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Abstract

The paper introduces a beta transmuted Weibull distribution, which contains a number of
distributions as special cases. The properties of the distribution are discussed and explicit ex-
pressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The
distribution and moments of order statistics are also studied. Estimation of the model parameters
by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is
introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing
positive data is illustrated.

Keywords: reliability function, moment generating function, mean deviation, Bonferroni and Lorenz
curve, reliability and entropies, maximum likelihood estimation.

1. Introduction
The Weibull distribution is a very popular life time probability distribution that has been extensively
used for modeling in reliability, engineering and biological studies. Generalizations of the distribution
have been suggested by many authors. Sarhan and Zaindin (2009) studied the modified Weibull
distribution, Mudholkar and Srivastava (1993) introduced the exponentiated Weibull distribution and
Pal, Masoom Ali, and Woo (2006) investigated many of its properties. Elbatal (2011) studied the
exponentiated modified Weibull distribution.

A class of generalized distributions F (x) has been receiving considerable attention over the last few
years, in particular, after the studies by Eugene, Lee, and Famoye (2002) and Jones (2004). If G
denotes the baseline cumulative distribution function (cdf) of a random variable, then the beta-G
distribution is defined as

F (x) = IG(x)(a, b) =
1

B(a, b)

∫ G(x)

0
wa−1(1− w)b−1dw , 0 < a , 0 < b . (1)

Here, Iy(a, b) = By(a, b)/B(a, b) is the incomplete beta function ratio, By(a, b) =
∫ y
0 w

a−1(1 −
w)b−1dw is the incomplete beta function and B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function,
where Γ(·) is the gamma function. The probability density function (pdf) of the above distribution
has the form

f(x) =
1

B(a, b)
G(x)a−1{1−G(x)}b−1g(x) , x > 0 . (2)

Based on the above generalization, Lee, Famoye, and Olumolade (2007) introduced the beta-Weibull
distribution. Thereafter, Silva, Ortega, and Cordeiro (2010) investigated the beta modified Weibull
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distribution, and Cordeira, Gomes, da-Silva, and Ortega (2013) made a detailed study of the beta-
exponentiated Weibull distribution.

Recently, Aryall and Tsokos (2011) introduced another generalization of the Weibull distribution,
which they called the transmuted Weibull distribution. A random variable T is said to have transmuted
Weibull probability distribution with parameters α, β > 0 and |λ| ≤ 1, if it has the pdf given by

gTW (x) = αβxβ−1 exp(−αxβ)(1− λ+ 2λ exp(−αxβ)) , x > 0 , (3)

where α and β are the shape parameters representing the different patterns of the transmuted Weibull
distribution and are positive, and λ is the transmuted parameter.

The cdf of the transmuted Weibull distribution is obtained as

GTW (x) = (1− exp(−αxβ))(1 + λ exp(−αxβ)) , x > 0 . (4)

In this paper, we introduce and study several mathematical properties of a new distribution, referred
to as a beta transmuted Weibull (BTW) distribution. The distribution has two extra shape parameters
which provide greater flexibility in modelling observed positive data. The paper is organized as fol-
lows. In Section 2, we introduce the distribution. In Sections 3, we obtain expansions of the cdf and
pdf of the distribution using power series. Quantile function and mean deviation are derived in Sec-
tions 4 and 5. Order statistics and their moments are discussed in Sections 6 and 7. In Section 8, the
stress-strength reliability is obtained. Estimation of parameters by the maximum likelihood method is
discussed in Section 9. In Section 10, log beta transmuted Weibull regression model is investigated.
In Section 12, the distribution is used for analyzing real life data. Finally, in Section 13, we make
some concluding remarks on our study.

2. The beta transmuted Weibull distribution

The five-parameter BTW distribution is obtained by taking G(x) in (1) to be the cdf of a transmuted
Weibull distribution given by (4). The BTW cdf then becomes

F (x) = I(1−exp(−αxβ))(1+λ exp(−αxβ))(a, b)

=
1

B(a, b)

∫ (1−exp(−αxβ))(1+λ exp(−αxβ))

0
wa−1(1− w)b−1dw , x > 0 , (5)

where α > 0, β > 0, |λ| ≤ 1, and a > 0, b > 0.

