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THE BEST CONSTANT IN A WEIGHTED
HARDY-LITTLEWOOD-SOBOLEV INEQUALITY

WENXIONG CHEN AND CONGMING LI

(Communicated by David S. Tartakoff)

Abstract. We prove the uniqueness for the solutions of the singular nonlinear
PDE system:

(1)

⎧⎪⎪⎨
⎪⎪⎩

−�(|x|αu(x)) =
vq(x)

|x|β
,

−�(|x|βv(x)) =
up(x)

|x|α
.

In the special case when α = β and p = q, we classify all the solutions and
thus obtain the best constant in the corresponding weighted Hardy-Littlewood-
Sobolev inequality.

1. Introduction

Let 0 < λ < n, 1 < s, r < ∞, and ‖f‖p be the Lp(Rn) norm of the function f .
The well-known classical Hardy-Littlewood-Sobolev inequality (HLS) states that:

(2)
∫

Rn

∫
Rn

f(x)g(y)
|x − y|λ dxdy ≤ Cs,λ,n‖f‖r‖g‖s

for any f ∈ Lr(Rn), g ∈ Ls(Rn), and for 1
r + 1

s + λ
n = 2.

Hardy and Littlewood also introduced the double weighted inequality, which was
later generalized by Stein and Weiss in [13]. It reads:

(3)
∣∣∣∣
∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|λ|y|β dxdy

∣∣∣∣ ≤ Cα,β,s,λ,n‖f‖r‖g‖s

where α + β ≥ 0,

(4) 1 − 1
r
− λ

n
<

α

n
< 1 − 1

r
, and

1
r

+
1
s

+
λ + α + β

n
= 2.

To obtain the best constant in the weighted inequality (3), one can maximize
the functional

(5) J(f, g) =
∫

Rn

∫
Rn

f(x)g(y)
|x|α|x − y|λ|y|β dxdy
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956 WENXIONG CHEN AND CONGMING LI

under the constraints ‖f‖r = ‖g‖s = 1. The corresponding Euler-Lagrange equa-
tions are the system of integral equations:

(6)

{
λ1rf(x)r−1 = 1

|x|α
∫

Rn

g(y)
|y|β |x−y|λ dy,

λ2sg(x)s−1 = 1
|x|β

∫
Rn

f(y)
|y|α|x−y|λ dy,

where f, g ≥ 0, x ∈ Rn, and λ1r = λ2s = J(f, g).
For u = c1f

r−1, v = c2g
s−1, p = 1

r−1 , q = 1
s−1 , pq �= 1, and for a proper choice

of constants c1 and c2, system (6) becomes

(7)

{
u(x) = 1

|x|α
∫

Rn

v(y)q

|y|β |x−y|λ dy,

v(x) = 1
|x|β

∫
Rn

u(y)p

|y|α|x−y|λ dy,

where u, v ≥ 0, 0 < p, q < ∞, 0 < λ < n, α
n < 1

p+1 < λ+α
n , and 1

p+1 + 1
q+1 = λ+α+β

n .
In the special case, where α = 0 and β = 0, system (7) reduces to

(8)

{
u(x) =

∫
Rn

vq(y)
|x−y|λ dy,

v(x) =
∫

Rn

up(y)
|x−y|λ dy,

with

(9)
1

q + 1
+

1
p + 1

=
λ

n
.

This integral system is closely related to the system of partial differential equa-
tions

(10)
{

(−∆)γ/2u = vq, u > 0, in Rn,
(−∆)γ/2v = up, v > 0, in Rn,

where γ = n − λ.
In the special case when p = q = n+γ

n−γ , and u(x) = v(x), system (8) becomes the
single equation

(11) u(x) =
∫

Rn

u(y)
n+γ
n−γ

|x − y|n−γ
dy, u > 0, in Rn.

The corresponding PDE is the well-known family of semilinear equations

(12) (−∆)γ/2u = u(n+γ)/(n−γ), u > 0, in Rn.

