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The beta power distribution

Gauss Moutinho Cordeiro and Rejane dos Santos Brito
Universidade Federal Rural de Pernambuco

Abstract. The power distribution is defined as the inverse of the Pareto dis-
tribution. We study in full detail a distribution so-called the beta power dis-
tribution. We obtain analytical forms for its probability density and hazard
rate functions. Explicit expressions are derived for the moments, probability
weighted moments, moment generating function, mean deviations, Bonfer-
roni and Lorenz curves, moments of order statistics, entropy and reliability.
We estimate the parameters by maximum likelihood. The practicability of the
model is illustrated in two applications to real data.

1 Introduction

We study the so-called beta power (BP) distribution. Although we can only refer
to the book by Balakrishnan and Nevzorov (2003, Chapter 14, pp. 127–132) about
the power distribution, we believe that this distribution can have wider applications
than the power distribution. Boyce et al. (1999) related the power distribution to
environmental policy and stress and public health and Van Dorp and Kotz (2002)
presented applications in financial engineering domain. Keeping these applications
in mind, we take them as a basis to the power distribution and also to the BP
distribution.

The BP distribution stems from the following idea: Eugene et al. (2002) defined
the beta G distribution from a quite arbitrary cumulative distribution function (cdf)
G(x) by

F(x) = IG(x)(a, b), (1.1)

where a > 0 and b > 0 are two extra parameters, Iy(a, b) = By(a, b)/B(a, b) is
the incomplete beta function ratio, By(a, b) = ∫ y

0 ωa−1(1 − ω)b−1 dω is the in-
complete beta function and B(a, b) is the complete beta function. The unknown
positive parameters a and b are shape parameters which introduce skewness and
vary tail weights.

The class of distributions (1.1) has raised increased attention in recent years
after the work by Jones (2004).

Eugene et al. (2002), Nadarajah and Gupta (2004), Nadarajah and Kotz (2004)
and Nadarajah and Kotz (2005) defined the beta normal, beta Fréchet, beta Gumbel
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and beta exponential distributions by taking G(x) to be the cdf of the normal,
Fréchet, Gumbel and exponential distributions, respectively. Another distribution
that happens to belong to (1.1) is the log-F (or beta logistic) distribution, which is
known for over 20 years (Brown et al., 2002), even if it did not originate directly
from equation (1.1). Sepanski and Kong (2007) compared the performance of some
generalized beta distributions, such as the beta normal, skewed Student t , log-F,
beta exponential and beta Weibull distributions, to the widely used generalized
beta distributions of the first and second types in terms of some measures of fit.
Recently, Barreto-Souza et al. (2010) proposed the beta generalized exponential
distribution motivated by the wide use of the exponential distribution in practice,
and also for the fact that the generalization provides more flexibility to analyze
more complex situations.

In this article, we provide a comprehensive mathematical treatment of the BP
distribution. We begin with the probability density function (pdf) and cdf of the
power distribution given by

gα,β(x) = αβαxα−1, 0 < x <
1

β
, (1.2)

and

Gα,β(x) = (βx)α, (1.3)

respectively, where α > 0 is a shape parameter and β > 0 is a scale parameter. For
α = 1, we obtain as a special case the uniform distribution defined on the interval
(0,1/β), say X ∼ U(0,1/β). For β = 1, we have gα,1(x) = αxα−1 and Gα,1(x) =
xα as defined by Balakrishnan and Nevzorov (2003). The power distribution is
related to the Pareto distribution using an inverse transformation (Akinsete et al.,
2008). Some other distributions can be obtained from the Pareto distribution using
some well-known transformations such as the exponential, logistic and chi-squared
distributions.

Using (1.1) and replacing G(x) by the cdf of the power distribution (1.3), the
BP cumulative function can be written as

F(x) = I(βx)α (a, b) = B(a, b)−1
∫ (βx)α

0
wa−1(1 − w)b−1 dw (1.4)

for 0 < x < 1/β . Here, a > 0, b > 0 and α > 0 are shape parameters and β > 0 is
a scale parameter. For any values of a and b, we can express (1.4) in terms of the
well-known hypergeometric function given by

F(x) = (βx)αa

aB(a, b)
2F1

(
a,1 − b, a + 1; (βx)α

)
.

In general, the cdf F(x) defined from a baseline cdf G(x) in (1.1) could follow
the properties of the hypergeometric function which are well established in the
literature; see, for example, Section 9.1 of Gradshteyn and Ryzhik (2000).
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The density function corresponding to (1.1) is given by

f (x) = g(x)

B(a, b)
G(x)a−1[1 − G(x)]b−1, (1.5)

where g(x) = dG(x)/dx is the baseline density function. The pdf f (x) will be
most tractable when the functions G(x) and g(x) have simple analytic expressions
such as the power distribution. Except for some special choices for G(x) in (1.1),
equation (1.5) could be very difficult to deal with in generality.

The hazard rate function defined by h(x) = f (x)/[1 − F(x)] is an important
quantity characterizing lifetime phenomena. Correspondingly, the pdf and hazard
rate function of the BP distribution are

f (x) = αβ(βx)αa−1[1 − (βx)α]b−1

B(a, b)
, 0 < x <

1

β
(1.6)

and

h(x) = αβ(βx)αa−1[1 − (βx)α]b−1

B(a, b)[1 − I(βx)α (a, b)] , (1.7)

respectively. Equation (1.6) is not new. McDonald and Richards (1987) defined it
as the generalized beta distribution of the second kind. However, they do not study
its mathematical properties which we do in this article.