The cdf can be expressed in a closed form using the hypergeometric function (see Cordeiro and
Nadarajah 2011) as follows:

F (x) =
{(1− exp(−αxβ))(1 + λ exp(−αxβ))}a

aB(a, b)

2F1(a, 1− b; a+ 1; (1− exp(−αxβ))(1 + λ exp(−αxβ))) ,

where

2F1(c, d; e; z) =
∞∑
k=0

(c)k(d)k
k!(e)k

zk

is the Gaussian hypergeometric function with (c)k defined as

(c)k = c(c+ 1)(c+ 2) · · · (c+ k − 1) , k = 1, 2, . . .
(c)0 = 1 .
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The pdf f(x) and the hazard rate function h(x) are obtained as

f(x) =
1

B(a, b)
αβtβ−1 exp(−αtβ)(1− λ+ 2λ exp(−αtβ))

(1− exp(−αxβ))a−1(1 + λ exp(−αxβ))a−1

{1− (1− exp(−αxβ))(1 + λ exp(−αxβ))}b−1 , t > 0, (6)

h(x) =
αβxβ−1 exp(−αxβ)(1− λ+ 2λ exp(−αxβ))
B(a, b)I1−(1−exp(−αxβ))(1+λ exp(−αxβ))(b, a)

(1− exp(−αxβ))a−1(1 + λ exp(−αxβ))a−1

{1− (1− exp(−αxβ))(1 + λ exp(−αxβ))}b−1 , t > 0 . (7)

Plots of the pdf (6) and the hazard rate function (7) for some values of α, β, λ, a and b are given
in Figures 1 and 2, respectively. The BTW failure rate function can be monotonically decreasing or
increasing and upside-down bathtub depending on the values of its parameters.

Figure 1: Pdf of beta transmuted Weibull distribution for α = 1 and (i) β = 1, λ = 0, a = 1, b = 1,
(ii) β = 1, λ = 0.2, a = 3, b = 0.75, (iii) β = 0.5, λ = 0.5, a = 3, b = 0.75, (iv) β = 2, λ = 1,
a = 3, b = 0.75, (v) β = 1.5, λ = −1, a = 3, b = 0.75, (vi) β = 1.3, λ = 0.7, a = 0.8, b = 1.2.

Figure 2: Hazard rate function of beta transmuted Weibull distribution for α = 1 and (i) β = 3,
λ = 0.5, a = 1, b = 2, (ii) β = 0.75, λ = −1, a = 2, b = 0.75, (iii) β = 0.75, λ = 1, a = 3, b = 2,
(iv) β = 0.75, λ = −0.5, a = 3, b = 2.

The following distributions are obtained from the BTW distribution by proper choice of its parameters:
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Parameters Distribution
b = 1 exponentiated transmuted Weibull
a = b = 1 transmuted Weibull
λ = 0 beta Weibull
λ = 0, b = 1 exponentiated Weibull
λ = 0, a = b = 1 Weibull
β = 1 beta transmuted exponential
β = 1, a = b = 1 transmuted exponential
β = 1, λ = 0 beta exponential
β = 1, λ = 0, b = 1 exponentiated exponential
β = 1, λ = 0, a = b = 1 exponential

3. Expansions for the CDF and PDF

Here we express F (x) and f(x) in terms of infinite (or finite) weighted sums of cdf’s and pdf’s of
Weibull distributions, respectively.

We note that for b > 0 real non-integer, we can replace (1 − w)b−1 under the integral in (1) by the
power series expansion of binomials and integrate to obtain

1
B(a, b)

∫ G(x)

0
wa−1(1− w)b−1dw =

∞∑
j=0

(−1)j
(
b− 1
j

)
G(x)a+j

a+ j
,

where the binomial term (
b− 1
j

)
=

Γ(b)
Γ(b− j)j!

is defined for any real b. Then, from (5) we get

F (x) =
∞∑
j=0

(−1)j
Γ(b)

Γ(b− j)j!
{(1− exp(−αxβ))(1 + λ exp(−αxβ))}a+j

B(a, b)(a+ j)
, x > 0 . (8)

Using the binomial expansion another two times we have for x > 0

F (x) =
∞∑

j,k,l=0

(−1)j+k
(
b− 1
j

)(
a+ j

k

)(
a+ j

l

)
λl

exp(−α(k + l)xβ))
B(a, b)(a+ j)

=
∞∑

j,k,l=0

(−1)j+k
(
b− 1
j

)(
a+ j

k

)(
a+ j

l

)
λl{1−G1(x;α(k + l), β)}

B(a, b)(a+ j)
, (9)

where G1(α(k + l), β) is the Weibull cdf with scale α(k + l) and shape β.

Differentiating (9) with respect to x gives a useful expansion of f(x) as

f(x) =
∞∑

k,l=0

wklg(x;α(k + l), β) , x > 0 , (10)

where

wkl =
∞∑
j=0

(−1)j+k+1

(
b− 1
j

)(
a+ j

k

)(
a+ j

l

)
λl

B(a, b)(a+ j)

and g(x;α(k + l), β) is the Weibull pdf with scale α(k + l) and shape β. If b > 0 is an integer, the
index j in the sum stops at b − 1, and if a is an integer, then the indices k and l in the sum stop at
a+ j.

The moments and the moment generating function of the BTW distribution can be easily expressed
as functions of those quantities for Weibull distributions by using expression (10) of its pdf.
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If X has a Weibull distribution with scale θ and shape δ, we have

E(Xr) =
1
θr/δ

Γ(1 + r/δ) ,

MX(t) =
∞∑
r=0

trθ−r/δ

r!
Γ(1 + r/δ) , δ ≥ 1 .

