
Eur. Phys. J. B 20, 217–233 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. So far the problem of a spin glass on a Bethe lattice has been solved only at the replica symmetric
level, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving
a replica symmetry breaking solution have been confined to some perturbative regimes, high connectivity
lattices or temperature close to the critical temperature. Using the cavity method, we propose a general
non perturbative solution of the Bethe lattice spin glass problem at a level of approximation which is
equivalent to a one step replica symmetry breaking solution. The results compare well with numerical
simulations. The method can be used for many finite connectivity problems appearing in combinatorial
optimization.

PACS. 75.10.Nr Spin-glass and other random models

1 Introduction

The spin glass problem has been around for twenty five
years, but its understanding has turned out to be remark-
ably complicated. It is generally considered as solved only
in its fully connected version introduced by Sherrington
and Kirkpatrick [1]. The first consistent solution was de-
rived with the replica method [2,3] and it was then con-
firmed using a probabilistic approach, the cavity method,
which avoids the strange (and powerful) mathematical
subtleties of the replica approach [3,4]. A rigorous proof
of the validity of the solution is still lacking, in spite of
recent progress [5–7].

A slightly more realistic theory of spin glasses, still of
the mean field type, deals with the situation in which each
spin interacts only with a finite number of neighbours.
Models of this type include the spin glass on a Cayley tree,
a Bethe lattice and a disordered random lattice with fixed
or with fluctuating connectivity. There are many motiva-
tions for studying such problems. On one hand one may
hope to get a better knowledge on the finite dimensional
problem, since these models include a notion of neigh-
borhood which is absent in the infinite range case. But
another motivation is the possibility to solve these prob-
lems using different methods, like iterative methods which
are typical of statistical mechanics on tree-like structures.
In fact the cavity method is a generalization of the Bethe
Peierls iterative method to the case in which there may
exist several pure states, and it is therefore very natu-
ral to work out the details of this generalisation, and to
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test its validity. Another important aspect comes from
the connection between the statistical mechanics of dis-
ordered systems and the optimization problems: many of
the interesting random optimization problems turn out
to have a finite connectivity structure. This is the case for
instance of the travelling salesman problem [8], the match-
ing [9] the graph partitioning [10,11] or the K-satisfiability
problem [12].

While the problems of a spin-glass on tree-like lattices
were naturally studied very soon after the discovery of
spin glasses, the present status of the knowledge on these
systems is still rather poor compared to that on the SK
model. A lot of efforts have been devoted to the sim-
ple Bethe Peierls method which builds up a solution in
terms of the distribution of local magnetic fields [13–18].
However this simple iterative solution, which may be rel-
evant for a Cayley tree with a certain type of boundary
conditions [18] is wrong for the Bethe lattice spin-glass.
When the replica formalism is used, this simple iterative
solution turns out to be equivalent to the replica sym-
metric (RS) solution. However one knows that there ex-
ists a replica symmetry breaking (RSB) instability similar
to the one found in the SK model [17,19–22]. Unfortu-
nately, in the replica formalism, the RSB solution could
be found only in some rather limited regimes: expansion
around the high connectivity (SK-like) limit [23], or close
to the critical temperature [20]. The main problem en-
countered in all these attempts is a very general one, com-
mon to all disordered problems with a finite connectivity.
Roughly speaking it can be summarized as follows: the
distribution of local fields, even within one pure state, is
not a simple Gaussian as in the infinite range problems,
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but a more complicated function [9,24,25]. When one
takes into account the existence of several pure states,
the natural order parameter, even within the simplest
“one step” replica symmetry breaking solution, becomes
the probability distribution of these local field probabil-
ities [27]. This is a functional order parameter which is
difficult to handle. Several interesting attempts at solv-
ing the one step RSB equations have been done in the
past [26,32,33], but they all restricted this functional or-
der parameter to some particular subspace, within which
a variational approach was used.

In this paper we present an improved solution of the
Bethe lattice spin glass. This solution is nothing but the
application to this problem of the cavity method, treated
at a level which is equivalent to the one step RSB solution.
It is valid for any connectivity and any temperature. In the
next section we discuss the various tree-like lattices which
are usually studied and precise our definition of the Bethe
lattice problem. In Section 3 we recall the basic steps of the
simple Bethe-Peierls approach, and we discuss its instabil-
ity in Section 4. In Section 5 we discuss the formalism of
the cavity approach at the one step RSB level. Section 6
describes the algorithm used to determine the distribution
of local fields within this approach. The implementation
of the algorithm is discussed in Section 7, where we derive
explicit results for a lattice with six neighbours per point
and compare the analytic prediction to those of numerical
simulations. Finally, Section 8 contains a brief discussion
and mentions the perspectives.

2 The Bethe lattice

We consider a system of N Ising spins, σi = ±1, i ∈
{1, ..., N}, interacting with random couplings, the energy
being:

E = −
∑
〈ij〉

Jijσiσj . (1)

The sum is over all links of a lattice. For each link 〈ij〉 the
coupling Jij is an independent random variable chosen
with the same probability distribution P (J). The various
types of tree-like lattices which have been considered are:

• A) The Cayley tree: starting from a central site i = 0,
one builds a first shell of k + 1 neighbours. Then each
of the first shell spins is connected to k new neighbours
in the second shell etc. until one reaches the L’th shell
which is the boundary. There is no overlap among the
new neighbours, so that the graph is a tree.
• B) The random graph with fluctuating connectivity:

for each pair of indices (ij), a link is present with prob-
ability c/N and absent with probability 1− c/N . The
number of links connected to a point is a random vari-
able with a Poisson distribution, its mean being equal
to c.
• C) The random graph with fixed connectivity, equal

to k + 1. The space of allowed graphs are all graphs
such that the number of links connected to each point

is equal to k+ 1. The simplest choice, which we adopt
here, is the case where every such graph has the same
probability.

On a Cayley tree a finite fraction of the total number
of spins lie on the boundary. The Cayley tree is thus a
strongly inhomogeneous system, the properties of which
are often remote from those of a usual finite dimensional
problem. For this reason people generally consider in-
stead a Bethe lattice, which consists of a subset of the
Cayley tree containing the first L′ shells. Taking the lim-
its L → ∞, L′ → ∞ with L/L′ → ∞ allows to isolate
the central part of the tree, away from the boundary. This
procedure is OK when one considers a ferromagnetic prob-
lem. In the case of a spin glass this definition of the Bethe
lattice is not free from ambiguities: one can not totally
forget the boundary conditions which are imposed on the
boundary of the Cayley tree, since they are fixing the de-
gree of frustration [22]. For this reason we prefer to define
the Bethe lattice as the random lattice with fixed connec-
tivity (lattice C defined above). Clearly on such a graph
the local structure is that of a tree with a fixed branch-
ing ratio. Small loops are rare, the typical size of a loop
is of order logN . Therefore in the large N limit the ran-
dom graph with fixed connectivity provides a well defined
realisation of a Bethe lattice, i.e. a statistically homoge-
neous, locally tree-like structure. This is the lattice which
we study in this paper (the case of fluctuating connectiv-
ities will be studied in a forthcoming work). Numerical
simulations of this system can be found in [11,22,28,29].

Historically, spin glasses on the Bethe lattice and on di-
luted lattices with a fixed finite connectivity (type C) were
often discussed as separate issues. The reason for these
separate discussions of the same problem is the type of
techniques which are used. Generally speaking the Bethe
lattice papers rely on the Bethe Peierls method while the
random lattice papers use the replica method. One excep-
tion is the use of the cavity method for the random lattice
case [25,26]. Hereafter we shall basically develop the iter-
ative/cavity approach, but we shall also mention at each
step its connections to the replica approach.

3 The simple Bethe-Peierls ‘solution’

This section will give a brief review to the standard ap-
proach to the spin glass on the Bethe lattice, defined as
lattice C in the above classification. This solution is wrong,
because, as we shall see later, it does not consider the phe-
nomenon of replica symmetry breaking, however it sets the
stage for the correct solution that will be presented in the
next section.

