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Abstract. For all natural numbers n, let n!! denote a double factorial. Then

1√
π
(
n+ 4

π
− 1
) ≤ (2n− 1)!!

(2n)!!
<

1√
π
(
n+ 1

4

) .
The constants 4

π
− 1 and 1

4
are the best possible. From this, the well-known

Wallis’ inequality is improved.

1. Introduction

A double factorial n!! can be defined by

(2m)!! =
m∏
i=1

(2i) and (2m− 1)!! =
m∏
i=1

(2i− 1)

for any given positive integer m. Let

(1) Pn =
(2n− 1)!!

(2n)!!
.

Then we have

(2)
1

2
√
n
<

√
2√

(2n+ 1)π
< Pn <

2√
(4n+ 1)π

<
1√

3n+ 1
<

1√
2n+ 1

<
1√
2n

for n > 1. The inequality (2) is called Wallis’ inequality in [18, p. 103].
The lower and upper bounds of Pn in (2) are frequently cited and applied by

mathematicians. The smallest upper bound 2√
(4n+1)π

and the largest lower bound
√

2√
(2n+1)π

in (2), that is, the inequalities

(3)
√

2√
(2n+ 1)π

< Pn <
2√

(4n+ 1)π
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are obtained by N. D. Kazarinoff. See [16, pp. 47–48 and pp. 65–67]. We can
rewrite inequality (3) as

(4)
1√

π
(
n+ 1

2

) < Pn <
1√

π
(
n+ 1

4

)
for n ∈ N.

The important use of formula (4) is to give a particular case of Wallis’ formula
(see [4, p. 259]) by taking x = π

2 in (6):

(5)
π

2
= lim

n→∞

[(2n)!!]2

[(2n− 1)!!]2(2n+ 1)
=
∞∏
n=1

[
(2n)2

(2n− 1)(2n+ 1)

]
.

The Wallis formula follows originally from the infinite product representation of the
sine (see [12, 23]):

(6) sinx = x

∞∏
n=1

(
1− x2

π2n2

)
.

The Wallis formula can also be expressed as

(7)
π

2
=
[
4ζ(0)e−ζ

′(0)
]2;

see [12], where ζ is the Riemann zeta function [11].
A derivation of the Wallis formula from ζ′(0) using the Hadamard product [10]

for the Riemann zeta function ζ(s) due to Y. L. Yung can be found in [12]. The
Wallis formula can also be reversed to derive ζ′(0) from the Wallis formula without
using the Hadamard product [22].

It is noted that Wallis’s sine (cosine) formula [13, 14] is as follows:

(8)
∫ π

2

0

sinn xdx =
∫ π

2

0

cosn xdx =
√
π Γ(n+1

2 )
nΓ(n2 )

=

{
π
2 ·

(n−1)!!
n!! for n even,

(n−1)!!
n!! for n odd,

where Γ is a gamma function.
An inequality involving the term Pn is obtained by the second author and cowork-

ers in [21] by using Tchebysheff’s integral inequality.
It is well known that factorials and their “continuous” extension play an eminent

role, for instance, in combinatorics, graph theory, and special functions.
For more information on the Wallis formula, please refer to [1, p. 258], [5, 6, 7],

[8, pp. 17–28], [15, p. 468], [17, pp. 63–64], and the references therein.
In this article, we will refine inequality (4). More precisely, we will ask for two

best possible constants A and B such that the double inequality

(9)
1√

π(n+A)
≤ Pn ≤

1√
π(n+B)

holds for all natural number n. In other words, the constants A = 4
π −1 and B = 1

4
cannot be replaced by smaller and larger numbers, respectively, in (9).

2. Lemmas

Lemma 1. For x > 0, we have

2x+ 1
x(4x+ 1)

<
Γ′
(
x+ 1

2

)
Γ
(
x+ 1

2

) − Γ′(x)
Γ(x)

,(10)
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xb−a
Γ(x+ a)
Γ(x+ b)

= 1 +
(a− b)(a+ b− 1)

2x
+O

(
1
x2

)
, x→∞.(11)

The proof of inequality (10) is given in [2, 3, 19], and the proof of the asymptotic
expansion (11) can be found in [9] and [20, p. 378]. See also [1, p. 257].

