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Abstract
In this paper, we investigate to propose a new statistical distribution based on power
series. We introduce a new family of distributions which are constructed based on a
latent complementary risk problem and are obtained by compounding Beta Exponen-
tial (BE) and Power Series distributions. The new distribution contains, as special
sub-models, several important distributions which are discussed in the literature,
such as Beta Exponential Poisson (BEP) distribution, Beta Exponential Geometric
(BEG) distribution, Beta Exponential Logarithmic (BEL) distribution, Beta Expo-
nential Binomial (BEB) distribution as special cases. The hazard function of the
BEPS distributions can be increasing, decreasing or bathtub shaped among others.
The comprehensive mathematical properties of the new distribution is provided such
as closed-form expressions for the density, cumulative distribution, survival function,
failure rate function, the r-th raw moment, maximum likelihood estimation and also
the moments of order statistics. The proposed type of distributions is used to modeling
simulated and real datasets.
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1 Introduction

In the analyzing of lifetime data, it is common that researchers use the Exponential
and Generalized Exponential distributions. It is well-known that Exponential can have
only constant hazard function and Generalized Exponential distribution can have only
monotone hazard functions. Since these distributions are very well-known distribu-
tions formodeling lifetime data in reliability andmedical studies, one of the interesting
points in the data analysis can be searching for distributions that have some properties
which enable them to describe the lifetime of some devices.

In the concept of lifetime data analysis, new classes of distributions were proposed
based on theBetaExponential distribution. Interesting reviews of someof thesemodels
is presented by [1]. Also, they defined the cumulative distribution function (CDF) of
the Generalized Exponential (GE) distribution. The distribution introduced by them
is also named the Exponentiated Exponential distribution. Clearly, the Exponential
distribution is a particular case of the GE distribution, [1] also investigated some
of their properties. The Exponentiated Weibull (EW) distribution, introduced by [2],
extends the GE distribution. The ExponentiatedWeibull also was studied by [3, 4] and
[5]. Nadarajah and Kotz [6] introduced the exponentiated type of distributions such
as Exponentiated Gumbel and Exponentiated Frechet distributions by generalizing
the Gumbel, Frechet and other distributions in the same way that the GE distribution
extends the Exponential distribution. They also provide somemathematical properties
for each Exponentiated distribution. Eugene et al. [7] defined the Beta-Bormal (BN)
distribution. General expressions for the moments of the BN distribution were derived
by [8]. Nadarajah and Kotz [9] considered the Beta Gumbel (BG) distribution and
provided closed-form expressions for the moments, the asymptotic distribution of the
extreme order statistics and discussed the maximum likelihood estimation procedure.
Moreover, [10] worked with the Beta Exponential (BE) distribution and obtained the
moment generating function, the first four cumulants, the asymptotic distribution of the
extreme order statistics and presented the maximum likelihood estimation. Barreto-
Souza et al. [11] proposed the generalization of BE distribution and Raffiq et al. [12]
proposed The Marshall–Olkin inverted Nadarajah–Haghighi distribution to analyze
lifetime data. In addition, [13] introduced a new generalization of Gumbel–Weibull
distribution with application in analysis COVID-19 data.

Recently, by pioneering statistical learning and its related concepts, data science
played main role in the analyzing of lifetime data. The effect of data science was not
restricted in only computational aspects. Also, it helped theoretical studies. Olsen et
al. [14] and Shi et al. [15] discussed and introduced the role and usage of data mining
in modern data analysis. Moreover, [16] proposed a new type of Lomax distribution
using statistical learning literature. For more information about usage of statistical
learning concepts see [17].

In this paper we propose a new lifetime model, called Beta Exponential Power
Series distributions. We obtain some of its mathematical properties. Some structural
properties of the new distribution are studied. The method of maximum likelihood is
used for estimating the model parameters. We illustrate the usefulness of the proposed
model by applications to real data. Accordingly in Sect. 2, the new class of BEPS
distribution is introduced. In Sect. 3, some properties of this distribution is calculated
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such as quantiles and order statistics. In Sect. 3, the parameters are estimated by MLE
method .In Sect. 4, the numerical experiments is provided for analysis of proposed
distribution based on simulated datasets.