3.1 The iterative approach

As is well known, on tree-like structures the problem can
be solved by iteration. Let us consider in general the merg-
ing of k branches of a tree onto one site σ0 as in Figure 1.
The partition function can be computed exactly if one in-
troduces, for each of the outside spins σi, i ∈ {1, ..., k},
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Fig. 1. The merging of k branches off the tree (here k = 3) onto the spin σ0. The cavity field hi is the total field acting on spin
σi in the absence of the central spin σ0.

the effective “cavity” field hi representing the action onto
the spin σi of all the other spins, in the absence of
the central spin σ0. In other words the magnetization of
the ith spin in absence of the central spin is given by
mi = tanh(βhi). The variables hi (and consequently the
variables mi) are uncorrelated in the limit N → ∞. It is
crucial to consider the magnetization before the introduc-
tion of the spin σ0, because after its introduction all the
spins that are coupled to the spin σ0 become correlated.

Calling Ji the coupling between spins σ0 and σi, the
partition function of the spin σ0 is expressed as

∑
σ0,σ1,...σk

exp

(
βσ0

k∑
i=1

Jiσi + β
k∑
i=1

hiσi

)
. (2)

Let us recall here the basic identity which allows to for-
ward the effect of the fields hi onto spin σ0, and which is
used repeatedly in this work. For an Ising spin σ0 = ±1,
one has:∑
σ=±1

exp (βσ0Jσ + βhσ) = c(J, h) exp(βu(J, h)σ0) (3)

where we define the two functions u and c as:

u(J, h) =
1
β

atanh [tanh(βJ) tanh(βh)] ;

c(J, h) = 2
cosh(βJ) cosh(βh)

cosh(βu(J, h))
· (4)

The magnetization on site 0 is thus m0 = 〈σ0〉 =
tanh(βh0), where

h0 =
k∑
i=1

u(Ji, hi); (5)

From this equation one gets the basic recursion relation
for the probability density Q(h) of local fields:

Q(h) = EJ

∫ k∏
i=1

[dhiQ(hi)] δ

(
h−

k∑
i=1

u(Ji, hi)

)
. (6)

Here and throughout the paper, we denote by EJ the ex-
pectation value with respect to all the exchange coupling
constants Ji: EJ =

∫ ∏
i [dJiP (Ji)] .

It will be useful for future use to introduce the prob-
ability distribution R(u) of the propagated field variable
u(J, h):

R(u) = EJ

∫
Q(h)dh δ(u− u(J, h)). (7)

The field distribution is nothing but the convolution:
Q(h) =

∫
du1 . . .duk R(u1) . . .R(uk)δ(u1 + . . .+ uk − h).

In order to relate the true distribution of local fields,
Qt(H), to the distribution Q(h) of local fields on one
branch1, one needs to consider the merging of k + 1
branches onto one site. The true local field H0 on a given
site 0 is simply given by a sum of contributions from each
of its k + 1 neighbours,

H0 =
k+1∑
j=1

u(Jj, hj), (8)

where as before hj is the local field on j in the absence of
the spin s0. This gives the distribution of true local fields
Qt(H) as the convolution:

Qt(H) =
∫ k+1∏

i=1

[duiR(ui)] δ

(
H −

[
k+1∑
i=1

ui

])
. (9)

1 We denote by upper case letters the true local fields and
by small case letters the local fields on one branch.
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Let us now compute the internal energy with this method.
We add a new link [30] with a coupling constant Jij be-
tween two spins σi and σj , where the local fields in the ab-
sence of the new link are respectively h(j)

i and h
(i)
j . Then

the energy of this link is:

Eij = −Jij〈σiσj〉, (10)

where the expectation value is computed using the Hamil-
tonian Hij(σi, σj), which is given by

Hij(σi, σj) = −
(
Jijσiσj + h

(j)
i σi + h

(i)
j σj

)
. (11)

A simple computation shows that

Eij = −Jij
tanh(βJij) + tanh(βh(j)

i ) tanh(βh(i)
j )

1 + tanh(βJij) tanh(βh(j)
i ) tanh(βh(i)

j )
·

(12)

Computing the total free energy of the system is slightly
more involved. Using the fact that the Bethe-Peierls ap-
proximation is exact on the tree-like lattices one can write
the free energy as the sum of site and bond contributions
[14–16]:

F = −k
∑
i

F
(1)
i +

∑
〈ij〉

F
(2)
〈ij〉, (13)

where the contribution from the bond ij is

−βF (2)
〈ij〉 = ln

∑
σi,σj

exp (−βHij(σi, σj)) (14)

and that from the site i is:

−βF (1)
i = ln

∑
σi

exp (βHiσi) , (15)

where Hi is the total spin acting on spin σi. One can
prove the validity of the expression (13) by the following
two steps: 1) it clearly gives the correct free energy at
high temperature; 2) using the fact that

∑
j(i) h

(j)
i = kHi,

where the sum is over all the neighbours j of site i, one
finds that ∂(βF )/∂β gives back the correct expression for
the internal energy obtained in (12). We notice en passant
that this free energy is nothing but the generalization to
a finite coordination number of the TAP free energy (and
reduces to the usual TAP free energy in the limit of infinite
coordination number)[15,16].

The Edwards-Anderson order parameter [34], q =
(1/N)

∑
i〈σi〉2 can be written as the magnetization

squared of a spin coupled to k + 1 neighbours and is
given by

q =
∫

dHQt(H) [tanh2(βH)]. (16)

We shall also compute the link overlap, q(l) = (2/(N(k +
1))
∑
〈ij〉〈σiσj〉2, which is deduced from the Q(h) distri-

bution as:

q(l) = EJ

∫
dhdh′Q(h)Q(h′)

×
(

tanh(βJ) + tanh(βh) tanh(βh′)
1 + tanh(βJ) tanh(βh) tanh(βh′)

)2

· (17)

3.2 A variational formulation

We have just seen in the previous section that, if one ne-
glects the possibility of RSB, all the thermodynamic quan-
tities of the Bethe lattice spin glass can be computed in
terms of the probability distribution Q(h) of the effective
field h. This probability distribution is obtained by solving
the self-consistency equation (6).

It is interesting for many reasons, some of which will
become clear later, to reformulate this problem in a vari-
ational way. One can write a free energy F [Q], which is a
functional of the probability distribution Q(h), such that:

1. The equation δF/δQ(h) = 0 is equivalent to the self-
consistency equation (6) for Q(h).

2. Calling Q∗ the solution of the previous equation, the
equilibrium free energy (13) is equal to F [Q∗].

This free energy functional is given by:

F [Q]
N

=

k + 1
2

∫ k∏
i=1

[dhidgiQ(hi)Q(gi)] F (2)(h1 . . . hk, g1 . . . gk)

− k
∫ k+1∏

i=1

[dhiQ(hi)] F (1)(h1 . . . hk+1) (18)

where

− βF (1)(h1 . . . hk+1) = EJ ln

([
k+1∏
i=1

1
d(Ji, hi)

]

×
∑

σ0,σ1,...σk+1

exp

[
βσ0

k+1∑
i=1

Jiσi + β
k+1∑
i=1

hiσi

] ,

− βF (2)(h1 . . . hk, g1 . . . gk) =

EJEK ln

([
k∏
i=1

1
d(Ji, hi)d(Ki, gi)

]

×
∑

σ0,σ1,...σk

∑
τ0,τ1,...τk

exp

[
βJ0σ0τ0 + βσ0

∑
i

Jiσi

+β
∑
i

hiσi + βτ0
∑
i

Kiτi + β
∑
i

giτi

])
· (19)
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Fig. 2. A pictorial representation of the two contributions (19) to the free energy. The ‘site’ contribution on the top is obtained
by merging k + 1 lines onto one site (here k = 3), and the ‘bond’ contribution pictured on the bottom figure is obtained by
adding one new link J0, and two new spins σ0 and τ0, to the lattice, together with the other k branches arriving onto each of
these spins.

These two expressions are represented pictorially in Fig-
ure 2. In this formula the function d(J, h) is an arbi-
trary positive function, since its contributions to the two
pieces F (1) and F (2) cancel. We shall mainly use it with
d(J, h) = c(J, h), which allows an easy connection with the
expression (13), but some other choice will also be useful
in order to make contact with the result of the replica
method, as we shall see below.

