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Abstract. In this paper, a generic bi-directional framework is proposed
for parametric image alignment, that extends the classification of [1].
Four main categories (Forward, Inverse, Dependent and Bi-directional)
form the basis of a consistent set of subclasses, onto which state-of-the-
art methods have been mapped. New formulations for the ESM [2] and
the Inverse Additive [3] algorithms are proposed, that show the ability of
this framework to unify existing approaches. New explicit equivalence re-
lationships are given for the case of first-order optimization that provide
some insights into the choice of an update rule in iterative algorithms.

1 Introduction

Motion estimation is a fundamental task of many vision applications such as ob-
ject tracking, image mosaicking, video compression or augmented reality. Image
alignment based on template matching is a natural approach to image registra-
tion, by estimating the parameters that best warp one image onto the other. The
optimum is conventionally provided by the minimization of the displaced frame
difference between the template and an image. Since the Lucas and Kanade al-
gorithm [4], many algorithms have been proposed to improve the performances.
Baker and Matthews [1] summarized and compared experimentally template-
based techniques divided into four classes (Forwards Additive, Forwards Com-
positional, Inverse Additive, and Inverse Compositional). Since then, methods
such as Efficient Second-order Minimization (ESM) [2], Symmetrical Gradient
Method (SGM) and Bi-directional Gradient Method (BDGM) [5], have been pro-
posed that do not fit into the initial four classes. To our knowledge, no generic
framework has been proposed yet in which all these methods can be classified.

In this paper, we develop a generic bi-directional framework which unifies
the different template-based approaches. Thanks to this framework, the main
contribution of this paper is to show how to rigorously define the alignment
problem, and to propose a consistent set of well defined but generic classes.
State of the art methods are expressed as instances of this generic formulation.
For some of the methods, this formulation is new, or more general that initially.

In Sect. 2, the image alignment problem is formalized, and the bi-directional
framework is explained. In Sect. 3, state of the art methods are classified and
their interpretation within the framework is precised. In Sect. 4, a discussion
addresses general issues concerning all approaches.
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2 Problem Formalization

2.1 Motion Model

The motion model is represented by a warp function W(µ,x) of parameter
vector µ ∈ P , applied at position x ∈ IR2. In order to facilitate the structured
formulation of the framework, we require that the considered motion model form
a group with respect to composition. This is the case of most models of interest
[1], such as non degenerate affine motion and homographies.

This group property is extended to the parameter space P :

W(µ0 ◦ δµ,x) = W(µ0,W(δµ,x)) Composition (1)

W(µ−1,x) = W−1(µ,x) = {y | W(µ,y) = x} Inverse (2)

W(0,x) = x Identity (3)

In order to apply gradient methods, the smoothness of the warp is additionnaly
required. More precisely, it is assumed that µ �→ W(µ,x) is a C1-diffeomorphism,
and that δµ �→ µ ◦ δµ and δµ �→ δµ−1 are C1-diffeomorphisms in a neighbour-
hood of δµ = 0. Provided that the parameters are not close to a degenerate
configuration, these constraints are again satisfied by the models of interest.

2.2 Bi-directional Image Alignment

The fundamental assumption used for image alignment correspond to the gray-
level constancy equation (see Fig. 1 for an illustration of the concepts presented
in this section):

∀x ∈ Rref I(W(µ̄,x)) = T(W(µref ,x)) , (4)

where µ̄ represents the parameters of the true displacement between images I
and the reference coordinate frame, and µref represents a fixed transformation
between the template image T and the reference coordinate frame. Rref corre-
sponds to the region of interest, expressed in the reference coordinate frame.