2 The Class of BEPS Distribution

The three-parameter distribution known as Beta Exponential (BE) distribution, was
introduced by []. The cumulative distribution function (cdf) of the BE distribution with
four parameters a > 0, b > 0, λ > 0 is given by

Iy(a, b) = By(a, b)

B(a, b)

By(a, b) =
∫ y

0
wa−1(1 − w)b−1dw

G(y) = I1−exp(−λx)(a, b) = B1−exp(−λx)(a, b)

B(a, b)
, (1)

and the density function of the BE distribution is given by

g(y) = λexp(−bλx)(1 − exp(−λx))a−1

B(a, b)
. (2)

The beauty and importance of this distribution lies in its ability to model monotone
as well as non-monotone failure rates, which are quite common in lifetime problems
and reliability. Let N be a random variable denoting the number of failure causes,
N = 1, 2, ... and considering N following a power series distribution (truncated at
zero) with probability function given by

p(N = n) = anθn

C(θ)
, n = 1, 2, ... and θ ∈ (0, S). (3)

where a1, a2, ... is a sequence of non-negative real numbers, where at least one of them
is strictly positive, S is a positive number no greater than the ratio of convergence of
the power series

∑∞
n=1 anθ

n and C(θ) = ∑∞
n=1 anθ

n . The Beta Exponential Power
Series distribution, denoted by BEPS (α, a, b, λ, θ), is defined by the marginal cdf of
X = min{Y1,Y2, . . . ,YN }, i.e.,

F(x) = 1 − C(θ(1 − (I1−exp(−λx)(a, b))α))

C(θ)
. (4)

where α, a, b > 0 ,λ > 0, θ > 0. The pdf of the BEPS(α, a, b, λ, θ) is given by

f (x) = αθλ

C(θ)B(a, b)
A. (5)
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Table 1 Useful quantities of some power series distributions

Distribution an C(θ) C
′
(θ) C

′′
(θ) C(θ)−1 �

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0, ∞)

Logarithmic n−1 −log(1 − θ) (1 − θ)−1 (1 − θ)−2 1 − e−θ θ ∈ (0, 1)

Geometric 1 θ(1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 θ(θ + 1)−1 θ ∈ (0, 1)

Binomial
(m
n
)

(θ + 1)m − 1 m(θ + 1)m−1 m(m−1)
(θ+1)2−m (θ − 1)

1
m − 1 θ ∈ (0, 1)

The survival function and hazard rate function of the BEPS distribution are given,
respectively, by

s(x) = C(θ(1 − (I1−exp(−λx)(a, b))α))

C(θ)
,

and

h(x) = αθλ

C(θ(1 − (I1−exp(−λx)(a, b))α))B(a, b)
A. (6)

where

A = C ′ (θ(1 − (I1−exp(−λx)(a, b))α) )( I1−exp(−λx)(a, b)
)α−1

exp(−λx)(1 − exp(−λx))a−1exp(−λx)b−1,

2.1 Beta Exponential Poisson Distribution

The Beta Exponential Poisson (BEP) distribution is a special case of BEPS distribu-
tions with an = 1

n! and C(θ) = eθ − 1. Using cdf (4), the CDF of Beta Exponential
Poisson (BEP) distribution is given by

FBEP (x) =
{
1 − (exp(θ − θ [I1−exp(−λx)(a, b)]α) − 1)

exp(θ) − 1

}
.. (7)

Where α, a, b > 0, λ, θ > 0. The associated pdf and hazard rate function of this
distribution are given, respectively, by

fBE P (x) = αλθ

(exp(θ) − 1)B(a, b)
B. (8)

and

hBEP(x) = αλθ

(exp(θ − θ [I1−exp(−λx)(a, b)]α) − 1)B(a, b)
B. (9)
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Fig. 1 Plots of density function, cumulative distribution function and hazard function for BEP

where

B = exp(θ(1 − [I1−exp(−λX)(a, b)]α))exp(−λx)(1 − exp(−λx))a−1

exp(−λx)b−1(I1−exp(−λx)(a, b))α−1

The plots of pdf, cdf and hazard rate function of BEP distribution for some values of
α, a, b, λ, θ are given in Fig. 1.

Models that present bathtub-shaped failure rate are very useful in survival analysis.
The modeling and analysis of lifetimes is an important aspect of statistical work in
a wide variety of scientific and technological fields. The new distribution due to its
flexibility in accommodating all the forms of the risk function seems to be an important
distribution that can be used in a variety of problems in modeling survival data.

