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5SISSA, Scuola Internazionale di Studi Superiori Avanzati, via Beirut 2-4, I-34014 Trieste, Italy

Accepted 1998 January 26. Received 1998 January 26; in original form 1997 August 13

A B S TR ACT

This paper presents a stochastic approach to the clustering evolution of dark matter

haloes in the Universe. Haloes, identified by a Press–Schechter-type algorithm in

Lagrangian space, are described in terms of ‘counting fields’, acting as non-linear

operators on the underlying Gaussian density fluctuations. By ensemble-averaging

these counting fields, the standard Press–Schechter mass function as well as analytic

expressions for the halo correlation function and corresponding bias factors of linear

theory are obtained, extending the recent results by Mo & White. The non-linear

evolution of our halo population is then followed by solving the continuity equation,

under the sole hypothesis that haloes move by the action of gravity. This leads to an

exact and general formula for the bias field of dark matter haloes, defined as the

local ratio between their number density contrast and the mass density fluctuation.

Besides being a function of position and ‘observation’ redshift, this random field

depends upon the mass and formation epoch of the objects and is both non-linear

and non-local. The latter features are expected to leave a detectable imprint on the

spatial clustering of galaxies, as described, for instance, by statistics like the

bispectrum and the skewness. Our algorithm may have several interesting

applications, among which is the possibility of generating mock halo catalogues from

low-resolution N-body simulations.

Key words: galaxies: clusters: general – galaxies: evolution – galaxies: formation –

galaxies: haloes – cosmology: theory – large-scale structure of Universe.

1 I N TRO D U CTI O N

The theory proposed by Press & Schechter (1974, hereafter PS) to obtain the relative abundance of matter condensations in

the Universe has strongly influenced all later studies on the statistical properties of dark matter haloes and led to a large

variety of extensions, improvements and applications. Actually, already in the sixties, Doroshkevich (1967) had derived the

mass distribution function for ‘newly generated cosmic objects’, completely analogous to the PS one; he had also clearly

pointed out the existence of what has been later referred to as the cloud-in-cloud problem (e.g. Bardeen et al. 1986). The

‘Press–Schechter model’, which is based on the gravitational instability hypothesis, is now considered as one of the corner-

stones of the hierarchical scenario for structure formation in the Universe. It shows, in fact, how gravitational instability makes

more and more massive condensations grow by the aggregation of smaller units, provided only that the initial density

fluctuation field contains enough power on small scales. The main drawback of the original PS model is indeed the cloud-in-

cloud problem, i.e., the fact that their procedure selects bound objects of given mass that can have been already included in

larger mass condensations of the same catalogue. The problem was later solved by several authors (Peacock & Heavens 1990;

Bond et al. 1991; Cole 1991) according to the so-called ‘excursion set’ approach, by calculating the distribution of first-passage

‘times’ across the collapse threshold for suitably defined random walks. Lacey & Cole (1993, 1994) implemented these ideas

to study the merger rates of virialized haloes in hierarchical models of structure formation.
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An important aspect of the PS model is that, being entirely based on linear theory, suitably extrapolated to the collapse time

of spherical perturbations, it is, by definition, local in Lagrangian space. While this Lagrangian aspect of the theory does not

have immediate implications for the study of the mass function of dark matter haloes, it is, instead, of crucial importance for

their spatial clustering properties. This point was recognized by Cole & Kaiser (1989) and, more recently, by Mo & White

(1996, hereafter MW), who proposed a bias model for halo clustering in Eulerian space, by a suitable extension of the original

PS algorithm for the mass function. With their formalism MW studied the clustering of dark matter haloes with different

formation epochs (see also Mo, Jing & White 1996). The comparison of their theoretical predictions with the spatial

distribution of haloes obtained by a friends-of-friends group finder and a spherical overdensity criterion in numerical simula-

tions proved extremely successful.

These very facts imply that there exists a local version of the PS algorithm, providing a mapping betwen points of Lagrangian

space and the haloes in embryo which will come into existence at the various epochs. For a given realization of the initial

density field, the PS mapping is such that, at a fixed redshift z, each Lagrangian point q can be assigned to a matter clump of

some mass M, identified by a suitable Lagrangian filter, which is collapsing at the epoch zf\z. One can therefore exploit the

existence of this mapping to assign a stochastic halo process, our halo counting field below, to each point q. This will be the

starting point of our analysis.

What the PS Ansatz cannot account for is the fact that the fluid elements are moved apart by gravity, so that the halo which

the PS mapping assigns to the fluid patch with Lagrangian coordinate q is not going to collapse in the same position, i.e., at

x\q, but, rather in the Eulerian point x(q, z)\q+S (q, z), with S (q, z) the displacement vector, corresponding to the

Lagrangian one at the epoch z\zf (q, M ) of its collapse. This fact, while not affecting in any way the PS result for the mean

mass function, as the average halo abundance cannot change by scrambling the objects, sensibly modifies their spatial

clustering properties. Modelling the latter effect is one of the main purposes of the present work. In their derivation of the

Eulerian halo bias MW took into some account this problem by allowing for the local compression, or expansion, of the

volumes where the haloes are located, an effect which is of crucial importance for the derivation of the correct halo density

contrast. Their derivation, however, is formally flawed by the fact that they only deal with mean halo number densities, so that

they are forced to define the bias in terms of them. For reasons to be shown below, however, this heuristic treatment can be

put on sounder statistical grounds, by applying a suitable coarse-graining procedure.

Of course, the PS model has its own limitations. The comparison of its predictions for the mass function with the outputs

of N-body simulations (e.g. Efstathiou et al. 1988; Gelb & Bertschinger 1994; Lacey & Cole 1994), while surprisingly successful

in its general trends, given the simplicity of the assumptions, showed a number of problems. Gelb & Bertschinger, for instance,

found that the simulated haloes are generally less massive than predicted, the reason being that merging does not erase

substructure in large haloes as fast as required by the PS recipe.

There have been many attempts to improve the original PS model. If cosmic structures preferentially formed at the peaks

of the initial density fluctuation field, this would affect their mean mass function (Bardeen et al. 1986; Bond 1988; Cola-

francesco, Lucchin & Matarrese 1989; Peacock & Heavens 1990; Manrique & Salvador-Solé 1995, 1996). Bond & Myers

(1996) developed a peak-patch picture of cosmic structure formation, according to which virialized objects are identified with

suitable peaks of the Lagrangian density field. The peak-patch collapse dynamics is then followed in terms of the homogene-

ous ellipsoid model, which allows for the influence of the external tidal field, while the Zel’dovich approximation (Zel’dovich

1970) is used for the external peak-patch dynamics. The effects of non-spherical collapse on the shape of the mass distribution

were studied by Monaco (1995). Lee & Shandarin (1997) analytically derived the mass function of gravitationally bound

objects in the frame of the Zel’dovich approximation.

We prefer here to follow the simple lines of the PS theory to set up the ‘initial conditions’ for our stochastic approach to

the evolution of halo clustering. Nevertheless, one should keep in mind that our approach is flexible enough to accept many

levels of improvement in the treatment of the Lagrangian initial conditions.

A relevant part of the following analysis will be devoted to the study of the evolution of halo clustering away from the linear

regime. It turns out that the problem can be solved exactly in terms of the evolved mass density. An important result of this

analysis is that the general Eulerian bias factor, defined as the local ratio between the halo density contrast and the mass

fluctuation field, is both non-linear and non-local. The latter property follows directly from our selection criterion of candidate

haloes out of the linear density field.

Our algorithm can also be seen as a specific example of a bias model which is local in Lagrangian space. This is expected

to have relevant consequences on galaxy clustering. Because of this local Lagrangian character, our model differs strongly

from the local Eulerian bias prescription applied by Fry & Gaztañaga (1993) to the analysis of the hierarchical correlation

functions. A simple test of our theory can be obtained by analysing the behaviour of the bispectrum (or the skewness), whose

shape (scale) dependence will be shown to be directly sensitive to the assumption of local bias in Lagrangian versus Eulerian

space.

