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Abstract. This work shows that the BFGS method and other methods in the Broyden class, with exact line
searches, may fail for non-convex objective functions.

1. Introduction

Quasi Newton methods revolutionized nonlinear optimization in the 1960’s because
they avoid costly computations of Hessian matrices and perform well in practice. Sev-
eral kinds of them have been proposed, but since the 1970’s the BFGS method became
more and more popular and today it is accepted as the best Quasi Newton method.
Along the years, many attempts have been made to find better methods and most of
the candidates for “best variable metric method” are members of the so called Broyden
class.

The success of the BFGS method and the possibility of success of the other members
of the Broyden class have made them the subject of intense scrutiny by theoreticians and
practical users of nonlinear optimization. In particular, there are many research works
about the convergence of such methods. The references on this subject go as far back
as the 1960’s [3] and, except for a few minor points, the theory of convergence for
convex objective functions is complete. However, a challenging and intriguing question
remained open along these forty years: do the BFGS method and the other members of
the Broyden class always converge for non-convex objective functions? If not, which
members of the family always work and which may fail sometimes? Is there a clever line
search strategy which would guarantee convergence? This problem has resisted several
attacks. Some, like [5], almost solved it by proposing small changes to the methods. In
[7] M.J.D. Powell presented an example with two variables in which the method fails
for a particular line search and in [8] he proved convergence when there are only two
variables and the line searches find the first local minimizer. Finally, in [1], Yu-Hong
Dai showed that the BFGS method may fail for non-convex functions with line searches
that satisfy the Wolfe conditions.

This work answers this question when at each step we pick a global minimizer along
the search line. We present a geometric mechanism that makes the BFGS method fail
in this circumstance. We emphasize that this specific line search strategy is natural and,
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according to [2], our example leads to the failure of all members of the Broyden family
for which a step length of

√
2 does not create degenerate matrices Bk . We have found

similar examples for other line searches, like the one that picks the first minimizer along
the search line, but they are rather technical and the example presented here strikes the
best balance to deliver our message: the BFGS method may fail for non-convex objective
functions when the line searches find a global minimizer along the search line.

We want to show that convexity is important and use strong conditions regarding
other factors that affect convergence. In this spirit, the iterates not only are found by
exact line searches, but also satisfy an Armijo condition. More precisely, we present an
objective function f and iterates xk that satisfy the Armijo condition

f (xk+1)−f (xk) = (
√

2 − 1)2

5
(xk+1−xk)T∇f (xk) ≈ 0.034(xk+1−xk)T∇f (xk) (1)

and for which xk+1 is the global minimizer of f in the straight line xk → xk+1, i.e.

t �= 0 ⇒ f (xk+1) < f (xk+1 + t (xk − xk+1)). (2)

The example is remarkably simple and is sketched in Figure 1:
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Fig. 1. The example from two perspectives

The iterates xk are three dimensional vectors. At each iteration the horizontal component
rotates counterclockwise by π/4 around the vertical axis, staying forever at the vertices
of a regular octagon. The vertical component converges linearly to 0 at a rate of 1/

√
2,

flipping sign at each step. BothBk and its inverse grow without bound. Finally, and more
importantly, the gradients oscillate around ± (0, 0, 1)T . As a result, the iterates never
get close to a local minimizer and the method fails.
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We present now formal definitions of the iterates in terms of vectors and matrices,
state several results about them and leave the proofs of these results for latter sections.
The iterates are

xk = (XQ)k (x∞ + ez) , (3)

where x∞ is the vertex of the regular octagon in the figure above, ez is the vertical unit
vector and the scaling matrix X is responsible for the decay of the z coordinate of xk:

x∞ = 1

2




3 + 2
√

2
1 + √

2
0


 , ez =




0
0
1


 , X =




1 0 0
0 1 0
0 0 2−1/2


 . (4)

The orthogonal matrix

Q =



2−1/2 −2−1/2 0
2−1/2 2−1/2 0

0 0 −1


 (5)

rotates x∞ by π/4 in the counterclockwise direction and flips the sign of ez.
The gradients are

gk = (GQ)kg0, (6)

for

G =



2−1/2 0 0
0 2−1/2 0
0 0 1


 , g0 =




3
−1
1


 . (7)

The Hessian approximations are

Bk = −
√

2

sTk gk
gkg

T
k −

√
2

sTk+1gk+1
gk+1g

T
k+1 −

√
2

sTk+2gk+2
gk+2g

T
k+2, (8)

for sk = xk+1 − xk . In particular, B0 is the positive definite matrix

B0 =
√

2

5




11 −7 12
−7 9 6
12 6 4


− 1

5




3 −11 16
−11 7 8
16 8 2


 .

