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Abstract. In this paper, we show that for a symmetric tensor, its best symmetric rank-1 ap-
proximation is its best rank-1 approximation. Based on this result, a positive lower bound for the
best rank-1 approximation ratio of a symmetric tensor is given. Furthermore, a higher order poly-
nomial spherical optimization problem can be reformulated as a multilinear spherical optimization
problem. Then, we present a modified power algorithm for solving the homogeneous polynomial
spherical optimization problem. Numerical results are presented, illustrating the effectiveness of the
proposed algorithm.
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1. Introduction. A real m-order n-dimensional square tensor A is a multidi-
mensional array consisting of nm real entries ai1...im ∈ �, where ik = 1, . . . , n for
k = 1, . . . ,m. Tensor A is said to be symmetric if its element ai1i2...im is invariant
under any permutation of indices (i1, i2, . . . , im). Symmetric tensors arise in higher
order derivatives of smooth functions, moments, and cumulants of random vectors
and have wide applications in signal and image processing, blind source separation
(BSS), statistics, investment science, and so on; see [1, 8, 17, 18, 26] and references
therein.

A tensor is said to be rank-1 if it can be expressed as an outer product of a
number of vectors. Specifically, if these vectors are all equal, then the tensor is
called a symmetric rank-1 tensor. Given an m-order n-dimensional square tensor
A, rank-1 tensor B = λx(1) · · ·x(m) is said to be its best rank-1 approximation if
it minimizes the least-squares cost function ‖A − B‖F over the manifold of rank-1
tensors. Similarly, symmetric rank-1 tensor C = μxm is said to be the best symmetric
rank-1 approximation if it minimizes the least-squares cost function ‖A − C‖F over
the manifold of symmetric rank-1 tensors. From optimization theory, B and C can be
obtained by solving the optimization problems

(1)
λ := max

x(1),...,x(m)∈�n

∣∣Ax(1)x(2) · · ·x(m)
∣∣

s.t. ‖x(i)‖ = 1 for i = 1, 2, . . . ,m,
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and

(2)
μ ≡ μ(A) := max

x∈�n
|Axm|

s.t. ‖x‖ = 1,

respectively.
The best (symmetric) rank-1 approximation to higher order (symmetric) square

tensors plays important roles in theory and arises from many applications such as
analytical BSS and deflation procedure; see, e.g., [2, 4, 6, 12, 33, 35].

Throughout this paper, and unless otherwise specified, A is symmetric. For the
case that m = 2, A is a symmetric matrix so λ will be the largest singular value
of A and μ will be the largest eigenvalue in magnitude of A, which implies that
λ = |μ|. Therefore, the best symmetric rank-1 approximation to A is its best rank-1
approximation when m = 2. For the case that m ≥ 3, there is a remarkable difference
between matrices and tensors. In [11], the author gave a counterexample, Example 3,
to show that the best symmetric rank-1 approximation to a symmetric tensor is not
necessarily its best rank-1 approximation. However, tensor A = xyz + zxy + yzx
related in Example 3 is not symmetric. This assertion had been cited in [21], etc.
Thus, it was still unknown if the best symmetric rank-1 approximation to a symmetric
tensor is its best rank-1 approximation or not.

Recently, in [21], the authors showed that when m = 4 and n = 2, the best sym-
metric rank-1 approximation to a symmetric tensor is its best rank-1 approximation.
In [36], it was shown that the conclusion is also true for m = 3 and any n.

More recently, in [27], the best rank-1 approximation ratio of a tensor space was
introduced. A positive lower bound of the best rank-1 approximation ratio of a tensor
space gives a convergence rate for the greedy rank-1 update algorithm. A conjecture
(Conjecture 1) was given in [27] that the best symmetric rank-1 approximation to
a symmetric tensor is its best rank-1 approximation for m ≥ 4 and any n. If this
conjecture is true, then a positive lower bound can be given for the best rank-1
approximation ratio of a symmetric tensor space of order m for m ≥ 2.

In this paper, we will prove that this conjecture is true for general cases.
On the other hand, the spherical homogeneous polynomial optimization problem

(3)
μ1 := min

x∈�n
Axm

s.t. ‖x‖ = 1

is a fundamental model in optimization, closely related to problem (2), and μ1 is the
smallest Z-eigenvalue of tensor A; see [1, 26, 29]. As such, it is also widely used in
practice, for example, in signal and image processing, investment science, and material
sciences; see [3, 16, 22, 32]. The polynomial optimization problem (3) is NP-hard when
m ≥ 3; see [5, 15, 20, 36]. Some polynomial time approximation methods for solving
it were proposed; see [5, 15, 31, 36] for details. Therefore, the search for efficient
algorithms for the polynomial optimization problem has been a priority for many
mathematical programming researchers. Many solution methods based on nonlinear
programming and global optimization have been studied and tested; see, e.g., [25,
28, 29]. The power algorithm is one of the important methods and was successfully
extended to compute the best rank-1 approximations to higher-order tensors; see, e.g.,
[6, 7, 12]. Another different approach based upon the so-called sum of squares (SOS)
was also proposed by Lasserre [9, 10], Nie [23], and Parrilo [24]. For more details, we
refer to the excellent survey by Laurent [13].
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Our paper is organized as follows. In section 2, we prove that the problem (1)
has always a global optimal solution x(1) = · · · = x(m) by induction. That is, the
best symmetric rank-1 approximation of symmetric tensor is always its best rank-1
approximation. We also give a positive lower bound for the best rank-1 approximation
ratio of a symmetric tensor space of order m for m ≥ 2. In section 3, by applying the
obtained result, (3) is reformulated equivalently as a multilinear optimization problem
over unit spheres. Based on this reformulation, we propose a modified power method
for solving (3). Some numerical results are presented in section 4.