Let us now show that this free energy has the desired
properties. In order to check that Q∗(h) is a stationarity
point of the free energy in the space of normalized prob-
ability distributions Q(h)( such that

∫
dhQ(h) = 1), we

need to show that δF/δQ(h) = const. when Q = Q∗. This
functional derivative is equal to

1
N

δF [Q]
δQ(h)

= k(k + 1)
∫

dh2 . . .dhkQ(h2) . . . Q(hk)

×
(∫

dg1 . . .dgkQ(g1) . . . Q(gk) F (2)(h, h2 . . . hk, g1 . . . gk)

−
∫

dhk+1Q(hk+1)F (1)(h, h2 . . . hk+1)
)
. (20)

Using (3), one easily sees that, if Q(h) = Q∗(h) satisfies
the self consistency equation (6), one has, for any h1 . . . hk:∫

dg1 . . . dgkQ
∗(g1) . . . Q∗(gk)F (2)(h1 . . . hk, g1 . . . gk) =

A+
∫

dhk+1Q
∗(hk+1)F (1)(h1 . . . hk+1), (21)

where A is a constant (independent of h1 . . . hk), given by

A = (−1/β)
∫

dg0Q
∗(g0)EJ (ln [d(J0, g0)]

+k ln [c(J0, g0)/d(J0, g0)]) . (22)

This shows that the functional derivative (20) is a con-
stant. The repeated use of (3) allows to show similarly
that the saddle point free energy F [Q∗(h)] is indeed equal
to the free energy (13) (the factor (k + 1)/2 in (18) is
nothing but the number of links per site).

As an extra check, one can see that the derivative of
βF [Q] we respect to β gives the internal energy of the
previous section (the derivative is quite simple if we absorb
most of the β’s redefining the h and notice that the only
explicit dependence on β comes from the term βJ).

It is interesting to note that, using the basic recursion
relation (3), and the special choice d(J, h) = 2 cosh(βh),
we can write the free energy under the simple form:

F [Q]
N

=
k + 1

2

∫ k∏
i=1

[dhiQ(hi)] F (1′)(h1 . . . hk)

− k − 1
2

∫ k+1∏
i=1

[dhiQ(hi)] F (1)(h1 . . . hk+1) (23)

where

− βF (1′)(h1 . . . hk) = EJ ln

([
k∏
i=1

1
2 cosh(βhi)

]

×
∑

σ0,σ1,...σk

exp

[
βσ0

k∑
i=1

Jiσi + β
k∑
i=1

hiσi

])
· (24)

One must keep in mind that this expression for the free
energy is correct only if Q satisfies equation (6) and should
not be used as a variational free energy (see also next
section).

3.3 Equivalence with the replica formalism

We shall not present here the details of the replica ap-
proach to this problem, for which we refer the reader
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to [19,20,23,27,32]. Let us recall the main results of [23].
In the replica approach one introduces a probability dis-
tribution ρ(σ), where the variables σ are n Ising variables
(n eventually goes to zero). One can introduce a free en-
ergy functional Frep[ρ(σ)]. The equilibrium free energy is
given by F (β) = Frep[ρ∗], where ρ∗ is the solution of the
stationarity equation δFrep/δρ = 0.

The expression of the free energy functional in replica
space can be derived following exactly the same steps as
in the previous section. The final result is [23]

− βnFrep[ρ]
N

=
k + 1

2

× ln

(
Trσ,τ

[
ρ(σ)kρ(τ)k exp

(
n∑
a=1

βJσaτa

)])
− k ln

(
Trσ

[
ρ(σ)k+1

])
(25)

where Trσ denotes the average over the 2n configurations
of the variables σ or τ , and the correct result is obtained
in the n → 0 limit. The same value for the free energy
is obtained if we multiply the function ρ by a constant,
so that the ρ does not need to be normalized, although
it is more convenient to work with a normalized ρ. The
advantage of the replica approach is that the system is
homogeneous and the distribution ρ(σ) is the same in all
the points. This advantage is partially compensated by
the fact the the number of variables n is going to zero.

As can be readily checked, ρ satisfies a very simple
equation:

ρ(σ) =
EJTrτ

[
ρ(τ)k exp (

∑n
a=1 βJσaτa)

]
Trτ [ρ(τ)k]

· (26)

Using this equation the free energy (25) can be simplified
to [23]:

− βnFrep[ρ]
N

=
k + 1

2
ln
(
Trσ

[
ρ(σ)k

])
− k − 1

2
ln
(
Trσ

[
ρ(σ)k+1

])
(27)

where as before this new form of the free energy cannot be
used in a variational formulation. The result (25) for the
replicated free energy is correct in general, whether the
replica symmetry is broken or not. The problem is to find
the solution ρ∗(σ). In the replica symmetric situation this
task is easy: the ρ(σ) is a function of only Σ =

∑
a σa. We

can thus write in general:

ρ(σ) =
∫

du R(u) exp(βuΣ), (28)

where the normalization condition of ρ(σ) imposes:∫
du R(u) (2 cosh(βu))n = 1. (29)

Using this expression for ρ, we obtain in the small n limit:

ln
(
Trσ

[
ρ(σ)k+1

])
= n

∫ k+1∏
i=1

[duiR(ui)]

× ln

([
k+1∏
i=1

1
2 cosh(βui)

]∑
σ0

exp

(
βσ0

∑
i

ui

))
(30)

and:

ln

(
Trσ,τ

[
ρ(σ)kρ(τ)k exp(

∑
a=1,n

βJσaτb)

])
=

n

∫ k∏
i=1

[duidviR(ui)R(vi)] ln

([
k∏
i=1

1
4 cosh(βui) cosh(βvi)

]

×
∑
σ0,τ0

exp

(
βσ0

k∑
i=1

ui + βτ0

k∑
i=1

vi + βJ0σ0τ0

))
.

(31)

Putting these expressions back into the replica free en-
ergy (25), one gets exactly the functional F [Q] which we
had written previously in (18), provided we identify the
n→ 0 limit of R(u) with the probability distribution (7)
of the variable u(J, h), and we use in (19) a function
d(J, h) = c(J, h)[2 cosh(βu(J, h))].

In other words we have seen three equivalent ways to
solve the Bethe lattice spin glass in the replica symmetric
approximation:

• One can derive the recursion equations (6) for the
probability distribution Q∗(h) of the local ’cavity’ field
h, and evaluate the free energy and the internal energy
using this distribution.
• Alternatively one can introduce the free energy

functional(13), which depends on the probability dis-
tribution Q(h) and satisfies a variational principle: the
distribution Q∗(h) is obtained as the one which makes
the functional stationary.
• One can obtain the same functional starting from the

replica approach (25), making explicitly an assumption
of replica symmetry, and doing some simple algebra.
It is typical of the replica approach that a probability
distribution is traded with a function of n variables, in
the n→ 0 limit.

3.4 Free energy shifts

It may be instructive to compare this approach with the
more usual cavity method and to check that we obtain the
same results. In the cavity method, one computes the free
energy by averaging the various free energy shifts obtained
when adding a new site or a new bond to the lattice.

The first quantity which we compute is the free energy
shift ∆Fiter obtained my adding a new spin σ0 connected
to k branches, as we do in the iterative procedure. Using
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the same notations as in (5), this free energy shift is:

− β∆Fiter(J1 . . . Jk, h1 . . . hk) =

ln

[
2 cosh

(
β

k∑
i=1

u(Ji, hi)

)]
+

k∑
i=1

ln
[

cosh(βJi)
cosh(βu(Ji, hi))

]
.

(32)

In order to compute the total free energy, we also need the
free energy shift when adding the new spin σ0, onto which
merge k + 1 branches (see Fig. 2). This free energy shift
is equal to the same quantity with k changed into k + 1:

− β∆F (1)(J1 . . . Jk+1, h1 . . . hk+1) =

− βF (1)(h1 . . . hk+1) + β
k+1∑
i=1

ln[2 cosh(βhi)]

= ln

[
2 cosh

(
β
k+1∑
i=1

u(Ji, hi)

)]
+
k+1∑
i=1

ln
[

cosh(βJi)
cosh(βu(Ji, hi))

]
·

(33)

The free energy shift when adding the two new spins σ0, τ0
(see Fig. 2) is equal to:

∆F (2)(J1 . . . Jk,K1 . . .Kk, h1 . . . hk, g1 . . . gk) =

F (2)(h1 . . . hk, g1 . . . gk)−
k∑
i=1

ln[4 cosh(βhi) cosh(βgi)]

(34)

and is given by:

− β∆F (2)(J0, J1 . . . Jk,K1 . . .Kk, h1 . . . hk, g1 . . . gk) =
k∑
i=1

ln
[

cosh(βJi)
cosh(βu(Ji, hi))

cosh(βKi)
cosh(βu(Ki, gi))

]

+ ln

[∑
σ0,τ0

exp

(
βJ0σ0τ0 + βσ0

k∑
i=1

u(Ji, hi)

+βτ0
k∑
i=1

u(Ki, gi)

)]
· (35)

In the process of adding new sites or new bonds ran-
domly, one can thus compute the total free energy as
the average over the distribution of fields and couplings
of [(k + 1)/2] ∆F (2) − k∆F (1). It is a simple exercise to
check that this indeed gives back the free energy (18).