We also have
Bk = Mk{QkB0(Q

T )k}Mk (9)

where the scaling matrix

M = 21/4G =



2−1/4 0 0
0 2−1/4 0
0 0 21/4


 (10)

is responsible for the unlimited growth of Bk and its inverse. The reader can verify
(9) noticing that G, M and X are diagonal matrices that commute with Q and using
equations (6)–(8) and (11).

The step length αk , for which Bksk = −αkgk , is constant and equals
√

2 and the
properties of xk , gk and Bk are summarized in the following theorem:
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Theorem 1. The step length αk = √
2, xk , gk and Bk defined by (3) – (8) satisfy

sTk gk = − 5

2 − √
2

2−k/2, (11)

the iteration equations for the BFGS method

Bksk = −αkgk, (12)

Bk+1 = Bk − Bksks
T
k Bk

sTk Bksk
+ yky

T
k

sTk yk
, (13)

for yk = gk+1 − gk , and the condition

sTk gk+1 = 0, (14)

which in necessary for exact line searches.

Now we need a function f that generates these iterates. Our candidates are defined
locally around the vertices Qkx∞ of the octagon as the cubic function

qk(w +Qkx∞) = ((−1)kw3)
(

1 + wTQkh+ 1.1(wTQkd)2
)
, (15)

where h = (3,−1, 0)T is the horizontal component of g0 and d = (0, 1, 0)T . SinceQk

has period 8 in k there are only 8 distinct functions qk and we have the theorem:

Theorem 2. The function qk in (15) satisfies

qk(xk) = 2−k/2 (16)

and interpolates the gradient gk at xk , i.e., ∇qk(xk) = gk .

As the reader can verify while reading the proof of Theorem 2, as k → ∞ the
eigenvalues of the Hessian of qk at xk approach 0 and ±√

10 with eigenvectors

Qk




1
3
0


 , Qk




3
−1

−√
10


 , Qk




3
−1√

10


 .

Thus the cubic functions qk are not convex. However, as the next theorem shows, any
function that is equal to them near the octagon’s vertices has xk+1 as a local minimizer
along the line xk → xk+1:

Theorem 3. If x is a point on the line xk → xk+1 that satisfies 0 < ‖x−xk+1‖2 < 0.08,
then qk+1(x) > qk+1(xk+1).
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The Armijo condition (1) follows from (11) and (16). Therefore, theorems 1, 2 and 3
already show that the BFGS method may fail for line searches satisfying this condition
and for which xk+1 is a local minimizer of f along the line xk → xk+1: take the x0
and B0 above and apply the method to any function that matches the cubic functions
qk in the neighborhood of the octagon’s vertices, using the step length α = √

2 for all
iterations. However, we go a step further and provide a C∞ function f that coincides
with the qk’s near the octagon’s vertices and for which xk+1 is a global minimizer along
the line xk → xk+1.
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Fig. 2. Inner and outer cylinders around the octagon’s vertices

The idea is to take a function f that is defined on each of the pieces of 	3 described
in Figure 2. In the interior of the thin cylinders of radius 0.04 around each vertex of the
octagon f equals the cubic function (15). Outside the cylinders of radius 0.16 around
the thinner cylinders f is constant and equals 2. Between the interior of the thinner
cylinders and the outside of the wider cylinders f goes through a smooth transition from
the cubics to the constant function.

More formally, we write x as (c, z), for c ∈ 	2 and z ∈ 	, and take

f (c, z) =
j=7∑
j=0

ψ(c − cj )qj (c, z)+ 2
j=7∏
j=0

(1 − ψ(2(c − cj ))), (17)

where cj is the j th octagon’s vertex and ψ : 	2 → 	 is a C∞ function such that

0 = inf
c∈	2

ψ(c) < sup
c∈	2

ψ(c) = 1, (18)

‖ c ‖≤ 0.08 ⇒ ψ(c) = 1, (19)

‖ c ‖≥ 0.16 ⇒ ψ(c) = 0. (20)
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This kind of cutoff function is described in page 25 of [4]. A reader not comfortable with
them could obtain a C2 function ψ with the same properties taking ψ = σ(cT c) where
σ : 	 → 	 is an appropriate cubic spline.

