \pi} / 4+E|W|) \\
& \leq 0.5 a^{3}(\sqrt{2 \pi} / 4+1) \leq 0.82 a^{3} . \tag{2.14}
\end{align*}
$$

As for $J_{2,2,2}$, observe that

$$
\begin{align*}
J_{2,2,2} & \leq E\left\{\Delta I_{\{0 \leq \Delta \leq a\}} \int_{-\Delta}^{0} I_{\{z \leq W \leq z-t\}} d t\right\} \\
& \leq E\left(\Delta^{2} I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}}\right) \\
& \leq 3 a \tau \tag{2.15}
\end{align*}
$$

where in the last inequality we used the concentration inequality in Lemma 2.1 below.

Similarly, we have

$$
J_{2,2,2} \geq-3 a \tau
$$

This proves Theorem 2.1.
Lemma 2.1. Under the assumption of Theorem 2.1, we have

$$
\begin{equation*}
E\left(\Delta^{2} I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}}\right) \leq 3 a \tau \tag{2.16}
\end{equation*}
$$

for $a>0$.
Proof. Let

$$
f(x)= \begin{cases}-1.5 a & \text { for } x \leq z-a \\ x-z-a / 2 & \text { for } z-a \leq x \leq z+2 a \\ 1.5 a & \text { for } x \geq z+2 a\end{cases}
$$

By (2.4),

$$
\begin{aligned}
3 a \tau & \geq 2 \tau E(W f(W)) \\
& =E\left\{\left(W-W^{*}\right)\left(f(W)-f\left(W^{*}\right)\right)\right\} \\
& =E\left\{\Delta \int_{-\Delta}^{0} f^{\prime}(W+t) d t\right\} \\
& \geq E\left\{\Delta \int_{-\Delta}^{0} I_{\{|t| \leq a\}} I_{\{z \leq W \leq z+a\}} f^{\prime}(W+t) d t\right\} \\
& =E\left(|\Delta| \min (a,|\Delta|) I_{\{z \leq W \leq z+a\}}\right) \\
& \geq E\left(\Delta^{2} I_{\{0 \leq \Delta \leq a\}} I_{\{z \leq W \leq z+a\}}\right)
\end{aligned}
$$

as desired.

References

[1] Aldous, D. and Diaconis, P. (1999) Longest increasing subsequences: from patient sorting to Baik-Defit-Johansson theorem. Bull. AMS (N.S.) 36, 413-432. MR1694204(2000g:60013)
[2] Borodin, A., Okounkov, A. and Olshanski, G. (2000). Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13, 481-515. MR.1758751 (2001g:05103)
[3] Chen, L.H.Y. and Shao, Q.M. (2001). A non-uniform Berry-Esseen bound via Stein's method. Probab. Theory Related Fields 120, 236-254. MR1841329 (2002h:60037)
[4] Defit, P. (2000). Integrable systems and combinatorial theory. Notices Amer. Math. Soc. 47, 631-640. MR 1764262 (2001g:05012)
[5] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z.Wahr. Verw. Gebiete 57, 159-179. MR.0626813 (82h:60024)
[6] Eskin, A. and Okounkov, A. (2001). Asymptotics of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials. Invent. Math. 145, 59-103. MR 1839286 (2002g:32018)
[7] Fulman, J. (2005). Stein's method and Plancherel measure of the symmetric group. Trans. AMS 357, 555-570.
[8] Fulman, J. (2004). Martingales and character ratios, preprint.
[9] Fulman, J. (2004). Card shuffling and the decomposition of tensor products.Pacific J. Math. 217 (2004), no. 2, 247-262. MR2109933
[10] Fulman, J. (2004). Stein's method, Jack measure and the metropolis algorithm, J. Combin. Theory, A. 108 (2004), no. 2, 275-296. MR 2098845
[11] Goldstein, L. and Rinott, Y. (1996). Multivariate normal approximations by Stein's method and size bias couplings. J. Appl. Probab. 33, 1-17. MR1371949 (97d:60038)
[12] Hora, A.(1998). Central limit thorem for the adjacency operators on the infinite symmetric group. Comm. Math. Phys. 195, 405-416. MR 1637801 (99i:46058)
[13] Ivanov, V. and Olshanski, G. (2002). Kerov's central limit theorem for the Plancherel measure on Young diagrams. Symmetric Functions 2001: Surveys of developments and perspectives, Kluwer Academic Publishers, Dordrecht. MR2059361 (2005d:05148)
[14] Johansson, K. (2001). Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. 153, 259-296. MR1826414 (2002g:05188)
[15] Kerov, S. V. (1993). Gaussian limit for the Plancherel measure of the symmetric group. Compt. Rend. Acad. Sci. Paris I, 303-308. MR1204294 (93k:20106)
[16] Okounkov, A. and Pandharipande, R. Gromov-Witten theory, Hurwitz numbers, and matrix models I, preprint.
[17] Rinott, Y. and Rotar, V. (1997). On coupling constructions and rates in the CLT for dependent summands with applications to the antivoter model and weighted U-statistics. Ann. Appl. Probab. 7, 1080-1105. MR1484798 (99g:60050)
[18] Sagan, B. (1991). The symmetric group. Representations, combinatorial algorithms, and symmetric functions. Springer-Verlag.
[19] Steele, J.M. (1997). Probability Theory and Combinatorial Optimization. Society for Industrial and Applied Mathematics, Philadelphia. MR 1422018 (99d:60002)
[20] Stein, C. (1986). Approximate computation of expectations. Institute of Mathematical Statistics, Lect. Notes 7. MR0882007(88j:60055)

Department of Mathematics, University of Oregon, Eugene, Oregon 97403 - and Department of Mathematics, Department of Statistics and Applied Probability, National University of Singapore

E-mail address: qmshao@darkwing.uoregon.edu
Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China

[^0]: Received by the editors September 28, 2004 and, in revised form, February 4, 2005.
 2000 Mathematics Subject Classification. Primary 60F05; Secondary 05E10, 60C05.
 Key words and phrases. Berry-Esseen bound, character ratio, Plancherel measure, Stein's method.

 The first author was supported in part by Grant R-1555-000-035-112 at the National University of Singapore.

 The second author was supported in part by NFS of China (No. 10371109).