We denote a random variable X having density function (1.6) by X ∼
BP(a, b,α,β). Simulation of the BP distribution is very easy: if V is a random
variable having a beta distribution with parameters a and b, then the random vari-
able X = β−1V 1/α follows the BP(a, b,α,β) distribution.

Figures 1 and 2 illustrate some possible shapes of the density function (1.6) and
hazard rate function (1.7), respectively, for selected parameter values, including
the power distribution. It is evident that the BP distribution is much more flexible
than the power distribution. Figure 2 shows that the BP hazard function can be
bathtub shaped, monotonically increasing or decreasing and upside-down bathtub
depending basically on the values of the parameters.

The rest of the paper is organized as follows. In Section 2, we give expan-
sions for the pdf and cdf of the BP distribution depending on whether the param-
eter b is real noninteger and integer. Section 3 provides the moments and a small
study on the variation of the skewness and kurtosis measures. Probability weighted
moments (PWMs) are determined in Section 4. The moment generating function
(mgf) and the quantile function are obtained in Section 5. Mean deviations and
Bonferroni and Lorenz curves are derived in Section 6. We show, in Section 7, that
the density function of the BP order statistics can be expressed as a mixture of
power density functions. The moments of order statistics are also derived in this
section for b real noninteger and integer. Sections 8 and 9 are devoted to the en-
tropy and reliability, respectively. In Section 10, we discuss maximum likelihood
estimation of the model parameters. Section 11 provides two applications to real
data sets. Some conclusions are addressed in Section 12.
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Figure 1 BP(a, b,1,1) density function for selected parameter values.

Figure 2 BP(a, b,1,1) hazard function for selected parameter values.

2 Expansion for the density function

Here, we give a simple expansion for the BP density function. We consider the
binomial expansion

(1 − z)b−1 =
∞∑
i=0

(−1)i�(b)

�(b − i)i! z
i, (2.1)
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valid for |z | < 1 and b > 0 real noninteger.
Application of (2.1) to equation (1.4) if b is real noninteger gives

F(x) = �(a + b)

�(a)

∞∑
i=0

(−1)i(βx)α(a+i)

�(b − i)i!(a + i)
. (2.2)

Correspondingly, the BP density function can be written as

f (x) = �(a + b)

�(a)

∞∑
i=0

(−1)i

�(b − i)i!(a + i)
gα(a+i),β(x), (2.3)

where gα(a+i),β(x) is the power density with shape parameter α(a + i) and scale
parameter β . The BP density function (1.6) is easily computed using any statistical
software. However, it is clear from (2.3) that it can be expressed as an infinite (or
finite) mixture of power densities with increasing shape parameters α(a + i) and a
common scale parameter β . This result is important to provide some mathematical
properties of the BP distribution (ordinary, central, factorial and inverse moments,
mgf, etc.) directly from those of the power distributions. For b integer, the sums
in (2.2) and (2.3) stop at b − 1. These two expansions are the main results of this
section.

3 Moments

If X has a BP density (1.6), its r th moment about zero becomes

μ′
r = E(Xr) = αβαa

B(a, b)

∫ 1/β

0
xr+αa−1[1 − (βx)α]b−1 dx. (3.1)

Using the binomial expansion (2.1), (3.1) can be rewritten as

μ′
r = �(a + b)

�(a)

∞∑
j=0

(−1)jJ (j, r)

�(b − j)j ! ,

where J (j, r) denotes the integral

J (j, r) =
∫ 1/β

0
αxr−1G(x)a+j dx = α{βr [r + α(a + j)]}−1.

Equation (3.1) can be expressed as

μ′
r = α�(a + b)

βr�(a)

∞∑
j=0

(−1)j {�(b − j)[r + α(a + j)]j !}−1.

Hence, a closed-form expression for the moments of X is given by

μ′
r = B(a + r/α, b)

βrB(a, b)
. (3.2)
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Table 1 Moments of different BP distributions by fixing α = β = 1

μ′
k BP(1.0,1.0,1,1) BP(1.0,1.5,1,1) BP(1.0,3.5,1,1)

μ′
1 0.50000 0.40000 0.22222

μ′
2 0.33333 0.22857 0.08081

μ′
3 0.25000 0.15238 0.03730

μ′
4 0.20000 0.11082 0.01989

μ′
5 0.16667 0.08525 0.01170

μ′
6 0.14286 0.06820 0.00739

Variance 0.08333 0.06857 0.03142
Skewness 0 0.33945 0.96428
Kurtosis 1.80000 2.05050 3.40880

Table 2 Moments of different BP distributions by fixing α = β = 1

μ′
k BP(1.5,1.5,1,1) BP(1.5,2.5,1,1) BP(2.5,3.5,1,1)

μ′
1 0.50000 0.375 0.37500

μ′
2 0.31250 0.1875 0.18750

μ′
3 0.21875 0.10938 0.10938

μ′
4 0.16406 0.070313 0.07031

μ′
5 0.12891 0.04834 0.04834

μ′
6 0.10474 0.034912 0.03491

Variance 0.06250 0.046875 0.04687
Skewness 0 0.3849 0.38490
Kurtosis 2.00000 2.3333 2.33330

The proof is given in Appendix B.
Tables 1 and 2 provide the first six ordinary moments, variance, skewness and

kurtosis for selected BP(a, b,1,1) distributions by fixing α = β = 1. Figures 3
and 4 illustrate the skewness and kurtosis measures calculated from (3.2) whose
forms depend basically on the parameters a and b. The curve for the skewness
decreases with a for fixed b and increases with b for fixed a. The curve for the
kurtosis first decreases with a (b) for fixed b (a) and then increases, except for the
case b = 1 (a = 1) where the curve always increases when a (b) increases.