4 The RSB instability

The recursion relation of the local fields (5) has been
the subject of a lot of studies in the past twenty years
[13–18,25,31]. The distribution Q(h) is a simple δ func-
tion at the origin, indicating a paramagnetic phase, at

high temperatures β < βc, where the critical inverse tem-
perature βc is the solution of [17]:

EJ tanh2(βcJ) = 1/k . (36)

In the low temperature phase the specific heat becomes
negative at low enough temperatures at least for some
distributions of couplings [16], and the solution for Q(h)
becomes identical to the replica symmetric field distribu-
tion of the SK model in the large k limit [14,16,18], which
is known to be wrong. Another indication that the above
procedure gives a wrong result for the Bethe lattice (while
it might be correct for the Cayley tree with some sets of
boundary conditions [18,21]) is the fact that it fails to
identify a transition in a magnetic field H. This transition
exists though, on a line in the H-T plane similar to the
A-T line, and can be identified by considering the onset
of correlations between two replicas of the system [17].

One can investigate the instability of the previous so-
lution using the replica method. Writing the recursion re-
lations for the replicated system, Mottishaw has shown
that the replica symmetric solution, which coincides with
the simple Bethe-Peierls iteration described above, is un-
stable at β > βc (or, in a field, beyond the A-T line) [19].
Unfortunately, getting the replica symmetry broken so-
lution in the low temperature phase is difficult. In gen-
eral the problem involves an infinity of order parameters
which are multi-spin overlaps [9,19,20,23,24]. As we saw,
the replica symmetric solution already involves an order
parameter which is a whole function (the distribution of
local fields); going to a ‘one step RSB’ solution [3], the
replica order parameter becomes now a functional, the
probability distribution over the space of local field dis-
tributions [27] (the reason will be discussed in details in
the next section). While one can write formally some in-
tegral equations satisfied by this order parameter, solv-
ing them is in general a formidable task. The solution is
known only in the neighborhood of the critical tempera-
ture [20], or in the limit of large connectivities [23], where
the overlaps involving three spins or more are small and
can be treated perturbatively, allowing for some expan-
sion around the SK solution. In the general case, the only
tractable method so far has been an approximation which
parametrizes the functional by a small enough number of
parameters and optimizes the one step RSB free energy
inside this subspace [32,33]. We shall develop in the next
two sections a solution to this problem.

5 The formulation of the ‘one step RSB’
solution

5.1 The iterative approach

In this section we shall explain the physical nature of
the RSB instability and work out the equivalent of the
‘one step RSB solution’ using the cavity method [4,3], i.e.
the same type of iterative approach which was used in
Section 3.1.
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The reason for the failure of the simple iterative solu-
tion is that it neglects the possibility of the existence of
several pure states [3]. We shall proceed by first assum-
ing some properties of the states on one branch, and then
imposing the self-consistency of these hypotheses when
one joins k branches to a new site. Let us assume that
there exist many pure states, labelled by an index α going
from 1 to ∞, with the following properties: Looking at
one branch of the tree as in fig. 1, the total local field seen
by the site i = 0 at the extremity of this branch depends
on the state α and is denoted by hα0 ; the free energies of
the states on one branch, Fα, are independent identically
distributed (iid) random variables, with an exponential
density behaving as

ρ(F ) = exp(βx(F − FR)), (37)

where FR is a reference free energy. This assumption of
iid exponentially distributed free energies is one of the
basic ingredients of the one step rsb solutions to spin
glasses [3]. The differences between the free energies re-
main finite when the volume goes to infinity, which means
that the various states have non-zero statistical weights:

Wα =
exp(−βFα)∑
γ exp(−βF γ)

, (38)

The fact that the W can be normalized in this way is
possible only if x < 1.

Let us consider as before a point i on one branch of
the Bethe lattice, i.e. a point connected to k other points.
In each phase α of the system the magnetization mα

i will
be different and therefore the effective fields hαi depend
on α. The description of the properties of this point will
include the list of fields hαi and the free energies of the
branch Fα, for all states α. Here we shall assume a rela-
tively simple situation namely that the free energies and
the magnetic fields are not correlated, and the distribu-
tion of free energies is the one described above, leading
to the density (37). It is convenient (to avoid possible dif-
ficulties in dealing with measures in infinite dimensional
spaces) to order the states in an increasing order of free
energy, and to consider only the set of the first M states
with lowest free energies (in the end M will be sent to
infinity). Let us introduce the set of the local fields in
all the M states, h = {hαi }. When changing the sample
(or equivalently changing the site i), these fields fluctuate
and our task is to compute the corresponding probability
distribution Q(h), which is a function of the M effective
magnetic fields which is left invariant by the permutations
of these fields. This task is simplified if we assume that the
M fields hαi on one point can be characterized as indepen-
dent random variables. We thus assume that there exists
a probability function Qi(h) which can be written in a
factorized form:

Qi(h) =
M∏
α=1

Qi(hα). (39)

The total probability function Q(h) is thus given by

Q(h) = N−1
N∑
i=1

[ M∏
α=1

Qi(hα)

]
. (40)

In other words on any given point the fields are indepen-
dent variables, which become correlated on the global level
after we average over the samples. More generally one can
assume that the total probability function Q(h) is of the
form:

Q(h) =
∫

dλ m(λ)
M̧∏
α=1

q(hα|λ), (41)

where λ is an appropriate set, m(λ) is a probability dis-
tribution, and q(h|λ) is a probability distribution on h,
conditioned to a given value of λ. A possible representa-
tion of the distribution (41) is given by (40), where each
point i is characterized by a parameter λ (extracted with
the measure m(λ)).

We shall now check that this hypothesis is self con-
sistent, i.e. that it is reproduced when one iterates the
construction of the tree by merging k lines to a new spin
σ0 [35]. For each state α, the local field on this site hα0 is
expressed in terms of those on the branches, hαi by (5),
giving:

hα0 =
k∑
i=1

u(Ji, hαi ). (42)

The free energy shift ∆Fα for the state α during this
process is given by the function ∆Fiter defined in (32):

∆Fα = ∆Fiter(J1 . . . Jk, h
α
1 , . . . , h

α
k ). (43)

We must be careful at this stage because the free en-
ergy shifts and the local fields on the new spin σ0 are
correlated. More precisely, for a given state α, hα0 and
∆Fα are two correlated variables, but they are not corre-
lated with the local fields or free-energy shifts in the other
states. Because of our ordering process of the free ener-
gies, we need to compute and order the new free energies
Gα = Fα + ∆Fα. Gα and Gγ in two different states are
obviously independent random variables. Furthermore, a
standard argument of the cavity method [4,3], relying on
the exponential distribution of the free energies, allows to
show that the new free energy Gα is in fact uncorrelated
with the local field hα0 . To show this, let us introduce the
joint distribution P0(h0,∆F ) of hα0 and ∆Fα. The joint
distribution R0(h0, G) of the local field and the new free
energy is given by:

R0(h0, G) ∝
∫

dFd(∆F ) exp(βx(F − FR))P0(h0,∆F )

× δ(G− F −∆F ) ∝ exp(βx(G − FR))Q0(h0), (44)

where

Q0(h0) = C

∫
d(∆F ) P0(h0,∆F ) exp(−βx∆F ) (45)
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the constant C being fixed in such a way that Q0(h0) is a
normalized probability distribution.

In our ordering process of the new free energies Gα we
pick up theM lowest ones, sending in the endM to infin-
ity. This ordering process thus gives rise to a probability
distribution for the hα0 in which the fields for different α
are not correlated and have the distribution Q0(h0). The
reader should notice that this distribution is in general
different from the naive result

∫
d∆F0 P0(h,∆F0). In this

way we have constructed, for one given new spin σ0 with
a fixed environment of coupling constants, the new distri-
bution of all local fields:

∏
αQ0(hα0 ). By averaging over

the coupling constants, one thus generates the probability
distribution Q0(h) which is a functional of the probability
distribution Q(h) of the other k sites. Imposing that

Q0(h) = Q(h) (46)

gives a self-consistency equation for the probability dis-
tribution Q(h). We shall see in Section 6 how one can
actually find a solution to this self-consistency equation
with a good accuracy.