Our results for the evolved halo distribution generally allow us to study their statistical properties at the required level of

non-linearity, and could be further implemented to generate mock halo catalogues, starting from low-resolution numerical
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simulations of the dissipationless matter component. These results have important implications for the study of the redshift

evolution of galaxy clustering, a problem made of compelling relevance by the growing body of observational data at high

redshift which are being produced by the new generation of large telescopes. A general study of this problem has been recently

performed by Peacock (1997) and Matarrese et al. (1997); the latter pointed out that knowledge of the evolution of the

effective bias for the various classes of objects is a key ingredient in the comparison of theoretical scenarios of structure

formation with observational data on clustering at high redshift. Kauffmann, Nusser & Steinmetz (1997) used both semi-

analytical methods and N-body techniques to study the physical origin of bias in galaxies of different luminosity and

morphology.

The plan of the paper is as follows. In Section 2 we define our halo counting field, within the linear approximation, both in

the Lagrangian and Eulerian context. The non-linear evolution of the halo clustering is analysed in Section 3, where we also

compute the bispectrum and skewness of the evolved halo distribution. Section 4 contains a general discussion of our results

and some conclusions.

2 S TO CH AS TI C  AP P RO ACH  TO  H A LO  CO U N TI N G  A N D  CLU S TE R I N G

2.1 Basic tools and notation

Let us assume that the mass density contrast e (q), linearly extrapolated to the present time, is a statistically homogeneous and

isotropic Gaussian random field completely determined by its power spectrum P (k). Here q represents a comoving Lagrangian

coordinate. A smoothed version of the field e (q) is obtained by convolving it with a rotationally invariant filter WR (q),

containing a resolution scale R, with associated mass M1rbR 3, rb being the background mean density at z\0,

eR (q)\h dq pWR ( !qÐq p!) e (q p)=eM (q). (1)

The smoothed field is also Gaussian with one-point distribution function GsM
(eM)\(2ps 2

M)Ð1/2 exp(Ðe
2

M /2s 2

M), where s 2

M

denotes the variance of eM , s 2

M=,e
2

M.\(2p2)Ð1 ql
0 dk k 2P (k) W̃ (kR )2. The symbol W̃ (kR) indicates the Fourier transform of

the filter function. In the following, we will often be concerned with the joint distribution of the fields eM1
(q) and eM2

(q). The

two-point correlation function of the linear density contrast smoothed on the scale R1 and R2 is

j12(q)\,eM1
(q1) eM2

(q2).\

1

2p2 h
l

0

dk k 2P (k) W̃ (kR1) W̃ (kR2) j0(kq), (2)

where q\!q1Ðq2!, and j0(x) is the spherical Bessel function of order zero. We term s 2

12 the value assumed by j12 in the limit

qh0.

The properties of the filtered quantities clearly depend upon the choice of the window function. For instance, the relation

between the mass enclosed by a top-hat filter WR (q)\3Y (RÐq)/4pR 3 [where Y (x) is the Heaviside step function] is the

standard M (R)\4prbR 3/3. Instead, for a Gaussian window, WR (q)\(2pR 2)Ð3/2 exp(Ðq 2/2R 2), the enclosed mass is

M (R)\(2p)3/2rbR 3. These two masses coincide for RG\0.64RTH (Bardeen et al. 1986).

In the literature, the sharp top-hat filtering has been alternatively adopted in Fourier space, W̃R (k)\Y (kRÐk), where

kR\1/R and k\!k!. The most remarkable property of this filter is that each decrease of the smoothing radius adds up a new

set of uncorrelated modes (Bardeen et al. 1986; Bond et al. 1991; Lacey & Cole 1993). This also implies that, for example, the

correlation function in equation (2) simplifies to j12\j11 , whenever kR1
skR2

; consequently, s12\s11=s1 . In practice, the

information is always erased below the larger of the two smoothing lengths. This property will be particularly useful in the next

sections. For this ‘sharp k-space’ filter, the main difficulty is how to associate a mass M (R) to the cut-off wavenumber kR . Lacey

& Cole (1993) give the expression M (R)\6p2rbk Ð3

R , which coincides with the mass within a top-hat filter if one takes kR\2.42/

RTH .

In the next section we introduce the halo counting random fields that allow a fully stochastic description of the biased haloes

distribution. To illustrate how our formalism works, we first show how to derive the PS mass function by performing a simple

averaging of our stochastic counts.

2.2 Lagrangian mass function: Press–Schechter theory

PS proposed a simple model to compute the comoving number density of collapsed haloes directly from the statistical

properties of the linear density field, assumed to be Gaussian. According to the PS theory, a patch of fluid is part of a collapsed

region of scale larger than M (R) if the value of the smoothed linear density contrast on that scale exceeds a suitable threshold

tf. The idea is to use a global threshold in order to mimic non-linear dynamical effects ending up with halo collapse and

virialization. An exact value for tf can be obtained by describing the evolution of the density perturbations according to the

spherical top-hat model. In this case, a fluctuation of amplitude e will collapse at the redshift zf such that e (q)\tf=dc(zf),
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where D (z) denotes the linear growth factor of density perturbations normalized as D (0)\1. In the Einstein–de Sitter

universe and during the matter-dominated era the critical value dc does not depend on any cosmological parameter and is

given by dc\3 (12p)2/3/2031.686, while, for general non-flat geometries, its value shows a weak dependence on the density

parameter W, the cosmological constant L and the Hubble constant H (e.g. Lacey & Cole 1993), thus on redshift. In a flat

universe with vanishing cosmological constant D (z)\(1+z)Ð1; explicit expressions for the linear growth factor are given in

Appendix A for general Friedmann models.

A local version of the PS approach can be built up in terms of stochastic counting operators acting on the underlying

Gaussian density field, as follows. The number of haloes per unit mass, contained in the unit comoving volume centred in q,

identified by the collapse threshold tf(zf), is described as a density field of a point process by

N
L

h (q !M, tf)\Ð2 
rb

M

q

qM 
Y [eM (q)Ðtf]. (3)

Note that the quantity N L

h (q !M, tf) is non-zero only when the filtered density contrast in q upcrosses, or downcrosses, the

threshold tf, by varying the smoothing length R (or the corresponding mass M ). The factor of 2, appearing in the expression

of N L

h (q !M, tf), is needed in order to obtain the right normalization of the mass function, in which case it has been shown to

be intimately related to the solution of the cloud-in-cloud problem (Peacock & Heavens 1990; Bond et al. 1991; Cole 1991),

at least for sharp k-space filtering. At this level, our description should be thought of as a sort of differential version of Kaiser’s

bias model (Kaiser 1984), that defines a population of objects with the right average halo abundance and their related

clustering properties, rather than a detailed modelling of how structures form from the primordial density field. In a

forthcoming paper, however, we will show that the present approach is fully consistent with a rigorous treatment of the cloud-

in-cloud problem (Porciani et al. 1998). In that approach, halo correlations will be obtained from pairs of first-upcrossing

‘times’ for spatially correlated random walks above the collapse threshold tf.

It can be seen from equation (3) that a population of haloes is uniquely specified by the two parameters M and tf. In the

standard PS formulation, tf is interpreted as a sort of time variable, related to the formation redshift zf, which decreases with

real time, as every halo continuously accretes matter. In this sense one can say that, for a continuous density field with infinite

mass resolution, each halo disappears as soon as it forms to originate another halo of larger mass.

