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Abstract
We introduce the Beta Workbench (BWB), a scalable tool built on top of the newly defined BlenX language to
model, simulate and analyse biological systems. We show the features and the incremental modelling process
supported by the BWB on a running example based on the mitogen-activated kinase pathway. Finally, we provide a
comparison with related approaches and some hints for future extensions.
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INTRODUCTION
Systems Biology [1] investigates the interactions and

relationships among the components of biological

systems to understand how they globally work.

Several approaches have been developed and used to

model and study complex interaction mechanisms in

biological systems mainly based on mathematical

modelling, which generally takes the form of a

system of ordinary differential equations (ODEs) and

for which ODE solvers with various interfaces are

available. We also mention the approach based on

chemical equations for which several methods for

qualitative and quantitative analysis are provided like

stochastic and deterministic time course simulation,

steady state analysis and sensitivity analysis [2–5].

We describe the systems’ behaviour by relying on

computational modelling. A computational model

differs from a mathematical one, because it is

executable and not just simply solvable [6].

Execution means that we can predict/describe the

flow of control between species and reactions (e.g.

not only the time, but also the causality relation

among the events that constitute the history of the

dynamics of the model). In other words, our

interpretation of computational modelling is similar

to programming, the step by step behaviour of a

system, rather than describing only the outcome of

the system or scripting some code to solve

mathematical formulations of problems.

Various computational approaches have been

proposed and equipped with supporting software

tools. Boolean and probabilistic Boolean networks

textually describe models on which simulation of

the network dynamics and computation of net-

work statistics can be performed [7, 8]. Petri nets

and their stochastic variants are used to visually

describe models and to perform stochastic and

deterministic time course simulation and pathway

analysis [9–12]. The reactive animation framework is

based on a reactive system that drives the display of

an animation by combining classical tools for

statecharts with tools for animation [13]. Logical

formalisms have also been defined to perform

probabilistic model checking analysis, i.e. to test
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whether a given logical formula is satisfied by a given

model described in one of different possible for-

malisms (e.g. Continuous or Discrete Time Markov

Chains) [14–16]. Process calculi are formal language-

based descriptions that have been equipped with

stochastic engines to execute models [17–19].

We consider here programming oriented lan-

guages inspired by process calculi that we believe

more akin to an executable philosophy of computa-

tional modelling. Furthermore, programs written in a

programming language are compact and executable

textual representations so that they are well-suited for

storage and to overcome the difficult manageability of

graphical formalisms in the presence of large models.

Finally, process calculi (and their derived languages)

have the ability of handling concurrency, execution

causality, non-determinism, stochastic behaviour and

cooperation/competition for resources that are usual

features of computational approaches.

The basic metaphor we keep as a reference to

represent biological systems is inspired by [20]. A

biological entity is represented by an instance of a

computer program. The parallel execution of the

programs corresponding to the biological entities

describes the interactions between the entities

through messages passing over communication

channels between programs. The existence of

communication channels of the right type is a

measure of the specificity or affinity of biological

entities. The state change of the overall system due to

local interactions describes the dynamics of the

represented biological systems.

The Beta Workbench (BWB) defines and imple-

ments the BlenX programming language [21] based

on the process calculus Beta-binders [22]. BWB

overcomes some limitations of the other process-

calculi based tools [17–19], because it has been

designed for biology from the beginning, instead of

relying on formalisms defined for computer science

applications. In the next section and in the example

we highlight specific issues and we discuss the

differences that make us prefer BWB.

The article is organized as follows: in the next

section we describe the characterizing features of

BWB and we report a comparison with the main

process calculi-based approaches as well as with

a representative of the mathematical/chemical

approaches. Section 3 shows the features highlighted

in Section 2 in a case study. The last section briefly

mentions some future extensions and ongoing work

on BWB.

THE BETAWORKBENCH VERSUS
OTHERCOMPUTATIONALAND
MATHEMATICALMODELLING
APPROACHES
In this section, we present the main and innovative

features of BWB. While discussing these features, we

compare BWB with other process calculi-based

approaches and with mathematical/chemical model-

ling to justify our choice of developing and using a

new approach.

The BWB is freely available [23, 24] to model,

analyse and simulate biological behaviour and it is

inspired by Beta-binders [22, 25]. BWB has already

been tested in modelling large biological systems like

the full Nuclear Factor-kappa B (NF-�B) pathway

[26] or the study of the evolutionary genesis of the

Mitogen-Activated Protein (MAP) kinase (MAPK)

cascade [27]. BWB has also been used as a target

environment to compile a narrative-like specification

of biological systems very close to natural language

and exemplified on the Gp130/Signal Transducers

and Activator of Transcription (STAT) signalling

pathway [28].