Along the line from xk to xk+1 f has the graph below. According to this graph, f
has two valleys. The higher valley lies around xk and the lower one has its bottom at
xk+1, which is a global minimizer along this line. Notice that f decreases at xk but we
made the cylinder’s radius so small that x enters in the transition region and f starts to
grow before getting too close to f (xk+1).

xk − 0.16 xk xk + 0.16 xk+1 − 0.16 xk+1 xk+1 + 0.16

Fig. 3. The graph of f along the line xk → xk+1

This description of f is summarized in the following theorem, which, with theorems 1
and 2, shows that f fulfils the claims made in (1) and (2).

Theorem 4. The function f defined by (17) satisfies (2) and

‖c − ck‖ ≤ 0.04 ⇒ f (c, z) = qk(c, z). (21)

Theorems 1 and 2 are mostly algebraic. Proving them is just a question of going
through the algebra, computing a few 3 × 3 matrix vector products and derivatives.
We do that in Section 2. Theorems and 3 and 4 involve estimates and we prove them
in Section 3. The proofs are of little interest for the practical minded reader, who is
probably asking by now “and what happens in finite precision arithmetic?” A complete
answer to this question requires a discussion of the various details involved in “profes-
sional” implementations and is out of the scope of this article (and beyond the author’s
expertise.) We would like, however, to comment that in our naive numerical experiments
the behavior suggested by the exact arithmetic analysis is accurate for 20 iterations, or
two and a half laps around the octagon. The effects of rounding began at the machine
precision level and are amplified by a factor of roughly 10 at each iteration. By the
middle of the third lap the rounding errors have taken their toll and the iterates leave the
thin cylinders from Figure 2. From then on our analysis is just not valid.

Finally, we would like to thank Prof. J.M. Martinez for bringing the problem solved
in this paper to our attention and for the many suggestions that, we hope, have added
a nonlinear optimization content to our work and turned our findings into something
more valuable than a clever solution to a math puzzle. We also would like to thank Prof.
M.J.D. Powell for reading a previous version of this work and making comments that
lead to this improved version. Of course, we are solely responsible for our writing style
and the other problems they may not have noticed.
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2. Algebra

In this section we prove Theorems 1 and 2, in this order.

Proof of Theorem 1. We start using (3) to rewrite sk as

sk = xk+1 − xk = (XQ)k(XQ− I )(x∞ + ez) = (XQ)ks0, (22)

for

s0 = (XQ− I )(x∞ + ez) = 1 + √
2√

2




−1
1

−1


 . (23)

The matrices X, Q and G, defined in (4), (5) and (7), commute, QTQ = I and
XG = 2−1/2I , where I is the 3 × 3 identity matrix. Therefore,

sTk gk+i = sT0 ((XQ)
T )k(QG)kgi = sT0 (XG)

kgi = 2−k/2sT0 gi.

In particular, for i = 0, 1, 2 and 3,

sTk gk = 2−k/2sT0 g0 = − 5√
2
(1 +

√
2)2−k/2, (24)

sTk gk+1 = 2−k/2sT0 g1 = 0, (25)

sTk gk+2 = 2−k/2sT0 g2 = 0, (26)

sTk gk+3 = 2−k/2sT0 g3 = 5

2
√

2
(1 +

√
2)2−k/2, (27)

as it can be seen from the definition of Q in (5), G and g0 in (7), s0 in (23) and

GQ = 1

2




1 −1 0
1 1 0
0 0 −2


 , g0 =




3
−1
1


 (28)

g1 = GQg0 =



2
1

−1


 , g2 = GQg1 = 1

2




1
3
2


 , g3 = GQg2 = 1

2




−1
2

−2


 . (29)

The equations (25) and (26) and the definition of Bk in (8) imply

Bksk = −
√

2gk (30)

and the iterates satisfy equation (12) with αk = √
2. Since (24) is the same as (11) and

(25) is the same as (14), we only need to verify (13) in order to prove Theorem 1.
Equations (28) and (29) lead to g1 − g0 = 2g3. Since yk = gk+1 − gk , (6) implies

yk = (QG)k(g1 − g0) = 2(QG)kg3 = 2gk+3. (31)

Using (27) and (31) and replacing k by k + 3 in (24) we get

sTk yk=2sTk gk+3 = 5√
2
(1+

√
2)2−k/2 = 23/2 5√

2
(1+

√
2)2−(k+3)/2 = −2

√
2sTk+3gk+3.
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Combining the last equation with (31) we obtain

yky
T
k

sTk yk
= 4gk+3g

T
k+3

−2
√

2sTk+3gk+3
= −

√
2

sTk+3gk+3
gk+3g

T
k+3.