Some words about the notation. Throughout this paper, we denote the space of
symmetric m-order n-dimensional tensors by Symm(�n) and

A = (ai1...im)1≤i1,...,im≤n ∈ Symm(�n)

is a nonzero tensor. And for any positive integer k with k ≤ m and any x(s) ∈ �n,
s = 1, . . . , k, we denote Ax(1) · · ·x(k) ∈ Sym(m−k)(�n) whose (ik+1, . . . , im)th entry
is (

Ax(1) · · ·x(k)
)
ik+1...im

=
∑

1≤i1,...,ik≤n

ai1...ikik+1...imx
(1)
i1

· · ·x(k)
ik

.

Specially, if x(1) = · · · = x(k) = x, we denote Axk = Ax · · ·x︸ ︷︷ ︸
k

.

2. The best rank-1 approximation of a symmetric tensor. In this section,
we consider the relationship between the best rank-1 approximation and the best sym-
metric rank-1 approximation of a symmetric tensor. We show that the best symmetric
rank-1 approximation to a symmetric tensor is its best rank-1 approximation, which
can be stated as follows.

Theorem 2.1. Suppose that A ∈ Symm(�n). Then the problem (1) has always
a global optimal solution satisfying x(1) = · · · = x(m), i.e., the best symmetric rank-1
approximation to A is its best rank-1 approximation. This implies that the optimal
objective function values of (1) and (2) are the same.

This theorem shows that Conjecture 1 of [27] is true.
We prove this theorem by induction on m. For the case that m = 2, Theorem 2.1

is true from the well-known Eckart–Young theorem. For the case that m = 3, The-
orem 2.1 holds; see [36]. In subsection 2.1, we show that if m is even and such a
conclusion holds for all l with 2 ≤ l ≤ m− 1, then such a conclusion holds for m. For
the case that m is odd, we in subsection 2.2 show that if the conclusion is true for
all l with 2 ≤ l ≤ m− 1, then such a conclusion is also true for m. Combining these
results together, we have Theorem 2.1.

2.1. Proof when m is even. In this subsection, we discuss the result for which
the related symmetric tensor A is of even order.

Theorem 2.2. Suppose that m is even. Assume that Theorem 2.1 is true for all
l-order symmetric tensor A with 2 ≤ l ≤ m − 1. Then, Theorem 2.1 is also true for
m-order symmetric tensor A.

Proof. Let m = 2k. Assume that (x(1), x(2), . . . , x(m)) is an optimal solution of

(1) with optimal value λ > 0. Let B = Ax(1)x(2) · · ·x(k). Then B ∈ Sym(m−k)(�n).
It is easy to see that (x(k+1), x(k+2), . . . , x(m)) is an optimal solution of

(4)
max

∣∣Bx(k+1)x(k+2) · · ·x(m)
∣∣

s.t. ‖x(i)‖ = 1, for i = k + 1, k + 2, . . . ,m,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE BEST RANK-1 APPROXIMATION OF A SYMMETRIC TENSOR 809

whose optimal value is still λ. From the assumption, we know that there exists a unit
vector y ∈ �n such that (y, y, . . . , y︸ ︷︷ ︸

k

) is an optimal solution of (4). That is, we have

λ = |Byk|.
For the fixed y, let C = Ayk. Then there exists an optimal solution (x, x, · · · , x︸ ︷︷ ︸

k

)

of

(5)
max

∣∣Cx(1)x(2) · · ·x(k)
∣∣

s.t. ‖x(i)‖ = 1, for i = 1, 2, . . . , k.

It is easy to see that |(Ayk)xk| = λ, which means that (x, x, . . . , x︸ ︷︷ ︸
k

, y, y, . . . , y︸ ︷︷ ︸
k

) is also

an optimal solution of (1). If x = −y, then (x, x, . . . , x︸ ︷︷ ︸
m

) is an optimal solution of (1),

and the assertion holds. We now assume x �= −y and discuss the conclusion in two
cases.