Alternatively, instead of considering tf as a time variable, one can use it simply as a label attached to each halo. The haloes

so labelled can be thought as keeping their identity during the subsequent evolution at any observation redshift z. This is not

in contrast with the fact that in the real Universe dark matter haloes undergo merging at some finite rate (e.g. Lacey & Cole

1993, 1994). Within such a picture, in fact, the physical processes of accretion and merging reduce to the trivial statement that

haloes identified by a given threshold are necessarily included in catalogues of lower threshold, so that, in the limit of infinite

mass resolution, only haloes with zf\z would actually survive. Nevertheless, keeping zf distinct for z may have several

advantages, among which the possibility of allowing for a more realistic description of galaxy and cluster formation inside

haloes, for both the evolution of the luminosity function (Cavaliere, Colafrancesco & Menci 1993; Manrique & Salvador–Solé

1996) and of the galaxy bias (e.g. MW; Kauffmann et al. 1997). Let us stress, however, that we are not addressing here the issue

of galaxy or cluster merging: our method is completely general in this respect and allows us to span all possible models, from

the instantaneous merging hypothesis (zf\z) to the case of no merging at all (zf fixed for changing zRzf).

In what follows, therefore, we will assume that we can deal with the halo population specified by the formation threshold

tf at any redshift z. Only in this sense we will say that we ‘ignore’ the effects of merging in our description: merging can be

exactly recovered at any step, and with any assumed mass resolution, as the relation between zf and z. To implement this idea

it is enough to scale appropriately the argument of the Heaviside function in equation (3), which can be recast in the form

N
L

h (q, z !M, zf)\Ð2 
rb

M

q

qM 
Y [eM (q, z)Ðdf(z, zf)], (4)

where eM (q, z)=D (z) e (q), and df(z, zf)=dcD (z)/D (zf). It can be easily seen that the ensemble average of the counting field

N
L

h (q, z !M, zf) corresponds to the PS mass function

,N L

h (q, z !M, zf). dM\nPS(z !M, zf) dM, (5)

where

nPS(z !M, zf) dM=
1

Z2p

rb

M

df(z, zf)

s 3

M (z)
exp &Ðd 2

f (z, zf)

2s 2

M (z) ' bds 2

M (z)

dM b dM. (6)

Note that we emphasized the z-dependence of the comoving mass function, although it is straightforward to verify that the

value of nPS(z !M, zf) does not change with z. In fact, since we are ignoring the effects of merging, once a class of haloes has
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been identified, their mean comoving density remains constant in time. Thus, as far as the mass function is concerned, the

introduction of the observation redshift z is somewhat more formal than physical. However, this distinction will be far more

significant in the next sections, where, in order to compute the halo-to-mass bias factor, we will relate the Lagrangian

distribution of a population of haloes selected at zf to the mass density fluctuation field linearly extrapolated to the redshift z.

Models of galaxy formation which assume that galaxies form at a given redshift zf with some initial bias factor and that their

subsequent motion is purely caused by gravity (e.g. Dekel 1986; Dekel & Rees 1987; Nusser & Davis 1994; Fry 1996) can be

easily accommodated into this scheme.

To conclude this section, let us consider the integral stochastic process

h
l

M

dM pM pN L

h (q, z !M p, zf)\2rbY [eM (q, z)Ðdf(z, zf)], (7)

representing the fraction of mass, in the unit Lagrangian comoving volume centred in q, which at redshift zf has formed haloes

more massive than M. This coincides with the original Kaiser bias model (Kaiser 1984) up to the multiplicative factor 2rb ,

which is irrelevant for calculating correlation function.

696 P. Catelan et al.
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2.3 Conditional Lagrangian mass function

The PS theory reviewed in the previous section describes the overall distribution of halo masses in a homogeneous universe

of mean density rb . However, of cosmological interest is also, for instance, the estimate of the halo distribution within rich or

poor environments (which can be related to the galaxy number enhancement per unit mass in rich clusters or in voids), thus

justifying the investigation of the distribution of halo masses conditioned to lie within a larger uncollapsed container of given

density. The conditional mass function has been studied by several authors (e.g. Bond et al. 1991; Bower 1991; Lacey & Cole

1993).

We extend here the approach introduced in the previous section in order to derive the conditional mass function.

Specifically, we calculate the comoving mass function, in the mass range M to M+dM, for objects contained in a large region

of dimension R0 , corresponding to a mass M0 , with local density contrast e0=eM0
. We will require e0ssdf and R0aaR, to

ensure that the container is not collapsed yet by the epoch zf, and that it encloses a non-negligible population of objects.

In order to mimic these environmental effects, we modify the halo counting field according to

N
L

h (q, z !M, zf !M0 , e0)\Ð
2

N0

rb

M

q

qM 
Y [eM (q, z)Ðdf(z, zf)]dD [eM0

(q, z)Ðe0], (8)

where dD denotes the Dirac delta function, and N0=,dD [eM0
(q, z)Ðe0]. is the normalization constant. Here the scalar e0

indicates the value of the random field eM0
(q, z). Taking the ensemble average (and using the cross-variance sij for a sharp k-

space filter), one eventually obtains

,N L

h (q, z !M, zf !M0 , e0). dM\nPS(z !M, zf !M0, e0) dM, (9)

where

nPS(z !M, zf !M0 , e0) dM\

1

Z2p

rb

M

df(z, zf)Ðe0

[s 2

M (z)Ðs 2

0 (z)]3/2
exp 8Ð [df(z, zf)Ðe0]

2

2 [s 2

M (z)Ðs 2

0 (z)]9 bds 2

M (z)

dM b dM. (10)

This straightforward calculation shows how to obtain results already known in the literature by simply starting from the

random field in equation (8); averaging that halo counting field leads to the expected conditional mass function. However,

unlike previous treatments, once the halo counting field has been consistently defined, other statistics, like the two-point halo

correlation function, can be calculated. We will carry out this programme in the next section.

2.4 Lagrangian clustering: halo-to-mass bias from correlations

In this section we will compute the halo–halo correlation function, which coincides with the correlation function of our

random counting field. Specifically, we will calculate the Lagrangian halo correlation function from the Lagrangian counting

field N L

h (q, z !M, zf). By definition, the correlation function of this stochastic process is given by

jL

hh(q, z !M1 , z1; M2 , z2)\
,N L

h [q1 , z !M1 , df(z, z1)]N L

h (q2 , z !M2 , df(z, z2)].

,N L

h [q1 , z !M1 , df(z, z1)].,N L

h [q2 , z !M2 , df(z, z2)].
Ð1, (11)
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where q\!q1Ðq2!. Performing the ensemble average over the Gaussian fields eM1
(q) and eM2

(q), we obtain

,N L

h [q1 , z !M1 , df(z, z1)]N L

h [q2 , z !M2 , df(z, z2)].\

4r 2

b

M1M2

q

qM1

q

qM2 h
l

df (z, z1)
h

l

df (z, z2)

da1 da2 G2(a1, a2), (12)

where G2(a1 , a2) denotes the bivariate Gaussian distribution

G2(a1 , a2)\(2ps1s2 Z1Ðw 2)Ð1 exp &Ð2a
2

1

s 2

1

+
a 2

2

s 2

2

Ð2w 
a1

s1

a2

s23>2 (1Ðw 2)' , (13)

with normalized correlation w (q)\j12(q)/sM1
sM2

and si=D (z) sMi
.