2.2 Beta Exponential Geometric Distribution

TheBeta Exponential Geometric (BEG) distribution is a special case of BEPS distribu-
tions with an = 1 and C(θ) = θ(1 − θ)−1. Using cdf (4), the cdf of Beta Exponential
Geometric (BEG) distribution is given by

FBEG(x) = 1 − (1 − θ)[1 − (I1−exp(−λx)(a, b))α]
1 − θ [1 − (I1−exp(−λx)(a, b))α] .

where α, a, b, λ, θ > 0. The pdf is

fBEG(x) = αλ(1 − θ)

(exp(λ) − 1)(1 − θ [1 − (I1−exp(−λx)(a, b))α])2B(a, b)
C .
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Fig. 2 Plots of density function, cumulative distribution function and hazard function for BEG

The hazard rate function of BEG distribution is given by

hBEG(x) = αλ

[1 − (I1−exp(−λx)(a, b))α](1 − θ [1 − (I1−exp(−λx)(a, b))α])B(a, b)
C .

where

C = exp(−λx)(1 − exp(−λx))a−1exp(−λx)b−1(I1−exp(−λx)(a, b))α−1

The plots of pdf, cdf and hazard rate function of BEG distribution for some values of
α, a, b, λ, θ are given in Fig. 2.

2.3 Beta Exponential Logarithmic Distribution

The Beta Exponential Logarithmic (BEL) distribution is a special case of BEPS dis-
tributions with an = 1

n and C(θ) = −log(1 − θ). Using cdf (4), the cdf of Beta
Exponential Logarithmic (BEL) distribution is given by

FBEL(x) = 1 − log[θ(1 − (I1−exp(−λx)(a, b))α)]
log(1 − θ)

, (10)

where α, a, b, λ, θ > 0. The associated pdf and hazard rate functions are given,
respectively, by

fBEL(x) = λα

log(1 − θ)[1 − (I1−exp(−λx)(a, b))α)]B(a, b)
D.
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Fig. 3 Plots of density function, cumulative distribution function and hazard function for BEL

and

hBEL (x) = λα

log(1 − θ)[1 − (I1−exp(−λx)(a, b))α]log[θ(1 − (I1−exp(−λx)(a, b))α]B(a, b)
D.

(11)

where

D = exp(−λx)(1 − exp(−λx))a−1exp(−λx)b−1(I1−exp(−λx)(a, b))α−1

The plots of pdf, cdf and hazard rate function of BEL distribution for some values
of α, a, b, λ, θ are given in Fig. 3.

2.4 Beta Exponential Binomial Distribution

The Beta Exponential Binomial (BEB) distribution is a special case of the BEPS
distribution with an = (m

n

)
and C(θ) = (θ + 1)m − 1 where m (n ≤ m) is the number

of replicates. The pdf and cdf of the BEB distribution is given, by

FBEB(x) = 1 − [θ(1 − (I1−exp(−λx)(a, b))α)]m − 1

(θ + 1)m − 1
.
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Fig. 4 Plots of density function, cumulative distribution function and hazard function for BEB

whereα, a, b, λ, θ The associated pdf and hazard rate functions are given, respectively,
by

fBEB (x) = αλθm

(θ + 1)m−1B(a, b)
E .

and

hBEB(x) = αλθm

([θ(1 − (I1−exp(−λx)(a, b))α)]m − 1)B(a, b)
E .

where

E = {[θ(1 − (I1−exp(−λx)(a, b))α)]m−1exp(−λx)(1 − exp(−λx))a−1

exp(−λx)b−1(I1−exp(−λx)(a, b))α−1}

If m = 1, then the density function in (12) changes to the density of BE distribution.

3 Statistical Properties

In this section, we proposed some of the basic statistical properties of the BEPS. For
examples, we provide Quantiles and Order statistic

123



Annals of Data Science (2023) 10(5):1157–1178 1165

Quantiles, Moments and Order Statistics

The quantiles of a distribution can be used in data generation from a distribution. The
quantile xq of the BEPS(α, a, b, λ, θ) is the real solution of the following equation:

∫ χq

−∞
f (x)dx = q,

C(θ(1 − (I1−exp(−λx)(a, b))α)

C(θ))
= q,

C(θ) = θ(1 − (I1−exp(−λx)(a, b))α) (12)

The above equation has no closed form solution in xq , so we have to use a numerical
technique such as a Newton-Raphson method to get the quantile. The pdf fi :n of the
i th order statistic for a random sample X1, X2, ..., Xn from the BEPS distribution is
given by

fi :n(x) = 1

B(i, n − i + 1)
f (x)F(x)i−1[1 − F(x)]n−i

= 1

B(i, n − i + 1)

n−i∑
j=0

(
n − i

j

)
(−1) j

[
C(θ(1 − [I1−exp(−λx)(a, b)]α))