The central moments (μs) and cumulants (κs) of X are easily obtained from the
ordinary moments by μs = ∑s

k=0
(s
k

)
(−1)kμ′s

1 μ′
s−k and κ1 = μ′

1, κ2 = μ′
2 − μ′2

1 ,
κ3 = μ′

3 − 3μ′
2μ

′
1 + 2μ′3

1 , κ4 = μ′
4 − 4μ′

3μ
′
1 − 3μ′2

2 + 12μ′
2μ

′2
1 − 6μ′4

1 , κ5 = μ′
5 −

5μ′
4μ

′
1 − 10μ′

3μ
′
2 + 20μ′

3μ
′2
1 + 30μ′2

2 μ′
1 − 60μ′

2μ
′3
1 + 24μ′5

1 , κ6 = μ′
6 − 6μ′

5μ
′
1 −

15μ′
4μ

′
2 + 30μ′

4μ
′2
1 − 10μ′2

3 + 120μ′
3μ

′
2μ

′
1 − 120μ′

3μ
′3
1 + 30μ′3

2 − 270μ′2
2 μ′2

1 +
360μ′

2μ
′4
1 − 120μ′6

1 , etc., respectively.
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Figure 3 Skewness and kurtosis of the BP(a, b,1,1) distribution for selected values of b as a
function of parameter a.

The r th descending factorial moment of X is

μ′
(r) = E

[
X(r)] = E[X(X − 1) × · · · × (X − r + 1)] =

r∑
k=0

s(r, k)μ′
k,

where s(r, k) is the Stirling number of the first kind that can be defined by s(r, k) =
(k!)−1[ dk

dxk x
(r)]x=0. They count the number of ways to permute a list of r items

into k cycles. Thus, the factorial moments of X are

μ′
(r) =

r∑
k=0

s(r, k)
B(a + k/α, b)

βkB(a, b)
.
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Figure 4 Skewness and kurtosis of the BP(a, b,1,1) distribution for selected values of a as a
function of parameter b.

4 Probability weighted moments

PWMs are expectations of certain functions defined for any random variable whose
mean exists and were first fomulated by Greenwood et al. (1979) primarily as an
aid to estimate the parameters of the Wakeby distribution. However, the use of
the PWMs covers: the summarization and description of theoretical probability
distributions and observed data samples, nonparametric estimation of the under-
lying distribution of an observed sample, estimation of parameters and quantiles
of probability distributions and hypothesis tests for probability distributions. The
PWM method can generally be used in estimating parameters of a distribution
whose inverse form cannot be given explicitly. For several distributions, such as
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Table 3 PWMs mr,j for the BP(2.0,2.0,0.5,2.0) distribution

j

r 1 2 3 4 5 6

1 0.10714 0.03062 0.00624 0.00098 1.23 × 10−4 1.30 × 10−5

2 0.03819 0.00889 0.00159 0.00023 2.67 × 10−5 2.68 × 10−6

3 0.01477 0.00287 0.00451 0.00006 6.43 × 10−6 6.09 × 10−7

4 0.00601 0.00100 0.00014 0.00002 1.68 × 10−6 1.50 × 10−7

normal, log-normal and Pearson type three distributions, the expressions connect-
ing PWMs to the parameters of the model have the same forms. Such expressions
may be readily employed in practice for estimating the parameters.

PWMs are formally defined by mr,j = ∫ 1/β
0 xrF (x)j dx. For the BP distribu-

tion, we obtain from (2.2)

mr,j =
[
�(a + b)

�(a)

]j ∫ 1/β

0
xr

[ ∞∑
i=0

(−1)i(βx)α(a+i)

�(b − i)i!(a + i)

]j

dx.

Using (
∑∞

i=0 ai)
j = ∑

m1,...,mj=0 am1 · · ·amj
, for any positive integer j , we can

write

mr,j =
[
�(a + b)

�(a)

]j ∫ 1/β

0
xr

∞∑
m1,...,mj=0

am1 · · ·amj
(βx)

α(ja+∑j
q=1 mq)

dx,

where

amq = (−1)mq

�(b − mq)mq !(a + mq)
for q = 1, . . . , j.

We easily calculate the integral and then obtain

mr,j = 1

βr+1

[
�(a + b)

�(a)

]j ∞∑
m1,...,mj=0

am1 · · ·amq

[r + α(ja + ∑j
q=1 mq) + 1] . (4.1)

Equation (4.1) can be used numerically in any software with algebraic facilities
(Maple, Matlab or Mathematica) by taking in these sums a large positive integer in
place of ∞. In Appendix A, we provide an algorithm to calculate the PWMs given
in Tables 3–5.