The full exact expression for the halo–halo correlation function can be obtained after an incredibly long algebraic

computation. We report here only the final expression. Defining dfi=df(z, zi), we have

1+jL

hh (q, z !M1 , z1; M2 , z2)\
1

Z1Ðw 2 8 ds1

dM1

ds2

dM2

+
s 2

2

df2(1Ðw 2) 2df1

s1

Ðw 
df2

s23 ds1

dM1

qw

qM2

+
s 2

1

df1(1Ðw 2) 2df2

s2

Ðw 
df1

s13 qw

qM1

ds2

dM2

+
s 2

1 s
2

2

df1df2

q2w

qM1qM2

+
s 2

1 s
2

2

df1df2(1Ðw 2)2 &w (1Ðw 2)+(1+w 2) 
df1

s1

df2

s2

Ðw 2d
2

f1

s 2

1

+
d 2

f2

s 2

13'

Å
qw

qM1

qw

qM29 exp&Ðw 22d
2

f1

s 2

1

+
d 2

f2

s 2

23Ð2w
df1

s1

df2

s2

2 (1Ðw 2) ' 2 ds1

dM1

ds2

dM23
Ð1

. (14)

This expression can be easily shown to be independent of the observation redshift z. A remark is now appropriate. Our

formalism describes the halo distribution as a discrete-point process. However, actual haloes are extended in size. This is why,

as also seen in numerical simulations, for separation smaller than the typical Lagrangian radius of the halo, the correlation

function abruptly reaches the value Ð1: a sort of ‘exclusion principle’ for extended haloes. Thus we expect that the correlation

function in equation (14) can be a reliable description of halo clustering only for qzmax(R1 , R2). Another point concerns the

use of finite mass resolution as in N-body simulations. The proper analytical correlation to compare with in that case is the

integral of jL

hh nPS(M1) nPS(M2) over the specified mass interval, appropriately normalized.

Since the action of the window functions on the correlations is negligible for lags q much larger than the smoothing lengths,

qaaR1 and qaaR2 , for the normalized correlation we obtain w (q)3jm (q)/sM1
sM2

[where jm (q) is the linear mass autocorrela-

tion function] and, eventually, for the halo correlation

j L

hh (q, z !M1 , z1; M2 , z2)\bL

1 (z !M1 , z1) bL

1 (z !M2 , z2) jm (q, z)+
1

2 
bL

2 (z !M1 , z1) bL

2 (z !M2 , z2) j2

m (q, z)+ . . . (15)

Explicitly, the first two bias parameters read

bL

1 (z !M, zf)\
df(z, zf)

s 2

M (z)
Ð

1

df(z, zf)
\

D (zf)

D (z) & dc

D (zf)
2s 2

M

Ð
1

dc' , (16)

bL

2 (z !M, zf)\
1

s 2

M (z) &d
2

f (z, zf)

s 2

M (z)
Ð3'\ 1

D (z)2s 2

M &
d2

c

D (zf)
2s 2

M

Ð3' . (17)

These expressions for the bias factors generalize, in a sense, those concerning the clustering properties of dark matter haloes

in Lagrangian space obtained by MW and Mo et al. (1996), with the relevant difference that we have obtained the bias factor

from the behaviour of the halo two-point correlation function. Also relevant is the fact that, unlike MW, we obtained our

Lagrangian correlation function without introducing any background scale R0 , which allows us to extend its validity down to

spatial separation comparable to the halo size RssR0 . A calculation of the leading behaviour of the correlation deriving from

equations (11) and (12) has been already attempted by Kashlinsky (1987) who, however, missed the contributions originated

by the differentiation of w with respect to M1 and M2 , thereby obtaining an incomplete expression for bL

1 .
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The halo correlation function in Lagrangian space, jL

hh from equation (14), with M1\M2\M and z1\z2=zf, is shown in Fig.

1 for two scale-free power spectra, P (k);k n, with spectral index n\Ð2 and Ð1, in the Einstein–de Sitter case. The two-point

function is calculated for various halo masses in units of the characteristic mass, M
*

, defined so that sM
*
=tf\dc/D (zf), with

top-hat filtering;1 the spatial dependence is shown as a function of the scaling variable q/R, which eliminates any residual

redshift dependence. Also shown is the mass autocorrelation function jm and an estimate of the Lagrangian halo two-point

function obtained as (bL

1)2jm , for M8M
*

, and (bL

2)2j2

m /2, for M\M
*

, as in this case bL

1\0. Note that such an estimate of jL

hh

always provides an accurate fit to its analytical expression for separation a few times larger than the halo size. The character-

istic behaviour of the halo correlation function for M\M
*

, where the linear bias vanishes, is actually a peculiarity of the

Lagrangian case (see also MW). As we will see below, the Eulerian halo correlation function does not show such a drastic

change of slope in the same mass range.

2.5 Peak–background split

In the previous paragraphs we computed number densities and correlation functions of haloes in Lagrangian space. However,

after their identification, these haloes in embryo move following the gravitational field, modifying their original spatial

distribution. One issue to address is how, for instance, the conditional halo number density per unit mass changes as a

consequence of gravitational evolution. Furthermore, of interest is to quantify the evolution of clustering in terms of the halo

correlation functions, or in terms of the halo-to-mass bias. Both problems can be dealt with by defining Eulerian halo counting

fields, in the same spirit as we did for the Lagrangian case.

Essentially, our approach to the clustering evolution can be based on a generalization of the so-called peak–background

split, first proposed by Bardeen et al. (1986), which basically consists in splitting the mass perturbations in fine-grained (peak)

and coarse-grained (background) components.2 The underlying idea is to ascribe the collapse of objects on small scales to the

high-frequency modes of the density field, while the action of large-scale structures on these non-linear condensations is due

to the remaining low-frequency modes. At the linear level the resulting effect of these long wavelengths is simply modelled as

a shift of the local background density.

In the spirit of the peak–background split, we define the linear density field smoothed on a given scale eM as consisting of

two complementary and superimposed components, namely eM\ebg+epk . Adopting as window function the sharp k-space

filter, we define as ‘background’ component the density contrast smoothed on the scale R0\1/k0:

ebg(q, z)=h dk

(2p)3
ẽ (k, z) Y (k0Ðk) e ik ·q. (18)

The ‘peak’ component is instead obtained by smoothing the mass density fluctuation with the band-pass filter

Y (kMÐk) Y (kÐk0), namely

epk(q, z)=h dk

(2p)3
ẽ (k, z) Y (kMÐk) Y (kÐk0) e ik ·q, (19)

where kM\1/RM , with M;rbR 3

M and M0;rbR 3

0 the masses enclosed by the two filters. So, the peak component contains only

modes with wavenumber in the interval [k0 , kM]. Note that in the linear regime, with Gaussian initial conditions, the peak and

background components are statistically independent, i.e.,

,epk(q1 , z) ebg(q2 , z).\0, (20)

for, by construction, the two fields do not share any common Fourier mode. To summarize: provided that the collapsed object

is described according to the spherical model, as in the PS theory, the peak field epk(q, z) can be thought as evolving in a local

environment with effective mean density rb[1+ebg(q, z)]. This implies that the collapse condition can be written as

epk(q, z)\df(z, zf)Ðebg(q, z).

2.6 Eulerian halo counting field and bias

The previous analysis shows how the PS and the conditional Lagrangian mass functions can be obtained by averaging properly

defined halo counting random fields. It is thus legitimate to explore the possibility of building up analogous counting processes

in the Eulerian world. Our approach here will be based on the peak–background split technique described above.
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1We are adopting here the MW definition of M
*

, which, though differing from the standard PS one, sM
*
=tf/Z2, is more convenient for our

present purposes.
2We are here making a rather liberal use of the work ‘peak’, to mean the fine-grained component of the linear density field.
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Figure 1. The exact Lagrangian halo correlation function in an Einstein–de Sitter universe (solid lines) is shown for scale-free models with

spectral index n\Ð1 and Ð2, and for various masses. In each panel we set M1\M2\M and z1\z2. Results are plotted in terms of the

scaling variables M/M
* 

and q/R (with R the top-hat radius corresponding to the halo mass M ), which makes the resulting curves redshift-

independent. For comparison, the linear mass autocorrelation function smoothed on the halo scale is also shown with long-dashed lines. The

short-dashed lines represent the linear bias approximation for the halo correlations: (b L

1)2jm . In the central panels, where b L

1\0, the dot–

dashed lines show, instead, the second-order approximnation for jL

hh . Each column contains panels that refer to the same mass variance (s 2

M/

t 2

f\1/4, 1, 4) and so the same Lagrangian bias factors. Notice that, for separation a few times the halo size, the first non-vanishing term of

equation (15) always gives an accurate approximation to the exact halo correlation. This implies that, for M
* 

objects, jL

hh2(b L

2)2j2

m/2.