Case 1. Axkyk > 0. Then Axkyk = λ. Moreover, by the optimality condition of
(1), we have {

Axk−1yk = λx,
Axkyk−1 = λy,

which implies that {
M0x = λy,
M0y = λx,

where M0 = Axk−1yk−1. By this we know that x + y �= 0 is an eigenvector
of M0, associated with the eigenvalue λ. Hence, it holds that (x + y)�M0(x +
y)/‖x + y‖2 = λ, which implies Axk−1yk−1( x+y

‖x+y‖ )
2 = λ. Consequently, we know

that ( x+y
‖x+y‖ , x, . . . , x︸ ︷︷ ︸

k−1

, x+y
‖x+y‖ , y, . . . , y︸ ︷︷ ︸

k−1

) is also an optimal solution of (1). Furthermore,

by letting M1 = Axk−2yk−2( x+y
‖x+y‖ )

2 and considering the optimality condition of (1)

again, we know that x+ y is also an eigenvector of M1 associated with the eigenvalue
λ. Hence, we have (x+ y)�M1(x+ y)/‖x+ y‖2 = λ, which means that

Axk−2yk−2

(
x+ y

‖x+ y‖

)4

= λ.

By repeating this procedure, we have A( x+y
‖x+y‖ )

m = λ and know that the assertion

holds.
Case 2. Axkyk < 0. Then Axkyk = −λ. By considering the optimality condition

of (1), it holds that {
Axk−1yk = −λx,
Axkyk−1 = −λy,

which can be rewritten as {
M0x = −λy,
M0y = −λx,

where M0 = Axk−1yk−1. Moreover, by a similar way to that used above, we can show
that A( x+y

‖x+y‖ )
m = −λ and know that the assertion holds.

By combining the two cases above, we complete the proof.
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2.2. Proof when m is odd. In this subsection, we discuss the case that A is
an odd-order symmetric tensor. The procedure of the proof will be different from that
of Theorem 2.2. In [36], it was shown that Theorem 2.1 holds when m = 3. In this
subsection, we generalize the proof for m = 3 to the general odd-order case.

Now we are ready to propose an algorithm to obtain an optimal solution of (2)
from an optimal solution of (1) for general odd m. This algorithm is a generalization
of Algorithm 2.1 in [36]. For convenience of notation, let m = 2k + 1 with integer
k > 0.

Algorithm 2.1.

• Initial Step: Input symmetric tensor A and an optimal solution

(x(0), . . . , x(0)︸ ︷︷ ︸
k

, z(0), . . . , z(0)︸ ︷︷ ︸
k+1

)

of (1) with (x(0))�z(0) ≥ 0. Let p = 0 and qp = k.
• Repeat Step: If x(p) = z(p), stop; Otherwise, let{

x(p+1) = x(p)+z(p)

‖x(p)+z(p)‖ , z(p+1) = z(p), if 2qp < (m− 2qp),

x(p+1) = z(p), z(p+1) = x(p)+z(p)

‖x(p)+z(p)‖ , otherwise.

Let qp+1 := min{2qp,m− 2qp} and p := p+ 1.

Remark 2.1. From the proof of Theorem 2.2, (x(p), . . . , x(p)︸ ︷︷ ︸
qp

, z(p), . . . , z(p)︸ ︷︷ ︸
m−qp

) is

always an optimal solution of problem (1) for all p. Furthermore, from the above
procedure together with the parallelogram law, it holds that

̂(x(p+1), z(p+1)) =
1

2
̂(x(p), z(p)),

where ̂(a, b) denotes the angle between vectors a and b.
Now we are ready to show Theorem 2.1 with a tensor of odd order.
Theorem 2.3. Suppose that m = 2k + 1 and Theorem 2.1 holds for all l-order

symmetric tensors A with 2 ≤ l ≤ m − 1. Then there exists x∗ ∈ �n such that
(x∗, . . . , x∗︸ ︷︷ ︸

m

) is an optimal solution of (1).

Proof. We prove the result in two cases. If Algorithm 2.1 terminates in finitely
many steps, then there exists p such that x(p) = z(p). Since (x(p), . . . , x(p)︸ ︷︷ ︸

qp

, z(p), . . . , z(p)︸ ︷︷ ︸
m−qp

)

is always an optimal solution of (1) from Remark 2.1, we know that the conclusion
holds by letting x∗ = x(p).

Suppose that {(x(p), z(p))} is the infinite sequence generated by Algorithm 2.1. Let
(x∗, z∗) be an accumulation point of {(x(p), z(p))}∞p=1. As a consequence of Remark 2.1,
x∗ = z∗. Hence, we assert that (x∗, . . . , x∗︸ ︷︷ ︸

m

) is an optimal solution of (1). So we have

the desired result and complete the proof.

2.3. An application: A positive lower bound for the best rank-1 ap-
proximation ratio of a symmetric tensor space. As in [27], for A = (ai1...im) ∈
Symm(�n), ‖A‖ is defined by

‖A‖ =

√√√√ n∑
i1,...,im=1

a2i1...im .
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The best rank-1 approximation ratio of T m(�n) is defined as

(6) App(Symm(�n)) = max

{
σ : σ ≤ μ(A)

‖A‖ ∀A ∈ Symm(�n), A �= O
}
.

As stated in the introduction, a positive lower bound of App(Symm(�n)) gives a
convergence rate for the greedy rank-1 update algorithm in Symm(�n). For more
discussion on this, see [27].