The main goal of BWB is to facilitate and engineer

the model-building process of biological systems at

different levels of abstractions. The model design

provides a static description of the system by just

listing the components of the initial state with their

amount and specificity for interaction. BWB allows

the user to or boxes to represent biological species both

in graphical and textual form (Figure 1, where B is

a box). Any of the two representations can be

automatically translated into the other so that the

user can select the favoured specification approach.

We interpret biological entities as the components that

interact to accomplish some biological function: for

example, proteins, enzymes, organic or inorganic

compounds as well as cells or tissues. Boxes have well-

defined interaction sites, called binders, and an internal

Figure 1: Boxes as abstractions of biological entities. At
the bottom of the figure the textual representation of
the box is given.
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structure (the code needed to handle the stimuli

received along the interfaces and implement the

responses), such as that of biological entities. The

binders represent, for example, protein domains or

cell receptors and the internal program of

a box codifies the response to an external stimulus.

We now discuss the features of BWB

that distinguish it from other process calculi tools

[17–19] and from mathematical/chemical modelling:

(i) Typed and dynamically varying interfaces of

biological components: the status of an interface

(binder) can be available/active, hidden (for

instance when a 3D structure changes and it

hides a domain of a protein from further

interactions) or complexed (when the binder

is bound to the binder of another entity).

Furthermore any interface is equipped with a

type that describes its properties. Primitives are

available to dynamically hide or unhide binders,

to create new binders and to change the type of

a binder to vary its properties. This feature is not

available in other process calculi-based tools.

(ii) Sensitivity-based interaction: quantities asso-

ciated to binders stochastically determine the

possibility of interaction between two entities.

We release the key–lock interaction mechanism

based on the notion of exact complement of

communication channel names (in fact this is an

inheritance from computer science modelling

where two programs can interact only if they

know the exact address of the interacting

partners), and implemented in all the other

process calculi tools. This allows us to avoid any

global policy on the usage of names in order to

make components interact, i.e. we do not need

centralized authorities that decide how to name

entities or interfaces. We will see in the next

section that this feature is essential in order to

move towards incremental and distributed model

building as well as composition of models.

(iii) One-to-one correspondence between biological

components and boxes specified in the model:

a biological component that can be in n different

states is just a box in our approach, differently

from mathematical/chemical modelling in

which n variables are needed to represent the

n different states.

(iv) Description of complexes and dynamic genera-

tion of complexes: BWB allows the user to input

complexes (set of components bound together

through specific interfaces) from the beginn-

ing or it can generate complexes during the

simulation relying on the specification of the

components and on the complexation affinities

of their interfaces. This feature highly reduces the

number of components to be specified in the

initial state because the products of interactions

are generated by the execution and they need not

to be described initially. The high parallelism of

the execution will then show all the possible

scenarios. This feature is an improvement over

other process calculi-based approaches and also

relaxes the assumption of mathematical/chemical

modelling that imposes the specifications of all

the species, complexes and their states (variables)

in the initial state (set of equations).

(v) Spatial information: types of binders can be used

to model compartments or locations as well. A

special interface {loc:T } can be associated with

any box and T can vary over the relevant

compartments and locations of interest for the

system at hand. The primitives available to

change the types of binders can then simulate

translocation or movement. Conditional checks

on the special binder loc may or may not enable

interactions over the other interfaces of the same

bio-process. For example, we could allow an

interaction only if the two partner entities are in

the same compartment. We used this feature in

modelling the pathway Gp130/STAT in [28].

To the best of our knowledge no other

computational modelling approach that supports

spatial information has an associated software

implementation. Some theoretical extensions of

process calculi have been instead defined to

cope with spatial modelling [29, 30].

(vi) Hybrid parameter specification: the specification

of the quantitative parameters that drive the

simulation and the dynamic behaviour of the

system can be done also through named general

functions computed on the global state of the

system at a given time. Besides global functions,

BWB also allows the user to define state variables

that can be inspected and plotted or used as

triggering conditions at any point of time during

the execution of the model. This is a unique

feature of BWB with respect to other process

calculi-based tools. Actually, quantities specified

through named functions make our approach

more general than pure Gillespie-based

approaches because rates are not constant and
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associated to interaction channel statically, but

can be dynamically computed during the

simulation as functions of (possibly global)

variables like, e.g. concentrations of other species

or mathematical functions of concentrations at

that point of time. This feature allows the user to

recover the ODE-like modelling principles once

all the reactions are specified as global conditions

that trigger specific events (see below). In short,

the hybrid approach of BWB provides the user

with a higher level of flexibility than similar

proposals and it can be used to address a larger

selection of problems (see next section).