Let us define the Eulerian counting field of haloes collapsed at redshift zf and observed at z as

N
E

h (q, z !M, zf)=[1+ebg(q, z)]N L

h (q, z !M, zf)\Ð
2rb

M
[1+ebg(q, z)] 

q

qM 
Y{epk(q, z)Ð[df(z, zf)Ðebg(q, z)]}. (21)

The watchful reader might wonder about our use of the Lagrangian variable q within the Eulerian framework; however, in

linear theory, x\q. Once again, the redshift z must be thought of as the redshift the sampled objects have at the epoch of

observation. It is worth noting that equation (21) is fully consistent with the analysis in Cole & Kaiser (1989). Most

importantly, our treatment allows for a local description. Let us stress here that the factor (1+ebg), connecting the Eulerian

to the Lagrangian counting field, simply comes from mass conservation in Eulerian space (see also Section 3.1 and, in

particular, equation 38); this point has been discussed in more detail by Kofman et al. (1994).

Now consider the integral stochastic process

h
l

M

dM pM pN E

h (q, z !M p, zf)\2rb[1+ebg(q, z)]Y [eM (q, z)Ðdf(z, zf)]; (22)

this represents the fraction of mass, in the unit Eulerian comoving volume centred in q, which at redshift zf will form haloes

more massive than M. For M0hM, ebgheM and the above relation coincides (up to the usual fudge factor of 2, having no effect

on correlations) with the weighted bias model of Catelan et al. (1994). An extended version of this scheme, called ‘censoring

bias’, has been recently proposed by Mann, Peacock & Heavens (1998). Thus the weighted bias is just the Eulerian version,

within linear theory, of the Kaiser (1984) bias model.

Of course, further specifications could be added to our Eulerian counting field. For instance, we might ask that the

background scale has not yet collapsed by the epoch zf; in such a case we should multiply the above stochastic process by the
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factor Y [df(z, zf)Ðebg(q, z)]. Extra details of this kind would, however, make negligible changes to our final results, provided

s 2

Maas 2

0 .

As in the Lagrangian case, to calculate the mean halo number density per unit mass, one needs to ensemble average

N
E

h (q, z !M, zf). Let us analyse this operation in more detail. Because of the way the Eulerian counting process has been

defined, it is clear that N E

h (q, z !M, zf) depends on two random fields, specifically ebg and epk . So the ensemble average ,N E

h .

can be interpreted as a double average over these fields, i.e., ,N E

h .=,,N E

h .
epk

.
ebg

. The statistics of the field N E

h can be

described in terms of n th-order correlation functions, ,,N E

h (q1) . . .N E

h (qn).epk
.

ebg
. The exact calculation of these quantities

is rather difficult. However, because of the short-scale coherence of the peak field, implied by the ‘infrared’ cut-off at k0 , its

covariance ,epk(qi) epk(qi+r).
epk

vanishes whenever raaR0 , so that we can simplify the general halo correlations above as

,,N E

h (q1) . . .N E

h (qn).epk
.

ebg
2,,N E

h (q1).epk
. . .,N E (qn).epk

.
ebg

, provided that we consider sets of points qi, i\1, . . . ,N , with

relative separation rij=!qiÐqj!aaR0 . Therefore, with the purpose of calculating the mean Eulerian halo number density per

unit mass and Eulerian halo correlations, we can make the replacement N E

h h,N E

h .
epk

=N E

h , with only negligible loss of

accuracy. According to the definition of N E

h in equation (21), the latter ensemble average gives

N E

h (q, z !M, zf)\
1

Z2p 

rb

M 
[1+ebg(q, z)] 

df(z, zf)Ðebg(q, z)

[s 2

M (z)Ðs 2

0 (z)]3/2
exp 8Ð[df(z, zf)Ðebg(q, z)]2

2 [s 2

M (z)Ðs 2

0 (z)] 9 b ds 2

M (z)

dM b , (23)
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which, having averaged over the fine-grained mass fluctuations, represents a sort of coarse-grained halo counting field. Notice

that the fine-grained ensemble average has replaced the original step-function operator of equation (21) by a smoother

function, which can then be consistently expanded in series of the background field, as shown below.

Let us stress that the expression in equation (23) is just the Eulerian analogue of equation (10) in MW, but the field ebg is

here a true random field, and so is the process N E

h . The knowledge of N E

h allows us to define the Eulerian halo number density

fluctuation as

dE

h (q, z !M, zf)=
N E

h (q, z !M , zf)Ð,N E

h (q, z !M, zf).ebg

,N E

h (q, z !M, zf).ebg

=bE (q, z !M, zf) ebg(q, z), (24)

where we introduced the Eulerian ‘bias field’ bE (q, z !M, zf). The second equality in the above equation does not mean that the

Eulerian fluctuation field dE

h is proportional to the background density field ebg. In fact, bE in general depends upon ebg itself.

Its functional dependence can be understood by expanding N E

h (q, z !M, zf) in powers of ebg to obtain

dE

h (q, z !M, zf)\bE

1 (z !M, zf) ebg(q, z)+
1

2 
bE

2 (z !M, zf) e
2

bg (q, z)+ . . .

\[1+bL

1 (z !M, zf)]ebg(q, z)+
1

2 
[bL

2 (z !M, zf)+2bL

1 (z !M, zf)]e
2

bg (q, z)+ . . . , (25)

where, for s 2

Maas 2

0 , the first- and second-order Lagrangian bias factors bL

1 and bL

2 are those of equations (16) and (17)

respectively. Accounting for the transformation from the Lagrangian to the Eulerian distribution (e.g. Kofman et al. 1992),

one has ,N E

h (q, z !M, zf).ebg
\nPS(z !M, zf). It can be useful to give explicit expressions for the first two Eulerian bias parameters

of linear theory:

bE

1 (z !M, zf)\1+
D (zf)

D (z) & dc

D (zf)
2s 2

M

Ð
1

dc' , (26)

bE

2 (z !M, zf)\
1

D (z)2s 2

M &
d2

c

D (zf)
2s 2

M

Ð3'+2D (zf)

D (z) & dc

D (zf)
2s 2

M

Ð
1

dc' . (27)

The set of linear theory Eulerian bias factors bE

l
(z) can be obtained from the Lagrangian ones according to the general

rule

bE

l
\lbL

lÐ1+bL

l
, (28)

with bL

l\0=1.

The same method can be applied to the Lagrangian expression, in the sense that we can obtain similarly,

N L

h (q, z !M, zf)\
1

Z2p

rb

M

df(z, zf)Ðebg(q, z)

[s 2

M (z)Ðs 2

0 (z)]3/2
exp 8Ð[df(z, zf)Ðebg(q, z)]2

2 [s 2

M (z)Ðs 2

0 (z)] 9 b ds 2

M (z)

dM b. (29)
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One has, exactly, ,N L

h (q, z !M, zf).ebg
\,N L

h (q, z !M, zf).\nPS(z !M, zf). By expanding the coarse-grained Lagrangian counting

field N L

h (q, z !M, zf) we can define Lagrangian bias factors at any order. For s 2

Maas 2

0 these turn out to be identical to those

deriving from the expansion of the halo correlation in Lagrangian space, equation (14). This suggests, however, that these bias

factors can be used to describe halo clustering on distances raR, without any further restriction introduced by the background

scale R0 .