5 Moment generating and quantile functions

Here, we derive a closed form expression for the mgf M(t) of the BP distribu-
tion (1.6). Let Mα,β(t) be the mgf of the power distribution (1.2). Changing the



The beta power distribution 97

Table 4 PWMs mr,j for the BP(1.0,2.0,1.0,1.0) distribution

j

r 1 2 3 4 5 6

1 0.41667 0.11111 0.02080 0.00296 0.00339 3.24 × 10−5

2 0.30000 0.06612 0.01097 0.00144 0.00015 1.42 × 10−5

3 0.23333 0.04340 0.00640 0.00077 7.80 × 10−5 6.76 × 10−6

4 0.19048 0.03049 0.00403 0.00045 4.21 × 10−5 3.46 × 10−6

Table 5 PWMs mr,j for the BP(2.5,3.5,1.0,1.0) distribution

j

r 1 2 3 4 5 6

1 0.39583 0.08507 0.01184 0.00121 0.97 × 10−4 6.41 × 10−6

2 0.29427 0.05610 0.00735 0.00072 0.57 × 10−4 3.69 × 10−6

3 0.23210 0.03917 0.00480 0.00045 0.34 × 10−4 2.19 × 10−6

4 0.19069 0.02860 0.00326 0.00029 0.22 × 10−4 1.34 × 10−6

variable u = tx yields

Mα,β(−t) = α

(
β

t

)α

γ (α, t/β),

where γ (α, z) = ∫ z
0 uα−1e−u du is the incomplete gamma function defined for any

complex z. The mgf of the power distribution comes (for any t) as

Mα,β(t) = α

(
β

−t

)α

γ (α,−t/β).

The above equation was also checked using Mathematica. Combining (2.3) and
the last equation, we obtain

M(t) = α�(a + b)

�(a)

∞∑
i=0

(−1)i

�(b − i)i!
(

β

−t

)α(a+i)

γ
(
α(a + i),−t/β

)
. (5.1)

The characteristic function of the BP distribution is

M(it) = α�(a + b)

�(a)

∞∑
j=0

(−1)j

�(b − j)j !
(

β

−it

)α(a+j)

γ
(
α(a + j),−it/β

)
.

It is possible to obtain some expansions for the inverse of the beta incomplete
function ratio I−1

z (a, b). One of them can be found in wolfram website.1 From this

1http://functions.wolfram.com/06.23.06.0004.01.

http://functions.wolfram.com/06.23.06.0004.01
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expansion, we can express the BP quantile function F−1(x) = I−1
(βx)α (a, b) as

F−1(x) = w + b − 1

a + 1
w2 + (b − 1)(a2 + 3ba − a + 5b − 4)

2(a + 1)2(a + 2)
w3

+ ((
(b − 1)[a4 + (6b − 1)a3 + (b + 2)(8b − 5)a2

+ (33b2 − 30b + 4)a + b(31b − 47) + 18]) (5.2)

/3(a + 1)3(a + 2)(a + 3)
)
w4

+ O((βx)5α/a),

where w = [aB(a, b)(βx)α]1/a for a > 0.

Equations (5.1) and (5.2) are the main result of this section.

6 Mean deviations

The amount of scatter in a population is evidently measured to some extent by
the totality of deviations from the mean and median. If X has the BP distribu-
tion, we can derive the mean deviations about the mean μ′

1 = E(X) and about the
median M from

δ1 =
∫ 1/β

0
|x − μ′

1|f (x) dx and δ2 =
∫ 1/β

0
|x − M|f (x) dx,

respectively. The median is the solution of the equation I(βM)α(a, b) = 1/2. These
measures can be calculated using the following relationships

δ1 = 2
[
μ′

1F(μ′
1) −

∫ μ′
1

0
xf (x) dx

]
and δ2 = μ′

1 − 2
∫ M

0
xf (x) dx. (6.1)

The integrals in (6.1) are easily obtained by the density expansion (2.3). We obtain

J (s) =
∫ s

0
xf (x) dx = s

α�(a + b)

�(a)

∞∑
i=0

(−1)i

�(b − i)i!
(βs)α(a+i)

[α(a + i) + 1] . (6.2)

Equation (6.2) can be used to determine Bonferroni and Lorenz curves which
have applications not only in economics to study income and poverty, but also in
other fields like reliability, demography, insurance and medicine. They are defined
by

B(p) = J (q)

pμ′
1

and L(p) = J (q)

μ′
1

, (6.3)

respectively, where q = F−1(p) can be calculated by (5.2) for given p.
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7 Order statistics

The density of the ith order statistic Xi:n, fi:n(x) say, in a random sample of size n

from the BP distribution is obtained from the well-known formula

fi:n(x) = f (x)

B(i, n − i + 1)
F (x)i−1[1 − F(x)]n−i ,

for i = 1, . . . , n. Using formulae (1.4) and (1.6) we can express fi:n(x) in terms of
the incomplete beta function ratio

fi:n(x) = αβ(βx)αa−1[1 − (βx)α]b−1

B(a, b)B(i, n − i + 1)
I(βx)α (a, b)i−1I1−(βx)α (a, b)n−i .

The moments of the order statistics could in principle be determined from the
moments of the BP distribution by expressing the density of the order statistics in
terms of linear combination of BP densities. However, this method is much more
difficult to be developed here. Alternatively, the moments of the BP order statistics
can be derived from a result due to Barakat and Abdelkander (2004), applied to the
independent and identically distributed case. Then, the kth moment of Xi:n can be
written as

E(Xk
i:n) = k

n∑
j=n−i+1

j∑
l=0

(−1)j−n+i+l−1
(

j − 1
n − i

)(
n

j

)(
j

l

)[
�(a + b)

�(a)

]l

×
∞∑

m1,...,ml=0

am1 · · ·aml
(7.1)

×
{
β

k+α
∑l

q=1(a+mq)

[
k + α

l∑
q=1

(a + mq)

]}−1

.