By Theorem 2.1 of this paper and Theorem 3.1, (2.4), and (2.5) of [27], we have
the following theorem.

Theorem 2.4. For any integer m ≥ 2, we have

App(Symm(�n)) ≥ 1

nm−1
.

This shows that Conjecture 2 of [27] is also true.

3. The related polynomial optimization problem over the unit sphere.
In this section, we apply Theorem 2.1 to the homogeneous polynomial optimization
problem, which is closely related with (2) and has the following form:

(7)
fmin := min

x∈�n
f(x) := Axm

s.t. ‖x‖ = 1,

where 0 �= A ∈ Symm(�n). It is clear that if m is odd, then |fmin| = |fmax| =
max‖x‖=1 |f(x)|, where fmax is the maximum value of (7). Therefore, by Theorem 2.1,
it is easy to see that when m = 2k+1, the problem (7) and the following multilinear
optimization problem

(8)
min

x(1),...,x(m)∈�n
g(x(1), . . . , x(m)) := Ax(1) · · ·x(m)

s.t. ‖x(i)‖ = 1 for i = 1, 2, . . . ,m

have the same optimal value and fmin ≤ 0.
However, the equivalence described above does not hold when m = 2k. For

example, if the tensor A in (7) is positive semidefinite (see [26]) and A �= 0, then
fmin ≥ 0 whereas the optimal value of (8) is negative. For this case, we consider

(9)
hmin = min

x∈�n
h(x) := f(x)− α(x�x)k

s.t. ‖x‖ = 1,

where α is a large real number such that f(x) ≤ α(x�x)k for any x ∈ �n with ‖x‖ = 1.
It is clear that hmin = fmin − α and |hmin| = α− fmin. Consequently, it holds that

(10) |hmin| = max
‖x‖=1

(α− f(x)) = max
‖x‖=1

|h(x)|.

Let B be the 2k-order n-dimensional identity tensor such that Bxm = (x�x)k,
which appeared first in Property 2.4 of [7]. Therefore, problem (7) can be reformulated
as follows

min
x∈�n

h(x) = (A− αB)xm

s.t. ‖x‖ = 1
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when m is even. Consequently, by (10) and Theorem 2.1, we know that if m = 2k,
the optimal value of problem (7) can be obtained by solving the following multilinear
optimization problem

hmin = min
x(1),...,x(m)∈�n

(A− αB)x(1) · · ·x(m)

s.t. ‖x(i)‖ = 1 for i = 1, 2, . . . ,m.

Remark 3.1. Here, α is adopted to ensure the equivalence between above two
spherical optimizations so that the problem can be solved via solving the multilinear
program. However, α adopted in [7] is used to force max‖x‖=1(A+ αB)xm concavity
and consequently guarantee convergence.

From the discussion above, we have the following theorem.
Theorem 3.1. The optimal value of the spherical polynomial optimization prob-

lem (7) can be obtained by solving a related multilinear spherical optimization prob-
lem.

Remark 3.2. How can one choose a suitable α such that |hmin| = max‖x‖=1 |h(x)|?
In fact, this can be obtained based on the estimation of the largest value of f(x) over
the unit sphere. It is clear that f(x) ≤

∑
1≤i1,...,im≤n |Ai1i2...im | for any unit vector

x. Therefore, if we take α =
∑

1≤i1,...,im≤n |Ai1i2...im |, then Theorem 3.1 holds.
In the rest of this section, we continue to study how to solve the homogeneous

polynomial optimization problem (7) based upon the multilinear program (8). As
mentioned above, if m = 2k, we can replace A by A − αB with a suitable positive
number α. Therefore, without loss of generality, we assume that (7) and multilinear
program (8) have the same optimal value. In spite of this, they do not have the
same optimal solution set. Motivated by this, we consider the following optimization
problem:

(11)
qmin = min

x(1),...,x(m)∈�n
q
(
x(1), . . . , x(m)

)
:= Ax(1) · · ·x(m) −

m∑
i=2

(x(1))�x(i)

s.t. ‖x(i)‖ = 1 for i = 1, 2, . . . ,m.

For the relationship between (7) and (11), we have the following result.
Proposition 3.1. It holds that qmin = fmin− (m− 1) and the optimal value qmin

of (11) is attained at x(1) = · · · = x(m).
Proof. It is easy to see that

qmin ≥ min
‖x(1)‖=1,...,‖x(m)‖=1

Ax(1) · · ·x(m) − (m− 1)

= min
‖x‖=1

Axm − (m− 1)

= fmin − (m− 1).

On the other hand, since any (x, x, . . . , x︸ ︷︷ ︸
m

) ∈ �n × · · · × �n with ‖x‖ = 1 is feasible

for (11), it holds that

qmin ≤ min
‖x‖=1

[
Axm − (m− 1)x�x

]
= fmin − (m− 1).