Hence, for X ∼ BTW with density given by (10) we get

E(Xr) = Γ(1 + r/β)
∞∑

k,l=0

wkl
1

(α(k + l))r/β
, (11)

MX(t) =
∞∑

k,l=0

wkl

∞∑
r=0

tr(α(k + l))−r/β

r!
Γ(1 + r/β) β ≥ 1 . (12)

4. Quantile function and simulation

The quantile function corresponding to the BTW distribution with cdf (5) is

x = Q(y) = F−1(y) =
[
− 1
α

log(z∗)
]1/β

, (13)

where z∗ ∈ (0, 1) is a solution to the quadratic equation

λz2 + (1− λ)z − (1− I−1
y (a, b)) = 0 ,

and I−1
y (a, b) denotes the inverse of the incomplete beta function with parameters a and b. Clearly,

z∗ =
1

2λ

{√
(1− λ)2 + 4λ(1− I−1

y (a, b))− (1− λ)
}
. (14)

The following expansion for the inverse of the beta incomplete function I−1
y (a, b) can be found on the

Wolfram website http://functions.wolfram.com/06.23.06.0004.01

I−1
u (a, b) = w +

b− 1
a+ 1

w2 +
(b− 1)(a2 + 3ab− a+ 5b− 4)

2(a+ 1)2(a+ 2)
w3

+
(b− 1)[a4 + (6b− 1)a3 + (b+ 2)(8b− 5)a2]

2(a+ 1)2(a+ 2)
w4

+
(b− 1)[(33b2 − 30b+ 4)a+ b(31a− 47) + 18]

3(a+ 1)3(a+ 2)(a+ 3)
w4 +O(p5/a) ,

where w = {aB(a, b)y}1/a, a > 0.

Simulation of X is straightforward from (13) by taking

X =

[
− 1
α

log

(√
(1− λ)2 + 4λ(1−B)− (1− λ)

2λ

)]1/β

, (15)

where B is a beta variate with shape parameters a and b.

5. Mean deviation

The amount of scatter in a population is evidently measured to some extent by the totality of deviations
from the mean and the median. If X has a BTW distribution, then we can derive the mean deviations

http://functions.wolfram.com/06.23.06.0004.01
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about the mean µ = E(X) and about the median M as

η1 =
∫ ∞

0
|x− µ|f(x)dx ,

η2 =
∫ ∞

0
|x−M |f(x)dx .

The mean of the distribution is obtained from (11) by putting r = 1, and the median is obtained by
solving the equation

I(1−exp(−αxβ))(1+λ exp(−αxβ))(a, b) =
1
2
.

Thus, the above measures can be derived from the following relations:

η1 = 2[µF (µ)− J(µ)] and η2 = µ− 2J(M) , (16)

where J(t) =
∫ t
0 xf(x)dx. From (10) we have

J(t) =
∞∑

k,l=0

wkl

∫ t

0
α(k + l)βxβ exp

(
−α(k + l)xβ

)
dx

=
∞∑

k,l=0

wkl
{α(k + l)}1/β

∫ α(k+l)tβ

0
z1/β exp(−z)dz

=
∞∑

k,l=0

wkl
{α(k + l)}1/β

γ
(
α(k + l)tβ, β−1 + 1

)
, (17)

where γ(x, δ) =
∫ x
0 w

δ−1 exp(−w)dw, δ > 0 is an incomplete gamma function. Using (9), one can
easily find η1 and η2 from (16).

The quantity J(t) can also be used to determine Bonferroni and Lorenz curves, which have applica-
tions in economics to study income and poverty, and also in other fields like reliability, demography,
insurance and medicine. Bonferroni and Lorenz functions are given by B(π) = J(p)/(πµ) and
L(π) = J(p)/µ, respectively, where p = Q(π) is calculated from (13) for a given probability π.

6. Order statistics

If X(1) < · · · < X(n) denote the ordered observations in a data set from the BTW distribution given
by (5) and (6), then the pdf fi:n(x) of the ith order statistic X(i) is

fi:n(x) =
1

B(i, n− i+ 1)
f(x)F (x)i−1[1− F (x)]n−1 .