The very fact that, for practical purposes, we can replace the exact operator N E

h by the locally averaged one N E

h

demonstrates that the MW treatment can be made self-consistent, provided that their small-scale density field is replaced by

the peak field, and that the value of the threshold is modified accordingly. Most importantly, our local averaging procedure

implies that, up to the scale R0 , we are indeed correctly accounting for the cloud-in-cloud problem. This is because at each

point q, characterized by a random value of the background field ebg(q), the coarse-grained stochastic process N E

h (q, z !M, zf)

(and its Lagrangian equivalent) actually represents the local mean mass function, for which the cloud-in-cloud problem is

exactly solved in terms of first passage ‘times’ across the local barrier df(z, zf)Ðebg(q, z), with initial condition epk(q, z)\0 at

R\R0 . Therefore, with the aim of calculating correlations on lags raaR0 , we can safely state that our coarse-grained halo

counting fields are unaffected by the cloud-in-cloud problem.

The shift by 1 of the linear bias factor, here implied by the transformation from the Lagrangian to the Eulerian world, was

also noticed in the weighted bias approach by Catelan et al. (1994, their equation 21), where an underlying lognormal

distribution was assumed to avoid negative-mass events.

The above expression for b E

1 (z !M, zf) coincides with the formula by MW (their equation 20), who, however, only presented

it for z\0. As noticed by MW, an important feature of this linear bias is that it predicts that large-mass objects (actually those

characterized by sMstf) are biased with respect to the mass (bE

1 a1), while small-mass ones (sMatf) are antibiased (bE

1 s1).

Haloes with mass close to the characteristic one, M
*

, have non-vanishing linear bias, unlike the Lagrangian case. As we will

see in Section 3.1, this one-to-one classification of biased and antibiased objects according to their mass is no longer valid in

the non-linear regime, as the shear field at the Lagrangian location of the halo also contributes to the determination of its

Eulerian bias factor.

The effect of merging can be easily accommodated into this scheme. In the real Universe, haloes undergo merging at some

finite rate, which can be suitably modelled (e.g. Lacey & Cole 1993). As mentioned above, in the simple PS theory such a rate

is actually infinite, for infinite mass resolution, implying that only haloes ‘just formed’ can survive, so that zf\z. So, if one gives

up singling out the individuality of haloes selected at different thresholds, i.e., with different formation redshifts zfEz, one

immediately obtains (e.g. Matarrese et al. 1997)

bE

1 (z !M )\1+& dc

D (z)2s 2

M

Ð
1

dc' , (30)

which implies a quadratic redshift dependence in the Einstein–de Sitter universe,

bE

1 (z !M )\1+&dc(1+z)2

s 2

M

Ð
1

dc' . (31)

The latter form coincides with the result by Cole & Kaiser (1989, their equation 6), who, however, define the bias factor of

haloes at redshift z with respect to the mass fluctuation at the present time, which then scales the latter expression by a factor

(1+z)Ð1.

On the other hand, for fixed zf and varying z, i.e., for objects which survived till the epoch z after their birth at zf, the Eulerian

bias of equation (26) gets a completely different evolution, namely

bE

1 (z !M )\1+
D (zf)

D (z)
[bE

1 (zf !M )Ð1], (32)

which implies a linear redshift dependence in the Einstein–de Sitter case,

bE

1 (z !M )\1+
1+z

1+zf

[bE

1 (zf !M )Ð1]. (33)

The latter form coincides with that obtained by Dekel (1986), Dekel & Rees (1987), Nusser & Davis (1994) and Fry (1996).

This relation can be relevant for galaxies which were conserved in number after their formation, i.e., that maintained their

individuality even after their hosting haloes merged.

It is trivial, at this point, to obtain the Eulerian halo–halo correlation function within our approximations. For lags

raaR0 , one has

The bias field of dark matter haloes 701

© 1998 RAS, MNRAS 297, 692–712

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/2
9
7
/3

/6
9
2
/9

7
9
8
3
5
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



jE

hh (r, z !M1 , z1; M2 , z2)\bE

1 (z !M1 , z1) bE

1 (z !M2 , z2) jm (r, z)+
1

2 
bE

2 (z !M1 , z1) bE

2 (z !M2 , z2) j2

m (r, z)+ . . . (34)

The main limitation of this formula, however, is that it only provides a link between the Eulerian halo correlation function and

that of the mass within linear theory. What one would really need, instead, is a similar relation in the fully non-linear regime.

This problem will be solved in the next section.

3 H A LO  CO U N TI N G  A N D  N O N -LI N E A R  D YN A M I C S :  E U LE R I A N  D E S CR I P TI O N

One can derive a general expression for the Eulerian halo-to-mass bias by integrating the continuity equations for the mass

and for the halo number density, assuming that haloes move according to the velocity field determined by the matter. The

Lagrangian analysis carried out in the previous section is crucial to the present purposes, since it allows for the natural initial

conditions necessary to integrate the Eulerian equations. As we will show below, the Eulerian halo-to-mass bias obtained in

such a way holds for any cosmology and in any dynamical regime. This turns out to be a remarkable generalization of the

biasing proposed by Cole & Kaiser (1989) and MW.

3.1 Eulerian bias from dynamical fluid equations

Let us consider the mass density fluctuation field d [x, t (z)]\d (x, z) which obeys the mass conservation equation

dd

dt
\Ð(1+d) H · v, (35)

where t is the conformal time of the background cosmology, and the differential operator d/dt=q/qt+v ·H is the convective

derivative. The peculiar velocity field v=dx/dt satisfies the Euler equation dv/dt+(a p/a) v\ÐHfg, where a is the expansion

factor, and a prime denotes differentiation with respect to t. For later convenience, let us also define the scaled peculiar

velocity u=dx/dD\v/D p. The peculiar gravitational potential fg is determined by the matter distribution via the cosmological

Poisson equation H2fg\4pGa 2rb(t) d, where rb(t) is the background mean density at time t. If we assume that our halo

population of mass M and formation redshift zf is conserved in time, and evolves exclusively under the influence of gravity, its

number density fluctuation dh (x, z)\dh (x, z !M, zf) has to satisfy the continuity equation (e.g. Fry 1996)

ddh

dt
\Ð(1+dh) H ·v, (36)

from which, eliminating the expansion scalar H · v, we obtain

d ln(1+dh)

dt
\

d ln(1+d)

dt
. (37)

This equation can be integrated exactly in terms of Lagrangian quantities, and the solution reads

1+dh (x, z)\[1+dh (q)] [1+d (x, z)] (38)

(see also the discussion in Peacock & Dodds 1994), where q is the Lagrangian position corresponding to the Eulerian one via

x(q, z)\q+S (q, z), with S (q, z) the displacement vector. In equation (38), by dh (q)\dh (q !M, zf) we mean the Lagrangian halo

density fluctuation, whereas, for simplicity, we assumed that lim zhld [x(q, z), z]=d (q)\0, i.e., that the mass was initially

uniformly distributed (this amounts to taking purely growing-mode initial perturbations). Defining the Eulerian halo bias field

through

dh (x, z)=bE (x, z) d (x, z), (39)

we end up with the exact relation

bE (x, z)\1+
1+d (x, z)

d (x, z)
dh (q). (40)

The key problem now is how to calculate the field dh (q). We cannot simply take the Lagrangian halo distribution as

dh (q)\bL(q) d (q), because d (q)\0; thus we are forced to adopt some limiting procedure. The specify the Lagrangian halo
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distribution, we can take advantage of the results of Section 2. By definition, the Lagrangian distribution of nascent haloes of

mass M and formation epoch zf is given by

dh (q !M, zf)=
zhl

lim  bE (q, z !M, zf) ebg(q, z)=bL

0 (q !M, zf) e0(q), (41)

where bL

0 (q !M, zf) is the Lagrangian halo bias field. Once again, let us stress that the second equality in the latter equation

does not mean at all that dh (q) is proportional to e0(q). In fact, bL is in general a functional of the background density

field. To understand the above equation, one has to remember that, at sufficiently early times, the expression for the

Eulerian bias field obtained in linear theory becomes exact (as linear theory gets more and more accurate), and

d (x, z)hebg(x, z)\D (z) e0(q), as zhl. Because of our normalization of D, here e0(q) is the mass density fluctuation linearly

extrapolated to the presentt time and filtered on the background scale R0 . The background smoothing scale R0 actually has a

twofold role in our analysis. In the linear theory approach  of Section 2 it was introduced and required to be much larger than

the halo size, in order to get a self-consistent definition of halo counting fields, with the desirable feature of being free of the

cloud-in-cloud problem. In the present non-linear analysis, however, the background mass scale must be chosen large enough

to ensure that the halo velocity field coincides with the one of the matter.