(vii) Events: global conditions can be expressed by the

amount of components or complexes in the

system at a given time, by the simulation time or

simulation steps. Conditions trigger the enabling

of particular actions called events that are

then stochastically selected including them in

the set of standard interaction-enabled actions.

Events are used to remove or inject entities from/

into the system, to join two entities into a single

one, or to split an entity into two entities. This

feature is essential to program perturbation of the

systems triggered by particular conditions emer-

ging during simulation and to observe how the

overall behaviour is affected. An example could

be the knock-out of a gene at a given time.

Another possible use of events is to program

sensitivity analysis of the system into the model

driven by dynamic conditions emerging during

simulation. Events are essential if we want to

develop an in-silico lab. No other process calculi-

based tool supports events in the manner

described above.

(viii)De-coupling the qualitative description of the

model from the quantities needed to drive

execution: this novel feature with respect to

computational as well as mathematical model-

ling approaches makes BWB suitable to exploit

model composition. In fact, we only need to

add a few values in the affinity definition of the

interfaces of components coming from different

models to let them interact (see next section for

an example of easy composition of MAPK and

extracellular signal-regulated kinase (ERK)

pathways). Note that global conditions on

concentration or structure of species are not

affected by adding new species. If we want

conditions on the new boxes as well, we can

simply add new events to the list.

(ix) Markov chain generation: the automatic gen-

eration of all the states reachable from the initial

configuration of a system (Figure 3) allows us to

produce the Continuous Time Markov Chain

(CTMC) describing the stochastic evolution of

the biological system. When the system is not

finite state, in order to deal with the problem

of finiteness we put some constraints on the

CTMC generation (e.g. limitation on the

concentration of species and limitation on

the global number of states of the CTMC).

This feature allows the user to rely on classical

numerical analysis techniques, to check the

properties of the system using logical character-

izations and tools like [14], or even to use

mathematical/chemical modelling tools because

we recover the whole set of reactions that

govern the dynamics of the system.

The usage of the features listed above is shown in

an example in the next section.

The main obstacle for the use of computational

modelling in biology is the need to be able to manage

formal computer science theories. We work on this

issue by hiding as many formal details from the user as

possible through providing modelling templates. In

particular, the graphical specification formalisms sup-

ported byBWB, although not suitable for large systems,

help in understanding the modelling principles.

The model is then compiled into an executable

internal representation optimized to run a variant of

the Gillespie’s algorithm [31] similar to the Next

Reaction Method [32]. The execution of a model

produces the time course concentrations of the com-

ponents and a reaction graph that allows hierarchical

structuring of events and interactive exploration of

their causal relationships. This last feature is essential

when examining a system in order to infer new

hypotheses that could lead to new experiments as

advocated by the iterative cycle of systems biology.

The set of output visualization facilities and their full

interconnection is extremely valuable in inferring

properties of the modelled system.

We end this section by comparing the BWB with

respect to other process calculi-based tools (BioSPI

[17] version 2.2.3 and SPiM [18] version 0.05) and a

representative of the mathematical modelling

approaches (Dizzy [3] version 1.11.4). We make

the comparison for increasing sizes of the model to

check how the performance of the approaches

compares with respect to the complexity of the
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models. We consider both the time needed to

execute the sample models and their size in terms of

the elements to be specified in the initial state. The

comparison has been performed on a Dual-Core

AMD OpteronTM 64 bit Processor 1218 2.60 GHz,

2.00 GB of RAM on a Windows XP operating

system. The examples we selected are models which

permit us to fully exploit the peculiarities of BWB.

The first example is related to multiple complexa-

tion. Figure 2 shows species A, B, C, D, E and F that

can bind together through several intermediate

products to form the complex ABCDEF.

