
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 76–86

Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

76

The Best of Both Worlds:
Combining Recent Advances in Neural Machine Translation

Mia Xu Chen ∗ Orhan Firat ∗ Ankur Bapna ∗

Melvin Johnson Wolfgang Macherey George Foster Llion Jones Niki Parmar

Noam Shazeer Ashish Vaswani Jakob Uszkoreit Lukasz Kaiser

Mike Schuster Zhifeng Chen

miachen,orhanf,ankurbpn,yonghui@google.com

Google AI

Yonghui Wu Macduff Hughes

Abstract

The past year has witnessed rapid ad-

vances in sequence-to-sequence (seq2seq)

modeling for Machine Translation (MT).

The classic RNN-based approaches to MT

were first out-performed by the convolu-

tional seq2seq model, which was then out-

performed by the more recent Transformer

model. Each of these new approaches con-

sists of a fundamental architecture accom-

panied by a set of modeling and training

techniques that are in principle applicable

to other seq2seq architectures. In this pa-

per, we tease apart the new architectures

and their accompanying techniques in two

ways. First, we identify several key mod-

eling and training techniques, and apply

them to the RNN architecture, yielding a

new RNMT+ model that outperforms all

of the three fundamental architectures on

the benchmark WMT’14 English→French

and English→German tasks. Second, we

analyze the properties of each fundamen-

tal seq2seq architecture and devise new

hybrid architectures intended to combine

their strengths. Our hybrid models ob-

tain further improvements, outperforming

the RNMT+ model on both benchmark

datasets.

1 Introduction

In recent years, the emergence of seq2seq mod-

els (Kalchbrenner and Blunsom, 2013; Sutskever

et al., 2014; Cho et al., 2014) has revolutionized

the field of MT by replacing traditional phrase-

based approaches with neural machine transla-

tion (NMT) systems based on the encoder-decoder

paradigm. In the first architectures that surpassed

∗ Equal contribution.

the quality of phrase-based MT, both the en-

coder and decoder were implemented as Recur-

rent Neural Networks (RNNs), interacting via a

soft-attention mechanism (Bahdanau et al., 2015).

The RNN-based NMT approach, or RNMT, was

quickly established as the de-facto standard for

NMT, and gained rapid adoption into large-scale

systems in industry, e.g. Baidu (Zhou et al., 2016),

Google (Wu et al., 2016), and Systran (Crego

et al., 2016).

Following RNMT, convolutional neural net-

work based approaches (LeCun and Bengio, 1998)

to NMT have recently drawn research attention

due to their ability to fully parallelize training to

take advantage of modern fast computing devices.

such as GPUs and Tensor Processing Units (TPUs)

(Jouppi et al., 2017). Well known examples are

ByteNet (Kalchbrenner et al., 2016) and ConvS2S

(Gehring et al., 2017). The ConvS2S model was

shown to outperform the original RNMT archi-

tecture in terms of quality, while also providing

greater training speed.

Most recently, the Transformer model (Vaswani

et al., 2017), which is based solely on a self-

attention mechanism (Parikh et al., 2016) and

feed-forward connections, has further advanced

the field of NMT, both in terms of translation qual-

ity and speed of convergence.

In many instances, new architectures are ac-

companied by a novel set of techniques for per-

forming training and inference that have been

carefully optimized to work in concert. This

‘bag of tricks’ can be crucial to the performance

of a proposed architecture, yet it is typically

under-documented and left for the enterprising re-

searcher to discover in publicly released code (if

any) or through anecdotal evidence. This is not

simply a problem for reproducibility; it obscures

the central scientific question of how much of the

observed gains come from the new architecture



77

and how much can be attributed to the associated

training and inference techniques. In some cases,

these new techniques may be broadly applicable

to other architectures and thus constitute a major,

though implicit, contribution of an architecture pa-

per. Clearly, they need to be considered in order

to ensure a fair comparison across different model

architectures.

In this paper, we therefore take a step back and

look at which techniques and methods contribute

significantly to the success of recent architectures,

namely ConvS2S and Transformer, and explore

applying these methods to other architectures, in-

cluding RNMT models. In doing so, we come up

with an enhanced version of RNMT, referred to

as RNMT+, that significantly outperforms all in-

dividual architectures in our setup. We further in-

troduce new architectures built with different com-

ponents borrowed from RNMT+, ConvS2S and

Transformer. In order to ensure a fair setting for

comparison, all architectures were implemented in

the same framework, use the same pre-processed

data and apply no further post-processing as this

may confound bare model performance.

Our contributions are three-fold:

1. In ablation studies, we quantify the effect

of several modeling improvements (includ-

ing multi-head attention and layer normaliza-

tion) as well as optimization techniques (such

as synchronous replica training and label-

smoothing), which are used in recent archi-

tectures. We demonstrate that these tech-

niques are applicable across different model

architectures.