If both images are considered to be continuous functions with respect to the
position in the image, then the change in variables x = W(µref

−1 ◦ µT , z) using
an arbitrary µT leads to a more generic equation:

∀z ∈ R I(W(µI , z)) = T(W(µT , z)) , (5)

where R = W(µT
−1 ◦ µref , Rref) is the transformed region of interest and

µI = µ̄ ◦ µref
−1 ◦ µT . (6)

The bi-directional image alignment framework can therefore be formalized as
finding a pair (µI , µT ) that minimizes the discrepancy between the right and the
left hand side of (5).
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Fig. 1. General principle of the bi-directional framework, when aligning two images I

and T. The initial parameters µ0 and µref are shown in parallel with the parameters
µI and µT leading to a correct alignment. The support region R is emphasized on the
common compensated frames T(W(µT ,x)) and I(W(µI ,x)), as well as its correspond-
ing regions on T(x) and I(x). For the Forwards approach, µT = µref . For the Inverse
approach, µI = µ0. In the general case shown here (Dependant and Bi-directional
approaches) both µI and µT are varying during the optimization.

We denote e(µI , µT ) the N -dimensional vector obtained by concatenating the
pixelwise differences ei between the compensated images over a spatial sampling
(xi)i=1..N of R,

e(µI , µT ) = I(W(µI , R)) − T(W(µT , R)). (7)

Using the L2 norm of e, the bi-directional error function corresponds to:

E(µI , µT ) =
∑

x∈R

(

I(W(µI ,x)) − T(W(µT ,x))
)2

(8)

Once the optimal bi-directional parameters µI and µT have been estimated, the
equivalent estimate µ̂ to the true forwards displacement µ̄ is then computed by
applying the update rule derived from (6):

µ̂ ← µI ◦ µT
−1 ◦ µref (9)

The region of interest R that appears in (8) is considered to be constant. We
delay the discussion on the implications of this choice to Sect. 4.1.

Many different error metrics may be used as a replacement of the L2 norm,
based on pixelwise difference [6], but that could for instance also use color dis-
tributions [7]. In this paper, the focus is on the motion model aspects of image
alignment. We will therefore limit ourselves to errors similar to (8).
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2.3 Criteria for the Classification of Methods

Composing µI and µT to the right by the same parameter µ yields an infinity
of pairs (µI ◦ µ, µT ◦ µ) that satisfy (5). Four main image alignement categories
can be proposed, depending on the constraints enforced on µI and µT .

In the following, µ0 represents an initial estimate of µ̄, and µref the motion pa-
rameter vector between the template image and the reference coordinate frame.
Aligning the image and the template consists in finding a corrective parameter
vector δµ, whose nature depends on the approach.

Forwards (F). The image is warped onto the template with respect to δµ ∈ P :
µT = µref and µI depends on the increment δµ.

Inverse (I). The template is warped onto the image with respect to δµ ∈ P :
µI = µ0 and µT depends on the increment δµ.

Dependent (D). The image and the template are warped using parameter
vectors µI and µT that are both dependent from a common source δµ ∈ P .
The Symmetric (S) approaches are a special case of dependent approaches,
which correspond to applying symmetric corrections to µT and µI . These will
be the only dependent approaches detailed in this paper.

Bi-directional (B). The image and the template are respectively warped using
independant corrective parameters δµI and δµT that can be concatenated
into a bi-directional parameter vector δµ = (δµI , δµT )t ∈ P2.

The first three approaches consider a corrective vector in a single parameter
space δµ ∈ P , even though the (D) approach warps both images. On the opposite,
the (B) approach instead considers that the optimization of (8) takes places
inside the complete bi-directional space δµ ∈ P2.

Inside each category, the methods can be further characterized by:

Meta-Parametrization of the motion parameters, which expresses the func-
tional relationship µI = µI(δµ) and µT = µT (δµ) of both parameter vec-
tors with respect to the corrective vector δµ. A corrective parameter vector
equal to the identity parameter δµ = 0 should correspond to the initial
alignment parameters: µI(δµ) = µ0 and µT (δµ) = µref . It is called meta-
parametrization in order to differentiate it from the parametrization, which
consists in choosing the parametric model W.

Optimization method used to minimize E(µI(δµ), µT (δµ)), the error func-
tion of (8). This may involve gradient-based optimization, such as the Gauss-
Newton (GN) and the Newton (N) methods [1] or even higher-order methods
[8], but also learning approaches, such as the learning of a Linear Estima-
tor (LE) [9]. We emphasize that a particular meta-parametrization is not
restricted to any type of optimization.