The proof is given in Appendix C. The sums in (7.1) extend over all l-tuples
(m1, . . . ,ml) of nonnegative integers and are easily implementable in software
such as Matlab, Mathematica and Maple. The moments in Tables 6–9 are produced
by a Mathematica script given in Appendix D.

Table 6 Moments of the order statistics E(Xk
i:n) for BP(2.5,3.5,1.0,1.0) and n = 10

i

k 1 3 5 7 10

1 −0.60400 −0.33360 0.96739 0.99993 1.00000
2 −0.64119 0.41267 1.96333 1.99992 2.00000
3 −0.48620 1.48566 2.96768 2.99994 3.00000
4 −0.18850 2.64677 3.97367 3.99995 4.00000
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Table 7 Moments of the order statistics E(Xk
i:n) for BP(2.5,3.5,1.0,1.0) and n = 30

i

k 1 10 20 25 30

1 0.88634 0.99917 1.01445 0.99809 1.00000
2 1.01432 1.99910 1.98135 1.99927 2.00000
3 0.89015 2.99925 2.97655 3.00466 3.00000
4 0.71107 3.99944 3.99073 4.00483 4.00000

Table 8 Moments of the order statistics E(Xk
i:n) for BP(1.5,1.5,1.0,1.0) and n = 10

i

k 1 3 5 7 10

1 −0.70728 0.06452 0.98307 0.99997 1.00000
2 −0.79005 0.90955 1.98177 1.99997 2.00000
3 −0.63435 1.96138 2.98429 2.99998 3.00000
4 −0.31361 3.06454 3.98732 3.99998 4.00000

Table 9 Moments of the order statistics E(Xk
i:n) for BP(1.5,1.5,1.0,1.0) and n = 30

i

k 1 10 20 25 30

1 0.80966 0.99974 0.97416 1.00014 1.00000
2 0.79096 1.99976 1.98305 2.00025 2.00000
3 0.57228 2.99982 2.99262 2.99880 3.00000
4 0.33587 3.99987 3.99791 3.99654 4.00000

The L-moments are linear functions of expected order statistics defined by
Hoskings (1990) as

λr+1 = (r + 1)−1
r∑

k=0

(−1)k
(

r

k

)
E(Xr+1−k:r+1), r = 0,1, . . . .

The first four L-moments are λ1 = E(X1:1), λ2 = 1
2E(X2:2 − X1:2), λ3 =

1
3E(X3:3 − 2X2:3 + X1:3) and λ4 = 1

4E(X4:4 − 3X3:4 + 3X2:4 − X1:4). These mo-
ments have several advantages over the ordinary moments. For example, they exist
whenever the mean of the distribution exists, even though some higher moments
may not exist, and are relatively robust to the effects of outliers.
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Equation (7.1) applied to the means (k = 1) of the order statistics give the
L-moments of the BP distribution. They can also be determined in terms of the
PWMs from (4.1) as

λr+1 =
r∑

k=0

(−1)r−k

(
r

k

)(
r + k

k

)
m1,k, r = 0,1, . . . .

In particular, λ1 = m1,0, λ2 = 2m1,1 − m1,0, λ3 = 6m1,2 − 6m1,1 + m1,0, λ4 =
20m1,3 − 30m1,2 + 12m1,1 − m1,0.

8 Entropy

The entropy of a random variable X with density function f (x) is a measure of
variation of the uncertainty. One of the popular entropy measure is the Rényi en-
tropy given by

JR(γ ) = 1

1 − γ
log

[∫
f γ (x) dx

]
, γ > 0, γ �= 1. (8.1)

The expansion of the BP density (2.3) yields

JR(γ ) = 1

1 − γ
log

{[
α

�(a + b)

�(a)

]γ ∫ 1/β

0

[ ∞∑
i=0

(−1)iβα(a+i)xα(a+i)−1

�(b − i)i!
]γ

dx

}
.

In order to obtain an expansion for G(x)γ for γ > 0 real noninteger, we can
write

G(x)γ = [1 − {1 − G(x)}]γ =
∞∑

j=0

(
γ

j

)
(−1)j {1 − G(x)}j

and then

G(x)γ =
∞∑

j=0

j∑
r=0

(−1)j+r

(
γ

j

)(
j

r

)
G(x)r .

We can substitute
∑∞

j=0
∑j

r=0 for
∑∞

r=0
∑∞

j=r to obtain

G(x)γ =
∞∑

r=0

∞∑
j=r

(−1)j+r

(
γ

j

)(
j

r

)
G(x)r

and then

G(x)γ =
∞∑

r=0

sr(γ )G(x)r , (8.2)
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where the coefficients sr(γ ) are given by

sr(γ ) =
∞∑

j=r

(−1)r+j

(
γ

j

)(
j

r

)
. (8.3)

For the BP distribution, we have

F(x) =
∞∑
i=0

(−1)iβα(a+i)xα(a+i)−1

�(b − i)i! .

Thus, from equations (8.2) and (8.3), we obtain

JR(γ ) = γ

1 − γ
[log(α) + δ(a + b) − δ(a)]

+ 1

1 − γ
log

{∫ 1/β

0

∞∑
r=0

sr(γ )

[ ∞∑
i=0

(−1)iβα(a+i)xα(a+i)−1

�(b − i)i!
]r

dx

}
,

where δ(·) = log{�(·)}. Hence,

JR(γ ) = γ

1 − γ
[log(α) + δ(a + b) − δ(a)]

+ 1

1 − γ
log

[∫ 1/β

0

∞∑
r=0

sr(γ )

×
r∑

m1,...,mq=0

am1 · · ·amq β
α(ra+∑r

q=1 mq)

× x
α(ra+∑r

q=1 mq)−r
dx

]
,

where

amq = (−1)mq

�(b − mq)mq ! , q = 1, . . . , r.