Equation (30) leads to

Bksks
T
k Bk

sTk Bksk
= 2gkgTk

−√
2sTk gk

= −
√

2

sTk gk
gkg

T
k .

From the last two equations and the definition (8) of Bk we get that the right hand side
of (13) is

−
√

2

sTk gk
gkg

T
k −

√
2

sTk+1gk+1
gk+1g

T
k+1 −

√
2

sTk+2gk+2
gk+2g

T
k+2

+
√

2

sTk gk
gkg

T
k −

√
2

sTk+3gk+3
gk+3g

T
k+3.

The first and fourth terms of this sum cancel out and we are left with

−
√

2

sTk+1gk+1
gk+1g

T
k+1 −

√
2

sTk+2gk+2
gk+2g

T
k+2 −

√
2

sTk+3gk+3
gk+3g

T
k+3,

which, according to (8), is the expression for Bk+1. Therefore, the iterates satisfy equa-
tion (13) and the proof of Theorem 1 is complete.

Proof of Theorem 2. The change of variables w = Qku simplifies the expression (15)
and, since Qkez = (−1)kez, leads to

qk(w +Qkx∞) = r(u) = u3

(
1 + 3u1 − u2 + 1.1u2

2

)
. (32)

The gradient of r is

∇r(u) =



3u3
u3(2.2u2 − 1)

1 + 3u1 − u2 + 1.1u2
2




and the chain rule shows that ∇qk(w +Qkx∞) = Qk∇r((Qk)T w) = Qk∇r(u).
According to (3) and (4), xk corresponds to wk = (0, 0, (−1)k2−k/2)T and uk =

(Qk)T wk = (0, 0, 2−k/2)T , so (32) implies (16). Using the definitions of gk , g0 and G,
given in (6) and (7), we get

∇qk(xk) = Qk∇r(uk) = Qk
(

2−k/23,−2−k/2, 1
)T = (QG)k(3,−1, 1)T = gk.

Thus, qk interpolates the gradients gk at xk and the proof of Theorem 2 is complete.
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3. Estimates

In this section we prove Theorems 3 and 4. We think of x as a pair (c, z), where c ∈ 	2

and z ∈ 	. The kth vertex of the octagon is called ck and is the projection of xk in the
horizontal plane. The expression for x∞ in (4) leads to

c0 = 1

2

(
3 + 2

√
2

1 + √
2

)
(33)

and (3) and (5) imply
ck = Rkc0, (34)

where

R = 1√
2

(
1 −1
1 1

)
(35)

is the rotation by π/4 in the counterclockwise direction. Therefore, the side of the octa-
gon in Figure 1 has length ‖c1 − c0‖2 = 1 + √

2 and

k < j ≤ k + 7 ⇒ ‖cj − ck‖2 ≥ 1 +
√

2. (36)

In terms of R, the cubic function qk from (15) can be written as

qk(c, z) = z(−1)k
(

1 + (c − ck)
T Rkgc + 1.1

(
(c − ck)

T Rkdc

)2
)

(37)

where

gc =
(

3
−1

)
dc =

(
0
1

)
(38)

are the projections of h and d in 	2, because

wTQkh = ((c − ck)
T , 0) Qk

(
gc
0

)
= (c − ck)

T Rkgc

and

wTQkd = ((c − ck)
T , 0) Qk

(
d

0

)
= (c − ck)

T Rkdc.

Now we prove a slightly stronger version of Theorem 3:

Theorem 5. If x is a point on the line xk → xk+1 that satisfies 0 < ‖c−ck+1‖2 < 0.08,
then qk+1(x) > qk+1(xk+1).