Let us suppose for the time being that we know the
self-consistent distribution Q(h) and let us evaluate the
free energy and the internal energy. The computation is
quite similar to the one in the replica symmetric case.
There are two contributions to the free energy: the site
contribution and the bond contribution.

The local site contribution to the free energy is evalu-
ated as a weighted average of the free energy shift when
adding one new spin:

F (1) = − 1
β
EJ

〈
ln

( M∑
α=1

Wα exp[−β∆F (1)
α ]

)〉
, (47)

where ∆F (1)
α = ∆F (1)(J1 . . . Jk+1, h

α
1 . . . h

α
k+1) is the site

free-energy-shift in state α computed from (33), and the
bracket denotes an average over the distribution of weights
Wα derived from (37, 38), and over the fields (with dis-
tribution

∏k+1
i=1 Q(hi)).

The local bond contribution to the free energy is eval-
uated as a weighted average of the free energy shift when
adding a new bond and the corresponding two spins:

F (2) = − 1
β
EJEK

〈
ln

( M∑
α=1

Wα exp[−β∆F (2)
α ]

)〉
,

(48)

where

∆F (2)
α = ∆F (2)(J1 . . . Jk,K1 . . .Kk,

hα1 . . . h
α
k , g

α
1 . . . g

α
k )

is the bond free-energy-shift in state α computed from
(35), and the bracket denotes an average over the weights,
and over the fields (with distribution

∏k
i=1 [Q(hi)Q(gi)]).

The total free energy is given, according to (13–15), by:

F =
k + 1

2
F (2) − kF (1). (49)

Similarly to what happened in the RS case (23), one can
also write here a simplified form of the free energy, valid
only on the saddle point:

F =
k + 1

2
F (1′) − k − 1

2
F (1) (50)

where

F (1′) =

− 1
β
EJ

〈
ln

( M∑
α=1

Wαexp[−β∆F (1)(J1 . . . Jk, h
α
1 . . . h

α
k )]

)〉
·

(51)

For reasons which are beyond our control this second form
of the free energy has empirically smaller errors (about by
a factor 3) and less systematic errors (at finite M) than
the first one.

The computation of the internal energy is done by con-
sidering what happens when we couple two sites which
where previously connected each to k branches of the tree.
We obtain, with the same notations as in formula (18) and
in Figure 2:

U = −
〈 M∑
α=1

W̃α
2 J0

tanh(βJ0) + tanh(βhα0 ) tanh(βgα0 )
1 + tanh(βJ0) tanh(βhα0 ) tanh(βgα0 )

〉
(52)

where hα0 =
∑k
i=1 u(Ji, hαi ), gα0 =

∑k
i=1 u(Ki, g

α
i ) and we

have introduced the shorthand notation:

W̃α
2 ≡

Wα exp[−β∆F (2)
α ]∑M

γ=1W
γ exp[−β∆F (2)

γ ]
· (53)

The various overlaps can be obtained in the same way.
There are now two site overlaps, the self-overlap q1 and
the inter-state-overlap q0, which are given by:

q1 = EJ

〈 M∑
α=1

W̃α
1 tanh2[β

k+1∑
i=1

u(Ji, hαi )]

〉
q0 =

EJ

〈∑
α6=β

W̃α
1 W̃

β
1 tanh[β

k+1∑
i=1

u(Ji, hαi )] tanh[β
k+1∑
i=1

u(Ji, h
β
i )]

〉
(54)

where we have kept the same notations as in (47) but we
have introduced W̃α

1 which is a notation for:

W̃α
1 ≡

exp[−βFα − β∆F (1)(J1 . . . Jk+1, h
α
1 . . . h

α
k+1)]∑

γ exp[−βF γ − β∆F (1)(J1 . . . Jk+1, h
γ
1 . . . h

γ
k+1)]

·

(55)

Similarly, we have two link overlaps q(l)
1 and q(l)

0 which are
given by:

q
(l)
1 =EJ

〈 M∑
α=1

W̃α
2

(
tanh(βJ0) + tanh(βhα0 ) tanh(βgα0 )

1 + tanh(βJ0) tanh(βhα0 ) tanh(βgα0 )

)2〉
(56)
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and

q
(l)
0 =

EJ

〈∑
α6=β

W̃α
2 W̃

β
2

(
tanh(βJ0) + tanh(βhα0 ) tanh(βgα0 )

1 + tanh(βJ0) tanh(βhα0 ) tanh(βgα0 )

)

×
(

tanh(βJ0) + tanh(βhβ0 ) tanh(βgβ0 )

1 + tanh(βJ0) tanh(βhβ0 ) tanh(βgβ0 )

)〉
(57)

where we keep the same notations as in (52, 53).
At this stage we have written the hole formalism of

the cavity method at the level of one step RSB. The
self-consistency equation (46) fixes the distribution Q(h),
from which one can deduce the free energy and inter-
nal energy through (49) and (52). One can actually find
a self-consistent solution for any value of the parameter
x ∈ [0, 1], and the free energy depends on x through the
distribution of free energies. It is well known that, in or-
der to describe the thermal equilibrium, one must fix x
by maximising the free energy with respect to x [3,36,38].
(Actually the whole dependence on x carries some infor-
mation [36–38], particularly interesting for optimization
problems, which we shall not try to study here since this
paper is restricted to the study of equilibrium thermody-
namics.) As we shall see, the variation of free energy with
respect to x is small and one needs a better computation
of the derivative than just a naive difference.

We have improved the precision on the computation of
the free energy and its x derivative by using the theorem
of Appendix A, which allows to compute explicitly the
derivative of the free energy with respect to x. From the
structure of equation (49) one finds that the total deriva-
tive d(x) = dF/dx takes the form:

d(x) = − 1
x
F − kd(1) +

k + 1
2

d(2), (58)

where

d(1) =
1
x
EJ

〈∑M
α=1 exp[−β∆F (1)

α ]∆F (1)
α∑M

α=1 exp[−β∆F (1)
α ]

〉
, (59)

using the notations of (47), and

d(2) =
1
x
EJEK

〈∑M
α=1 exp[−β∆F (2)

α ]∆F (2)
α∑M

α=1 exp[−β∆F (2)
α ]

〉
, (60)

using the notations of (48).

5.2 A variational formulation

As in the case where no replica symmetry breaking is
present we can write a free energy functional of the field
distribution Q(h) such that the self-consistency equations
for Q are equivalent to the stationarity condition of this
functional.

This free energy functional is a simple generalisation
of the replica symmetric one, given by:

F [Q]
N

=

k + 1
2

∫ k∏
i=1

[dhidgiQ(hi)Q(gi)] F (2)(h1 . . .hk,g1 . . .gk)

− k
∫ k+1∏

i=1

[dhiQ(hi)] F (1)(h1 . . .hk+1) (61)

where

−βF (1)(h1 . . .hk+1) = EJ

〈
ln

(∑
α

Wα

[
k+1∏
i=1

1
2 cosh(βhαi )

]

×
∑

σ0,σ1,...σk+1

exp

[
βσ0

k+1∑
i=1

Jiσi + β
k+1∑
i=1

hαi σi

]〉 , (62)

− βF (2)(h1 . . .hk,g1 . . .gk) = EJEK

〈
ln

(∑
α

Wα

×
[
k∏
i=1

1
4 cosh(βhαi ) cosh(βgαi )

] ∑
σ0,σ1,...σk

∑
τ0,τ1,...τk

× exp

[
βJ0σ0τ0 + βσ0

∑
i

Jiσi

+β
∑
i

hαi σi + βτ0
∑
i

Kiτi + β
∑
i

gαi τi

])〉
. (63)

The weights Wα are given by (38), and the brackets stand
for an average over the distribution of free energies (37).

The proof of the equivalence of the stationarity equa-
tion of this functional with the self-consistency condition
of the iterative procedure can be done exactly as in the
replica symmetric case. The advantage of this variational
formulation is that we can compute directly the various
derivatives of the free energy (e.g. with respect to x and
with respect to β) by taking into account only the explicit
dependence.