Then,

JR(γ ) = γ

1 − γ
[log(α) + δ(a + b) − δ(a)]

+ 1

1 − γ
log

[ ∞∑
r=0

sr(γ )

r∑
[m1,...,mq ]=0

am1 · · ·amq β
α(ra+∑r

q=1 mq)

×
∫ 1/β

0
x

α(ra+∑r
q=1 mq)−r

dx

]
.
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By calculating the integral, we have

JR(γ ) = γ

1 − γ
[log(α) + δ(a + b) − δ(a)]

+ 1

1 − γ
log

{ ∞∑
r=0

sr(γ )

×
r∑

m1,...,mq=0

(
am1 · · ·amq β

α(ra+∑r
q=1 mq))

×
(
β

α(ra+∑r
q=1 mq)−r+1

×
[
α

(
ra +

r∑
q=1

mq

)
− r + 1

])−1}
.

Finally, the entropy of the BP distribution reduces to

JR(γ ) = γ

1 − γ
[log(α) + δ(a + b) − δ(a)]

+ 1

1 − γ
log

{ ∞∑
r=0

βr−1sr(γ )

r∑
m1,...,mq=0

am1 · · ·amq

[α(ra + ∑r
q=1 mq) − r + 1]

}
.

9 Reliability

In the area of stress-strength models there has been a large amount of work as
regards estimation of the reliability R = Pr(X2 < X1) when X1 and X2 are inde-
pendent random variables belonging to the same univariate family of distributions.
The algebraic form for R has been worked out for the majority of the well-known
standard distributions. Here, we derive the reliability R when X1 and X2 are inde-
pendent and have the same BP distribution. The definition of the reliability is

R =
∫ 1/β

0
f (x)F (x) dx. (9.1)

Using the expansions (2.2) and (2.3) in (9.1), we have

R =
∫ 1/β

0

[
�(a + b)

�(a)

]2

×
∞∑
i=0

∞∑
j=0

{
(−1)i+j [α(a + i)β(βx)α(a+i)−1](βx)α(a+j)

�(b − i)�(b − j)i!j !(a + i)(a + j)

}
dx.
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Interchanging the integral and the sums and calculating the integral, we obtain

R =
[
�(a + b)

�(a)

]2 ∞∑
i=0

∞∑
j=0

[
(−1)i+j

�(b − i)�(b − j)i!j !(a + j)(2a + i + j)

]
.

The reliability of the power distribution is 1/2.

10 Estimation

We consider that X has the BP distribution and let θ = (a, b,α,β)T be the vec-
tor of parameters. The log-likelihood 
 = 
(θ) for a random sample x1, . . . , xn

from (1.6) reduces to


 = n log(αβ) − n logB(a, b)

+ (αa − 1)

n∑
i=1

log(βxi) + (b − 1)

n∑
i=1

log[1 − (βxi)
α].

The components of the score vector U = U(θ) = (∂
/∂a, ∂
/∂b, ∂
/∂α, ∂
/∂β)T

for n observations are

∂


∂a
= −nψ(a) + nψ(a + b) + α

n∑
i=1

log(βxi),

∂


∂b
= −nψ(b) + nψ(a + b) +

n∑
i=1

log[1 − (βxi)
α],

∂


∂α
= n

α
+ a

n∑
i=1

log(βxi) − (b − 1)

n∑
i=1

(βxi)
α log(βxi)

1 − (βxi)α
,

∂


∂β
= α

β

[
na − (b − 1)

n∑
i=1

(βxi)
α

1 − (βxi)α

]
,

where ψ(p) = ∂ log{�(p)}/∂p is the digamma function. We can obtain the maxi-
mum likelihood estimate (MLE) of θ by setting the components of the score vector
to zero and solving the nonlinear equations simultaneously. The MLE θ̂ of θ can
be calculated by the Newton–Raphson method. Since the support of the BP dis-
tribution depends on the parameter β , the normal distribution could not be a good
approximation for the asymptotic distribution of

√
n(θ̂r −θr) in moderate samples.

However, we can construct a confidence interval with significance level γ for each
parameter θr given by

ACI
(
θr ,100(1 − γ )%

) = (
θ̂r − zγ/2

√
ĵ θr ,θr , θ̂r + zγ/2

√
ĵ θr ,θr

)
,
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under the assumption that the normal approximation holds. Here, ĵ θr ,θr is the r th
diagonal element of the estimated inverse observed information matrix for r =
1, . . . ,4 and zγ/2 is the quantile 1 − γ /2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing goodness of fit of the
BP distribution and for comparing this distribution with some of its special sub-
models. If we consider the partition θ = (θT

1 , θT
2 )T , tests of hypotheses of the type

H0 : θ1 = θ
(0)
1 versus HA : θ1 �= θ

(0)
1 can be performed via LR statistics. The LR

statistic for testing the null hypothesis H0 is w = 2{
(̂θ) − 
(̃θ)}, where θ̂ and θ̃
are the MLEs of θ under HA and H0, respectively. Under the null hypothesis, w

could be approximated by the χ2
q distribution, where q is the dimension of the

vector θ1 of interest. The approximation could be poor in moderate samples. The
LR test rejects H0 if w > ξγ , where ξγ denotes the upper 100γ % point of the χ2

q

distribution. For example, we can check if the fit of the BP distribution is statisti-
cally “superior” to a fit using the power distribution for a given dataset by testing
H0 :a = b = 1 versus HA :H0 is not true.