Remark 1. Replacing x by x+ 1
2 in (10) yields

(12)
4x+ 4

(2x+ 1)(4x+ 3)
<

Γ′(x+ 1)
Γ(x+ 1)

−
Γ′
(
x+ 1

2

)
Γ
(
x+ 1

2

) .
Lemma 2. For x > 0, we have

(13)
Γ(x+ 1)
Γ
(
x+ 1

2

) < 2x+ 1√
4x+ 3

.

Proof. Define for a positive real number x,

f(x) = ln(2x+ 1)− 1
2

ln(4x+ 3)− ln Γ(x+ 1) + ln Γ
(
x+

1
2

)
.

Differentiating f(x) gives us

f ′(x) =
2

2x+ 1
− 2

4x+ 3
−
[

Γ′(x + 1)
Γ(x+ 1)

−
Γ′
(
x+ 1

2

)
Γ
(
x+ 1

2

) ].
Utilizing (12), we obtain

f ′(x) >
2

2x+ 1
− 2

4x+ 3
− 4x+ 4

(2x+ 1)(4x+ 3)
= 0.

Therefore, f(x) is strictly increasing in (0,∞), and

f(x) > f(0) =
1
2

ln
π

3
> 0,

which leads to inequality (13). �

Corollary 1. For all natural numbers n, we have

(14)
Γ(n+ 1)
Γ
(
n+ 1

2

) < 2n+ 1√
4n+ 3

.

Corollary 2. The sequence

(15) {Qn}∞n=1 ,
{[

Γ(n+ 1)
Γ
(
n+ 1

2

)]2

− n
}∞
n=1

is strictly decreasing.

Proof. The inequality Qn+1 < Qn is equivalent to[
Γ(n+ 2)
Γ
(
n+ 3

2

)]2

− (n+ 1) <
[

Γ(n+ 1)
Γ
(
n+ 1

2

)]2

− n,

which can be rewritten by using Γ(x+ 1) = xΓ(x) as[
n+ 1
n+ 1

2

· Γ(n+ 1)
Γ
(
n+ 1

2

)]2

− 1 <
[

Γ(n+ 1)
Γ
(
n+ 1

2

)]2

,[
(n+ 1)2(
n+ 1

2

)2 − 1
][

Γ(n+ 1)
Γ
(
n+ 1

2

)]2

< 1,
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Γ(n+ 1)
Γ
(
n+ 1

2

)]2

<

(
n+ 1

2

)2
(n+ 1)2 −

(
n+ 1

2

)2 ,
Γ(n+ 1)
Γ
(
n+ 1

2

) < 2n+ 1√
4n+ 3

,

which is a special case of inequality (14) by taking x = n. Therefore, the proof of
monotonicity follows. �

3. Main results

Now we give the main results of this paper.

Theorem 1. For all natural numbers n, we have

(16)
1√

π
(
n+ 4

π − 1
) ≤ (2n− 1)!!

(2n)!!
<

1√
π
(
n+ 1

4

) .
The constants 4

π − 1 and 1
4 are the best possible.

Proof. Since

Γ(n+ 1) = n!, Γ
(
n+

1
2

)
=

(2n− 1)!!
2n

√
π, 2nn! = (2n)!!,

the double inequality (16) is equivalent to

(17)
1
4
< Qn =

[
Γ(n+ 1)
Γ
(
n+ 1

2

)]2

− n ≤ 4
π
− 1.

From the monotonicity of the sequence Qn provided in Corollary 2, it follows
that

lim
n→∞

Qn < Qn ≤ Q1 =
4
π
− 1.

Using the asymptotic formula (11), we conclude from

Qn = n

[
n−

1
2

Γ(n+ 1)
Γ
(
n+ 1

2

) − 1
][
n−

1
2

Γ(n+ 1)
Γ
(
n+ 1

2

) + 1
]

that

lim
n→∞

Qn =
1
4
.

Thus, inequality (17) follows. The proof is complete. �
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