Hence, the desired conclusion holds.
To establish the monotone convergence in the sense that the objective function

value of the iterative sequence are monotone when the iterative points are different, the
global line search approach has been developed and used recently; see [14, 30, 34]. Now
we are ready to propose a modified power method for (7) by solving the optimization
problem (11). Furthermore, as presented in Theorem 3.2, the proposed algorithm is
also monotonic convergence.
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Algorithm 3.1.

• Step 0: Let (x(1,0), x(2,0), . . . , x(m,0)) ∈ �n × · · · × �n with ‖x(i,0)‖ = 1 for
i = 1, . . . ,m be an initial point such that q

(
x(1,0), x(2,0), . . . , x(m,0)

)
< 0. Let

l = 0.
• Step 1: Let

x(1,l+1) = −
Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)∥∥∥∥Ax(2,l) · · ·x(m,l) −
m∑
i=2

x(i,l)

∥∥∥∥
.

For i = 2, . . . ,m, let

x(i,l+1) = − Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1)∥∥Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1)
∥∥

if Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1) �= 0 and x(i,l+1) = x(i,l)

otherwise.
• Step 2: If a certain convergence criterion is satisfied for (x(1,l+1), . . . , x(m,l+1)),
then stop. Otherwise, let l := l + 1, and go to Step 1.

Remark 3.3. From q(x(1,0), . . . , x(m,0)) < 0 and the decreasing of {q(x(1,l), . . . ,
x(m,l))} which will be seen in the proof of the next theorem, it holds that

(
Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)

)�
x(1,l) < 0

for any l = 1, 2, . . . . Hence, Ax(2,l) · · ·x(m,l) −
∑m

i=2 x
(i,l) �= 0, which indicates that

Algorithm 3.1 is well defined.
It is clear that the sequence {(x(1,l), x(2,l), . . . , x(m,l))}∞l=1 generated by Algo-

rithm 3.1 is bounded, hence there exists an accumulation point. Now we are ready
to state and prove the convergence of Algorithm 3.1, which shows that the whole
generated sequence converges to a KKT point of (11) under some conditions. To this
end, we need the following proposition which has already been shown by Moré and
Sorensen [19].

Proposition 3.2. Assume that w∗ ∈ �s is an isolated accumulation point of
a sequence {w(k)} ⊂ �s such that for every subsequence {w(k)}K converging to w∗

there is an infinite subset K̄ ⊆ K such that {‖w(k+1) −w(k)‖}K̄ → 0. Then the whole
sequence {w(k)} converges to w∗.

Theorem 3.2. Let {(x(1,l), x(2,l), . . . , x(m,l))}∞l=1 be a sequence generated by Algo-
rithm 3.1. Then the sequence {q(x(1,l), x(2,l), . . . , x(m,l))}∞l=1 is monotone convergence.
Furthermore, suppose that the sequence {(x(1,l), x(2,l), . . . , x(m,l))}∞l=1 has an isolated
accumulation point. Then the generated sequence converges to a KKT point of (11).

Proof. For convenience of notation, let

ql := q
(
x(1,l), . . . , x(m,l)

)
= Ax(1,l) · · ·x(m,l) −

m∑
i=2

(x(1,l))�x(i,l).
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Then there holds

(12)

ql =
(
x(1,l)

)�(Ax(2,l) · · ·x(m,l) −
m∑
i=2

x(i,l)

)

≥ −
∥∥∥∥∥Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)

∥∥∥∥∥
=
(
x(1,l+1)

)�(
Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)

)

= Ax(1,l+1)x(2,l) · · ·x(m,l) −
m∑
i=2

(
x(1,l+1)

)�
x(i,l)

= q
(
x(1,l+1), x(2,l), . . . , x(m,l)

)
.

Furthermore, for i = 2, . . . ,m, we consider two cases:
(i) Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1) �= 0,
(ii) Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1) = 0.

For case (i), it holds that

Ax(1,l+1) · · ·x(i−1,l+1)x(i,l+1)x(i+1,l) · · ·x(m,l) −
(
x(1,l+1)

)�
x(i,l+1)

= −‖Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1)‖
≤
(
x(i,l)

)� (Ax(1,l+1) · · ·x(i−1,l+1)x(i+1,l) · · ·x(m,l) − x(1,l+1)
)

= Ax(1,l+1) · · ·x(i−1,l+1)x(i,l)x(i+1,l) · · ·x(m,l) −
(
x(1,l+1)

)�
x(i,l).

Therefore,

q
(
x(1,l+1), . . . , x(i−1,l+1), x(i,l+1), x(i+1,l), . . . , x(m,l)

)
= Ax(1,l+1) · · ·x(i−1,l+1)x(i,l+1)x(i+1,l) · · ·x(m,l)

−
i−1∑
j=2

(
x(1,l+1)

)� (
x(j,l+1)

)
−
(
x(1,l+1)

)�
x(i,l+1) −

m∑
j=i+1

(
x(1,l+1)

)� (
x(j,l)

)
≤ Ax(1,l+1) · · ·x(i−1,l+1)x(i,l)x(i+1,l) · · ·x(m,l)

−
(
x(1,l+1)

)�
x(i,l) −

i−1∑
j=2

(
x(1,l+1)

)� (
x(j,l+1)

)
−

m∑
j=i+1

(
x(1,l+1)

)� (
x(j,l)

)
= q

(
x(1,l+1), . . . , x(i−1,l+1), x(i,l), x(i+1,l), . . . , x(m,l)

)
,

which indicates, together with (12), that for any l and i,

(13)
ql+1 ≤ q

(
x(1,l+1), . . . , x(i−1,l+1), x(i,l+1), x(i+1,l), . . . , x(m,l)

)
≤ q

(
x(1,l+1), . . . , x(i−1,l+1), x(i,l), x(i+1,l), . . . , x(m,l)

)
≤ ql.