Using expressions (9) and (10) for F (x) and f(x), respectively, and applying the binomial expansion
yields

fi:n(x) =
1

B(i, n− i+ 1)
f(x)

n−i∑
s=0

(−1)s
(
n− i
s

)
F (x)i+s−1

=
αβxβ−1

B(i, n− i+ 1)

 ∞∑
k,l=0

wkl(k + l) exp(−α(k + l)xβ)


n−i∑
s=0

(−1)s+1

(
n− i
s

) ∞∑
k,l=0

wkl exp(−α(k + l)xβ)

i+s−1

. (18)
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Writing u = exp(−αxβ), fi:n(x) can be expressed as

fi:n(x) =
αβxβ−1

B(i, n− i+ 1)

 ∞∑
k,l=0

wkl(k + l)uk+l


n−i∑
s=0

(−1)s+1

(
n− i
s

) ∞∑
k,l=0

wklu
k+l

i+s−1

. (19)

We note that in (19) we can write

∞∑
k,l=0

wklu
k+l =

∞∑
m=0

w∗mu
m

and
∞∑

k,l=0

wkl(k + l)uk+l =
∞∑
m=0

mw∗mu
m ,

where w∗m =
∑

k,l:k+l=mwkl. Further, from (Gradshteyn and Ryzhik 2000, Section 0.314), for any
positive integer r, ( ∞∑

k=0

aku
k

)r
=
∞∑
k=0

dr,ku
k , (20)

where the coefficients dr,k, for k = 1, 2, . . . , can be determined from the recurrence equation

dr,k = (ka0)−1
k∑

m=1

{m(r + 1)− k}amdr,k−m (21)

and dr,0 = ar0. Hence, dr,k comes directly from dr,0, . . . , dr,k−1 and, therefore, from a0, . . . , ak.

Using (20) and (21) it follows that

fi:n(x) =
αβxβ−1

B(i, n− i+ 1)

( ∞∑
m=0

mw∗mu
m

)
n−i∑
s=0

(−1)s+1

(
n− i
s

)( ∞∑
m=0

di+s−1,mu
m

)
,

where

di+s−1,m = (mw∗0)−1
m∑
q=1

[q(i+ s)−m]w∗mdi+s−1,m−q ,

di+s−1,0 = (w∗0)i+s−1 =

 ∞∑
j=0

(−1)j+1

(
b− 1
j

)
1

B(a, b)(a+ j)

i+s−1

.

Combining terms, we obtain

fi:n(x) =
αβxβ−1

B(i, n− i+ 1)

n−i∑
s=0

(−1)s+1

(
n− i
s

) ∞∑
m=1

∞∑
t=0

mdi+s−1,tw
∗
mu

m+t

=
1

B(i, n− i+ 1)

n−i∑
s=0

(−1)s+1

(
n− i
s

)
∞∑
m=1

∞∑
t=0

mdi+s−1,tw
∗
m

m+ t
{(m+ t)αβxβ−1 exp(−(m+ t)αxβ)}

=
∞∑
m=1

∞∑
t=0

ci(m, t)g(x; (m+ t)α, β) , (22)
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where g(x; (m+ t)α, β) denotes the pdf of a Weibull distribution with scale parameter (m+ t)α and
shape parameter β and

ci(m, t) =
1

B(i, n− i+ 1)
mw∗m
m+ t

n−i∑
s=0

(−1)s+1

(
n− i
s

)
di+s−1,t . (23)

7. Moments of order statistics and L-moments

The moments of the order statistics of BTW distribution can be easily written in terms of those of a
Weibull distribution by using the expression (22) of the pdf of the order statistic distribution. We get

E(Xr
i:n) = Γ(

r

β + 1
)
∞∑
m=1

∞∑
t=0

ci(m, t){(m+ t)α}−r/β , (24)

where ci(m, t) is given in (23).

As indicated by Cordeira et al. (2013), L-moments Hosking (1990) are summary statistics for proba-
bility distributions and data samples but have several advantages over ordinary moments. For example,
they apply for any distribution having a finite mean and no higher-order moments need be finite. The
rth L-moment is computed from linear combinations of the ordered data values by

ρr =
r−1∑
j=0

(−1)r−j−1

(
r − 1
j

)(
r + j − 1

j

)
γj ,

where γj = E(XF (X)j). Thus, ρ1 = γ0, ρ2 = 2γ1 − γ0, ρ3 = 6γ2 − 6γ1 + γ0, and ρ4 =
20γ3 − 30γ2 + 12γ1 − γ0. In general, we get γk = (k + 1)−1E(Xk+1:k+1), which can be computed
from (24) by using (23) and putting i = n = k + 1 and r = 1.

8. Reliability

A stress-strength model describes the life of a component which has a random strength X1 and is
subjected to a random stress X2. The component functions satisfactorily as long as X1 > X2, and
fails when X1 < X2. The probability R = Pr(X1 > X2) defines the component reliability. Stress-
strength models have many applications especially in engineering concepts such as structures, dete-
rioration of rocket motors, static fatigue of ceramic components, fatigue failure of aircraft structures
and the aging of concrete pressure vessels.