The forwards and inverse categories overlap the categories of the same name
proposed by Baker and Matthews [1] with one special case that will be discussed
in more details in Sect. 3.5. The symmetric and the bi-directional approaches
were first used by Keller and Averbuch [5]. To our knowledge, our proposal is
the first systematic and generic classification covering all of these approaches as
special cases.
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3 Classification of Existing Methods

In this section, state of the art image alignment methods are going to be classi-
fied, and expressed with respect to the criteria we presented. Table 3 sums up the
proposed categories and the associated meta-parametrizations, which are used
in Table 3 to provide a synoptic view on the classification of existing algorithms.
The justification of this classification is done on a case by case basis in the in-
dicated subsections. The methods marked with the symbol * are of particular
interest, and are discussed more specifically.

Although we give more details related to the Gauss-Newton optimization
(GN), because it allows us to give new insights for the Inverse Additive al-
gorithm [3] [1], the Efficient Second-order Minimization algorithm [2] and the
Symmetric Gradient Method approach [5], we recall that the choice of a meta-
parametrization is distinct from the choice of an optimization method.

3.1 Gauss-Newton Optimization (GN) within the Framework

The Gauss-Newton optimization of the generic error function (8) yields :

δµ = −(J tJ)−1J te(µ0, µref) (10)

where J = ∂e(µI (δµ),µT (δµ))
∂δµ

∣
∣
∣
0

corresponds to the Jacobian matrix of the error

vector defined in (7). The considered functions I(x), T(x), W(µ,x), µI(δµ) and
µT (δµ) are assumed to be differentiable w.r.t. to x and δµ.

Table 1. Categorized bi-directional meta-parametrizations and corresponding up-
date rules. Categories are defined in Sect. 2.3. The following naming conventions
are used: 1st letter: F=Forwards, I=Inverse, S=Symmetric, B=Bi-directional; 2nd let-
ter: C=Compositional, A=Additive; 3rd letter: R=Reverse, D=Direct, M=Midway,
E=Exponential map, O=Opposite. Approaches marked with a symbol * correspond to
a new or more generic formulation of the problem.

C. App. µI µT µ̄ = µI ◦ µT
−1 ◦ µref Sec

F
FC µ0 ◦ δµ µref µ0 ◦ δµ 3.2
FA µ0 + δµ µref µ0 + δµ 3.2

I

ICR µ0 µref ◦ δµ µ0 ◦ δµ−1 3.3
ICD* µ0 µref ◦ δµ−1 µ0 ◦ δµ 3.3
IAR µ0 µref + δµ µ0 ◦ (µref + δµ)−1 ◦ µref 3.4
IAD* µ0 µref ◦ (µ0 + δµ)−1 ◦ µ0 µ0 + δµ 3.5

D/S
SCM* µ0 ◦ ( 1

2
δµ) µref ◦ ( 1

2
δµ)−1 µ0 ◦ ( 1

2
δµ) ◦ ( 1

2
δµ) 3.6

SCE* µ0 ◦ µ( 1

2
δv) µref ◦ µ(− 1

2
δv) µ0 ◦ µ(δv) 3.6

SCO* µ0 ◦ ( 1

2
δµ) µref ◦ (− 1

2
δµ) µ0 ◦ ( 1

2
δµ) ◦ (− 1

2
δµ)−1 3.6

B
BCD* µ0 ◦ δµI µref ◦ δµ−1

T µ0 ◦ δµI ◦ δµT 3.7
BCO* µ0 ◦ δµI µref ◦ (−δµT ) µ0 ◦ δµI ◦ (−δµT )−1 3.7
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Table 2. Classification of various existing methods. Category: see Sect. 2.3.
Meta-parametrization: see Table 3. Optimization: GN=Gauss Newton, N=Newton,
LE=Linear Estimator, O3=Third Order. New insights are obtained for the methods
indicated with a symbol *, which are discussed in their respective sections.