For case (ii), it is clear that (13) holds, since x(i,l+1) = x(i,l).
So we can assert that {ql} is decreasing, which implies, together with the fact that

{ql} is bounded, that {ql} converges. The monotone convergence of {ql} is proved.
Without loss of generality, we assume that liml→∞ ql = q∗.
Since 0 ≥ ql ≥ −‖Ax(2,l) · · ·x(m,l) −

∑m
i=2 x

(i,l)‖ ≥ ql+1, we have

lim
l→∞

∥∥∥∥∥Ax(2,l) · · ·x(m,l) −
m∑
i=2

x(i,l)

∥∥∥∥∥ = −q∗.
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Furthermore, it holds that

(
x(1,l)

)� (
x(1,l+1)

)
= −

Ax(1,l)x(2,l) · · ·x(m,l) −
m∑
i=2

(
x(1,l)

)� (
x(i,l)

)
∥∥∥∥Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)

∥∥∥∥
=

ql

−
∥∥∥∥Ax(2,l) · · ·x(m,l) −

m∑
i=2

x(i,l)

∥∥∥∥
→ 1

when l → ∞, which means that liml→∞ ‖x(1,l) − x(1,l+1)‖ → 0.
Let (x(1,∗), . . . , x(m,∗)) be an isolated accumulate point of {(x(1,l), . . . , x(m,l))}∞l=1.

For every subsequence {(x(1,l)}l∈K converging to x(1,∗), the condition in Proposi-
tion 3.2 holds. Hence, by Proposition 3.2 we know that the whole sequence {x(1,l)}∞l=1

converges to x(1,∗) as l → ∞.
Now we are ready to show the convergence of {x(2,l)}∞l=1. Without loss of gener-

ality, we assume that x(2,l+1) �= x(2,l). By Step 1 in Algorithm 3.1, we have

Ax(1,l+1)x(2,l+1)x(3,l) · · ·x(m,l)

= (x(2,l+1))�x(1,l+1) −
∥∥∥Ax(1,l+1)x(3,l) · · ·x(m,l) − x(1,l+1)

∥∥∥ ,
which implies that

q
(
x(1,l+1), x(2,l+1), x(3,l), . . . , x(m,l)

)
= −

∥∥∥Ax(1,l+1)x(3,l) · · ·x(m,l) − x(1,l+1)
∥∥∥− m∑

i=3

(
x(1,l+1)

)�
x(i,l).

Consequently, it holds that
(14)(

x(2,l+1)
)�

x(2,l) = −
Ax(1,l+1)x(2,l)x(3,l) · · ·x(m,l) −

(
x(1,l+1)

)�
x(2,l)∥∥Ax(1,l+1)x(3,l) · · ·x(m,l) − x(1,l+1)

∥∥
= −

q
(
x(1,l+1), x(2,l), x(3,l), . . . , x(m,l)

)
+

m∑
i=3

(
x(1,l+1)

)�
x(i,l)∥∥Ax(1,l+1)x(3,l) · · ·x(m,l) − x(1,l+1)

∥∥
=

q
(
x(1,l+1), x(2,l), x(3,l), . . . , x(m,l)

)
+

m∑
i=3

(
x(1,l+1)

)�
x(i,l)

q
(
x(1,l+1), x(2,l+1), x(3,l), . . . , x(m,l)

)
+

m∑
i=3

(
x(1,l+1)

)�
x(i,l)

.

For every subsequence {x(2,l)}l∈K converging to x(2,∗), there exists an infinite
subset K̄ ⊆ K such that {x(i,l)}l∈K̄ converges for every i = 3, . . . ,m, since {x(i,l)}l∈K

is bounded. Furthermore, by (13) it holds that

lim
l→∞

q
(
x(1,l+1), x(2,l), . . . , x(m,l)

)
= lim

l→∞
q
(
x(1,l+1), x(2,l+1), x(3,l), . . . , x(m,l)

)
= q∗.

Thus, by (14) we know

(15)

{(
x(2,l+1)

)�
x(2,l)

}
l∈K̄

→ 1,
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and hence {‖x(2,l+1) − x(2,l)‖}l∈K̄ → 0. Consequently, by Proposition 3.2 we assert
that the whole sequence {x(2,l)}∞l=1 converges to x(2,∗).