Consider X1 and X2 to be independently distributed, with X1 ∼ BTW(α1, β, λ1, a1, b1) and X2 ∼
BTW(α2, β, λ2, a2, b2).The cdf F1 of X1 and pdf f2 of X2 are obtained from (9) and (10), respec-
tively. Then,

R = Pr(X1 > X2) =
∫ ∞

0
f2(y)[1− F1(y)]dy

= 1 +
∞∑

k,l=0

w
(1)
kl

∫ ∞
0

f2(y) exp(−α(k + l)yβ)dy

=
∞∑

k,l=0

w
(1)
kl A(k, l) ,

where

w
(i)
kl =

∞∑
j=0

(−1)j+k+1

(
bi − 1
j

)(
ai + j

k

)(
ai + j

l

)
λl

B(ai, bi)(ai + j)
, i = 1, 2 ,
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and

A(k, l) =
∫ ∞

0
f2(y) exp(−α(k + l)yβ)dy .

Now,

A(k, l) =
∞∑

r,s=0

w(2)
rs

∫ ∞
0

(r + s)α2βy
β−1 exp[−{α1(k + l) + (r + s)α2}yβ]dy

=
∞∑

r,s=0

w(2)
rs

(r + s)α2

α1(k + l) + (r + s)α2
.

Hence,

R = 1 +
∞∑

k,l=0

w
(1)
kl

∞∑
r,s=0

w(2)
rs

(r + s)α2

(k + l)α1 + (r + s)α2

= 1 +
∞∑
k=0

∞∑
r=0

w
∗(1)
k w∗(2)

r

rα2

kα1 + rα2
, (25)

where
w∗(i)m =

∑
k,l:k+l=m

w
(i)
kl , i = 1, 2 .

9. Maximum likelihood estimation

Let θ = (α, β, λ, a, b) denote the parameter vector for the BTW distribution with pdf given by (6).
Then, the log-likelihood function `(θ) based on a single observation x is

`(θ) = log(α)+log(β)−logB(a, b)+(β−1) log(x)−αxβ+log(1−λ+2λ exp(−αxβ))
+(a− 1){log(1− exp(−αxβ)) + log(1 + λ exp(−αxβ))}
+(b− 1) log{1− (1− exp(−αxβ))(1 + λ exp(−αxβ))} .

Hence, the components of the unit score vector

∂`(θ)
∂θ

=
(
∂`(θ)
∂α

,
∂`(θ)
∂β

,
∂`(θ)
∂λ

,
∂`(θ)
∂a

,
∂`(θ)
∂b

)′
are

∂`(θ)
∂α

=
1
α
−xβ− 2λxβ exp(−αxβ)

1−λ+2λ exp(−αxβ)
+

(a−1)xβ exp(−αxβ)
1−exp(−αxβ)

− (a−1)λxβ exp(−αxβ)
1+λ exp(−αxβ)

− (b− 1)xβ exp(−αxβ)
1− (1− exp(−αxβ))(1 + λ exp(−αxβ))

(1− λ+ 2λ exp(−αxβ))

∂`(θ)
∂β

=
1
β

+ log(x)− αxβ log(x)− 2λαxβ log(x) exp(−αxβ)
1− λ+ 2λ exp(−αxβ)

+
(a− 1)xβ log(x) exp(−αxβ)

1− exp(−αxβ)
− (a− 1)λxβ log(x) exp(−αxβ)

1 + λ exp(−αxβ)

− (b− 1)xβ log(x) exp(−αxβ)
1− (1− exp(−αxβ))(1 + λ exp(−αxβ))

(1− λ+ 2λ exp(−αxβ))
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∂`(θ)
∂λ

= − 1− 2 exp(−αxβ)
1− λ+ 2λ exp(−αxβ)

+
(a− 1) exp(−αxβ)
1 + λ exp(−αxβ)

− (b− 1) exp(−αxβ)(1− exp(−αxβ))
1− (1− exp(−αxβ))(1 + λ exp(−αxβ))

∂`(θ)
∂a

= Ψ(a+ b)−Ψ(a) + {log(1− exp(−αxβ)) + log(1 + λ exp(−αxβ))}

∂`(θ)
∂b

= Ψ(a+ b)−Ψ(b) + log{1− (1− exp(−αxβ))(1 + λ exp(−αxβ))} ,

where Ψ(x) = d
dx log Γ(x).

For a random sample (x1, . . . , xn) of size n from X , distributed with pdf (6), the sample log-
likelihood is `(θ) =

∑n
i=0 `i(θ), where `i(θ) is the log-likelihood for the ith observation (i =

1, . . . , n), and the score vector is
∂`(θ)
∂θ

=
n∑
i=0

∂`i(θ)
∂θ

.

The maximum likelihood estimate (MLE) θ̂ of θ is obtained by solving the system

∂`(θ)
∂θ

= 0 .

Under certain regularity conditions,
√
n(θ̂−θ) d→Normal(0, I−1(θ)) (here d→ stands for convergence

in distribution), where I(θ) denotes the information matrix given by

I(θ) = E

(
∂2`(θ)
∂θ∂θ′

)
.