The Lagrangian density contrast of haloes identified by a PS-type algorithm can be obtained from equation (29) as

dh (q !M, zf)\N L

h (q, z !M, zf)/nPS(z !M, zf)Ð1, which leads to

dh (q !M, zf)\&1Ð
D (zf) e0(q)

dc ' 21Ð
s 2

0

s 2

M3
Ð3/2

exp &Ðe0(q)2Ð2e0(q) dc/D (zf)+d2

c s
2

0/D (zf)
2s 2

M

2 (s 2

MÐs 2

c) 'Ð1. (42)

For s 2

Maas 2

0 this expression simplifies to

dh (q !M, zf)\&1Ð
D (zf) e0(q)

dc ' exp &Ðe0(q)2Ð2e0(q) dc/D (zf)

2s 2

M 'Ð1\ +
l

l\1

bL

0l (M, zf)

l !
e0(q)l. (43)

The first four Lagrangian bias factors evaluated at z\0 read

bL

01 (M, zf)\D (zf) & dc

D (zf)
2s 2

M

Ð
1

dc' , (44)

bL

02 (M, zf)\
1

s 2

M &
d2

c

D (zf)
2s 2

M

Ð3' , (45)

bL

03 (M, zf)\
D (zf)

s 2

M & d3

c

D (zf)
4s 4

M

Ð
6dc

D (zf)
2s 2

M

+
3

dc' , (46)

bL

04 (M, zf)\
1

s 4

M &
d4

c

D (zf)
4s 4

M

Ð
10d2

c

D (zf)
2s 2

M

+15' . (47)

Note that, in full generality, bL

0l (M, zf)\D (z)lbL

l
(z !M, zf). Adding the further requirement that the local fluctuation on the

background scale R0 has not collapsed yet by the time of halo formation would make our object number density semipositive

definite both at the Lagrangian and Eulerian level, i.e., dhEÐ1, at any time, provided only that e0Rtf.

The general expression for the Lagrangian halo density contrast of equation (42) is plotted in Fig. 2 as a function of the

background density field, for different halo masses. In the high-mass case, positive mass fluctuations typically correspond to

positive values of the Lagrangian halo density contrast (and vice versa), while the trend is the opposite at low masses. The

transition, once again, corresponds to halo masses around M
*

, in which case positive values of dh occur only in regions with

background density close to the mean. Also shown are two approximations to the Lagrangian halo density contrast obtained

by expanding equation (42) up to first and second order in the background field. Except for halo masses near M
*

, where a

quadratic bias is clearly needed, a linear Lagrangian bias generally provides an accurate fit to dh (q) within the bulk of the e0

distribution.

The Eulerian bias field finally reads

bE (x, z !M, zf)\1+
1+d (x, z)

d (x, z)
bL

0 (q !M, zf) e0(q). (48)
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It can be seen that, in the linear regime, where d (x, z)2D (z) e0(q)ss1, the expression for bE in MW (i.e., our equation 26)

is recovered, provided that bL

0 (q !M, zf) is replaced by its first-order approximation, bL

01 (M, zf). It is, however, important to

realize that the exact expression in equation (48) implies that the Eulerian bias field of dark matter haloes bE (x, z !M, zf) is both

non-linear, in that it depends on d (x), and non-local, as it depends on the Lagrangian position q through bL

0 (q !M, zf) e0(q),

simply because of inertia.
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Figure 2. The exact expression for the Lagrangian halo density contrast of equation (42) (solid lines) is plotted as a function of v0=e0/s0. The

three panels refer to values of the halo masses such that s 2

M/t 2

f\1/4 (left), s 2

M/t 2

f\1 (centre) and s 2

M/t 2

f\4 (right), with tf\1.69/D (zf). The

background mass scale is chosen so that s 2

0\0.01s 2

M . Also plotted are two estimates of dh obtained by expanding the right-hand side of

equation (42) up to first (dashed lines) and second order (dotted lines) in e0. Note that, because of our choice of variables, all the curves are

independent both of zf and W0.

Our exact expression for the Eulerian halo bias (equation 48) generally involves quantitative corrections to the MW

approximate bias formula. In some cases, however, the MW relation may even fail to predict the correct qualitative behaviour

of the halo-to-mass bias. This is the case, in fact, of those initially underdense fluid elements in Lagrangian space, e0(q)s0,

which, after an initial expansion phase, turn around to undergo a phase of local compression, so that the corresponding

Eulerian fluid element eventually becomes overdense, d [x(q, z), z]a0, and collapses. This is a well-known non-linear effect

caused by the shear component of the velocity field, i.e., by the tidal force of the surrounding matter. For Gaussian initial

conditions, the occurrence of such an event can be estimated by the Zel’dovich approximation as affecting 42 per cent of the

overall Lagrangian volume (Doroshkevich 1970; Shandarin & Zel’dovich 1984); Hui & Bertschinger (1996), using a different

approximation, estimated this effect as affecting at least 39 per cent of the total Lagrangian volume. In all such cases the MW

formula would incorrectly predict bias instead of antibias for halo masses MaM
*

, and antibias instead of bias for MsM
*

.

The problem may be generally less severe than the above heuristic argument would suggest, as, at a fixed epoch z, only a

smaller fraction of such Lagrangian patches have already turned around from their initial expansion; this is even more true for

the large-mass haloes, which probe the underlying mass distrtibution in a more linear regime, where the MW formula gets

closer to the exact one. As a tentative conclusion, let us say that one should be careful in applying the linear MW bias (i.e.,

our equation 26) at the Eulerian level, especially in connection with halo masses much smaller than M
*

.

The most important application of equation (48) is that it allows us to generate Eulerian maps of the local comoving halo

number density per unit mass, nPS(M, zf) [1+dh (x, z !M, zf)], given the non-linearly evolved mass density contrast d (x, z) (with

Lagrangian resolution R0) and the corresponding Lagrangian mass and halo density fluctuation fields, e0(q) and dh (q !M, zf)

respectively.

In order to account for halo merging, at this level, one just has to assume a suitable link between the formation and

observation epochs, which, in the simple PS theory amounts to the replacement zfhz, in the above expression for bL

0 .