Similarly, we can prove that liml→∞ x(i,l) = x(i,∗) for every i = 3, . . . ,m. Conse-
quently, by Step 1 in Algorithm 3.1 we have

(16)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Ax(2,∗) · · ·x(m,∗) −

m∑
i=2

x(i,∗) + λ∗
1x

(1,∗) = 0,

Ax(1,∗) · · ·x(i−1,∗)x(i+1,∗) · · ·x(m,∗) − x(1,∗) + λ∗
i x

(i,∗) = 0
for i = 2, 3, . . . ,m,∥∥x(i,∗)∥∥ = 1 for i = 1, 2, . . . ,m,

where λ∗
1 = ‖Ax(2,∗) · · ·x(m,∗) −

∑m
i=2 x

(i,∗)‖ and

λ∗
i =

∥∥∥Ax(1,∗) · · ·x(i−1,∗)x(i+1,∗) · · ·x(m,∗) − x(1,∗)
∥∥∥ for i = 2, . . . ,m.

By (16), we assert that (x(1,∗), . . . , x(m,∗)) is a KKT point of problem (11).
Although the global optimal solution cannot be guaranteed by Algorithm 3.1,

some good solution can be obtained if a good initial point is chosen.

4. Preliminary numerical results. In this section, we report some numerical
results to illustrate the algorithm for solving problem (7) based upon the problem
(11). In our numerical experiments, we take

∣∣∣Ax(1,l+1)x(2,l+1) · · ·x(m,l+1) −Ax(1,l)x(2,l) · · ·x(m,l)
∣∣∣ < 10−6

as the stopping criterion for Algorithm 3.1. And for Example 4.1 and Example 4.2, the
vector (x(1,0), · · · , x(m,0)) in Step 0 of Algorithm 3.1 is taken by the scheme HOSVD
proposed in [12]. Throughout this section, for cases in which m is even, we take α =∑n

i1,i2,...,im=1 |Ai1i2...im | in (9) and the symmetric tensor B satisfying Bxm = ‖x‖m
2 .

Example 4.1. We consider the problem max‖x‖=1Ax4, where A is a 4-order
3-dimensional symmetric tensor A with entries

A1111 = 0.2883, A1112 = −0.0031, A1113 = 0.1973, A1122 = −0.2485,
A1123 = −0.2939, A1133 = 0.3847, A1222 = 0.2972, A1223 = 0.1862,
A1233 = 0.0919, A1333 = −0.3619, A2222 = 0.1241, A2223 = −0.3420,
A2233 = 0.2127, A2333 = 0.2727, A3333 = −0.3054.

This example comes from [6], and its optimal value fmax = 0.8893 was obtained
in [7]. Let C = A+αB with α = 18.5540. Then by Theorem 3.1, the original problem
can be converted into the following multilinear optimization problem

hmax = max
x(1),...,x(4)∈�3

Cx(1) · · ·x(4)

s.t. ‖x(i)‖ = 1 for i = 1, . . . , 4.

Since fmax = 0.8893, y to know that hmax = 0.8893+ α = 19.4433. We apply HOPM
proposed in [6] to the multilinear optimization problems with A and C, respectively.
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We apply SHOPM proposed in [6] to the original problem and max‖x‖=1 Cx4, respec-
tively. Notice that SHOPM for max‖x‖=1 Cx4 is equivalent to the SSHOPM in [7].

We also apply Algorithm 3.1 to the following optimization problems:

max
x(1),...,x(4)∈�3

Ax(1) · · ·x(4) +
4∑

i=2

(x(1))�x(i)

s.t. ‖x(i)‖ = 1 for i = 1, . . . , 4

and

max
x(1),...,x(4)∈�3

Cx(1) · · ·x(4) +
4∑

i=2

(x(1))�x(i)

s.t. ‖x(i)‖ = 1 for i = 1, . . . , 4.

The numerical results are presented in Figure 4.1 and Figure 4.2, respectively. The
curves in Figure 4.1 depict the values of the function Ax(1) · · ·x(4) at every iterative
point generated by HOPM, SHOPM, and Algorithm 3.1, and the curves in Figure 4.2
depict the values of the functions Ax(1) · · ·x(4) at every iterative point generated by
applying three algorithms to solve the optimization problem with C.

From Figure 4.1, we see that for the optimization problem with A, the objective
value obtained by HOPM is larger than the objective value obtained by Algorithm 3.1.
However x(1) = · · · = x(4) does not hold for the solution obtained by HOPM. In fact,
from Table 3.1 in [7], we can see that the value obtained by HOPM is the absolute value
of the minimum value for the original problem, which is max‖x‖=1 |Ax4|. Moreover,
from these figures, we can see that objective value obtained by Algorithm 3.1 always
improves the value obtained by SHOPM within less steps.

By comparing Figure 4.1 with Figure 4.2, we can see that three algorithms are
more suitable for solving the optimization problem with tensor C, which can be seen
from Table 4.1 too, where T denotes the related tensor, (x̄(1), x̄(2), x̄(3), x̄(4))� denotes
the obtained final iteration, f̄ denotes the value Ax̄(1) · · · x̄(4) of the objective function
at the final iteration, and Nit denotes the total number of iterations for solving this
problem.