This example allows us to show how the usage of

complexes can help in reducing the model size. The

complete specification with chemical reactions

requires the definition of 21 species (6 initial species

and 15 complexes) and 70 reactions of complex

formation and complex breaking. Similarly, the

process algebra specifications for BioSPI and SPiM

requires the definition of 21 processes and at most 70

reaction channels (depending on the rates value, the

number of reaction channels can be reduced; we

assume all the rates are equal to 1.0 and hence we

reduce the number of channels to 50). We build two

models in BWB: the first model is based on events

and the second one is based on complexes. The

model with events has the same order of complexity

of the other specifications (21 boxes and 70 events),

while the model based on complexes requires only

the definition of 6 boxes (species A, B, . . . , F), and

the specification of 5 binder affinities (any species can

bind with the following one). The model size of the

BWB specification with complexes grows linearly

with the number of the initial species, while the size

of all the other specifications has a quadratic growth.

The time performances of the tools on the considered

models (Table 1) show that the BWB simulator is

faster than all the other process calculi-based tools if

we consider the model with events, and slower than

Dizzy. As expected, the BWB simulator is slower

Figure 3: ContinuousTime Markov chain of the enzy-
matic reaction with inhibitor. Node N_1 corresponds to
the initial state with concentrations of one E, one S and
one I. Node N_2 corresponds to the state in which com-
plex ES has been formed, while node N_3 corresponds to
the state in which the substrate S has been transformed
in the product P. Nodes N_4 and N_5 correspond to the
states in which complex EI is present. Numbers on
edges represent overall stochastic rates associated to
state changes; each number corresponds to the sum of
the stochastic rates associated to reactions that causes
the specific state change.

Figure 2: Multiple complexation scenario. SpeciesA, B,
C, D, E and F can bind together through several inter-
mediate products to form the complex ABCDEF. All the
reactions are reversible.

Table 1: Simulation time results for the multiple com-
plexation example

Dizzy (s) BWB (s)
(complexes)

BWB (s)
(events)

SpiM (s) BioSPI (s)

1 <1 <1 <1 1 5
10 <1 2.9 <1 4.2 39
100 3.6 44.7 10.1 31.3 556
1000 36.4 509.2 106.8 309.5 *

We fix the time limit simulation parameter to1000 s andwerun simula-
tions changing the initial population of entities. Cells marked with *
show that the corresponding tool has not finished the simulation
within 30min.
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than SPiM and Dizzy when considering the specifi-

cation with complexes, because of the time needed

to manage the on-the-fly generation of complexes.

However, this comparison suggests us that our

modelling approach with a combined use of com-

plexes and events is a good compromise between

model size, scalability and efficiency in simulation.

The second example that we consider is

an enzymatic reaction E þ S�!
a

 �
d ES �!

k
E þ P with

inhibitor E þ I�!
e

 �
f EI (Figure 3).

To specify the intermediate complexes ES and EI
in BioSPI and SPiM, we can use special and tricky

features of process calculi usually by called private

names. This allows us to reduce the size of the

model, at the price of the simulation time courses

of the concentrations of intermediate complexes

not being able to be plotted. On the contrary, the

primitives for complexation and decomplexation

available in BWB allow us to obtain a compact

specification which also runs faster than the ones

obtained with private names for BioSPI and SPiM.

Furthermore, complexes are first class objects in our

formalism, so they can be recognized and traced by

the system during the simulation in an efficient way.

Finally (last row of Table 2), BWB can handle even

larger models than SPiM and BioSPI.

The considered tools implement the simulation

loop with different methods, all derived from the

Gillespie Stochastic Selection Algorithm [31]. One of

the most efficient methods is the NextReactionMethod
by Gibson and Bruck [32] (In computer science

notation, the complexity of the method is O(log r),
where r is the number of reactions in the system); we

implemented a variant of this method, where the

dependencygraph data structure is replaced by a hashmap
data structure that can be updated and queried in

amortized constant time. As previously mentioned,

another difference of our approach is the ability to

count species and complexes on-the-fly with a linear

cost in the number of species; this allows us to reduce

considerably the number of reactions in the system

and hence to improve the implementation efficiency

with respect to other process-calculi approaches,

where reaction channels are created between every

entity in the system. On the other hand, this on-the-

fly check adds some complexity with respect to the

original Next Reaction Method (In computer science

notation, the complexity of our method is

O(kþ log r), where r is the number of reactions and

k the number of species in the current state of the

system; k is always smaller than r).
For further analysis of the main differences with

non-process calculi-based computational approaches

we refer the reader to [33], and for a comparison

of process calculi-based solutions we refer the reader

to [34].

AN EXAMPLE
We introduce the model-building process, simula-

tion and analysis carried out through our BWB using

a simple but complete model of the mitogen-

activated protein kinase pathway, a highly conserved

series of three protein kinases implicated in diverse

biological processes (Figure 4).