2. Combining these improvements with the

RNMT model, we propose the new RNMT+

model, which significantly outperforms all

fundamental architectures on the widely-used

WMT’14 En→Fr and En→De benchmark

datasets. We provide a detailed model anal-

ysis and comparison of RNMT+, ConvS2S

and Transformer in terms of model quality,

model size, and training and inference speed.

3. Inspired by our understanding of the rela-

tive strengths and weaknesses of individual

model architectures, we propose new model

architectures that combine components from

the RNMT+ and the Transformer model, and

achieve better results than both individual ar-

chitectures.

We quickly note two prior works that pro-

vided empirical solutions to the difficulty of train-

ing NMT architectures (specifically RNMT). In

(Britz et al., 2017) the authors systematically ex-

plore which elements of NMT architectures have

a significant impact on translation quality. In

(Denkowski and Neubig, 2017) the authors recom-

mend three specific techniques for strengthening

NMT systems and empirically demonstrated how

incorporating those techniques improves the relia-

bility of the experimental results.

2 Background

In this section, we briefly discuss the commmonly

used NMT architectures.

2.1 RNN-based NMT Models - RNMT

RNMT models are composed of an encoder RNN

and a decoder RNN, coupled with an attention

network. The encoder summarizes the input se-

quence into a set of vectors while the decoder con-

ditions on the encoded input sequence through an

attention mechanism, and generates the output se-

quence one token at a time.

The most successful RNMT models consist of

stacked RNN encoders with one or more bidirec-

tional RNNs (Schuster and Paliwal, 1997; Graves

and Schmidhuber, 2005), and stacked decoders

with unidirectional RNNs. Both encoder and de-

coder RNNs consist of either LSTM (Hochreiter

and Schmidhuber, 1997; Gers et al., 2000) or GRU

units (Cho et al., 2014), and make extensive use of

residual (He et al., 2015) or highway (Srivastava

et al., 2015) connections.

In Google-NMT (GNMT) (Wu et al., 2016),

the best performing RNMT model on the datasets

we consider, the encoder network consists of

one bi-directional LSTM layer, followed by 7

uni-directional LSTM layers. The decoder is

equipped with a single attention network and 8

uni-directional LSTM layers. Both the encoder

and the decoder use residual skip connections be-

tween consecutive layers.

In this paper, we adopt GNMT as the starting

point for our proposed RNMT+ architecture.

2.2 Convolutional NMT Models - ConvS2S

In the most successful convolutional sequence-to-

sequence model (Gehring et al., 2017), both the

encoder and decoder are constructed by stacking

multiple convolutional layers, where each layer



78

contains 1-dimensional convolutions followed by

a gated linear units (GLU) (Dauphin et al., 2016).

Each decoder layer computes a separate dot-

product attention by using the current decoder

layer output and the final encoder layer outputs.

Positional embeddings are used to provide explicit

positional information to the model. Following the

practice in (Gehring et al., 2017), we scale the gra-

dients of the encoder layers to stabilize training.

We also use residual connections across each con-

volutional layer and apply weight normalization

(Salimans and Kingma, 2016) to speed up conver-

gence. We follow the public ConvS2S codebase1

in our experiments.

2.3 Conditional Transformation-based NMT

Models - Transformer

The Transformer model (Vaswani et al., 2017) is

motivated by two major design choices that aim

to address deficiencies in the former two model

families: (1) Unlike RNMT, but similar to the

ConvS2S, the Transformer model avoids any se-

quential dependencies in both the encoder and

decoder networks to maximally parallelize train-

ing. (2) To address the limited context problem

(limited receptive field) present in ConvS2S, the

Transformer model makes pervasive use of self-

attention networks (Parikh et al., 2016) so that

each position in the current layer has access to in-

formation from all other positions in the previous

layer.

The Transformer model still follows the

encoder-decoder paradigm. Encoder transformer

layers are built with two sub-modules: (1) a self-

attention network and (2) a feed-forward network.

Decoder transformer layers have an additional

cross-attention layer sandwiched between the self-

attention and feed-forward layers to attend to the

encoder outputs.

There are two details which we found very im-

portant to the model’s performance: (1) Each sub-

layer in the transformer (i.e. self-attention, cross-

attention, and the feed-forward sub-layer) follows

a strict computation sequence: normalize → trans-

form → dropout→ residual-add. (2) In addition to

per-layer normalization, the final encoder output is

again normalized to prevent a blow up after con-

secutive residual additions.

In this paper, we follow the latest version of the

1https://github.com/facebookresearch/fairseq-py

Transformer model in the Tensor2Tensor2 code-

base.

2.4 A Theory-Based Characterization of

NMT Architectures

From a theoretical point of view, RNNs belong

to the most expressive members of the neural

network family (Siegelmann and Sontag, 1995)3.