In particular, when n ≥ 3, and γ = 2, (12) becomes

(13) −∆u = u(n+2)/(n−2), u > 0, in Rn.

The classification of the solutions of (13) has provided an important ingredient in
the study of the well-known Yamabe problem and the prescribing scalar curvature
problem. It is also essential in deriving a priori estimates in many related nonlinear
elliptic equations.

Equation (13) was studied by Gidas, Ni, and Nirenberg [7], Caffarelli, Gidas, and
Spruck [1], Chen and Li [2], and Li [10]. They classified all the solutions. Recently,
Wei and Xu [14] generalized this result to the solutions of the more general equation
(12) with γ being any even number between 0 and n.

Apparently, for other real values of γ between 0 and n, equation (12) is also of
practical interest and importance.

In [11], Lieb classified all the maximizers of the functional (5) under the con-
straints ‖f‖r = 1 = ‖g‖s in the special case where p = q = n+γ

n−γ and thus obtained
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A WEIGHTED HARDY-LITTLEWOOD-SOBOLEV INEQUALITY 957

the best constant in the HLS inequalities in that case. He then posed the classi-
fication of all the critical points of the functional and the solutions of the integral
equation (11) as an open problem.

Chen, Li, and Ou solved this open problem in [4]. They proved:

Proposition 1. i) All solutions of the partial differential equation (12) satisfy the
integral equation (11), and vice versa.

ii) If u is a positive solution of (11) or (12) that is locally L
2n

n−γ (Rn), then u must
be radially symmetric and decreasing about some point xo and therefore assumes
the form of

(14) c(
t

t2 + |x − xo|2
)(n−γ)/2

with some positive constants c and t.

This proposition unifies and extends all the previous results on the family of
partial differential equations (12).

Then in [5], Chen, Li, and Ou considered a more general system (8) and estab-
lished the symmetry and monotonicity of the solutions.

Proposition 2. Let (u, v) be a pair of solutions of (8) with p, q ≥ 1. Assume
that u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn). Then u and v are radially symmetric and
decreasing about some point xo.

In [3], Chen and Li also obtained the regularity of the solutions.

Proposition 3. Assume that (u(x), v(x)) is a pair of positive solutions of (8), and
u ∈ Lp+1(Rn) and v ∈ Lq+1(Rn). Then u(x) and v(x) are uniformly bounded in
Rn, and therefore continuous and smooth.

To establish the symmetry of the solution, Chen, Li, and Ou ([4], [5], [6]) intro-
duced a new idea, an integral form of the method of moving planes. It is entirely
different from the traditional method used for partial differential equations. In-
stead of relying on maximum principles, certain integral norms were estimated.
We believe that this new idea will become a powerful tool in studying qualitative
properties of other integral equations and systems.

Following Chen, Li, and Ou’s work, Jin and Li [8] studied the symmetry of the
solutions to the more general system (7) and obtained

Proposition 4. Let the pair (u, v) be a positive solution of system (7) with u ∈
Lp+1(Rn), v ∈ Lq+1(Rn), p, q ≥ 1, pq �= 1, and α, β ≥ 0. Then u and v are radially
symmetric and decreasing about some point xo.

Jin and Li [9] also thoroughly discussed the regularity for the solutions to (7).
In this paper, based on the radial symmetry of the solutions established in [8],

we will study the uniqueness of the solutions of the weighted integral system (7).
We will start with the special case when γ = 2, in which the integral system is
equivalent to the nonlinear singular PDE system:

(15)

⎧⎪⎪⎨
⎪⎪⎩

−�(|x|αu(x)) =
vq(x)
|x|β ,

−�(|x|βv(x)) =
up(x)
|x|α .
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958 WENXIONG CHEN AND CONGMING LI

It is obvious that the radial symmetry of the solutions reduces (15) to a system
of ODEs, which has singularities at the origin. For a single equation, one can
rather easily obtain uniqueness through some standard ODE arguments. However,
for systems, there have not been such results. It is quite difficult to match well.
Although the radial symmetry is a good starting point, an accurate estimate of the
asymptotic behavior is the key.