A general model for the core MAPK cascade is

described in [35]: it is built using 10 chemical

equations of the form E þ S�!
a

 �
d ES �!

k
E þ P, for a

total of 30 single reactions (Table 3).

KKK denotes Mitogen-Activated Protein (MAP)

Kinase Kinase Kinase (MAPKKK), KK denotes

Mitogen-Activated Protein Kinase Kinase

(MAPKK) and K denotes MAPK. The signal Start

transforms KKK to KKKP, which in turn transforms

KK to KKP to KKPP, which in turn transforms K to

KP to KPP. When an input Start is added, the

output of KPP increases rapidly. The transformations

in the reverse direction are the result of the signal

End, the KKPase and the KPase phosphatases. In

particular, by removing the signal Start, the output

level of KPP reverts back to zero.

We built the same model presented in Table 1

and in Figure 4 with BWB by creating seven boxes:

Table 2: Simulation time results for the enzymatic
reactionwith inhibitor example

Dizzy (s) BWB (s)
(complexes)

SpiM (s)
(private names)

BioSPI (s)

10 <1 <1 1.2 3
100 <1 1.1 5.4 33
1000 <1 11.4 198.8 329
10 000 4.4 114.65 * *

We fix the time limit simulation parameter to 500 s andwe run simula-
tions changing the initial population of entities. Cells marked with *
show that the corresponding tool has not finished the simulation
within 30min. Figure 4: The MAPK biochemical pathway.
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one for each kinases, two signal molecules (Start,

End) and two phosphatases. Each box must have one

or more binders to interact with other boxes.

In our example, signal molecules and phosphatases

will have a single binder, representing the capability of

binding in the former case and the enzyme active site

in the latter. The three kinases each have two

binders: one represents the phosphorylation site, the

other one the kinase domain.

Compatibility and strength of interaction between

binders are declared using real numbers (affinities) that

represent rates for specific actions based on mass action

laws, or arbitrary functions. Functions are especially

useful when a box represents a higher aggregation

entity (e.g. a cell). In this case the input–output

relation can be more non-linear, such as the sigmoidal

dose responses for signalling molecules.

In the core MAPK cascade, kinases react according

to mass action type rates. In this case, we specify three

affinities for every pair of binders, i.e. for complex

(bind ), decomplex (unbind) and communication (inter)
actions. When bind and unbind affinities are specified,

complex and decomplex operations are enabled to

attach and detach the corresponding boxes through

the interaction sites. The biological counterpart is the

binding of a ligand to a receptor, or of an enzyme to a

substrate. For instance, affinities are set so that Start

can bind to KKK, and when bound it can perform a

reaction with a certain rate. We use hidden binders to

model inactive domains, de-phosphorilated proteins,

methylated receptors and so on. Initially, KKK is

inactive, so we set its p binder—of type KKKkase—as

hidden. The model for the core MAPK cascade is

shown in Figure 5.

To check the compositionality of the BWB, we

build two well-known models of the EGF (epi-

dermal growth factor) -activated ERK cascade,

and we compose each of them with the core

Figure 5: Ourmodel of the core MAPKpathway.

Table 3: The 10 chemical equations of theMAPKmodel in [35], were it is used to derive a system of 25mathematical
equations (18 ODEs plus 7 conservation equations)

(1) KKK þ Start�!
a1

 �
d1

KKK � Start �!
k1

KKK� þ Start (6) KKPPþ KKPse�!
a6

 �
d6

KKPP � KKPse �!
k6

KKPþ KKPse

(2) KKK� þ End�!
a2

 �
d2

KKK � End �!
k2

KKK þ End (7) KKPPþ K�!
a7

 �
d7

KKPP � K �!
k7

KKPPþ KP

(3) KKK� þ KK�!
a3

 �
d3

KKK� � KK �!
k3

KKK� þ KKP (8) KPþ KPase�!
a8

 �
d 8

KP � KPase �!
k6

K þ KPase

(4) KKPþ KKPse�!
a4

 �
d4

KKP � KKPse �!
k4

KK þ KKPse (9) KKPPþ KP�!
a9

 �
d9

KKPP � KP �!
k9

KKPPþ KPP

(5) KKK� þ KKP�!
a5

 �
d5

KKK� � KKP �!
k5

KKK� þ KKPP (10) KPPþ KPase�!
a10

 �
d10

KPP � KPase �!
k10

KPþ KPase
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Figure 7: The EGF-activated ERK cascademodel composedwith coreMAPK.Note the feedback regulationbetween
K and GS.