This information matrix I(θ) may be approximated by the observed information matrix

I(θ̂) =
(
∂2`(θ)
∂θ∂θ′

)
|θ=θ̂ .

Then, using the approximation
√
n(θ̂ − θ) ∼ Normal(0, I−1(θ̂)), one can carry out tests and find

confidence regions for functions of some or all parameters in θ.

10. The log beta transmuted Weibul distribution

If X is a random variable having the BTW distribution given by (8), then Y = log(X) is said to have
a log beta transmuted Weibull (LBTW) distribution.

Let us define µ = −1/β log(α). Then, the pdf of Y is given by

fY (y) =
β

B(a, b)
exp{β(y − µ)− exp(β(y − µ))}{1− λ+ 2λ exp(− exp(β(y − µ)))}

{1− exp(− exp(β(y − µ)))}a−1{1 + λ exp(− exp(β(y − µ)))}a−1

[1− {1− exp(− exp(β(y − µ)))}{1 + λ exp(− exp(β(y − µ)))}]b−1 , (26)

where y, µ ∈ R and β > 0. Its corresponding cdf is

FY (y) = IA(y)(a, b) , y ∈ R , (27)

where
A(y) = {1− exp(− exp(β(y − µ)))}{1 + λ exp(− exp(β(y − µ)))} .
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The standardized random variable Z = β(Y − µ), therefore, has pdf

fZ(z) =
1

B(a, b)
exp{z − exp(z)}{1− λ+ 2λ exp(− exp(z))}

{1− exp(− exp(z))}a−1{1 + λ exp(− exp(z))}a−1

[1− {1− exp(− exp(z))}{1 + λ exp(− exp(z))}]b−1 , z ∈ R . (28)

For a = b = 1, we get the log-transmuted Weibull distribution, while for a = b = 1 and λ = 0 we get
the log-Weibull distribution or the extreme value distribution.

Figure 3: Plots of LBTW pdf’s for increasing λ and a, when b = 0.5, µ = 0, and α = 1.

Figure 4: Plots of LBTW pdf’s for λ decreasing and a increasing, when b = 0.5, µ = 0, and α = 1.

The rth moment of the standardized distribution (28) is given by

E(Zr) =
∫ ∞
−∞

zrfZ(z)dz

=
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1
i

)∫ ∞
−∞

zr exp[z − exp(z)][1− λ+ 2λ exp{− exp(z)}]

[1− exp{− exp(z)}]a+i−1[1 + λ exp{− exp(z)}]a+i−1dz ,

using the binomial expansion.
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Figure 5: Plots of LBTW densities for increasing λ and increasing b, when a = 0.5, µ = 0, and
α = 1.

Figure 6: Plots of LBTW pdf’s for decreasing λ and increasing b, when a = 0.5, µ = 0, and α = 1.

Setting u = exp(z) we get

E(Zr) =
1

B(a, b)

∞∑
i=0

(−1)i
(
b− 1
i

)
∫ ∞
−∞

log(u)r exp(−u)[1− λ+ 2λ exp{−u}]

[1− exp{−u}]a+i−1[1 + λ exp{−u}]a+i−1du .

By further power series expansion of binomial, we then have

E(Zr) =
1

B(a, b)

∞∑
i,j,k=0

(−1)i+jλk
(
b− 1
i

)(
a+ i− 1

j

)(
a+ i− 1

k

)
∫ ∞
−∞

log(u)r exp[−(j + k + 1)u][1− λ+ 2λ exp{−u}]du . (29)

By (Prudnikov, Brychkov, and Marichev 1986, equation 2.6.21.1), we have

I(r, s) =
∫ ∞
−∞

log(u)r exp(−su)du =
(
∂rs−pΓ(p)

∂pr

)
|p=1 . (30)
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Using (30) in (29), we thus obtain

E(Zr) =
1

B(a, b)

∞∑
i,j,k=0

(−1)i+jλk
(
b− 1
i

)(
a+ i− 1

j

)(
a+ i− 1

k

)
[(1− λ)I(r, j + k + 1) + 2λI(r, j + k + 2)] . (31)

In many practical situations, the value of a random variable is affected by the values of a number of
other variables, called explanatory variables. For example, if X denotes the lifetime of a system, then
it is affected by explanatory variables like lifetimes of its sub-components, surrounding temperature,
etc.

Consider a type 1 censored sample of size n, where xi denotes the true lifetime and ci the censoring
time of the ith sampled unit, and vi = (v1i, . . . , vpi)′ denotes the corresponding vector of explanatory
variables, i = 1, . . . , n. The ith response yi is defined as yi = min[log(xi), log(ci)]. Consider a linear
regression model for the response variable using LBTW distribution as follows:

yi = v′iγ +
1
β
zi , i = 1, . . . , n , (32)

where the zi’s are independently distributed with density (28), γ = (γ1, . . . , γp)′, |λ| ≤ 1, a > 0,
b > 0, and the location parameter µi corresponding to the ith lifetime is modeled as µi = v′iγ. Thus,
the location vector for the LBTW model has the structure µ = v′γ, where µ = (µ1, . . . , µn)′ and
v = (v1, . . . , vn)′. For a = b = 1, the model reduces to the log-transmuted Weibull model, while for
λ = 0 and a = b = 1 it reduces to the log-Weibull (or the extreme value) model.