11 Applications

In this section, we analyze two real datasets in order to illustrate the good perfor-
mance of the BP distribution.

First dataset

The BP distribution is fitted to a dataset obtained from measurements on petroleum
rock samples. The data consist of 48 rock samples from a petroleum reservoir. The
dataset corresponds to twelve core samples from petroleum reservoirs that were
sampled by four cross-sections. Each core sample was measured for permeability
and each cross-section has the following variables: the total area of pores, the total
perimeter of pores and shape. We analyze the shape perimeter by squared (area)
variable. Table 10 gives the dataset.

The Newton–Raphson procedure to calculate the MLEs is performed by taking
the initial values a = 55.0, b = 98.0, α = 0.4 and β = 0.2 leading to the following

Table 10 Shape perimeter by squared (area) from measurements on petroleum rock samples

0.0903296 0.2036540 0.2043140 0.2808870 0.1976530 0.3286410
0.1486220 0.1623940 0.2627270 0.1794550 0.3266350 0.2300810
0.1833120 0.1509440 0.2000710 0.1918020 0.1541920 0.4641250
0.1170630 0.1481410 0.1448100 0.1330830 0.2760160 0.4204770
0.1224170 0.2285950 0.1138520 0.2252140 0.1769690 0.2007440
0.1670450 0.2316230 0.2910290 0.3412730 0.4387120 0.2626510
0.1896510 0.1725670 0.2400770 0.3116460 0.1635860 0.1824530
0.1641270 0.1534810 0.1618650 0.2760160 0.2538320 0.2004470
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Figure 5 The histogram of the first dataset and both fitted density functions.

Figure 6 Plots of the theoretical quantiles versus empirical quantiles for both distributions fitted
to the first dataset.

estimates for the BP distribution: â = 56.0247, b̂ = 97.8101, α̂ = 0.2949 and β̂ =
0.1561. For the power distribution, the MLEs are: α̃ = 1.1506 and β̃ = 2.1546.
The LR statistic is equal to w = 31.2172 and supports the hypothesis that the BP
distribution is a better model. Figure 5 provides the histogram of these data and
the fitted BP and power densities.

We note that the BP distribution produces a better fit than the power distribution.
Figure 6 plots the theoretical quantiles versus empirical quantiles for both fitted
distributions, and again the BP distribution is more appropriate to fit these data
because the points are closer to the straight line.
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Table 11 Proportion of total milk production

0.4365 0.4260 0.5140 0.6907 0.7471 0.2605 0.6196
0.8781 0.4990 0.6058 0.6891 0.5770 0.5394 0.1479
0.2356 0.6012 0.1525 0.5483 0.6927 0.7261 0.3323
0.0671 0.2361 0.4800 0.5707 0.7131 0.5853 0.6768
0.5350 0.4151 0.6789 0.4576 0.3259 0.2303 0.7687
0.4371 0.3383 0.6114 0.3480 0.4564 0.7804 0.3406
0.4823 0.5912 0.5744 0.5481 0.1131 0.7290 0.0168
0.5529 0.4530 0.3891 0.4752 0.3134 0.3175 0.1167
0.6750 0.5113 0.5447 0.4143 0.5627 0.5150 0.0776
0.3945 0.4553 0.4470 0.5285 0.5232 0.6465 0.0650
0.8492 0.8147 0.3627 0.3906 0.4438 0.4612 0.3188
0.2160 0.6707 0.6220 0.5629 0.4675 0.6844 –
0.3413 0.4332 0.0854 0.3821 0.4694 0.3635 –
0.4111 0.5349 0.3751 0.1546 0.4517 0.2681 –
0.4049 0.5553 0.5878 0.4741 0.3598 0.7629 –
0.5941 0.6174 0.6860 0.0609 0.6488 0.2747 –

Second dataset

The BP distribution is now fitted to the data about the total milk production in the
first birth of 107 cows from SINDI race. These cows are property of the Carnaúba
farm which belongs to the Agropecuária Manoel Dantas Ltda (AMDA), located
in Taperoá City, Paraíba (Brazil).

The original data is not in the interval (0,1), and it was necessary to make
a transformation given by xi = [yi − min(yi)]/[max(yi) − min(yi)], for i =
1, . . . ,107. These data are presented in Table 11 and the values of yi are given
in Table 3.1 of Brito (2009, p. 46).

The initial values for the iterative algorithm are: a = 0.5, b = 42.0, α = 4.0 and
β = 0.8. The MLEs of the parameters of the BP distribution are: â = 0.2704,
b̂ = 42.0228, α̂ = 6.6402 and β̂ = 0.7756. For the power distribution, the es-
timates of the parameters are: α̃ = 5.0027 and β̃ = 1.1364. The LR statistic
w = 333.615 indicates that the BP distribution is a better model than the power
distribution. Figure 7 gives the histogram of the second dataset and the plots of
both fitted densities. It is possible to verify the good performance of the BP dis-
tribution. The plots of the theoretical quantiles versus empirical quantiles given in
Figure 8 suggest that the BP distribution is very suitable for these data.

12 Conclusion

We study the mathematical properties of the beta power (BP) distribution which
extends the power distribution defined by Balakrishnan and Nevzorov (2003). The
BP distribution is not new since it was defined as the name of the generalized
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Figure 7 The histogram of the second dataset and both fitted density functions.