Possessing an infinite Markovian structure (and

thus an infinite receptive fields) equips them to

model sequential data (Elman, 1990), especially

natural language (Grefenstette et al., 2015) ef-

fectively. In practice, RNNs are notoriously

hard to train (Hochreiter, 1991; Bengio et al.,

1994; Hochreiter et al., 2001), confirming the well

known dilemma of trainability versus expressivity.

Convolutional layers are adept at capturing lo-

cal context and local correlations by design. A

fixed and narrow receptive field for each convo-

lutional layer limits their capacity when the ar-

chitecture is shallow. In practice, this weakness

is mitigated by stacking more convolutional lay-

ers (e.g. 15 layers as in the ConvS2S model),

which makes the model harder to train and de-

mands meticulous initialization schemes and care-

fully designed regularization techniques.

The transformer network is capable of ap-

proximating arbitrary squashing functions (Hornik

et al., 1989), and can be considered a strong fea-

ture extractor with extended receptive fields capa-

ble of linking salient features from the entire se-

quence. On the other hand, lacking a memory

component (as present in the RNN models) pre-

vents the network from modeling a state space,

reducing its theoretical strength as a sequence

model, thus it requires additional positional infor-

mation (e.g. sinusoidal positional encodings).

Above theoretical characterizations will drive

our explorations in the following sections.

3 Experiment Setup

We train our models on the standard WMT’14

En→Fr and En→De datasets that comprise 36.3M

and 4.5M sentence pairs, respectively. Each sen-

tence was encoded into a sequence of sub-word

units obtained by first tokenizing the sentence with

the Moses tokenizer, then splitting tokens into sub-

word units (also known as “wordpieces”) using

the approach described in (Schuster and Nakajima,

2012).

2https://github.com/tensorflow/tensor2tensor
3Assuming that data complexity is satisfied.



79

Figure 1: Model architecture of RNMT+. On the left side, the encoder network has 6 bidirectional LSTM

layers. At the end of each bidirectional layer, the outputs of the forward layer and the backward layer

are concatenated. On the right side, the decoder network has 8 unidirectional LSTM layers, with the first

layer used for obtaining the attention context vector through multi-head additive attention. The attention

context vector is then fed directly into the rest of the decoder layers as well as the softmax layer.

We use a shared vocabulary of 32K sub-word

units for each source-target language pair. No fur-

ther manual or rule-based post processing of the

output was performed beyond combining the sub-

word units to generate the targets. We report all

our results on newstest 2014, which serves as the

test set. A combination of newstest 2012 and new-

stest 2013 is used for validation.

To evaluate the models, we compute the BLEU

metric on tokenized, true-case output.4 For each

training run, we evaluate the model every 30 min-

utes on the dev set. Once the model converges, we

determine the best window based on the average

dev-set BLEU score over 21 consecutive evalua-

tions. We report the mean test score and standard

deviation over the selected window. This allows

us to compare model architectures based on their

mean performance after convergence rather than

individual checkpoint evaluations, as the latter can

be quite noisy for some models.

To enable a fair comparison of architectures,

we use the same pre-processing and evaluation

methodology for all our experiments. We re-

frain from using checkpoint averaging (exponen-

tial moving averages of parameters) (Junczys-

Dowmunt et al., 2016) or checkpoint ensembles

(Jean et al., 2015; Chen et al., 2017) to focus on

4This procedure is used in the literature to which we com-
pare (Gehring et al., 2017; Wu et al., 2016).

evaluating the performance of individual models.

4 RNMT+

4.1 Model Architecture of RNMT+

The newly proposed RNMT+ model architecture

is shown in Figure 1. Here we highlight the key

architectural choices that are different between the

RNMT+ model and the GNMT model. There are

6 bidirectional LSTM layers in the encoder instead

of 1 bidirectional LSTM layer followed by 7 uni-

directional layers as in GNMT. For each bidirec-

tional layer, the outputs of the forward layer and

the backward layer are concatenated before being

fed into the next layer. The decoder network con-

sists of 8 unidirectional LSTM layers similar to the

GNMT model. Residual connections are added to

the third layer and above for both the encoder and

decoder. Inspired by the Transformer model, per-

gate layer normalization (Ba et al., 2016) is ap-

plied within each LSTM cell. Our empirical re-

sults show that layer normalization greatly stabi-

lizes training. No non-linearity is applied to the

LSTM output. A projection layer is added to the

encoder final output.5 Multi-head additive atten-

tion is used instead of the single-head attention in

the GNMT model. Similar to GNMT, we use the

5Additional projection aims to reduce the dimensionality
of the encoder output representations to match the decoder
stack dimension.



80

bottom decoder layer and the final encoder layer

output after projection for obtaining the recurrent

attention context. In addition to feeding the atten-

tion context to all decoder LSTM layers, we also

feed it to the softmax by concatenating it with the

layer input. This is important for both the quality

of the models with multi-head attention and the

stability of the training process.