C(θ)

] j+i−1

(13)

and the cdf is

Fi :n(x) =
n∑

k=i

(
n

k

)
F(x)k[1 − F(x)]n−k

=
n∑

k=i

n−k∑
j=0

(
n − k

j

)(
n

k

)
(−1) j

[
C(θ(1 − [I1−exp(−λx)(a, b)]α))

C(θ)

] j+k

.(14)

Carrasco et al. [18] obtained an infinite representation for the r th moment of the
BE(a, b, λ) distribution. If Y has the BE(a, b, λ), the r th moment of Y say μ

′
r , is

given as follows

μ
′
r =

∞∑
j=0

∞∑
i1,...,ir=1

w j
Ai1,...,ir �(Sr + 1)

(α(b + j))Sr
(15)

where Ai1,...,ir = ai1 ...air , Sr = i1 + ... + ir , ai = (−1)i+1i i−2λi−1

(i−1)! and

w j = w j (a, b) = (−1) j�(a)

B(a, b)�(a − j)(b + j) j !
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Let that Yi :n be the i th order statistic of a random sample from the BE distribution.
The r th moment of BEPS (α, a, b, λ, θ), is given as follows

μr = E(Xr ) =
∞∑
i=1

P(N = n)E(Yr
(n))

=
∞∑
n=1

anθn

C(θ)
n

∞∑
j=0

(−1) j�(a)

B(a, b)�(a − j)(b + j) j !
∞∑

i1,...,ir=1

Ai1,...,ir �(Sr + 1)

(α(b + j))
Sr
γ

(16)

According to th e Eq. (16), we can conclude that:

EBEPS(X) = μ1

Var BEPS(X) = μ2 − μ2
1.

Hence, expectation and variance of BEPS can be immediately implied from (16).
Also, based on the results given in (15), the measures of skewness and kurtosis of the
BEPS (α, a, b, λ, θ) can be obtained according to the following relations, respectively,

SkewnessBEPS = μ3 − 3μ1μ2 + 2μ1
3

(μ2 − μ1)
3
2

,

and

KurtosisBEPS = μ4 − 4μ3μ1 + 6μ1
2μ2 − 3μ1

4

(μ2 − μ1)
2 .

In Fig. 5, we show the behavior of the Galton’ skewness [19] and Moors’ kurtosis
[20] as a functions of θ for the values of α,a,b and λ. The behavior of different types of
BEPS is different against the variation of θ . But, skewness and kurtosis are generally
decreasing meaningfully by increasing the values of α,a,b and λ.

4 Estimation and Inference

Standard statistical techniques such as method of maximum likelihood can always
be used for parametric estimation. The likelihood equations, given the complete or
censored failure data set, can be derived and solved. Parameter estimation is usually a
difficult problem even for a five parameter BEPS distribution. Methods like the max-
imum likelihood estimation will not yield a closed form solution. Different methods
can be used to estimate the model parameters. Among these methods, the Maximum
Likelihood Estimation method is the most commonly used method for model estima-
tion. In this subsection, we use the maximum likelihood procedure to derive the point
and interval estimates of the parameters. Calculating the first partial derivatives of L
with respect to α, a, b, σ, θ and equating each to zero, we get the likelihood equations
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Fig. 5 The effect of θ on Galton’ skewness and Moors’ kurtosis for different values of α,a,b and λ

in the following system of nonlinear equations of α, a, b, σ and θ .

∂L

∂α
= n

α
+

n∑
i=1

ln
(
IU (xi )(a, b)

)
− θ

(
IU (x)(a, b)

)α ln
(
IU (x)(a, b)

)
Ti1. (17)

∂L

∂θ
= n

θ
+

(
1 − (

IU (x)(a, b)
)α

)
− n

C ′(θ)

C(θ)
(18)

∂L

∂a
=

∂(B(a,b))−1

∂a

(B(a, b))−1 + (α − 1)
n∑

i=1

∂(B(a,b))−1

∂a Ti2 + (B(a, b))−1Ti3
IU (x)(a, b)

−
n∑

i=1

αθ
(
IU (x)(a, b)

)α−1
(
∂(B(a, b))−1

∂a
Ti2 + (B(a, b))−1Ti3)Ti1. (19)

∂L

∂b
=

∂(B(a,b))−1

∂b

(B(a, b))−1 (α − 1)
n∑

i=1

∂(B(a,b))−1

∂b Ti2 + (B(a, b))−1Ti4
IU (x)(a, b)