C. Method M.-Param Optim. Sect.

F
Forwards Additive [4] FA GN 3.2
Forwards Compositional [10] FC GN 3.2
Third-order Gradient Method [8] FA O3 3.2

I
Inverse Compositional [1] [11] ICR GN, N. . . 3.3
Hyperplane Approximation [9] IAR LE 3.4
Inverse Additive [3] IAD GN 3.5*

D/S
Efficient Second-order Minimization [2] SCE GN 3.6*
Symmetric Gradient Method [5] SCO GN 3.6*
Symmetric third-order Gradient Method [8] SCO O3 3.6*

B Bi-directional Gradient Method [5] BCO GN 3.7*

The Jacobian J is specific for each approach. It can be expressed as the
concatenation of the gradients J(xi) of the pixelwise errors ei, where:

J(xi) =
∂I(W(µI(δµ),xi))

∂δµ

∣
∣
∣
∣
0

︸ ︷︷ ︸

JI(xi)

−
∂T(W(µT (δµ),xi))

∂δµ

∣
∣
∣
∣
0

︸ ︷︷ ︸

JT(xi)

(11)

Due to a lack of space, only the key equations will be given for each approach.
The intermediate steps can be obtained by replacing, in equations (8) and (7),
µI and µT by their expression with respect to δµ from Table 3, and deriving
from these equations.

3.2 Forwards Additive (FA) and Forwards Compositional (FC)

The forwards approaches, such as Forwards Additive (FA) and Forwards Compo-

sitional (FC) fit naturally into the bi-directional framework by setting µT = µref .
This generalizes the formulation shown in [1] where µref = 0. The two are equiv-
alent by replacing T with Tref = T(W(µref , ·)). This approach was combined
with Newton-type optimization in [1], and a third-order gradient method in [8].

For the FA approach, µI = µ0 + δµFA, which yields the following Jacobian:

JFA(xi) = JFA
I

(xi) = ∇I(W(µ0,xi))
∂W(µ,xi)

∂µ

∣
∣
∣
∣
µ0

(12)

For the FC approach, µI = µ0 ◦ δµFC , which yields

JFC(xi) = JFC
I (xi) = ∇I(W(µ0,xi))

∂W(µ0,x)

∂x

∣
∣
∣
∣
xi

∂W(µ,xi)

∂µ

∣
∣
∣
∣
0

(13)

An explicit equivalence relationship between the FA and the FC approaches
that extends the equivalence proof proposed in [1] is discussed in Sect. 4.2.
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3.3 Inverse Compositional (IC) Variants

The inverse compositional approach proposed in [1] also fits naturally in the
framework using parameters shown in Table 3. We further classify it as Inverse

Compositional Reverse (ICR) because of the presence of δµ−1 in its update rule.
The Jacobian is expressed w.r.t. gradients of the reference template Tref ,

which allows for their pre-computation, thus improving the online performance:

JICR(xi) = −JIC
T

(xi) = −∇T(W(µref ,xi))
∂W(µref ,x)

∂x

∣
∣
∣
∣
xi

︸ ︷︷ ︸

∇Tref (xi)

∂W(µ,xi)

∂µ

∣
∣
∣
∣
0

(14)

By replacing δµ with δµ−1 in µT , we can define a new Inverse Compositional

Direct (ICD) approach, which has a simpler update rule. It has the same com-
plexity as the ICR approach for the estimation of δµ in GN optimization since
JICD = −JICR.

3.4 Inverse Additive Reverse (IAR)

The Inverse Additive Reverse (IAR) approach is the dual of the FA approach,
by reversing the roles of I and T. This meta-parametrization (shown in Table 3)
was used in [9] with a Linear Estimator (LE): the estimation is based on δµ =
Ae(µ0, µref) where A is a learned matrix. The disturbances δµk used for learning
A are applied on the template through the parameters µT

k = µref + δµk, which
makes it an IAR approach. The advantages over gradient-based approaches are
that A is computed off-line, thus decreasing the online computationnal cost, and
that it can handle larger motion amplitude. The use of learning based optimiza-
tion is one specific advantage of the Inverse approach compared to the others.