Since the encoder network in RNMT+ consists

solely of bi-directional LSTM layers, model par-

allelism is not used during training. We com-

pensate for the resulting longer per-step time with

increased data parallelism (more model replicas),

so that the overall time to reach convergence of

the RNMT+ model is still comparable to that of

GNMT.

We apply the following regularization tech-

niques during training.

• Dropout: We apply dropout to both embed-

ding layers and each LSTM layer output before

it is added to the next layer’s input. Attention

dropout is also applied.

• Label Smoothing: We use uniform label

smoothing with an uncertainty=0.1 (Szegedy

et al., 2015). Label smoothing was shown to

have a positive impact on both Transformer

and RNMT+ models, especially in the case

of RNMT+ with multi-head attention. Similar

to the observations in (Chorowski and Jaitly,

2016), we found it beneficial to use a larger

beam size (e.g. 16, 20, etc.) during decoding

when models are trained with label smoothing.

• Weight Decay: For the WMT’14 En→De task,

we apply L2 regularization to the weights with

λ = 10−5. Weight decay is only applied to the

En→De task as the corpus is smaller and thus

more regularization is required.

We use the Adam optimizer (Kingma and Ba,

2014) with β1 = 0.9, β2 = 0.999, ǫ = 10−6 and

vary the learning rate according to this schedule:

lr = 10−4
·min

(

1+
t · (n− 1)

np
, n, n · (2n)

s−nt

e−s

)

(1)

Here, t is the current step, n is the number of con-

current model replicas used in training, p is the

number of warmup steps, s is the start step of the

exponential decay, and e is the end step of the de-

cay. Specifically, we first increase the learning rate

linearly during the number of warmup steps, keep

it a constant until the decay start step s, then ex-

ponentially decay until the decay end step e, and

keep it at 5 · 10−5 after the decay ends. This

learning rate schedule is motivated by a similar

schedule that was successfully applied in training

the Resnet-50 model with a very large batch size

(Goyal et al., 2017).

In contrast to the asynchronous training used

for GNMT (Dean et al., 2012), we train RNMT+

models with synchronous training (Chen et al.,

2016). Our empirical results suggest that when

hyper-parameters are tuned properly, synchronous

training often leads to improved convergence

speed and superior model quality.

To further stabilize training, we also use adap-

tive gradient clipping. We discard a training step

completely if an anomaly in the gradient norm

value is detected, which is usually an indication

of an imminent gradient explosion. More specif-

ically, we keep track of a moving average and a

moving standard deviation of the log of the gradi-

ent norm values, and we abort a step if the norm

of the gradient exceeds four standard deviations of

the moving average.

4.2 Model Analysis and Comparison

In this section, we compare the results of RNMT+

with ConvS2S and Transformer.

All models were trained with synchronous

training. RNMT+ and ConvS2S were trained with

32 NVIDIA P100 GPUs while the Transformer

Base and Big models were trained using 16 GPUs.

For RNMT+, we use sentence-level cross-

entropy loss. Each training batch contained 4096

sentence pairs (4096 source sequences and 4096

target sequences). For ConvS2S and Transformer

models, we use token-level cross-entropy loss.

Each training batch contained 65536 source to-

kens and 65536 target tokens. For the GNMT

baselines on both tasks, we cite the largest BLEU

score reported in (Wu et al., 2016) without rein-

forcement learning.

Table 1 shows our results on the WMT’14

En→Fr task. Both the Transformer Big model

and RNMT+ outperform GNMT and ConvS2S by

about 2 BLEU points. RNMT+ is slightly better

than the Transformer Big model in terms of its

mean BLEU score. RNMT+ also yields a much

lower standard deviation, and hence we observed

much less fluctuation in the training curve. It

takes approximately 3 days for the Transformer



81

Base model to converge, while both RNMT+ and

the Transformer Big model require about 5 days

to converge. Although the batching schemes are

quite different between the Transformer Big and

the RNMT+ model, they have processed about

the same amount of training samples upon conver-

gence.

Model Test BLEU Epochs
Training

Time

GNMT 38.95 - -

ConvS2S 7 39.49 ± 0.11 62.2 438h

Trans. Base 39.43 ± 0.17 20.7 90h

Trans. Big 8 40.73 ± 0.19 8.3 120h

RNMT+ 41.00 ± 0.05 8.5 120h

Table 1: Results on WMT14 En→Fr. The num-

bers before and after ‘±’ are the mean and stan-

dard deviation of test BLEU score over an eval-

uation window. Note that Transformer models

are trained using 16 GPUs, while ConvS2S and

RNMT+ are trained using 32 GPUs.