Denoting by C and N the sets of indices for the censored and uncensored observations respectively,
the log-likelihood for the model parameters θ = (β, λ, a, b, γ′)′ is given by

`(θ) = q[log(β)− log{B(a, b)}]
+
∑
i∈N

[β(yi−µi)−exp(β(yi−µi))+log{1+λ exp(− exp(β(yi−µi)))}]

+(a−1)
∑
i∈N

[log{1−exp(− exp(β(yi−µi)))}+log{1+λ exp(− exp(β(yi−µi)))}]

+(b−1)
∑
i∈N

[log{1−{1−exp(− exp(β(yi−µi)))}{1+λ exp(− exp(β(yi−µi)))}}]

+
∑
i∈C

log[1−I{1−exp(− exp(β(ci−µi)))}{1+λ exp(− exp(β(ci−µi)))}(a, b)] , (33)

where q is the number of observed failures. The MLE θ̂ of θ is obtained by solving the likelihood
equations ∂`(θ)/∂θ = 0.

Under certain regularity conditions, the centered form of the MLE,
√
n(θ̂ − θ), is asymptotically

distributed as Normal(0,K−1(θ)), where K(θ) is the information matrix, given by

K(θ) = E

(
∂2`(θ)
∂θ∂θ′

)
and can be approximated by K(θ̂). Then, based on

√
n(θ̂ − θ) ∼ Normal(0,K−1(θ̂)), one can carry

out tests and find confidence regions for functions of θ.

11. Simulation study

A simulation study is carried out to investigate the performance of the MLEs. We take sample sizes
to be n ∈ {15, 25, 50}, and generate observations from a BTW distribution with parameters α = 1,
β = 2, λ = 0.5, a = b = 2.The MLEs and 95% confidence intervals are computed using the observed
Fisher information matrix. The process is replicated 1000 times, and the average estimates, along with
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Table 1: Average MLEs of the parameters and the corresponding mean squared errors (in parenthesis).
MLEs

n α̂ β̂ λ̂ â b̂
15 0.565 (0.201) 1.251 (0.229) 0.392 (0.242) 1.121 (0.198) 1.301 (0.213)
25 0.799 (0.115) 1.723 (0.099) 0.435 (0.123) 1.728 (0.089) 1.591 (0.101)
50 1.027 (0.036) 1.923 (0.034) 0.485 (0.041) 2.013 (0.021) 1.935 (0.024)

the mean squared error are presented in Table 1. In Table 2, the average 95% confidence intervals are
reported.

From Table 1 it is observed that as the sample size increases, the average biases and the mean squared
errors decrease. This verifies the consistency properties of the estimates.

Table 2: Average 95% confidence intervals for the parameters.
n α β λ a b
15 (0.375, 2.075) (0.617, 3.675) (0.072, 1.727) (0.523, 4.026) (0.576, 3.972)
25 (0.477, 1.736) (0.760, 3.521) (0.162, 1.216) (0.727, 3.529) (0.833, 3.488)
50 (0.625, 1.421) (1.102, 2.648) (0.199, 0.874) (1.001, 3.135) (0.928, 2.846)

Table 2 shows that as the sample size increases, the average confidence lengths decrease and the
intervals tend towards symmetry.

12. Application of the beta transmuted Weibull model
In this section we illustrate the usefulness of the beta transmuted Weibull distribution for modeling
reliability data, and also give an application of the log beta transmuted Weibull regression model. We
consider two real data sets, and, for the former, we compare our results with those obtained by fitting
the transmuted Weibull distribution, beta exponentiated Weibull distribution, exponentiated Weibull
distribution and the Weibull distribution. The cdf of the beta exponentiated Weibull distribution is
given by

FBEW (x) =
1

B(a, b)

∫ [1−exp(−αxβ)]γ

0
wa−1(1− w)b−1dw , x, α, β, γ, a, b > 0 , (34)

where γ is the exponentiating parameter. For a = b = 1, it becomes the exponentiated Weibull
distribution, which is a special case of BTW distribution with λ = 0, a = γ, and b = 1. For
a = b = γ = 1, (34) reduces to the Weibull distribution.