Example 4.2. We consider the problem min‖x‖=1 Ax3, in which the 3-order 3-
dimensional symmetric tensor A is defined by

A111 = −0.1281, A112 = 0.0516, A113 = −0.0954, A122 = −0.1958,
A123 = −0.1790, A133 = −0.2676, A222 = 0.3251, A223 = 0.2513,
A233 = 0.1773, A333 = 0.0338.

From [7], we know that fmin = −0.8730. We applied SHOPM, HOPM, and Algo-
rithm 3.1 to solve the original problem or the corresponding multilinear optimization
problems and ran 500 trials with initial points generated randomly. The test results
are listed in Table 4.2, where SR denotes the success ratio in the tested problems,
i.e., the occurrences ratio that the optimal value fmin is arrived, and AIN denotes the
average iterations numbers in methods for the successful cases.

From Table 4.2, we see that SR obtained by Algorithm 3.1 is clearly larger than
those obtained by the other two algorithms.

Example 4.3. Consider the problem min‖x‖=1Ax3 with the 3-order n-dimensional
tensor A whose entries are uniformly distributed in (0, 1).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

818 XINZHEN ZHANG, CHEN LING, AND LIQUN QI

0 50 100 150 200
−1

−0.5

0

0.5

1

1.5

Iteration Step

 

 

SHOPM
Algorithm 3.1
HOPM

Fig. 4.1. Numerical results of Example 4.1 for tensor A.
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Fig. 4.2. Numerical results of Example 4.1 for tensor C.

Table 4.1

The test results of Example 4.1 by SHOPM, HOPH, and Algorithm 3.1.

T Algorithm f̄ x̄(1) x̄(2) x̄(3) x̄(4) Nit

A SHOPM 0.7420 (0.8412, 0.2635, 0.4722) x̄(1) x̄(1) x̄(1) 201

HOPM 1.0954 (0.5915,−0.7467,−0.3044) −x̄(1) −x̄(1) −x̄(1) 12

Algorithm 3.1 0.8169 (−0.8412, 0.2635,−0.4722) x̄(1) x̄(1) x̄(1) 10

C SHOPM 0.8893 (0.6672, 0.2472,−0.7027) x̄(1) x̄(1) x̄(1) 201

HOPM 0.8893 (−0.6672,−0.2472, 0.7027) x̄(1) x̄(1) x̄(1) 97

Algorithm 3.1 0.8893 (−0.6672,−0.2472, 0.7027) x̄(1) x̄(1) x̄(1) 104
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Table 4.2

The test results of Example 4.2.

Algorithm
SHOPM HOPM Algorithm 3.1

SR 0.4480 0.5940 0.8060
AIN 11.2723 6.9798 11.9305

Table 4.3

The test results of Example 4.3 by Algorithm 3.1.

DIM INVAL LVAL ALVAL SR(%) ACPU
3 −1.8301 −3.1699 −2.7520 100 0.0544
10 −5.6626 −17.9066 −15.9230 100 1.5278
30 −16.030 −87.799 −82.653 100 35.049
100 −51.192 −511.916 −499.885 100 910.111

We test 100 problems for both cases n = 3 and n = 10 and test 10 problems for
both cases n = 30 and n = 100. The numerical results are listed in the following
table, where DIM denotes the dimension of the tensor A, INVAL, and LVAL denote
the average initial value and average lower bound provided by Theorem 7.1 in [36],
respectively, ALVAL denotes the average value obtained by Algorithm 3.1, SR denotes
the success rate in the tested problems, and ACPU denotes the average CPU time
(in seconds) used by the trials. Here, a case is said to be successful if the solution
(x(1), x(2), x(3))� obtained by Algorithm 3.1 satisfies x(1) = x(2) = x(3).

From Table 4.3, we can see that a Z-eigenvalue of the tensorA generated randomly
in Example 4.3 can always be obtained by Algorithm 3.1, since the obtained solution
always satisfies x(1) = x(2) = x(3) for all test cases.

Final remark. Let A be an mth-order (n1 × n2 × · · · × nm)-dimensional tensor.
A can be decomposed as

A =

r∑
i=1

αix
(i,1) · · ·x(i,m),

where x(i,j) are nj-dimensional vectors and αi are numbers. Then the minimum value
of r is called the rank of A. When A is symmetric, n1 = · · · = nm and A can be
decomposed as

A =
r∑

i=1

αi(x
(i))m,

where x(i) are n-dimensional vectors and αi are numbers. The minimum value of r
is called the symmetric rank of A. It is conjectured by Comon et al. [2] that for a
symmetric tensor, its symmetric rank is the same as its rank. We call this conjecture
the symmetric rank conjecture.

Acknowledgments. The authors would like to thank Prof. Pierre Comon, the
associate editor, and the anonymous referees for their constructive comments and
suggestions which lead to a significantly improved version of the paper. One referee
of this paper pointed out that Theorem 2.1 can be regarded as the first step to prove
the symmetric rank conjecture.
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