5.3 Equivalence with the replica formalism

We can compare what we have obtained in the previous
sections with the results from the replica formalism. In
the one step RSB formalism the n replicas are divided
into n/x groups (labeled by C) of x replicas each, and the
function ρ(σ) depends on the n/x ‘block’ variables

ΣC =
∑
a∈C

σa, (64)

each sum containing x terms.
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In this case we face the problem that ρ(σ) may depend
on the n/x variablesΣC in a rather complex way. Similarly
to what we have done in the iterative approach, we shall
not try to describe the most general dependence, but we
restrict to the class of probability distributions ρ(σ) which
can be written as:

ρ(σ) =
∫

dλµ(λ)
∫ n/x∏
C=1

[duCφ(uC|λ)] exp

β n/x∑
C=1

uCΣC

 .

(65)

with a positive probability distribution µ(λ) [32] and a
positive function φ(u|λ). The normalisation condition on
ρ(σ) is implemented by imposing that:

∀λ :
∫

duφ(u|λ)(2 cosh(βu))x = 1, (66)

so that the function

Φ(u|λ) = φ(u|λ)(2 cosh(βu))x (67)

is a probability distribution on the u variable, for any value
of λ.

It is easy to check that this form for the function is
consistent with the stationarity equations for the free en-
ergy (26) by proving that, if ρ(σ) has the form (65), so
does

EJTrτ

(
ρ(τ)k exp[

n∑
a=1

βJσaτa]

)
. (68)

Using the Ansatz (65) for ρ, one can write the ‘site’ term
in the replica free energy (25) as:

Trσ
(
ρ(σ)k+1

)
=
∫ [k+1∏

i=1

dλiµ(λi)

]
A (λ1, . . . , λk+1)n/x ,

(69)

where:

A (λ1, . . . , λk+1) =∫ k+1∏
i=1

[duiΦ(ui|λi)]
[

2 cosh(β
∑k+1
i=1 ui)∏

i [2 coshβui]

]x
. (70)

Using the small theorem proven in Appendix A, the pre-
vious expression can be written as

lnA (λ1, . . . , λk+1) = x

∫ k+1∏
i=1

∏
α

[duαi Φ(uαi |λi)]

×
〈[

ln

(∑
α

Wα
2 cosh(β

∑k+1
i=1 u

α
i )∏

i [2 coshβuαi ]

)]〉
, (71)

where the bracket means an average over the distri-
bution of the weights Wα with the usual distribution

parametrized by the parameter x (see Appendix A). One
gets in the end:

ln Trσ
(
ρ(σ)k+1

)
= n

∫ k+1∏
i=1

[dλiµ(λi)]

×
∫ k+1∏

i=1

∏
α

[duαi Φ(uαi |λi)]
〈
ln

(∑
α

Wα
2 cosh(β

∑k+1
i=1 u

α
i )∏

i [2 coshβuαi ]

)〉
.

(72)

The previous quantity is exactly the expression of the
‘site contribution’ to the variational free energy found
in (62), provided we identify the probability distributions
defined in the iterative approach (41) and in the replica
approach (65):

µ(λ) = m(λ); Φ(u|λ) = EJ

∫
dh q(h|λ)δ(u− u(J, h)).

(73)

A similar computation shows that the ‘bond’ term in the
free energy, calculated either through the iterative proce-
dure or through the replica method also coincide.

We have thus derived the variational equations for the
probability distribution of local fields in the one step RSB
case using two different methods, the cavity iterative ap-
proach on the one hand, and the algebraic replica formal-
ism on the other hand.

6 Solving the one step RSB equations

Our method consists in following the population of lo-
cal fields hαi when one iterates the merging process of k
branches onto one site. In some sense it thus amounts to
solving the complicated equation for the functional or-
der parameter by a method of population dynamics. In
other words we parametrize the probability distribution
by presenting a large number of instances of variables dis-
tributed according to this probability distribution. A sim-
ilar method has been first used in the context of mean
field equations in [39].

To explain it in more details, let us first state how
the procedure works in the case of the ‘replica symmetric’
approximation of Section 3. There, one just chooses a pop-
ulation of N local fields hi. At each iteration, one picks up
k such fields at random among the N , and computes the
new field h0 according to (5). Then one field is removed
at random from the population and is substituted by h0.

In this way one defines a Markov chain on the space
of the N magnetic fields. This chain has a stationary dis-
tribution which is reached after some transient time. In
the N → ∞ limit, the stationary distribution satisfies
the self-consistency equation (6). It is possible to argue
that the corrections to this limit are proportional to N−1

and could also be computed analytically. Our procedure
consists in fixing the value of N , iterating the merging
transformation many times in such a way as to obtain the
average over the asymptotic distribution at fixed N with
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a high precision, and finally extrapolating the results to
N →∞.

If we consider the case where there exist many states,
we have the same problem as before, with the only differ-
ence that at each point we have a probability distribution
Qi(h). We must therefore consider a population dynam-
ics in which the elements of the population are probabil-
ity distributions. We use the population method to rep-
resent the probability distribution in each point i by a
populations of fields. In this way we have a population
of N populations of M fields (a total of NM fields hαi ,
i ∈ {1, ...,N}, α ∈ {1, ...,M}), where both N and M
have to go to infinity.

The basic step of the algorithm is the merging of k
lines. One chooses k sites i1, ..., ik in {1, ...,N}, and one
generates, for each of the M states, a new local field hα0
obtained by merging k branches, using (5), as well as
the corresponding free-energy shift ∆Fα calculated us-
ing (32). But the field hα0 is not the one which will enter
the population of fields. The reason is that one needs to
reweigh the various states by a factor which depends on
their free energy shifts: as seen in (45), the field distribu-
tion, at a fixed new free energy, is modified by a factor
exp(−βx∆F ). From the knowledge of the hα0 one can in-
fer an approximate form of the distribution P0(h0) from
which they are extracted. For instance a simple form for
P0 is a smoothly interpolated version of the identity∫ h

−∞
P0(h0)dh0 =

1
M
∑
α

θ(h0 − hα0 ) (74)

where θ(x) is Heaviside’s function (in practice we smooth
this staircase function by a linear interpolation proce-
dure). According to (45), the real field distribution Q0(h)
is well approximated by a smoothly interpolated version
of the identity∫ h

−∞
Q0(h)dh =

1
M
∑
α

exp(−βx∆Fα)θ(h− hα0 ). (75)

We can use two different methods in order to achieve the
reweighing, which will lead to two different algorithms.

• Method A: The idea is to generate, from the set ofM
fields hαil , on each of the sites i1, ..., ik which is used
in the merging, a larger population, of rM local fields
hα
′

il
, α′ = 1, ..., rM, taken from the same distribution.

This will be realised by having

1
M

M∑
α=1

θ(h− hαil) '
1
rM

rM∑
α′=1

θ(h− hα′il ), (76)

at the level of linearly interpolated functions. Simul-
taneously one generates rM independent random free
energies Fα

′
, α′ = 1, ..., rM, with the exponential den-

sity (37). For each of the rM states, one then compute
the local field hα

′
0 and the free energy shift ∆Fα

′
. The

correct reweighing is obtained by the selection of low
lying states: one computes the new rM free energies

Fα
′
+∆Fα

′
, orders them, and keeps only theM states

with the lowest new free energies. Their local fields,
called hα, with α ∈ {1, · · · ,M}, have the correctly
reweighed distribution provided that r is large enough
so that there is a zero probability for the states α′ with
the highest free energy Fα

′
to enter the list of the M

selected states after reweighing.
• Method B: The idea is to generate directly the fields

with the reweighed distribution (75). Knowing the
M local fields hα0 and their free-energy shifts ∆Fα,
we generate M new local fields hα in such a way
that the following identity holds at the level of linear
interpolation:

1∑
α exp(−βx∆Fα)

∑
α

exp(−βx∆Fα)θ(h − hα0 ) '

1
M
∑
α

θ(h− hα). (77)

Having generated the new fields hα which are typical of
the properly reweighed distribution, we then substitute in
the population the set of M local fields hαi , α = 1, ..,M
by the set of new fields hα. The site index i on which this
substitution is performed is chosen sequentially.

While the merging of k lines is enough to build up
the Markov chain which generates the population of local
fields, one also needs to consider some different merging
processes in order to compute the various observables, free
energy, energy, local overlap and link overlap.