−
n∑

i=1

αθ
(
IU (x)(a, b)

)α−1
(
∂(B(a, b))−1

∂b
Ti2 + (B(a, b))−1Ti4)Ti1 (20)

where

T1 = C ′′(θ(
1 − (IU (x)(a, b))α

))
C ′((θ(

1 − (IU (x)(a, b))α
))

T2 =
∫ 1−exp(−λx)

0
ta−1(1 − t)b−1dt
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T3 =
∫ 1−exp(−λx)

0
ta−1 ln t(1 − t)b−1dt

and

T4 =
∫ 1−exp(−λx)

0
ta−1 ln(1 − t)(1 − t)b−1dt

To find out the maximum likelihood estimators of α, a, b, λ and θ , we have to solve
the above system of nonlinear equations with respect to α, a, b, λ and θ . As it seems,
this system has no closed form solution in α, a, b, λ and θ . Then we have to use a
numerical technique method, such as Newton-Raphsonmethod, to obtain the solution.

5 Numerical Studies

5.1 Simulation Study

In the simulation study, we examine the precision of maximum likelihood estimators
for BEPS(α, a, b, λ, θ). The mean of square error (MSE) for each parameter as
comparison tool. We follow the following steps:

1. Consider 4 sample size n = 50, 100, 200, 400 for (α, a, b, λ, θ) = (1.25, 1, 0.75,
1.75, 0.5)

2. Repeat the above step N = 5000 times
3. Calculate the MSE of each parameter over the 100 iterations.

The results of generating random sample and calculating theMSE values are prepared
in Table 2. As we can see, by increasing n, MSE decreases. Actually, when n = 400,
MSE have the minimum amount except α in BEL . Generally, based on MSE , we
can clearly conclude that we can obtain more precise estimations when we have more
sample data.

Now, we check the behavior of ML estimation of the model parameters when n
tends to infinity. We simulate 1000 repetition of simulated data for (α, a, b, λ, θ) =
(1.25, 1, 0.75, 1.75, 1) with size of n = 5000. Then, we consider the average of their
MSE over increasing of sample size. Figure 6 shows the effect of increasing sample
size n on the amount of MSE for ML estimation of the model parameters. As it can
be seen, the MSE decreases significantly by increasing n. In the most of the cases, it
converges to 0 around n = 5000. Also, there is an exceptions, and the MSE increases
for MLE of λ in BEP .

5.2 Real Data Applications

From the current study, it is hoped that BEPS distribution can be used more widely
in both a theoretical and an applicable aspect. In this section, we analyze a real data
sets to demonstrate the performance of the BEPS distribution in practice. This is a
sample of 50 components taken from [21]. We fit the BEPS distributions family over
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Table 2 MSE of ML estimation of parameters for different sample sizes

Distribution n MSE(α) MSE(a) MSE(b) MSE(λ) MSE(θ)

BEP 50 1.600 4.342 2.801 3.832 2.119

100 1.403 3.050 2.699 3.694 2.060

200 1.054 2.318 3.172 3.579 1.802

400 0.996 1.544 3.132 3.480 1.378

BEG 50 1.527 2.311 1.881 2.237 0.155

100 1.324 2.329 2.668 1.516 0.139

200 1.078 1.887 2.901 1.004 0.126

400 0.857 1.044 2.229 0.754 0.127

BEL 50 1.263 2.425 1.493 3.245 0.198

100 1.699 2.079 1.222 2.592 0.183

200 2.035 2.426 1.336 1.957 0.168

400 2.148 2.345 0.822 1.552 0.166

BEB 50 3.347 2.206 1.001 4.356 0.208

100 3.643 1.128 0.578 3.949 0.197

200 1.571 0.713 0.435 4.124 0.184

400 0.933 0.428 0.401 4.103 0.179
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Fig. 6 The values of MSE for each parameter against increasing sample sizes

the widely used Aarset data and analyze the obtained results. It is worth to note that
the Aarset data was also reported and analyzed in [2, 4, 22, 23] studies and it contains
lifetimes of 50 components, which possess a bathtub-shaped failure rate property. The
data contains the times to failure of 50 devices put on life test at time 0, from [21].

The submodels of BEPS contained the exponential power series (proposed by
[24]), beta exponential and exponential distributions are considered for comparison
with the performance of the BEPS distributions family and also for applying likelihood
ratio tests. Tables 3 and 4 shows values and Descriptive statistics of the Aarset data. In
additions Fig. 7 show histogram and the approximation of density curve of the data.