Let
f(x) = |x|αu(x), g(x) = |x|βv(x).

Then (15) becomes

(16)

⎧⎪⎪⎨
⎪⎪⎩

−�f(x) =
gq(x)

|x|β(q+1)
,

−�g(x) =
fp(x)

|x|α(p+1)
.

Under the conditions

(17) λ + β(q + 1) < n and λ + α(p + 1) < n,

we prove

Theorem 1. The solutions of the system (16) are unique in the sense that if (f1, g1)
and (f2, g2) are any two pairs of solutions with

f1(0) = f2(0),

then
g1(0) = g2(0)

and hence
(f1(x), g1(x)) ≡ (f2(x), g2(x)).

This uniqueness theorem would enable one to classify all the solutions of the
system (16) and hence obtain the best constant in the corresponding weighted
Hardy-Littlewood-Sobolev inequality. At least, in some special cases, we are able
to prove:

Theorem 2. Assume that

α = β =
n

p + 1
− n − 2

2
and p = q.

Let (f, g) be any pair of solutions of system (16). Then f(x) = g(x), and they must
both assume the form of

(18) φt(x) = c

[
t

t2 + |x| (n−2)(p−1)
2

] 2
p−1

with some real number t and some constant c.
On the other hand, for each real number t, there is a constant c = c(t), such that

(φt(x), φt(x)) is a pair of solutions for (16).

We will prove these two theorems in the next section. One main ingredient in
the proof of Theorem 1 is the asymptotic behavior of the solutions near the origin
and at infinity.
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2. Proof of the uniqueness

The key to the proof of uniqueness is the asymptotic behavior of the solutions
near the origin and at infinity. This was established in a paper of Li and Lim [12]
as stated in the following proposition.

Proposition 2.1. Let (u, v) ∈ Lp+1(Rn)×Lq+1(Rn) be a pair of positive solutions
of the system (7). Suppose that p, q ≥ 1, pq �= 1, and α + β ≥ 0.

(i) If λ + β(q + 1) < n, then for small |x|, we have

(19) u(x) 	 Ao

|x|α

and

(20) v(x) 	

⎧⎪⎨
⎪⎩

A1
|x|β , if λ + α(p + 1) < n,

A2
|x|α(p+1)+β+λ−n , if λ + α(p + 1) > n,
A3| ln |x||

|x|β , if λ + α(p + 1) = n,

where

Ao =
∫

Rn

vq(y)
|y|λ+β

dy, A1 =
∫

Rn

up(y)
|y|λ+α

dy,

A2 =
(∫

Rn

vq(y)
|y|λ+β

dy

)p ∫
Rn

dz

|z|α(p+1)|e − z|λ ,

A3 = |Sn−1|
(∫

Rn

vq(y)
|y|λ+β

dy

)p

.

Here e is a unit vector in Rn and |Sn−1| is the surface area of the unit sphere.
(ii) If λq + β(q + 1) > n, then for large |x|, we have

(21) u(x) 	 Bo

|x|λ+α

and

(22) v(x) 	

⎧⎪⎨
⎪⎩

B1
|x|λ+β , if λp + α(p + 1) > n,

B2
|x|(α+λ)(p+1)+β−n , if λp + α(p + 1) < n,
B3| ln |x||
|x|λ+β , if λp + α(p + 1) = n,

where

Bo =
∫

Rn

vq(y)
|y|β dy, B1 =

∫
Rn

up(y)
|y|α dy,

B2 =
(∫

Rn

vq(y)
|y|β dy

) ∫
Rn

dz

|z|2n−(α+λ)(p+1)|e − z|λ ,

and

B3 = |Sn−1|
(∫

Rn

vq(y)
|y|β dy

)p

.

The Proof of Theorem 1. Let (f, g) be a pair of solutions to system (16).
It follows from condition (17) and Proposition 2.1 that

(23) lim
x→0

f(x) = Ao, lim
x→0

g(x) = A1.
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Again by Proposition 2.1, we obtain, in all cases, the asymptotic behaviors of
the solutions at infinity:

(24) f(x)→0 and g(x)→0, as x→∞.