Figure 6: The EGF-activated ERK cascademodel [37] implemented in our language.
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MAPK model. The two models are based on [36]

and [37] (Figure 6).

Plugging the core MAPK cascade into these two

models is extremely simple: we only need to delete

the Signal box and insert it in the detailed model,

setting the affinities between the RASD binder of

the Ras protein and KKK to the appropriate kinetic

rate. This is achieved by adding one line of code to

the affinity definition file. The Fell’s model also

requires a feedback regulation between K and Gs;

the addition of another affinity between the KN and

GSD domains is sufficient to accomplish this task

(Figure 7). The possibility to plug a model into an

existing one by composition, exchanging part of

them as we did, can be very useful in building large

scale models.

Note that a single bio-process is specified for

every biological component. The execution of the

model generates the different states of the same

component (active forms, bound entities, receptor

dimers, internalized complexes and so on). The full

models are available at [23].

The language allows us to compress a part or

a whole pathway with a one-box simplified model.

In this case a box represents a higher aggregation

entity and the input–output relation can be non-

linear.

Arbitrary functions that specify affinities between

binders allow us to effectively compress the MAPK

pathway modelling and its sigmoid response as a Hill

function [35]. In this compact representation, the

starting signal is directly connected to a box through

the following user-defined rate function:

let fHill: function¼ (pow (|Kact|, n)/

(pow(|Kact|, n)þ pow (Omega, n)));

This one-box model can perfectly substitute the

complete model, and can also be composed with a

more detailed or higher level model.

BWB allows the user to examine the results of

simulations by visualizing the entities, states and

complexes generated, the variation in concentration

of the various entities during simulation time, the

reactions that took place and the causal relationship

between entities and reactions. Figure 8 shows

the graph of the possible reactions between compo-

nents generated by the execution of the complete

Figure 8: The output of the simulation of our MAPKmodel in the BWB Plotter.Nodes in the graph are the different
states that biological entitiesmodelled by boxes in Figure 7 traverse during the simulation.
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Figure 10: Variation in the concentration of entities over time of the completemodel.

Figure 9: List of reactions of themodel in Figure 7.
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ERK-MAPK model in Figure 7. Note that a fairly

simple and compact model generates a quite

complex reaction graph that in other approaches

need to be fully specified. Reactions can also be

automatically generated and displayed by BWB in

the classic way (Figure 9). Note that we are

considering binary interactions as they happen at

the lowest level, so we only need two reactants and

two products at most. An extension to multi-

reactions can be based on transactions mechanisms

as described in [38]. Transactions would allow us to

overcome one of the main limitations of process

calculi in representing chemical reactions.

Figures 10 and 11 depict the variation of

concentrations of the entities in the system as time

passes. Note the inversion in the tendency of the

various curves at step 3000, when the Start signal is

removed from the system with an event. The

behaviour of the system is in agreement with the

conventional ODE model and wet-lab experiments

presented in [35–37].

CONCLUSIONS
We presented the BWB, a tool made to build models

of biological systems, to simulate their dynamic

behaviour and to inspect and query the outcome of

the simulations. We discussed the main and

innovative features of the approach compared to

other process calculi tools and mathematical/chemi-

cal modelling approaches. We also reported scal-

ability and performance considerations. An example

based on the composition of the MAPK and ERK

model built separately shows how large scale models

could be implemented easily.

Future work aims at making the writing of

models simpler, through a collection of templates

that encode common biological behaviours, such as

enzymatic behaviour, internal structure of kinases

and phosphatases and so on. In this way the user can

build a complete and complex model through a

simple point-and-click, while letting more advanced

users write and optimize code for specific behaviour.

We are also enhancing visualization and analysis on

Figure 11: Variation in the concentration of entities over time of a one-box simplified model, where the sigmoidal
response ismodelled as an Hill function, as discussed in [35].
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the generated reaction graph. The tool is actively

developed, maintained and expanded: we are

creating different simulation algorithms to speed

up simulation and management of the dynamic

generation of complexes, including deterministic

approaches, and algorithms for rate inference from

experimental data and for 3D diffusion mechanisms.

Finally, we are implementing export/import feature

to connect our tool to public databases and

standardization efforts like SBML in order to re-use

and share model designs and analyses.

We hope that the development of a general tool

to carry out in silico experiments can enhance the

usage of formal computational models in the life

science community: a step that we find essential in

order for the systems biology community to grow.
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