12.1. Tensile fatigue characteristics of yarn

The first data set relates to the time-to-failure of a polyster/viscose yarn in a textile experiment for
testing the tensile fatigue characteristics of yarn. It consists of a sample of 100 centimeter yarn at
2.3% strain level. This data was also studied by Quesenberry and Kent (1982), and is given in Table
3. The Weibull, exponentiated Weibull, beta exponentiated Weibull, transmuted Weibull and beta
transmuted Weibull distributions are fitted to the data and the MLEs of the parameters are computed
are given in Table 3. The values of maximized log-likelihoods, Akaike information criterion (AIC),
Bayesian information criterion (BIC) and Kolmogorov-Smirnov statistic (K-S) for the different fitted
distributions are also given. Though all the distributions considered give good fits, the beta transmuted
Weibull distribution is seen to be marginally better than the others. A graphical comparison of the
fitted models is displayed in Figure 7.

12.2. Class-H insulation data

As an application of the LBEW regression model, we consider the accelerated test data given in
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Table 3: Failure time data on 100 cms. Yarn at 2.3 % strain level (sample size n = 100).
86 146 251 653 98 249 400 292 131 169 175 176 76

264 15 364 195 262 88 264 157 220 42 321 180 198
38 20 61 121 282 224 149 180 325 250 196 90 229

166 38 337 65 151 341 40 40 135 597 246 211 180
93 315 353 571 124 279 81 186 497 182 423 185 229

400 338 290 398 71 246 185 188 568 55 55 61 244
20 284 393 396 203 829 239 236 286 194 277 143 198

264 105 203 124 137 135 350 193 188

Table 4: Estimated parameters of the Weibull (W), exponentiated Weibull (EW), beta exponentiated
Weibull (BEW), transmuted Weibull (TW) and beta transmuted Weibull (BTW) distributions, and the
corresponding values of log-likelihood (LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC) and Kolmogorov-Smirnov statistic (K-S).

Distribution α̂ β̂ γ̂ λ̂ â b̂ LL AIC BIC K-S
W 1.48 · 10−4 1.60 1.00 0.00 1.00 1.00 −627.05 1258.10 1263.31 0.0700

EW 2.63 · 10−4 1.50 1.00 0.00 1.00 1.00 −625.58 1257.16 1264.98 0.0685
TW 4.68 · 10−5 1.72 1.00 0.75 1.00 1.00 −624.52 1255.04 1264.86 0.0669

BEW 1.75 · 10−3 1.04 1.29 0.00 2.01 0.26 −622.63 1255.26 1268.28 0.0681
BTW 6.14 · 10−4 1.45 1.00 0.99 1.29 0.27 −619.80 1249.58 1262.63 0.0659

Figure 7: Beta transmuted Weibull, beta exponentiated Weibull, transmuted Weibull, exponentiated
Weibull and Weibull densities fitted to the data given in Table 3.

Nelson (1982), which relates to the log time-to-failure of a class H electrical insulation for motors.
Four test temperatures were considered: 190, 220, 240 and 260 ◦C, and a sample of 10 specimens
were taken for each test temperature. The specimens were periodically inspected for failure, and the
failure time (in hours) of observation i, viz. ti, was defined as the midpoint of the interval where the
failure occurred. Let, xi1 denote the temperature at the ith failure. The data are given in Table 5
below:

We adopt the model

yi = β0 + β1xi1 +
1
β
zi ,

where the variable yi = log ti follows the LBTW distribution (28) for i = 1, . . . , 40. The MLEs of
the model parameters are obtained as β̂ = 1.2235, λ̂ = 0.2345, â = 60.25, b̂ = 1.0210, β̂0 = 11.21,
β̂1 = −0.0287, and the corresponding log-likelihood value is −3.25. Further, it is noted that from
the fitted model that that there is a significant difference between the temperatures levels 190 ◦C,
220 ◦C, 240 ◦C, and 260 ◦C for the failure times. The curves displayed in Figure 8 represent the
empirical survival function and the estimated survival function obtained from (27). It shows that the
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Table 5: Log life of class H specimens.
190 ◦C 220 ◦C 240 ◦C 260 ◦C
3.8590 3.2465 3.0700 2.7782
3.8590 3.3867 3.0700 2.8716
3.8590 3.3867 3.1821 2.8716
3.9268 3.3867 3.1956 2.8716
3.9622 3.3867 3.2087 2.9600
3.9622 3.2867 3.2214 3.0892
3.9622 3.4925 3.2214 3.1206
3.9622 3.4925 3.2338 3.1655
4.0216 3.4925 3.2458 3.2063
4.0216 3.4925 3.2907 3.2778

fit is considerably good.

Figure 8: Estimated survival function and the empirical survival function.

13. Conclusions
The paper studies some general properties of a new distribution called beta transmuted Weibull dis-
tribution. The distribution is a generalization of the Weibull distribution, and includes the Weibull,
exponentiated Weibull, exponentiated transmuted Weibull, transmuted Weibull, exponentiated expo-
nential and the exponential distributions as special cases. The log beta transmuted Weibull model has
also been discussed, which is appropriate for modeling censored data. Applications of the models to
real-life data have been cited and shown to give considerable good fits.
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