3.5 Inverse Additive Direct (IAD): New Insights on [3]

The algorithm introduced in [3] was called Inverse Additive in the survey [1]. In
the sequel, we will refer to it as the IA algorithm. The previous justification for
this algorithm is based on a FA parametrization, but where the roles of I and
T are swapped for the computation of the Jacobian, by assuming that the two
images are identical up to motion compensation (equation (4)). This allows the
authors to derive an efficient algorithm if the factorization of (15) is possible.
Because of this strong assumption on the relative content of the two images, the
minimized error function can not be expressed in closed form.

We propose a new meta-parametrization (see Table 3), called Inverse Additive

Direct (IAD), which has an additive update rule. The GN optimization of its
closed-form error function then leads naturally to the IA algorithm. Indeed the
associated Jacobian matches the one used in the IA algorithm:

JIAD(xi)=−JIAD
T

(xi)=−∇Tref(xi)

(

∂W(µ0,x)

∂x

∣
∣
∣
∣
xi

)−1
∂W(µ,xi)

∂µ0

∣
∣
∣
∣
µ0

︸ ︷︷ ︸

factored as Γ (xi)Σ(µ0)

(15)
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where ∇Tref(xi) was defined in (14). The previous equation, when plugged into
(10) corresponds to one iteration of the IA algorithm [3,1], thus allowing us to
integrate this algorithm as an instance of the proposed framework.

3.6 Symmetric Compositional (SC): New Insights on [2], [8] and [5]

The Symmetric Compositional Midway (SCM) approach is defined by compen-
sating both I and T towards each other using two transformations that are
inverse one from the other (see Table 3). In that case the common compensated
coordinate frame lies exactly midways from both images coordinate frames from
a compositional point of view. Its update rule is µ̂ ← µ0 ◦ (1

2δµ) ◦ (1
2δµ).

By reusing the notations from (13) and (14), its Jacobian is equal to:

JSCM (xi) =
1

2

(
JFC
I (xi) + JIC

T (xi)
)

(16)

In a similar way as the IA algorithm discussed before, the justification of the
ESM algorithm [2] relies on assumption (4). We now propose to instantiate this
algorithm into the bi-directional framework by adapting the SCM approach.

The update rule µ̂ ← µ0 ◦ µ(δv) used in [2] is slightly different from the SCM
rule. The update step δµ = µ(δv) is indeed further parametrized around the
identity by a vector δv using an exponential map (associated with a Lie Group
on projective transformations matrices denoted by G(x) in [2]). The optimization
is then done with respect to δv instead of δµ.

This parametrization has two interesting properties : µ(2v) = µ(v) ◦ µ(v),
µ(−v) = µ(v)−1. We can therefore split δv into two symmetrical parts, to obtain
the Symmetrical Compositional Exponential map (SCE) approach:

µI = µ0 ◦ µ
(1

2
δv

)

and µT = µref ◦ µ
(

−
1

2
δv

)

= µref ◦

(

µ
(1

2
δv

))−1

(17)

Because additionnally δµ = µ(δv) ≈ µ(0) + δv to the first order around
the identity, due to the exponential map properties, the associated Jacobian is
identical to (16). We can therefore conclude that the ESM algorithm corresponds
to the GN optimization with respect to δv of the closed form SCE error function.