This theorem implies Theorem 3 because

‖x − xk+1‖2 < 0.08 ⇒ ‖c − ck+1‖2 < 0.08

in general and c = ck+1 ⇒ x = xk+1 if x is on the straight line xk → xk+1.
After that we prove Theorem 4 and finish this section.
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Proof of Theorem 5. Let x = xk+1 + ε(xk − xk+1) be a point on the line xk → xk+1.
Writing x as (c, z) as in section 2, we get from (34) that

c = ck+1 + ε(ck − ck+1) = ck+1 + εRk(I − R)c0 = ck+1 + εRkv

or

c − ck+1 = εRkv, (39)

for (c0 is defined in (33) and R in (35))

v = (I − R)c0 = 1 + √
2√

2

(
1

−1

)
. (40)

Using (3) we deduce that zk = (−1)k2−k/2 and

z = zk+1 + ε(zk − zk+1) = (−1)k+12−(k+1)/2(1 − ε(1 +
√

2)).

This equation for z, the definition of R in (35), (Rk)T Rk = I , (37)(with k replaced by
k + 1) and (39) imply

qk+1(c, z) = 2−(k+1)/2(1 − ε(1 +
√

2))
(

1 + εvT Rgc + 1.1ε2(vT Rdc)
2
)

(41)

Equations (35) and (40) imply vT R = (1 + √
2)(0,−1)T and (38) and (41) lead to

qk+1(c, z) = 2−(k+1)/2(1 − ε(1 +
√

2))
(

1 + ε(1 +
√

2)+ 1.1ε2(1 +
√

2)2
)

= 2−(k+1)/2
(

1 + 0.1ε2(1 +
√

2)2 − 1.1ε3(1 +
√

2)3
)
.

In particular, ε = 0 gives qk+1(xk+1) = 2−(k+1)/2, in agreement with equation (16).
Therefore,

qk+1(c, z) = qk+1(xk+1)
(

1 + 0.1ε2(1 +
√

2)2(1 − 11ε(1 +
√

2))
)
. (42)

Since the matrix (35) is orthogonal, and since ‖c − ck+1‖2 < 0.08 by hypothesis,
equations (39) and (40) lead to

(1 +
√

2)|ε| = |ε|‖v‖2 = |ε|‖Rkv‖2 = ‖c − ck+1‖2 < 0.08. (43)

Therefore, 1 − 11ε(1 + √
2) is bounded below by 1 − 0.88 = 0.12, so (42) implies the

inequality

qk+1(c, z) ≥ qk+1(xk+1)
(

1 + 0.012ε2(1 +
√

2)2
)
,

completing the proof of Theorem 5.
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Proof of Theorem 4. Since qk has period 8 in k, we can extend the definition of ck for
k ≥ 8 as ck = c(k mod 8) and rewrite f as

f (c, z) =
j=k+7∑
j=k

ψ(c − cj )qj (c, z)+ 2
j=k+7∏
j=k

(1 − ψ(2(c − cj ))). (44)

If ‖ c−ck ‖2≤ 0.04 then (36) and the triangle inequality show that ‖ c−cj ‖2> 0.16
for all vertices cj with k < j ≤ k+ 7. Thus, (20) implies ψ(c− cj ) = 0 for such j and
the sum in (44) equals its first term,ψ(c−ck)qk(c, z). Since (19) and ‖ c−ck ‖2≤ 0.04
imply ψ(c− ck) = ψ(2(c− ck)) = 1, the product in (44) vanishes and f (c, z) reduces
to qk(c, z). Thus we have proved (21) and (16) implies

f (xk+1) = qk+1(xk+1) = 2−(k+1)/2 < 2. (45)

In order to verify the property (2) and complete the proof of Theorem 4, we must
analyze f along the straight line xk → xk+1. Elementary geometry and (36) show that
the smallest distance from the straight line ck → ck+1 to the remaining vertices of the
octagon is (1 + √

2) sin(π/4) ≈ 1.7 > 0.16. Therefore, (20) and (44) imply that the
function f on the straight line xk → xk+1 reduces to

f (c, z) =
j=k+1∑
j=k

ψ(c − cj )qj (c, z)+ 2
j=k+1∏
j=k

(1 − ψ(2(c − cj ))). (46)

The vector x = (c, z) is covered by one of the three cases:

• Case 1: ‖ c − ck ‖≥ 0.16 and ‖ c − ck+1 ‖≥ 0.16.
• Case 2: ‖ c − ck+1 ‖< 0.16.
• Case 3: ‖ c − ck ‖< 0.16,

We now analyze the three cases above individually.