Table 2 shows our results on the WMT’14

En→De task. The Transformer Base model im-

proves over GNMT and ConvS2S by more than

2 BLEU points while the Big model improves by

over 3 BLEU points. RNMT+ further outperforms

the Transformer Big model and establishes a new

state of the art with an averaged value of 28.49. In

this case, RNMT+ converged slightly faster than

the Transformer Big model and maintained much

more stable performance after convergence with a

very small standard deviation, which is similar to

what we observed on the En-Fr task.

Table 3 summarizes training performance and

model statistics. The Transformer Base model

6Since the ConvS2S model convergence is very slow we
did not explore further tuning on En→Fr, and validated our
implementation on En→De.

7The BLEU scores for Transformer model are slightly
lower than those reported in (Vaswani et al., 2017) due to
four differences:

1) We report the mean test BLEU score using the strategy
described in section 3.

2) We did not perform checkpoint averaging since it would
be inconsistent with our evaluation for other models.

3) We avoided any manual post-processing, like unicode
normalization using Moses replace-unicode-punctuation.perl
or output tokenization using Moses tokenizer.perl, to rule out
its effect on the evaluation. We observed a significant BLEU
increase (about 0.6) on applying these post processing tech-
niques.

4) In (Vaswani et al., 2017), reported BLEU scores are cal-
culated using mteval-v13a.pl from Moses, which re-tokenizes
its input.

Model Test BLEU Epochs
Training

Time

GNMT 24.67 - -

ConvS2S 25.01 ±0.17 38 20h

Trans. Base 27.26 ± 0.15 38 17h

Trans. Big 27.94 ± 0.18 26.9 48h

RNMT+ 28.49 ± 0.05 24.6 40h

Table 2: Results on WMT14 En→De. Note that

Transformer models are trained using 16 GPUs,

while ConvS2S and RNMT+ are trained using 32

GPUs.

is the fastest model in terms of training speed.

RNMT+ is slower to train than the Transformer

Big model on a per-GPU basis. However, since

the RNMT+ model is quite stable, we were able to

offset the lower per-GPU throughput with higher

concurrency by increasing the number of model

replicas, and hence the overall time to convergence

was not slowed down much. We also computed

the number of floating point operations (FLOPs)

in the model’s forward path as well as the num-

ber of total parameters for all architectures (cf. Ta-

ble 3). RNMT+ requires fewer FLOPs than the

Transformer Big model, even though both models

have a comparable number of parameters.

Model Examples/s FLOPs Params

ConvS2S 80 15.7B 263.4M

Trans. Base 160 6.2B 93.3M

Trans. Big 50 31.2B 375.4M

RNMT+ 30 28.1B 378.9M

Table 3: Performance comparison. Examples/s are

normalized by the number of GPUs used in the

training job. FLOPs are computed assuming that

source and target sequence length are both 50.

5 Ablation Experiments

In this section, we evaluate the importance of four

main techniques for both the RNMT+ and the

Transformer Big models. We believe that these

techniques are universally applicable across dif-

ferent model architectures, and should always be

employed by NMT practitioners for best perfor-

mance.

We take our best RNMT+ and Transformer Big

models and remove each one of these techniques

independently. By doing this we hope to learn two

things about each technique: (1) How much does



82

it affect the model performance? (2) How useful is

it for stable training of other techniques and hence

the final model?

Model RNMT+ Trans. Big

Baseline 41.00 40.73

- Label Smoothing 40.33 40.49

- Multi-head Attention 40.44 39.83

- Layer Norm. * *

- Sync. Training 39.68 *

Table 4: Ablation results of RNMT+ and the

Transformer Big model on WMT’14 En → Fr. We

report average BLEU scores on the test set. An as-

terisk ’*’ indicates an unstable training run (train-

ing halts due to non-finite elements).

From Table 4 we draw the following conclu-

sions about the four techniques:

• Label Smoothing We observed that label

smoothing improves both models, leading to an

average increase of 0.7 BLEU for RNMT+ and

0.2 BLEU for Transformer Big models.

• Multi-head Attention Multi-head attention

contributes significantly to the quality of both

models, resulting in an average increase of 0.6

BLEU for RNMT+ and 0.9 BLEU for Trans-

former Big models.

• Layer Normalization Layer normalization is

most critical to stabilize the training process of

either model, especially when multi-head atten-

tion is used. Removing layer normalization re-

sults in unstable training runs for both models.

Since by design, we remove one technique at a

time in our ablation experiments, we were un-

able to quantify how much layer normalization

helped in either case. To be able to successfully

train a model without layer normalization, we

would have to adjust other parts of the model

and retune its hyper-parameters.

• Synchronous training Removing synchronous

training has different effects on RNMT+ and

Transformer. For RNMT+, it results in a sig-

nificant quality drop, while for the Transformer

Big model, it causes the model to become un-

stable. We also notice that synchronous train-

ing is only successful when coupled with a tai-

lored learning rate schedule that has a warmup

stage at the beginning (cf. Eq. 1 for RNMT+ and

Eq. 2 for Transformer). For RNMT+, removing

this warmup stage during synchronous training

causes the model to become unstable.