Table 5 shows theMLEs of parameters of themodels (distributions) fitted toAarset
data. Also, we can find the values of AIC , BIC and −2 log−likelihood (−2log(L)
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Table 3 Lifetimes of 50 devices

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63 67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

Table 4 Descriptive values of Aarset data

Min 1st.Qu Median Mean 3rd.Qu Max Skewness Kurtosis

0.10 13.50 48.50 45.69 81.25 86.00 −0.14 1.41

Fig. 7 Plots of density function,
cumulative distribution function
and hazard function

Histogram of Aarset.data

Aarset.data
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) for the fitted models which are considered for model comparison. According to AIC
and−2 log(L), BEL is the bestmodel. But, based on BIC , BE with a slight difference
with BEL has a better performance. In continue, we analyze the performance of fitted
models by other approaches to reach the best conclusion about the best fitted model
on Aarset data.

For more comparison and reaching better decision about the best model fitted over
the Aarset data, we apply likelihood ratio (LR) test. We should calculate the maxi-
mum amounts of log-likelihoods of null and alternative hypothesis to obtain the LR
statistics for testing some sub-models of the BEPS distribution. In LR test, if � be
the parameter space of problem, we divide the parameter space as � = (�0,�1). �0
is the parameter space of model under null hypothesis (H0) and �1 is the parameter
space of model under alternative hypothesis (H1). For example, if we want to asses
the BE model against BEL , �0 is the parameter space under the assumption of BE
distribution and �1 is the parameter space when we consider BEL for data. �̂0 and
�̂1 be MLE under H0 and H1, the LR statistic for this problem is calculated as:

LR = −2 log

⎡
⎣ L

(
�̂0

)

L
(
�̂1

)
⎤
⎦ = 476.24 − 468.78 = 7.46.
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Table 6 Likelihood ratio test
results for Aarset data

Model LR statistic p value

BEP vs. EP 5.68098 0.058

BEP vs. BE −0.19645 1.000

BEP vs. E 5.74278 0.125

BEG vs. EG 6.46815 0.011

BEG vs. BE 1.13127 0.568

BEG vs. E 7.07050 0.070

BEL vs. EL 11.21232 0.004

BEL vs. BE 7.46121 0.024

BEL vs. E 13.40045 0.004

Table 7 Goodness-of-fit tests
for Aarset data

Statistic

Distribution AD∗ W∗ K − S pvalue

BEP 2.84282 0.50019 0.19070 0.05269

BEG 2.58339 0.45259 0.18094 0.07572

BEL 2.04316 0.32219 0.15827 0.16327

EP 3.67365 0.51814 0.18972 0.05469

EG 3.58586 0.52633 0.18395 0.06783

EL 3.33391 0.57274 0.20064 0.03570

BE 2.78103 0.49463 0.19017 0.05376

E 3.70812 0.52404 0.19107 0.05194

Table 6 shows the information about LR test for some submodels against BEPS
family. For the aforementioned example about testing BE versus BEL , p− value =
0.024 and we have another evidence to obtain BEL as the best model fitted over the
Aarset data.

Now, we examine the goodness of fit for the fitted models over the Aarset data. we
consider and compute the Kolmogorov–Smirnov (K − −S), the Cramer–von Mises
(W ∗) and Anderson–Darling (AD∗) statistics for testing the goodness of fit. The
smaller values of W ∗ and AD∗ indicate the better fitting of the model. [25] provided
detailed information about Anderson–Darling and Cramer–von Mises tests.

Table 7 presents the values of AD∗, W∗ and K − −S statistics, also it gives
p − values of K − −S test. According to the Table 7, BEL has the minimum values
of AD∗ and W∗ statistics. In addition, except EL , other distributions are fit for the
data based on K − −S test.