By merging k + 1 lines instead of k, one generates
with exactly the same procedure as above the three sets
of M local fields hα0 , free-energy shifts ∆Fα and new
fields hα (we call new fields the fields which are typical of
the reweighed distribution, obtained either through pro-
cedure A or B). Using the little theorem of Appendix A,
the site contribution (47) to the free energy is computed as

F (1) = − 1
βx

ln

[
1
M
∑
α

exp(−βx∆Fα)

]
, (78)

and the site overlaps receive a contribution

q1 =
1
M
∑
α

tanh2(βhα);

q0 =
1

M(M− 1)

∑
α6=γ

tanh(βhα) tanh(βhγ). (79)

The x-derivative of the free energy (59) receives a site
contribution equal to:

d(1) =
1
x

∑
α exp(−βx∆Fα)∆Fα∑

α exp(−βx∆Fα)
· (80)

These contributions are then averaged over many
iterations.

One can also add a new link to the system. This is
done by merging k lines on the left side of the new link,
generating the local fields hα0 , and similarly merging k lines
on the right side of the new link, generating the local fields
gα0 hα0 . The corresponding free energy shift ∆Fα is now
computed using (35). The bond contribution (48) to the
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free energy is computed by the same expression as (78),
but using this free energy shift ∆Fα corresponding to a
bond-addition.

The x-derivative of the free energy receives a bond
contribution (60) equal to:

d(2) =
1
x

∑
α exp(−βx∆Fα)∆Fα∑

α exp(−βx∆Fα)
· (81)

In order to compute the internal energy and the link
overlaps, it is useful to introduce the local fields vα0
defined by

vα0 =
1
β

atanh
tanh(βJ0) + tanh(βhα0 ) tanh(βgα0 )

1 + tanh(βJ0) tanh(βhα0 ) tanh(βgα0 )
· (82)

From this population one generates a population of new
fields vα which takes into account the appropriate weights
of the fields with one of the two procedures A or B,
similarly to what was done in (76) or in (77) for going
from the fields hα0 to hα. From (52, 56, 57), the contribu-
tions to the internal energy and link overlaps are given by:

U = −J0

∑
α

tanh(βvα), (83)

q
(l)
1 =

1
M
∑
α

tanh2(βvα),

q
(l)
0 =

1
M(M− 1)

∑
α6=γ

tanh(βvα) tanh(βvγ). (84)

In order to compute the free energy with the simplified for-
mula (50), one also needs the contribution F (1′) to the free
energy, which is obtained by the same expression as (78),
but using the free energy shift ∆Fα obtained by merging
k lines.

Let us therefore summarize the main lines of our pop-
ulation dynamics algorithms for solving the Bethe lattice
spin-glass problem at the level of one-step RSB. We have
used two algorithms, A and B, which differ in the reweigh-
ing procedure used, but have otherwise the same skeleton:

1. Start from the population of N ×M local fields hαi .
2. Merge k + 1 lines and compute the site observables:

a) Choose at random k + 1 sites i1, ..., ik+1 in
{1, ...,N}.

b) For each of these k + 1 sites, say on site j ∈
{i1, ..., ik+1}, one has a population ofM local fields hαj ,
α = 1, ...,M. For each of the M states, compute the
new local field Hα

0 obtained by merging k+1 branches,
using (8). Compute the corresponding free energy shift
∆Fα using (33).

c) Knowing the sets of fields Hα
0 and free energy

shift ∆Fα, generate a new set of fields Hα according
to (76) in algorithm A (resp. (77) if one uses algo-
rithm B).

d) Compute the site contribution to the free en-
ergy using (78), its x-derivative using (80) and the con-
tribution to the site overlaps (79).

3. Merge 2k lines onto a new bond and compute the bond
overlaps:

a) Choose at random 2k sites i1, ..., ik, j1, ..., jk in
{1, ...,N}.

b) From the sites i1, ..., ik, compute the M lo-
cal fields hα0 obtained by merging the k branches, us-
ing (5). From the sites j1, ..., jk, compute the M local
fields gα0 obtained by merging the k branches, using (5).
Deduce the M local fields vα0 using (82).

c) Compute the free energy shifts ∆Fα using (35).
d) Knowing the sets of fields vα0 and free energy

shifts ∆Fα, generate a new set of fields vα according
to (76) in algorithm A (resp. (77) if one uses algo-
rithm B).

e) Compute the bond contribution to the free en-
ergy using (78), its x-derivative using (81) and the
contribution to the internal energy (83) and link over-
laps (84).

4. Merge k lines and update the population of fields:
a) Choose at random k sites i1, ..., ik in {1, ...,N}.
b) For each of these k sites, say on site j ∈

{i1, ..., ik}, one has a population of M local fields hαj ,
α = 1, ...,M. For each of the M states, compute the
new local field hα0 obtained by merging k branches, us-
ing (5). Compute the corresponding free energy shift
∆Fα using (32).

c) Knowing the sets of fields hα0 and free energy
shift ∆Fα, generate a new set of fields hα according
to (76) in algorithm A (resp. (77) if one uses algo-
rithm B).

d) Compute the contribution F (1′) to the simple
form (50) of the free energy using (78).

e) Pick up the site i ∈ {1, ...,N} sequentially, and
substitute the local fields h1

i , ...., h
M
i by the new local

fields hα.
5. Start again the iteration from 2.

Obviously one needs not really perform the above three
merging procedures sequentially. In our actual algorithm,
we select 2k+ 2 random points, merge two groups of k+ 1
to compute site observable, two groups of k to compute
bond observables and to update two new sets ofM fields.

A word about the difference between the two algo-
rithms. In algorithm A, the value of r must be chosen
large enough so that the probability of a state with the
highest old free energy Fα

′
to enter the set of selectedM

states be negligible. Both M and r must go to infinity
and in the numerical computations we have taken r =M.
Algorithm B is faster than algorithm (A) by a factor that
is asymptotically proportional to r for large r. In algo-
rithm B there is no need of introducing rM fields at an
intermediate stage: it corresponds to the discretization of
equation (45) and we care take of the effects of the reshuf-
fling by explicitly reweighing the fields. Unfortunately, as
we shall see in the next section, the finite M corrections
are empirically larger in algorithm B that in algorithm A.
In our case algorithm B turned out to be faster by a fac-
tor about 10, but we mentioned both algorithms because
algorithm A is somewhat simpler conceptually (and closer
to the original discussion of the cavity method), and also
because in different situations (e.g. depending on the value
of x) the relative advantages may be reversed.
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7 Numerical results

Here we present the numerical results for one case in order
to study the dependence of the algorithm on the various
parameters involved in the numerical computation.

We consider the Ising spin glasses with binary cou-
plings (J = ±1) on a random lattice of fixed coordination
6 (k = 5). High precisions measurements [29] of the inter-
nal energy are available at temperatures greater or equal
to 0.8 for different values of the number of spins N (up to
N = 4096). The data of the energy at T = 0.8 versus size
can be very well fitted by a power law correction:

U(N) = U +AN−ω (85)

with a quite reasonable value of ω ∼ 0.767 ± 0.008 and
A ∼ 2.59±0.02. The value of the internal energy at infinite
size is estimated to be

U = −1.799± 0.001. (86)

We have done a replica symmetric computation for dif-
ferent values of the population size N . For large N there
are corrections proportional to 1/N (as expected) and for
N > 103 the 1/N corrections are negligible within our
accuracy. With I = 100, S = 1000, N = 4000, iterating
1000 × N times (and dropping the first 100 × N results
for allowing transients to decay), we obtain the following
replica symmetric results for the free energy, internal en-
ergy, entropy, site and link Edwards-Anderson parameters:

F = −1.863± 0.002, U = −1.8160± 0.001
S = 0.058± 0.004, q = 0.6863± 0.0002

qlink = 0.6385± 0.0003. (87)

Notice that the value of the internal energy totally dis-
agrees with the one found in the simulations (86).

We have done a computation at the one step RSB level
using the two algorithms described in the previous section,
always at temperature T = 0.8.

The crucial point is to find the value of the parameter x
such that the derivative of the free energy with respect to
x vanishes. In Figure 3 we show our results for the deriva-
tive d(x) at x = 0.21, plotted versus different values ofM.
We have used both algorithms A and B. With algorithm B
we have usedM = 2l, l = 3 . . . 12 and we plot the results
obtained for l ≤ 10 for a clearer figure. With algorithm
A we have used r = M ≤ 400. Unfortunately the finite
M corrections are empirically much larger in the a-priori-
faster algorithm B. Moreover, in this case although the
finite M corrections seem to be asymptotically propor-
tional to 1/M, high order corrections cannot be neglected
unless M is very large. In the end both algorithms give
compatible asymptotic results at largeM as seen on Fig-
ure 3, with similar computer efforts (for this temperature
and the values of x which are relevant).