6 Hybrid NMT Models

In this section, we explore hybrid architectures

that shed some light on the salient behavior of

each model family. These hybrid models outper-

form the individual architectures on both bench-

mark datasets and provide a better understanding

of the capabilities and limitations of each model

family.

6.1 Assessing Individual Encoders and

Decoders

In an encoder-decoder architecture, a natural as-

sumption is that the role of an encoder is to build

feature representations that can best encode the

meaning of the source sequence, while a decoder

should be able to process and interpret the repre-

sentations from the encoder and, at the same time,

track the current target history. Decoding is in-

herently auto-regressive, and keeping track of the

state information should therefore be intuitively

beneficial for conditional generation.

We set out to study which family of encoders is

more suitable to extract rich representations from

a given input sequence, and which family of de-

coders can make the best of such rich representa-

tions. We start by combining the encoder and de-

coder from different model families. Since it takes

a significant amount of time for a ConvS2S model

to converge, and because the final translation qual-

ity was not on par with the other models, we fo-

cus on two types of hybrids only: Transformer en-

coder with RNMT+ decoder and RNMT+ encoder

with Transformer decoder.

Encoder Decoder En→Fr Test BLEU

Trans. Big Trans. Big 40.73 ± 0.19

RNMT+ RNMT+ 41.00 ± 0.05

Trans. Big RNMT+ 41.12 ± 0.16

RNMT+ Trans. Big 39.92 ± 0.21

Table 5: Results for encoder-decoder hybrids.

From Table 5, it is clear that the Transformer

encoder is better at encoding or feature extrac-

tion than the RNMT+ encoder, whereas RNMT+

is better at decoding or conditional language mod-

eling, confirming our intuition that a stateful de-



83

coder is beneficial for conditional language gener-

ation.

6.2 Assessing Encoder Combinations

Next, we explore how the features extracted by

an encoder can be further enhanced by incorpo-

rating additional information. Specifically, we in-

vestigate the combination of transformer layers

with RNMT+ layers in the same encoder block to

build even richer feature representations. We ex-

clusively use RNMT+ decoders in the following

architectures since stateful decoders show better

performance according to Table 5.

We study two mixing schemes in the encoder

(see Fig. 2):

(1) Cascaded Encoder: The cascaded encoder

aims at combining the representational power of

RNNs and self-attention. The idea is to enrich a

set of stateful representations by cascading a fea-

ture extractor with a focus on vertical mapping,

similar to (Pascanu et al., 2013; Devlin, 2017).

Our best performing cascaded encoder involves

fine tuning transformer layers stacked on top of

a pre-trained frozen RNMT+ encoder. Using a

pre-trained encoder avoids optimization difficul-

ties while significantly enhancing encoder capac-

ity. As shown in Table 6, the cascaded encoder

improves over the Transformer encoder by more

than 0.5 BLEU points on the WMT’14 En→Fr

task. This suggests that the Transformer encoder

is able to extract richer representations if the input

is augmented with sequential context.

(2) Multi-Column Encoder: As illustrated in

Fig. 2b, a multi-column encoder merges the out-

puts of several independent encoders into a sin-

gle combined representation. Unlike a cascaded

encoder, the multi-column encoder enables us to

investigate whether an RNMT+ decoder can dis-

tinguish information received from two different

channels and benefit from its combination. A

crucial operation in a multi-column encoder is

therefore how different sources of information are

merged into a unified representation. Our best

multi-column encoder performs a simple concate-

nation of individual column outputs.

The model details and hyperparameters of the

above two encoders are described in Appendix A.5

and A.6. As shown in Table 6, the multi-column

encoder followed by an RNMT+ decoder achieves

better results than the Transformer and the RNMT

model on both WMT’14 benchmark tasks.

Model En→Fr BLEU En→De BLEU

Trans. Big 40.73 ± 0.19 27.94 ± 0.18

RNMT+ 41.00 ± 0.05 28.49 ± 0.05

Cascaded 41.67 ± 0.11 28.62 ± 0.06

MultiCol 41.66 ± 0.11 28.84 ± 0.06

Table 6: Results for hybrids with cascaded en-

coder and multi-column encoder.

(a) Cascaded Encoder (b) Multi-Column Encoder

Figure 2: Vertical and horizontal mixing of Trans-

former and RNMT+ components in an encoder.

7 Conclusion

In this work we explored the efficacy of sev-

eral architectural and training techniques proposed

in recent studies on seq2seq models for NMT.