By virtue of Proposition 4, the solutions of (16) are radially symmetric; hence
we can write, in polar coordinates, the first equation in (16) as

(rn−1f ′(r))′ = −rn−1−β(q+1)gq(r),

where r = |x|.
Integrating both sides from 0 to r yields

rn−1f ′(r) = −
∫ r

0

sn−1−β(q+1)gq(s)ds.

It follows by another integration that

(25) f(r) = f(0) −
∫ r

0

1
τn−1

∫ τ

0

sn−1−β(q+1)gq(s)dsdτ.

Similarly, for g(r), we have

(26) g(r) = g(0) −
∫ r

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp(s)dsdτ.

Let (f1(x), g1(x)) and (f2(x), g2(x)) be any two pairs of solutions of (16). Assume
that f1(0) = f2(0). We are going to show that g1(0) = g2(0). Otherwise, suppose

(27) g1(0) < g2(0).

Then by continuity, for small r,

(28) g1(r) < g2(r).

Now applying (25) to both (f1(x), g1(x)) and (f2(x), g2(x)), and by (28), we see
that there exists an R > 0 such that

(29) f1(r) > f2(r) and g1(r) < g2(r), ∀r ∈ (0, R).

Let Ro be the supreme value of R such that (29) holds.
i) If Ro = ∞, then from (24), we must have

f1(r)→0, f2(r)→0, as r→∞.

Hence it follows from (25) and the assumption f1(0) = f2(0) that∫ ∞

0

1
τn−1

∫ τ

0

sn−1−β(q+1)gq
1(s)dsdr =

∫ ∞

0

1
τn−1

∫ τ

0

sn−1−β(q+1)gq
2(s)dsdr.

This is impossible due to the second part of (29).
ii) If Ro is finite, then we have

(30) f1(r) > f2(r) and g1(r) < g2(r), ∀r ∈ (0, Ro),

while either
f1(Ro) = f2(Ro),

or
g1(Ro) = g2(Ro),

or both
f1(Ro) = f2(Ro) and g1(Ro) = g2(Ro).
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These will again contradict (25) and (26), more precisely, contradict

fi(Ro) = fi(0) −
∫ Ro

0

1
τn−1

∫ τ

0

sn−1−β(q+1)gq
i (s)dsdτ, i = 1, 2,

and

(31) gi(Ro) = gi(0) −
∫ Ro

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp
i (s)dsdτ, i = 1, 2.

In fact, say, in the case g1(Ro) = g2(Ro), then by (31), we have

g1(0) −
∫ Ro

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp
1 (s)dsdτ

= g2(0) −
∫ Ro

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp
2 (s)dsdτ.

This, together with the assumption g1(0) < g2(0), implies∫ Ro

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp
1 (s)dsdτ <

∫ Ro

0

1
τn−1

∫ τ

0

sn−1−α(p+1)fp
2 (s)dsdτ.

This is impossible due to the first part of (30). Similarly, one can derive contradic-
tions in the other remaining cases.

Hence it is impossible that g1(0) < g2(0). Similarly, one can show that g1(0) >
g2(0) is impossible. Therefore, we must have

g1(0) = g2(0).

Finally, by the standard ODE theory, we arrive at

(f1(x), g1(x)) ≡ (f2(x), g2(x)).

This completes the proof of Theorem 1. �

The Proof of Theorem 2. On the one hand, by a straightforward calculation,
one can verify that for each real number t, there is a constant c = c(t), such that
(φt(x), φt(x)) defined by (18) is a pair of solutions for (16).

On the other hand, assume that (f(x), g(x)) is a pair of solutions of (16). Choose
real numbers t and c such that

φt(0) = f(0).

Then, for such a value of t, since (φt(x), φt(x)) is a pair of solutions of (16), by the
uniqueness result of Theorem 1, we must have

g(0) = φt(0),

and therefore

(f(x), g(x)) ≡ (φt(x), φt(x)).

This completes the proof of the theorem. �
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