Figures 8 and 9, show the estimated survival function plot, TTT plot and Kaplan–
Meier curve of the proposed models for the Aarset data. These figures show that the
BEL distribution has better fit than the other involved distributions.
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Fig. 8 Estimated survival
function and the empirical
survival for Aarset data
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Fig. 9 Empirical TTT-plot (top left), estimated hazard rate function (top right), estimated survival functions
(bottom) of three fitted models for Aarset data

Conclusion

We introduce a five parameter lifetime family of distributions that is called Beta Expo-
nential Power Series (BEPS). This type of distributions is a new mixed distribution of
the Beta Exponential and power series distribution. Beta Exponential Poisson (BEP),
beta Exponential Geometric (BEG), Beta Exponential Logarithmic (BEL), and Beta
Exponential Binomial (BEB) are the distributions of this family of statistical distribu-
tions. Exponential power series (EP) and Beta Exponential (BE) distributions are the
special cases of this type of distributions. Furthermore, we provide a mathematical
treatment of this distribution including the order statistics. Also, we provide explicit
expressions for the density function of the order statistics and their moments. Several
properties of the BEPS distribution such as quantiles and moments are provided.
BEPS has better fitting over Aarset data in comparison of submodels such as EP
and BE .
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For the future studies, the BEPS family can be extended by alpha power distribu-
tions as a new way to model lifetime data. Similarly, BE and EP can be considered
for the extension by alpha power distributions.
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Appendix

Proof of the formulas of Beta Exponential Power Series distribution, Beta Exponen-
tial Poisson distribution, Beta Exponential Geometric distribution, Beta Exponential
Logarithmic distribution, Beta Exponential Binomial distribution, respectively,

Proof (BEPS):

G(x |N ) = P(X ≤ x |N )

= 1 − P(X > x |N ) = 1 − P(min(Y1, . . . ,YN > x |N )

= 1 − P(Y1 > x, . . . ,YN > x |N )

= 1 − (P(Y1 > x |N ))N

= 1 − (1 − P(Y1 ≤ x |N ))N

= 1 − (1 − P(Zi1 ≤ x, . . . , Ziα ≤ x)N

= 1 − (
1 − (P(Zi1 ≤ x))α

)N
= 1 − (

1 − (I1−exp(−λx)(a, b))α
)N

G(x) =
∞∑
n=1

G(x |N )P(N = n)

=
∞∑
n=1

{1 − [1 − (I1−exp(−λx)(a, b))α]n} × a(n)θn

C(θ)
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=
∞∑
n=1

θna(n)

C(θ)
−

∞∑
n=1

θna(n)[1 − (I1−exp(−λx)(a, b))α]n
C(θ)

= 1 − 1

C(θ)

∞∑
n=1

a(n)[θ(1 − (I1−exp(−λx)(a, b))α)]n

= 1 − C(θ(1 − (I1−exp(−λx)(a, b))α))

C(θ)

g(x) = ∂G(x)

∂x

g(x) = 1

∂x
{1 − 1

C(θ)
C(θ(1 − (I1−exp(−λx)(a, b))α))}

g(x) = 1

∂x
{1 − 1

C(θ)
C(θ(1 − (

1

B(a.b)

∫ 1−exp(−λx

0
wa−1(1 − w)b−1dw)α)}

g(x) = αθλ

C(θ)B(a, b)
C ′ (θ(1 − (I1−exp(−λx)(a, b))α) )( I1−exp(−λx)(a, b)

)α−1

exp(−λx)(1 − exp(−λx)a−1)exp(−λx)b−1

Proof (BEP):

P(N = n) = λ

(exp(λ) − 1)n!
a(n) = 1

n!
c(λ) = exp(λ) − 1

G(x) =
∞∑
n=1

G(x |N )P(N = n)

=
∞∑
n=1

{1 − [
1 − (I1−exp(−λx)(a, b))α

]n} ×
{

λ

(exp(λ) − 1)n!
}

= 1

exp(λ) − 1

{ ∞∑
i=1

λn

n! −
∞∑
i=1

[λ − λ(I1−exp(λx)(a, b))α]n
n!

}

= 1

exp(λ) − 1
{(exp(λ) − 1) − (exp(λ − λ[I1−exp(−λx)(a, b)]α) − 1)}

=
{
1 − (exp(θ − θ [I1−exp(−λx)(a, b)]α) − 1)

exp(λ) − 1

}

g(x) = ∂G(x)

∂x

g(x) = 1

∂x

{
1 − (exp(λ − λ[I1−exp(−λx)(a, b)]α) − 1)

exp(λ) − 1

}

= αλθ

(exp(λ) − 1)B(a, b)
exp(λ(1 − [I1−exp(−λX ]α)exp(−λx)
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(1 − exp(−λx))a−1exp(−λx)b−1 I1−exp(−λx)(a, b))α−1

Proof (BEG):

a(n) = 1

C(θ) = θ(1 − θ)

P(N = n) = θn

θ(1 − θ)−1 = θn−1(1 − θ)

G(x) =
∞∑
n=1

G(x |N )P(N = n)