We demonstrated that many of these techniques

are broadly applicable to multiple model architec-

tures. Applying these new techniques to RNMT

models yields RNMT+, an enhanced RNMT

model that significantly outperforms the three fun-

damental architectures on WMT’14 En→Fr and

En→De tasks. We further presented several hy-

brid models developed by combining encoders and

decoders from the Transformer and RNMT+ mod-

els, and empirically demonstrated the superiority

of the Transformer encoder and the RNMT+ de-

coder in comparison with their counterparts. We

then enhanced the encoder architecture by hori-

zontally and vertically mixing components bor-

rowed from these architectures, leading to hy-

brid architectures that obtain further improve-

ments over RNMT+.

We hope that our work will motivate NMT re-

searchers to further investigate generally applica-

ble training and optimization techniques, and that

our exploration of hybrid architectures will open

paths for new architecture search efforts for NMT.



84

Our focus on a standard single-language-pair

translation task leaves important open questions

to be answered: How do our new architectures

compare in multilingual settings, i.e., modeling

an interlingua? Which architecture is more effi-

cient and powerful in processing finer grained in-

puts and outputs, e.g., characters or bytes? How

transferable are the representations learned by the

different architectures to other tasks? And what

are the characteristic errors that each architecture

makes, e.g., linguistic plausibility?

Acknowledgments

We would like to thank the entire Google Brain

Team and Google Translate Team for their foun-

dational contributions to this project. We would

also like to thank the entire Tensor2Tensor devel-

opment team for their useful inputs and discus-

sions.

References

Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton.
2016. Layer normalization. CoRR abs/1607.06450.
http://arxiv.org/abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Inter-
national Conference on Learning Representations.
http://arxiv.org/abs/1409.0473.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learn-
ing long-term dependencies with gradient descent is
difficult. Trans. Neur. Netw. 5(2):157–166.

Denny Britz, Anna Goldie, Minh-Thang Luong,
and Quoc Le. 2017. Massive exploration of
neural machine translation architectures. In
Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Process-
ing. Association for Computational Linguis-
tics, Copenhagen, Denmark, pages 1442–1451.
https://www.aclweb.org/anthology/D17-1151.

Hugh Chen, Scott Lundberg, and Su-In Lee. 2017.
Checkpoint ensembles: Ensemble methods from
a single training process. CoRR abs/1710.03282.
http://arxiv.org/abs/1710.03282.

Jianmin Chen, Rajat Monga, Samy Bengio, and
Rafal Józefowicz. 2016. Revisiting distributed
synchronous SGD. CoRR abs/1604.00981.
http://arxiv.org/abs/1604.00981.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. 2014. Learning phrase repre-
sentations using RNN encoder-decoder for statis-
tical machine translation. In Conference on Em-
pirical Methods in Natural Language Processing.
http://arxiv.org/abs/1406.1078.

Jan Chorowski and Navdeep Jaitly. 2016. Towards bet-
ter decoding and language model integration in se-
quence to sequence models. CoRR abs/1612.02695.
http://arxiv.org/abs/1612.02695.

Josep Maria Crego, Jungi Kim, Guillaume Klein, An-
abel Rebollo, Kathy Yang, Jean Senellart, Egor
Akhanov, Patrice Brunelle, Aurelien Coquard,
Yongchao Deng, Satoshi Enoue, Chiyo Geiss,
Joshua Johanson, Ardas Khalsa, Raoum Khiari,
Byeongil Ko, Catherine Kobus, Jean Lorieux, Leid-
iana Martins, Dang-Chuan Nguyen, Alexandra Pri-
ori, Thomas Riccardi, Natalia Segal, Christophe Ser-
van, Cyril Tiquet, Bo Wang, Jin Yang, Dakun Zhang,
Jing Zhou, and Peter Zoldan. 2016. Systran’s
pure neural machine translation systems. CoRR
abs/1610.05540. http://arxiv.org/abs/1610.05540.

Yann N. Dauphin, Angela Fan, Michael Auli,
and David Grangier. 2016. Language model-
ing with gated convolutional networks. CoRR
abs/1612.08083. http://arxiv.org/abs/1612.08083.

Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai
Chen, Matthieu Devin, Quoc V. Le, Mark Z. Mao,
MarcAurelio Ranzato, Andrew Senior, Paul Tucker,
Ke Yang, and Andrew Y. Ng. 2012. Large scale dis-
tributed deep networks. In NIPS.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neural ma-
chine translation. In Proceedings of the First Work-
shop on Neural Machine Translation. Association
for Computational Linguistics, Vancouver, pages
18–27. http://www.aclweb.org/anthology/W17-
3203.

Jacob Devlin. 2017. Sharp models on dull hard-
ware: Fast and accurate neural machine trans-
lation decoding on the cpu. In Proceedings
of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2820–2825.
http://aclweb.org/anthology/D17-1300.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science 14(2):179 – 211.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Con-
volutional sequence to sequence learning. CoRR
abs/1705.03122. http://arxiv.org/abs/1705.03122.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation 12(10):2451–2471.

Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter
Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He.

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/D17-1151
https://www.aclweb.org/anthology/D17-1151
https://www.aclweb.org/anthology/D17-1151
http://arxiv.org/abs/1710.03282
http://arxiv.org/abs/1710.03282
http://arxiv.org/abs/1710.03282
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1604.00981
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1612.02695
http://arxiv.org/abs/1610.05540
http://arxiv.org/abs/1610.05540
http://arxiv.org/abs/1610.05540
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
http://arxiv.org/abs/1612.08083
http://www.aclweb.org/anthology/W17-3203
http://www.aclweb.org/anthology/W17-3203
http://www.aclweb.org/anthology/W17-3203
http://www.aclweb.org/anthology/W17-3203
http://aclweb.org/anthology/D17-1300
http://aclweb.org/anthology/D17-1300
http://aclweb.org/anthology/D17-1300
http://aclweb.org/anthology/D17-1300
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1705.03122


85

2017. Accurate, large minibatch SGD: train-
ing imagenet in 1 hour. CoRR abs/1706.02677.
http://arxiv.org/abs/1706.02677.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602 – 610. IJCNN 2005.

Edward Grefenstette, Karl Moritz Hermann,
Mustafa Suleyman, and Phil Blunsom. 2015.
Learning to transduce with unbounded mem-
ory. In Proceedings of the 28th International
Conference on Neural Information Process-
ing Systems - Volume 2. MIT Press, Cam-
bridge, MA, USA, NIPS’15, pages 1828–1836.
http://dl.acm.org/citation.cfm?id=2969442.2969444.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2015. Deep residual learning for
image recognition. CoRR abs/1512.03385.
http://arxiv.org/abs/1512.03385.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Uni-
versität München 91:1.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jrgen Schmidhuber. 2001. Gradient flow in recur-
rent nets: the difficulty of learning long-term depen-
dencies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Kurt Hornik, Maxwell Stinchcombe, and Halbert
White. 1989. Multilayer feedforward networks are
universal approximators. Neural Networks 2(5):359
– 366.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large
target vocabulary for neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing.

Norman P. Jouppi, Cliff Young, Nishant Patil,
David Patterson, Gaurav Agrawal, and et al.
2017. In-datacenter performance analysis of a
tensor processing unit. CoRR abs/1704.04760.
http://arxiv.org/abs/1704.04760.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Rico
Sennrich. 2016. The amu-uedin submission to the
wmt16 news translation task: Attention-based nmt
models as feature functions in phrase-based smt.
arXiv preprint arXiv:1605.04809 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Conference on
Empirical Methods in Natural Language Process-
ing.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aäron van den Oord, Alex Graves, and Ko-
ray Kavukcuoglu. 2016. Neural machine trans-
lation in linear time. CoRR abs/1610.10099.
http://arxiv.org/abs/1610.10099.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Yann LeCun and Yoshua Bengio. 1998. The
handbook of brain theory and neural net-
works. MIT Press, Cambridge, MA, USA,
chapter Convolutional Networks for Images,
Speech, and Time Series, pages 255–258.
http://dl.acm.org/citation.cfm?id=303568.303704.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In EMNLP.

Razvan Pascanu, Çaglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2013. How to construct deep
recurrent neural networks. CoRR abs/1312.6026.
http://arxiv.org/abs/1312.6026.

Tim Salimans and Diederik P. Kingma. 2016. Weight
normalization: A simple reparameterization to ac-
celerate training of deep neural networks. CoRR
abs/1602.07868. http://arxiv.org/abs/1602.07868.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing 45(11):2673–2681.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and Korean voice search. 2012 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing .

H.T. Siegelmann and E.D. Sontag. 1995. On the com-
putational power of neural nets. Journal of Com-
puter and System Sciences 50(1):132 – 150.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. CoRR
abs/1505.00387.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems. pages 3104–3112.

Christian Szegedy, Vincent Vanhoucke, Sergey
Ioffe, Jonathon Shlens, and Zbigniew Wojna.
2015. Rethinking the inception architecture
for computer vision. CoRR abs/1512.00567.
http://arxiv.org/abs/1512.00567.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. CoRR abs/1706.03762.
http://arxiv.org/abs/1706.03762.

http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://dl.acm.org/citation.cfm?id=2969442.2969444
http://dl.acm.org/citation.cfm?id=2969442.2969444
http://dl.acm.org/citation.cfm?id=2969442.2969444
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
http://dl.acm.org/citation.cfm?id=303568.303704
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1312.6026
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


86

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei
Xu. 2016. Deep recurrent models with fast-forward
connections for neural machine translation. CoRR
abs/1606.04199. http://arxiv.org/abs/1606.04199.

http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1606.04199
http://arxiv.org/abs/1606.04199
http://arxiv.org/abs/1606.04199