Case 1. In this case (20) implies that both terms in the sum in (46) vanish and the factors
in the product are 1. Therefore, f (x) = 2 > f (xk+1), by (45), and Theorem 4 holds in
case 1 •
Case 2. In this case the triangle inequality and ‖ ck − ck+1 ‖2≥ 1 + √

2 (see (36)) lead
to ‖ c − ck ‖2≥ 0.16. Therefore, (20) implies ψ(c − ck) = ψ(2(c − ck)) = 0 and (46)
becomes

f (c, z) = ψ(c − ck+1)qk+1(c, z)+ 2(1 − ψ(2(c − ck+1))). (47)

We now proceed as in the proof of Theorem 5, because equation (42) is valid. Expression
(43) includes the equations

‖c − ck+1‖2 = |ε|‖Rkv‖2 = |ε|‖v‖2 = (1 +
√

2)|ε|,
so the hypothesis of Case 2 provides

(1 +
√

2)|ε| = ‖c − ck+1‖2 < 0.16. (48)

Thus this hypothesis and (42) imply

qk+1(c, z) ≥ qk+1(xk+1)(1 + 0.1 × (0.16)2 × (−0.76)) > 0. (49)
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If ‖c − ck+1‖2 < 0.08 then (2) follows from Theorem 5. On the other hand,
‖c− ck+1‖2 ≥ 0.08 and (20) imply ψ(2(c− ck+1)) = 0. Therefore, (18), (49), (45) and
(47) imply f (x) ≥ 2 > f (xk+1) and we are done with case 2 •
Case 3. Analogously to (47) in Case 2, we have

f (x) = f (c, z) = ψ(c − ck)qk(c, z)+ 2(1 − ψ(2(c − ck))), (50)

However, now we write x as xk + ε(xk+1 − xk) and (34) leads to

c = ck + ε(ck+1 − ck) = ck + εRk(Rc0 − c0) = ck − εRkv,

for R in (35) and v in (40), or

c − ck = −εRkv, (51)

and in the present case we have a relation analogous to (48):

(1 +
√

2)|ε| = ‖c − ck‖2 < 0.16. (52)

The definition of xk in (3) shows that zk = (−1)k2−k/2 and

z = zk + ε(zk+1 − zk) = (−1)k2−k/2(1 − ε
1 + √

2√
2

). (53)

The definitions of v in (40) and gc and dc in (38) show that vT gc = 2
√

2(1 + √
2) and

vT dc = −(1 + √
2)/

√
2. Since RT R = I , equations (37), (51) and (53) imply

qk(c, z) = 2−k/2(1 − ε
1 + √

2√
2

)(1 − 2
√

2ε(1 +
√

2)+ 0.55ε2(1 +
√

2)2)

= 2−k/2
(

1 − 5ε
1 + √

2√
2

+ 2.55ε2(1 +
√

2)2 − 0.55√
2
ε3(1 +

√
2)3
)
.

The bound (52) implies

2.55ε2(1 +
√

2)2 − 0.55√
2
ε3(1 +

√
2)3 > 0.

Therefore,

qk(c, z) > 2−k/2
(

1 − 5ε
1 + √

2√
2

)
(54)

and (52) leads to

qk(c, z) > 2−k/2(1 − 0.8√
2
) > 0. (55)

Again, we consider two sub cases

• Sub Case 3.1: ‖c − ck‖ ≥ 0.08
• Sub Case 3.2: ‖c − ck‖ < 0.08

separately.
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Sub case 3.1. Since we are assuming ‖c−ck‖ ≥ 0.08, (20) impliesψ(2(c−ck)) = 0.
Therefore, (18), (55), (45) and (50) lead to f (x) ≥ 2 > f (xk+1) and we are done with
sub case 3.1.

Sub case 3.2. Here ‖c− ck‖2 < 0.08 and (19) implies ψ(c− ck) = 1 while (52) can
be strengthened to ε < 0.08/(1 + √

2). It follows that

1 − 5ε
1 + √

2√
2

> 1 − 0.4√
2
>

1√
2
.

Using the value of f (xk+1) from (45), equation (47), ψ(c− ck) = 1 and the bound (54)
we get

f (x) ≥ qk(x) > 2−k/2 1√
2

= f (xk+1)

and the sub case 3.2 is finished, as well as case 3 •
This completes the proof of Theorem 4 and the justification of the example.
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