A very similar approach was proposed for GN optimization [5] and higher-
order optimization [8]. By taking into account the compensations that occur
in the described algorithms explicitely (in a similar way as in Sect. 3.2), this
translates into a compositional meta-parametrization, which we call Symmetric

Compositional Opposite (SCO), the O corresponding to the term − 1
2δµ, that

appears in µT (see Table 3). According to (9), the associated update rule should
be µ̂ ← µ0 ◦ (1

2δµ) ◦ (− 1
2δµ)−1. It is different from the rule µ̂ ← µ0 + δµ used in

[5]. This issue is discussed in more detail in Sect. 4.2.
One of the advantages of such symmetrical approaches is that the estimation

is precise up to the second-order in δµ, even when using only first-order approx-
imation, provided (4) is satisfied and the motion increment to estimate is small
enough (shown for SCE in [2] and SCO in [5]).
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3.7 Bi-directional Compositional (BC) Variants

The bi-directional approach was first proposed for Gradient Methods in [5]. As
in the previous subsection, we propose to reformulate their approach by taking
into account explicitely the initial parameters µ0 and µref , which leads to the Bi-

directional Compositional Opposite (BCO) meta-parametrization (see Table 3).
The corresponding update rule can be approximated by µ̂ ← µ0 ◦ (δµI + δµT )
for a small δµ, which is different from rule µ̂ ← µ0 + (δµI + δµT ) used in [5].
The consequence of this difference is discussed in Sect. 4.2.

It is important to note that the corrective parameter vector δµ =

(
δµI

δµT

)

belongs to the full bi-directional parameter space P2. The Jacobian of the error
can thus be expressed as the horizontal concatenation of the Jacobians of the
simple compositional approaches: JBCO =

[
JFC ,−JICR

]
.

In the same spirit as the ICD approach, the Bi-directional Compositional

Direct (BCD) approach shown in Table 3 has a slightly simpler update rule (see
Table 3), and the same estimation cost as BCR, since JBCD = JBCO.

4 Discussion

4.1 Integration into an Iterative Scheme

Up to now, we have mostly derived results corresponding to one estimation
step. This step is generally included in an iterative algorithm, in order to re-
fine the estimation. The iterative schemes in the reviewed approaches update
the initial parameters from iteration n to n + 1 by finding the equivalent for-
wards parametrization to the estimated bi-directional parameters based on (9):
µn+1

0 ← µI
n ◦ (µT

n)−1 ◦ µref
n, µref

n+1 ← µref
n. This allows to keep R fixed

across iterations in order to avoid a drift from the initial interest region.
The region R in (8) represents the region of interest in the common com-

pensated coordinates frame (see Fig. 1). It is generally chosen such that it cor-
responds to the reference region of interest in the template at initialization:
R = W((µref

n)−1 ◦µref
0, Rref). Once defined, R is considered to be fixed for the

optimization of (8), in order to avoid the spurious terms in the error derivatives
that would reflect the variation of R. These terms have always been neglected
in the studied methods. This scheme also leads to fixed derivatives with respect
to the template, thus decreasing the computational cost within the (I), (D) and
(B) approaches.

Figure 2 illustrates the error function E(µI , µT ) in the bi-directional space
P2. It can be noted that it forms a valley along the curve µI = µ̄ ◦ µref

−1 ◦ µT ,
which is valid for µT close to µref = 0. Indeed, when µT is too far away, the
interest region R includes elements from the background, which increases the
error. The trajectories of the initial (µn

0 , µref
n) and the estimated (µI

n, µT
n)

parameters are plotted for one approach of each category. The differences in the
meta-parametrization are clearly reflected as different types of trajectories in the
bi-directional space P2.
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Fig. 2. Error function E(µI , µT ) corresponding to the image of Fig. 1 displayed on
a (µI,1, µT,1) slice of the bi-directional space P2, where the index 1 stands for the
horizontal translation coefficient. Translation was estimated using GN optimization
with one method in each category. Each iteration n is drawn with an arrow, that links
(µn

0 , µref
n) (numbered ⊙ bullets) to (µI

n, µT
n) (△ bullets). The true deformation is

a 5 pixels horizontal translation µ̄1 = 5, and the initialisation is (µ1
0,1, µ

1

ref,1) = (0, 0).
The dashed line (µI,1, µT,1) = (µ1, 5 + µ1) represents the set of correct estimates. The
shape of the trajectories reflect the contraints put on the meta-parametrization.