Figure 8 Plots of theoretical quantiles versus empirical quantiles for both distributions fitted to the
second dataset.

beta distribution of the second kind by McDonald and Richards (1987). However,
they do not study its properties. We demonstrate that the BP density is a mixture
of power densities. We provide a mathematical treatment for the distribution in-
cluding closed-form expressions for the moments, probability weighted moments,
moment generating function, mean deviations, Bonferroni and Lorenz curves, mo-
ments of order statistics, entropy and reliability. We discuss maximum likelihood
estimation of the model parameters. We give two applications to real data to show
that the BP distribution can be used quite effectively to give better fits than the
power model. We hope that the BP model may attract wider applications in statis-
tics.
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Appendix A: A Mathematica script to calculate mr,j

for the BP distribution

Clear[a,b,alpha0,beta0,r,j];

FunX:= Function[{a,b,alpha0,beta0}, (1/(beta0^(r + 1)))*
((Gamma[a + b]/Gamma[a])^(j))*
(Product[ Sum[(((-1)^(Mq))/(Gamma[b - Mq]*(N[Mq!])*
(a + Mq)))/(r + (alpha0*(j*a + Sum[Mq, {g, 1, j}])) + 1),

{Mq, 0, 10000}], {g, 1, j}])]

Clear[mx];

mx = Table[FunX[2.5, 3.5, 1.0, 1.0], {r, 4}, {j, 1, 6}]

In this case, the algorithm calculates mr,j for the parameter values a = 2.5,
b = 3.5, α = 1.0 and β = 1.0 with the sums truncated at 10,000.

Appendix B: Proof of the moments

From equation (3.1), we have

μ′
r = αβαa

B(a, b)

∫ 1/β

0
xr+αa−1[1 − (βx)α]b−1 dx.

Setting u = (βx)α , we obtain

μ′
r = αβαa

B(a, b)

∫ 1

0

(
u1/α

β

)r+αa−1[
(1 − u)b−1

αβu1−1/α

]
du

= 1

βrB(a, b)

∫ 1

0
ua+r/α−1(1 − u)b−1 du

and then

μ′
r = B(a + r/α, b)

βrB(a, b)
.

Appendix C: Proof of the moments of the order statistics

We have, assuming that the moments exist,

E(Xk
i:n) = k

n∑
j=n−i+1

(−1)j−n+i−1
(

j − 1
n − i

)(
n

j

)
Ij (k), (C.1)
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where

Ij (k) =
∫ 1/β

0
xk−1[1 − F(x)]j dx.

Using the binomial expansion for [1 − F(x)]j , it follows

[1 − F(x)]j =
j∑

l=0

(−1)l
(

j

l

)
F(x)l

=
j∑

l=0

(−1)l
(

j

l

)[
�(a + b)

�(a)

∞∑
u=0

(−1)u(βx)α(a+u)

�(b − u)u!(a + u)

]l

.

For k a positive integer, we also have( ∞∑
u=0

au

)m

=
∞∑

m1,...,mk=0

am1 · · ·amk
.

We can rewrite

Ij (k) =
∫ 1/β

0
xk−1

j∑
l=0

(−1)l
(

j

l

)[
�(a + b)

�(a)

]l

(C.2)

×
∞∑

m1,...,ml=0

am1 · · ·aml
x

α
∑l

q=1(a+mq)
dx,

where the quantities amq are given by

amq = (−1)mq βα(a+mq)

�(b − mq)mq !(a + mq)
, q = 1, . . . , l.

Plugging (C.2) into (C.1), the moments of the order statistics can be written as

E(Xk
i:n) = k

n∑
j=n−i+1

j∑
l=0

(−1)j−n+i+l−1
(

j − 1
n − i

)(
n

j

)(
j

l

)[
�(a + b)

�(a)

]l

×
∞∑

m1,...,ml=0

am1 · · ·aml

{
β

k+α
∑l

q=1(a+mq)

×
[
k + α

l∑
q=1

(a + mq)

]}−1

.
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Appendix D: A Mathematica script to calculate the moments of the
order statistics for the BP distribution

Clear[a,b,alpha0,beta0,k,i,n];
Clear[EmordX];

EMordX:= Function[{a, b, alpha0, beta0, n}, k*
Sum[ Sum[((-1)^(j - n + i + l - 1))*Binomial[j - 1, n - i]*
Binomial[n, j]*Binomial[j, l]*
(N[(Gamma[a + b]/Gamma[a])]^l)*(Product[ Sum[((((-1)^(Mq))*
(beta0^(alpha0*(a + Mq))))/(N[Gamma[b - Mq]]*(N[Mq!])*(a +

Mq)))*((beta0^(k + (alpha0*(Sum[(
a + Mq), {q, 1, l}]))))*((k + (alpha0*(Sum[(a +

Mq), {q, 1, l}]))))^(-1)), {Mq, 0, 500}], {s, 1, l}]),
{l, 0, j}], {j, n - i + 1, n}]]

Clear[Emx]; Clear[i,j,k];
Emx = Table[EMordX[1.5, 1.0, 1.0, 1.0, 10], {i, 1, 10, 3},

{k, 4}]

In this case, the algorithm calculates E(Xk
i:n) for the parameter values i = 1,4,7

and 10, n = 10, a = 1.5, b = 1.5, α = 1.0 and β = 1.0 with the sums truncated at
500.
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