=
∞∑
n=1

{1 − [1 − (I1−exp(−λx)(a, b))α]n} × {θn−1(1 − θ)}

=
∞∑
n=1

θn−1(1 − θ) −
∞∑
n=1

[1 − (I1−exp(−λx)(a, b))α]n[θn−1(1 − θ)]

= (1 − θ)

∞∑
n=1

θn−1 − θ−1(1 − θ)

∞∑
n=1

θn[1 − (I1−exp(−λx)(a, b))α]n

= (1 − θ)
1

1 − θ
− θ−1(1 − θ)

∞∑
n=1

[θ(1 − (I1−exp(−λx)(a, b))α)]n

= 1 − (1 − θ)1 − (I1−exp(−λx)(a, b))α

1 − θ[1 − (I1−exp(−λx)(a, b))α]
= 1 − (1 − θ)[1 − (I1−exp(−λx)(a, b))α]

1 − θ[1 − (I1−exp(−λx)(a, b))α]
g(x) = ∂G(x)

∂x

g(x) = 1

∂x

{
1 − (1 − θ)[1 − (I1−exp(−λx)(a, b))α]

1 − θ[1 − (I1−exp(−λx)(a, b))α]
}

g(x) = αλ(1 − θ)

B(a, b)

exp(−λx)(1 − exp(−λx))a−1exp(−λx)b−1(I1−exp(−λx)(a, b))α−1

(1 − θ[1 − (I1−exp(−λx)(a, b))α])2

Proof (BEL):

P(N = n) = θn

−nlog(1 − θ)

a(n) = 1

n
C(θ) = −log(1 − θ)

G(x) =
∞∑
n=1

G(x |N )P(N = n)

=
∞∑
n=1

{1 − [1 − (I1−exp(−λx)(a, b))α]n} ×
{
− θn

nlog(1 − θ)

}

= − 1

log(1 − θ)

∞∑
n=1

θn

n
+ 1

log(1 − θ)

∞∑
n=1

[θ(1 − (I1−exp(−λx))
α]n

n
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log(1 − x) = −
∞∑
n=1

xn

n

G(x) = 1

log(1 − θ)

{
−

∞∑
n=1

θn

n
+

∞∑
n=1

[θ(1 − (I1−exp(−λx))
α)]n

n

}

= 1

log(1 − θ)
{log(1 − θ) −

∞∑
n=1

−[θ(1 − (I1−exp(−λx))
α)]n

n
}

= 1 − log[θ(1 − (I1−exp(−λx))
α)]

log(1 − θ)

g(x) = ∂G(x)

∂x

g(x) = 1

∂x

{
1 − log[θ(1 − (I1−exp(−λx))

α)]
log(1 − θ)

}

g(x) = λα

log(1 − θ)B(a, b)

exp(−λx)(1 − exp(−λx))a−1exp(−λx)b−1(I1−exp(−λx (a, b))α−1

[1 − (I1−exp(−λx (a, b))α]

Proof(BEB):

a(n) =
(
m

n

)

C(θ) = (θ + 1)m − 1

P(N = n) =
(m
n

)
θ

(θ + 1)m − 1

G(x) =
m∑

n=1

G(x |N )P(N = n)

=
m∑

n=1

{
1 − [1 − (I1−exp(−λx)(a, b))α]n} × {×

(m
n

)
θ

(θ + 1)m − 1

}

= 1

(θ + 1)m − 1
{

m∑
n=1

(
m

n

)
θn −

m∑
n=1

(
m

n

)
[θ(1 − (I1−exp(−λx)(a, b))α)]n1m−r

= 1

(θ + 1)m − 1
{

m∑
n=1

(
m

n

)
θn1m−n −

(
m

n

)
θn1m−n −

(
m

0

)
θ01m−0

−
m∑

n=1

(
m

n

)
[(θ(1 − (I1−exp(−λx)(a, b))α))n − 1]

= 1 − [θ(1 − (I1−exp(−λx)(a, b))α)]m − 1

(θ + 1)m − 1

g(x) = ∂G(x)

∂x

g(x) = 1

∂x

{
1 − [θ(1 − (I1−exp(−λx)(a, b))α)]m − 1

(θ + 1)m − 1

}

g(x) = αλθm

((θ + 1)m−1B(a, b){[θ(1 − (I1−exp(−λx)(a, b))α)]m−1exp(−λx)(1 − exp(−λx))a−1

exp(−λx)b−1(I1−exp(−λx)(a, b))α−1
}
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