4.2 Equivalences and Incompatibilities in Terms of Update Rules

When using GN optimization, the equivalence between FA and FC approaches
was argued in [1]. On the basis of our formulation, we can extend this result by
providing the exact relationship between the two update steps δµFA and δµFC

computed by both approaches. Indeed, thanks to the regularity of the considered
functions, we can show that

JFC = JFAM0 where M0 =
∂µ0 ◦ δµ

∂δµ

∣
∣
∣
∣
0

(18)

For GN optimization, (10) then yields δµFC = M0
−1δµFA. From this relation-

ship, we can conclude on the equivalence to the first order:

µ0 ◦ δµFC ≈ µ0 + M0δµ
FC = µ0 + δµFA (19)

The same methodology can be used to show that, when using a GN optimiza-
tion, all proposed approaches are equivalent to the first order within the same
category. The equivalences are based on:

δµICR = −δµICD, δµIAD = M0δµ
ICD

δµIAR = Mrefδµ
ICR where Mref = ∂µref◦δµ

∂δµ

∣
∣
∣
0

(20)

δµSCM = δµSCE = δµSCO and δµBCO = δµBCD (21)

One issue that the previous analysis reveals, is that although the final esti-
mate µ̂ may be approximately equal between related additive and compositional
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Fig. 3. The equivalence of two approaches does not mean the egality of their correc-
tive parameter δµ. This counter-example is based on affine motion estimation using a
standard benchmark [1]. The error is expressed in pixels. A rotation µ̄ of 70◦ around
the center of the object is to be estimated, from an initial rotation µ0 of 35◦. All
approaches use GN optimization. The hybrid approach composed of an SCO or BCO
meta-parametrization combined with an additive update rule [5] converge faster that
the F and I approaches when the angle of µ0 is small, but cannot converge to the correct
estimate as explained in the text. Using instead the rule stemming from the framework
corrected this problem, to achieve the best results with this type of optimization.

approaches, the corresponding δµ are not equal in the general case, because
of the presence of the matrix M . Therefore the update step should always be

consistent with the used meta-parametrization.
When this is not the case, a correctly estimated δµ can lead to an incorrect

estimate µ̂. This causes convergence problems, especially when rotations are
involved, which seem to appear for example in some experiments from [5] and [8].
These effects are illustrated in Fig. 3, where the error corresponding to an affine
motion estimate oscillates without converging around the correct estimate when
µ0 corresponds to a large rotation. The proposed framework offers a systematic
methodology to avoid such problems when designing template based alignment.

4.3 Practical Considerations on the Classification

In order to facilitate the choice of an approach, here is a short summary of the
main properties of the respective categories. The FA and FC approaches have
been shown to be equivalent to first order in [1]. We have shown that this equiv-
alence is also true within each separate Inverse, Symmetrical, and Bidirectionnal
categories. The Inverse approach has the fastest step computation thanks to the
offline computation of the Jacobian. This category is also the only one to benefit
from a learned parameter estimator [9] which yields a direct estimation in one
step. Additionally, when (4) is satisfied, the Symmetrical approaches (SCE [2],
SCO [5]) need a lower number of GN iterations to converge than the Forwards
and Inverse approaches. According to [5], BCO should not be more performant
than SCO when (4) holds, but may outperform it in the more general case.
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5 Conclusion

In this paper, we have presented a formal framework for pixel-based image align-
ment methods, associated to a simple and consistent classification. The proposed
criteria have been applied to a wide range of image alignment methods. In par-
ticular, this methodology has led to a new formulation of the IA algorithm and
the ESM algorithm, based on a closed form error function without any assump-
tion on the content of the images. This unification revealed useful to make an
explicit description of the equivalence to the first order between the methods,
and to give new insights with respect to the use of a mismatching update rule.

We think such a framework offers a structured formulation of the parametric
image alignment problem, which, we hope, will help in understanding, design-
ing and evaluating the performance of alignment algorithms. Perspectives are to
extend the formalization to include non purely geometric models such as illumi-
nation compensation [12], and study the interaction between model parametriza-
tion and meta-parametrization.
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