In Figure 4 we plot the extrapolated result atM =∞
for the free energy derivative d(x), obtained using algo-
rithm B. The data has been extrapolated with a second
order polynomial ofM−1 in the intervalM = [256–4096].
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Fig. 3. The x-derivative of the free energy, d(x), evaluated at
x = 0.21, is plotted as function of M−1 for the algorithm A
(upper curve) and the algorithm B (lower curve).
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Fig. 4. The x-derivative of the free energy, d(x), computed
using the algorithm (B) and extrapolated at large values of
M, plotted versus x.

Replica symmetry breaking is clearly present. The
value of x where the free energy is maximum, which can
be obtained by estimating the zero of the function d(x),
is given by x∗ = 0.24± 0.02. We use a similar procedure
for all other observables: we extrapolate the x dependent
results at M =∞ and evaluate the errors due to the im-
precise location of x∗ (which is by far the largest source of
error). This gives the following values of the free energy,
internal energy, entropy, site and link overlaps:

F = −1.858± 0.002, U = −1.799± 0.001
S = 0.074± 0.004, q1 = 0.779± 0.006, q0 = 0.30± 0.02

(88)

q
(l)
1 = 0.706± 0.007, q(l)

0 = 0.408± 0.01 (89)
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Fig. 5. The probability distribution of the field H0 at x = 1
before (dashed black curve) and after the reweighing (full red
curve).

The energy is in very good agreement with the results
from simulations. In order to compare the values of the
overlaps, one can study the quantity 〈q2〉 =

∫
dqP (q)q2.

In our RSB theory we find 〈q2〉 = (1 − x∗)q2
1 + x∗q2

0 =
0.485± 0.015 which agrees well with the numerical value
〈q2〉 = 0.49± 0.02. In order to perform a finer comparison
it is useful to consider a quantity which is sensitive to
replica symmetry breaking. A natural choice is

R =
∫

dqP (q)q4 −
(∫

dqP (q)q2

)2

. (90)

We find in our RSB theory R = 0.046 ± 0.002 which is
again in good agreement with the result of the simula-
tions extrapolated at infinite volume: R = 0.051± 0.002.
The agreement is remarkable if we recall that in the replica
symmetric case R = 0. The possible small difference be-
tween our value and the simulation data is likely due to the
the approximation of one step replica symmetry breaking
(it is quite likely that replica symmetry should be broken
in a continuous way, as happens in the limit of infinite
coordination number). One should notice that the order
parameter q0 is non zero, which explains why some previ-
ous attempts at solving the one step RSB problem within
a restricted subspace with q0 = 0 did not improve much
on the RS solution [32] (the necessity of having a non
vanishing q0 was already noticed in [26]).

Finally let us point out the crucial effect of the reweigh-
ing of the states which modifies the local fields as in (45).
In Figure 5 we plot the probability distribution of the field
H0 before and after the reweighing, at x = 1.

8 Conclusion

We have presented a general solution of finite connectiv-
ity spin glass problems at the level of one step RSB. This
solution uses the cavity method, together with a kind of
population dynamic algorithm to solve the complicated
functional equations. As exemplified by a detailed numer-
ical study of the spin glass on a random lattice with fixed
connectivity, this method allows to obtain good agree-
ment with numerical simulations. It should be rather eas-
ily extendable to many other disordered systems with a
finite connectivity, including the fluctuating valence spin
glass and various optimization problems such as the K-
satisfiability problem.

The possibility to go to higher order of RSB should
be explored. In principle the method we have presented
can be extended to higher order. At second order one
will need a population of Ms states within a given clus-
ter, and a population of Mc clusters of states. Therefore
the algorithm must follow a total population of NMcMs

states. The problem will be to see if the resulting algorithm
reaches accurate results within the numerically accessible
values of N , Mc, Ms.

Some variants of the method should also be explored.
In particular we have not exploited the variational formu-
lation in the computation of the probability Q(h). One
could also study in details the shape of the probability
distributions of local fields in order to understand how
they could parametrized in a simple but efficient way so
that the free energy to be minimized does not involve a
too large number of parameters.

We thank Giulio Biroli, Cristiana Carrus, Enzo Marinari, Rémi
Monasson, Riccardo Zecchina and Francesco Zuliani for use-
ful discussions and comments. This research has been sup-
ported in part by the European Science Foundation through
the SPHINX programme.

Appendix A: Weighted sums of uncorrelated
variables

In this appendix we want to prove a useful little theorem,
which applies to the computation of F (1) given in (47) and
F (2) in (48).

Theorem:

Consider a set of M(� 1) iid random free energies fα,
(α ∈ {1 . . .M}) distributed with the exponential density
equation (37), and a set ofM positive numbers aα. Then,
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neglecting terms which go to zero when M goes to infinity,
the following relation holds:〈

ln
(∑

α aα exp(−βfα)∑
α exp(−βfα)

)〉
f

≡
〈

ln

(∑
α

wαaα

)〉
f

=
1
x

ln

(
1
M

∑
α

axα

)
(91)

where 〈.〉f denotes an average over the distribution of f .

Corollary 1:

In the same conditions as the theorem, for any set of M
real numbers bα, one has:〈∑

α aαbα exp(−βfα)∑
α aα exp(−βfα)

〉
f

=
∑
α a

x
αbα∑

α a
x
α

· (92)

Corollary 2:

In the same conditions as the theorem, for any set of M
real numbers bα, one has:〈∑

α aαb
2
α exp(−βfα)∑

α aα exp(−βfα)

〉
f

−
〈(∑

α aαbα exp(−βfα)∑
α aα exp(−βfα)

)2
〉
f

=

x

[∑
α a

x
αb

2
α∑

α a
x
α

−
(∑

α a
x
αbα∑

α a
x
α

)2
]
· (93)

Corollary 3:

If the numbers aα are M iid positive random variables,
such that the average of ax exists, which are uncorrelated
with the fα, then one has:〈

ln
(∑

α aα exp(−βfα)∑
α exp(−βfα)

)〉
f

≡
〈

ln

(∑
α

wαaα

)〉
f

=
1
x

ln (〈axα〉a) (94)

where 〈.〉a denotes an average over the distribution of a.

Proof:

we follow some of the techniques exposed in [3]. We start
from the identity

ln

(∑
α

exp(−βfα)aα

)
=

∫ ∞
0

dt
t

[
exp(−t)− exp

(
−t
∑
α

exp(−βfα)aα

)]
. (95)

We choose to work with a regularised distribution of the
M iid random variables fα:

P (fα) = βx exp(βx(fα − fc)) θ(fc − f), (96)

where in the end we shall send M → ∞, fc → ∞, with
r = M exp(−βfc) fixed (the value of r is irrelevant). In
this limit one has:

〈exp (−t exp(−βfα)aα)〉f '
1− (taα)x exp(−βxfc)Γ (1− x), (97)

from which one deduces:〈
ln

(∑
α

exp(−βfα)aα)

)〉
f

=

∫ ∞
0

dt
t

[
exp(−t)− exp(−Γ (1− x)tx exp(−βxfc)

∑
α

axα

]

=
1
x

ln

(
Γ (1− x)txM exp(−βxfc)

∑
α

axα

)
+

1− x
x

C,

(98)

where C is Euler’s constant. The quantity we need to com-
pute involves subtracting the same expression with aα sub-
stituted by one, which gives the desired result:〈

ln

(∑
α

exp(−βfα)aα

)
− ln

(∑
α

exp(−βfα)

)〉
f

=

1
x

ln

(
1
M

∑
α

axα

)
· (99)

The proof of Corollary 1 is easily obtained by applying the
theorem to the set of numbers aα exp(λbα), and taking the
derivative with respect to λ at λ = 0. Similar generalised
formulas can be obtained by taking higher order deriva-
tives. The second derivative gives Corollary 2. Corollary 3
is trivial.

Remark:

We notice that in the two limits x → 0 and x → 1 the
equations can be simply understood:

• In the limit x = 0, in a typical realization of the ran-
dom free energies, only one weight w is equal to one
and all the others are zero. Averaging over the realiza-
tions of free energies amounts to spanning uniformly
the set of indices of this special non zero weight.
• In the limit x = 1 the number of relevant w goes to

infinity and each individual contribution goes to zero.
An infinite number of term is present in the l.h.s. of
equation (91) and the r.h.s. of the equation (91) be-
comes ln [(1/M)

∑
α aα], as it should.
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