Recalling that mass conservation can be recast in terms of the Jacobian determinant J=!!qx/qq!! of the mapping qhx, as

1+d [x(q, z), z]\J(q, z)Ð1, one finds the exact relation

bE [x(q, z), z !M, zf]\1+[1ÐJ(q, z)]Ð1 bL

0 (q !M, zf) e0(q). (49)

It can be useful to illustrate the meaning of this expression by considering various approximations to the evolution of the mass

density in the non-linear regime, i.e., to the particle trajectories x(q, z). Such approximation schemes should be thought of, not

as self-consistent perturbative approaches to the actual dynamics, but as ‘clever tricks’ able to catch some aspects of the true

dynamics, at least in the mildly non-linear regime. A detailed and systematic comparison of the performance of several

approximations for different choices of the initial conditions has been made by Sathyaprakash et al. (1995).
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3.1.1 Z el’dovich approximation

In the Zel’dovich approximation (ZEL) (Zel’dovich 1970) the displacement vector is S\ÐD Hqh0(q), where h 0(q) is the

linear peculiar gravitational potential, suitably rescaled so that H2

q h0(q)\e0(q). Indicating by la(q) (a\1, 2, 3) the eigenvalues

of the deformation tensor q2h0(q)/qqaqqb , we obtain for the Eulerian bias field

bE

ZEL [x(q, z), z !M, zf]\1+
e0(q) bL

0 (q !M, zf)

1ÐP3

a\1 [1ÐD (z) la(q)]

\1+
bL

0 (q !M, zf)

D (z) &1ÐD (z) 
m2(q)

m1(q)
+D (z)2

m3(q)

m1(q)'
Ð1

. (50)

Here m1(q)=l1+l2+l3\e0(q), m2=l1l2+l1l3+l2l3 and m3=l1l2l3 are the three invariants of the deformation tensor. If

one makes the further approximation of replacing the Lagrangian bias by its first-order estimate of equation (44), it can be

checked that the expression of bE

ZEL coincides with the MW result, both at sufficiently early times (Dss1) and in the case of

one-dimensional perturbations, for which m2\0\m3 and the Zel’dovich approximation represents the exact solution to the

non-linear dynamics.

It is important to stress that we are not forced to take the above result as a perturbative expression. An accurate

approximation to the Eulerian bias field would, in fact, consist in evolving the mass according to the truncated (on the scale

M0) Zel’dovich approximation (Kofman 1991; Kofman et al. 1992; Coles, Melott & Shandarin 1993) and using the full

expression for the Lagrangian bias. Being a random field, the Eulerian halo bias is completely characterized by a probability

density functional; thus for a given mass M and formation redshift zf there exists a whole distribution of possible values of bE,

related to the particular environment where the object forms as well as to the initial conditions leading to that site. Starting

from the ZEL expression in equation (50), one could explicitly obtain the probability distribution function p (b E

ZEL) dbE

ZEL by

integrating over the joint distribution of the invariants ma (an expression for the latter is given in Kofman et al. 1994). These

specific applications of our results will be discussed elsewhere.

Equation (50) has the merit of clearly displaying the intrinsic non-locality of the Eulerian bias. Only in some simplified cases

does there exist a local mapping between bE and d, so that an expansion of the halo density contrast in a hierarchy of Eulerian

bias factors, bE

1 , bE

2 , etc., makes sense. One example is provided by the linear-theory approach of Section 2.6; further examples

are given below.

3.1.2 Frozen-flow approximation

According to the frozen-flow approximation (FFA) (Matarrese et al. 1992) the Eulerian density field can be written as

1+d [x(q, z), z]\exp h
D (z)

0

dD̃e0[x(q, D̃)], (51)

where the integral is calculated along the trajectory of the fluid element. Note that, since in the FFA shell-crossing never

occurs, the mapping qhx can be inverted at any time. The solution (51) might be replaced in equation (48) to obtain a non-

local expression for the FFA bias parameter. However, we can make a further step by noting that, for Lagrangian points q
*

corresponding to local extrema of the initial gravitational potential Hqh0(q
*

)\0, FFA predicts x
*
\x(q

*
, z)\q

*
, and

1+d (x
*

, z)\exp[D (z) e0(x
*

)]. (52)

One can speculate that such points represent the preferential sites for the formation of massive haloes, which could be

associated to clusters of galaxies, and use this approximate expression to obtain

bE

FFA (x
*

, z !M, zf)21+
1+d (x

*
, z)

d (x
*

, z)
ln[1+d (x

*
, z)] 

bL

0 (x
*
!M, zf)

D (z)
. (53)

Expanding this expression in powers of d, to first order we recover the MW expression, equation (26), while to second order

we obtain

bE

2FFA (z !M, zf)\
1

D (z)2s 2

M &
d2

c

D (zf)
2s 2

M

Ð3'+D (zf)

D (z) & dc

D (zf)
2s 2

M

Ð
1

dc' , (54)

which differs from the linear-theory prediction of equation (27). Analogous results could be obtained using the frozen-potential

approximation (Brainerd, Scherrer & Villumsen 1993; Bagla & Padmanabhan 1994), with the main difference that the d
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evolution would be slowed down compared to FFA. Quite interesting is the fact that the lognormal model by Coles & Jones

(1991) assumes that the quantity 1+33. d (x, z) can be always approximated by the exponential of the linear density field at

the same Eulerian position, so that the expressions above for the Eulerian bias factor in FFA would apply to all Eulerian points

x. Of course, the validity of these approximate expressions for the bias should be checked against the results of N-body

simulations.

Another way to get a local mapping between the evolved halo density field and the underlying matter perturbations is to

approximate the non-linear evolution of the mass by the spherical top-hat model. This method has been followed by MW and

Mo et al. (1996).

3.2 Perturbative evaluation of the Eulerian halo density contrast

In the previous section we demonstrated that the Eulerian bias is a non-linear and non-local function of the density fluctuation

field. The ‘non-locality’, in particular, comes from the fact that the halo number density fluctuation in x is determined by the

initial halo number fluctuation at the Lagrangian position q, which, in turn, is related to the linear mass fluctuation in the same

point, through a hierarchy of Lagrangian bias parameters. Here we want to derive an approximate expression for dh [x(q,

D), D], by applying the second-order Eulerian perturbation theory. Whenever it will be necessary to go from the Lagrangian

position q to the Eulerian one, the Zel’dovich approximation will be sufficient.

Within the linear regime, the Eulerian solution of the continuity equation is simply d (1) (x, D)\De0(x). The mildly non-

linear regime may be approximately described by the second-order solution (Bouchet et al. 1992; Bernardeau 1994; Catelan

et al. 1995)

d (2) (x, D)\
1

2 &1Ð
E

D 2' d (1) (x, D)2ÐDu (1) (x) ·Hd (1) (x, D)+
1

2 
D 2 &1+

E

D2' qau (1)

b (x) qau (1)

b (x), (55)

in such a way that d\d (1)+d (2) and higher order corrections are neglected. Here u (1) (x)\ÐHh0(x) is the (scaled) linear

peculiar velocity, and h0 is the (scaled) peculiar gravitational potential, linearly extrapolated to the present time. The second-

order growth factor E\E (D) is quite a complicated function of D (W) (see Appendix A for its explicit expression), but in the

vicinity of W\1 (actually in the range 0.05RWR3) it can be approximated by the expression E2Ð
3
7WÐ2/63D 2+O [(WÐ1)2]

(see Bouchet et al. 1992). Therefore the previous second-order solution is well approximated by the expression which holds

in the Einstein–de Sitter universe, namely (Fry 1984)

d (2) (x, D)\
5

7 
d (1) (x, D)2ÐDu (1) (x) ·Hd (1) (x, D)+

2

7 
D 2qau (1)

b (x) qau (1)

b (x). (56)

We want now to compute the corresponding second-order perturbative correction, d (2)

h (x, D), to the linear halo density

fluctuation field, d (1)

h (x, D). From equation (38) we obtain

dh2d (1)

x +d (2)

x +bL

1 d (1)

q +bL

1 d (1)

x d (1)

q +
1

2 
bL

2 d (1)2

q , (57)

where to maintain compact notation we write, e.g., d ( j)
x =d ( j) (x, D). The Lagrangian bias factors bL

1\bL

1 (z !M, zf) and

bL

2\bL

2 (z !M, zf) are those given in equations (16) and (17). Notice that the perturbative expansion of dx holds at sufficiently

early times and/or large scales, while the validity of the expansion of dh (q) in powers of e0(q) is based on assuming a suitably

large smoothing radius R0 on the background field e (q).

The key point is that the first-order density field at the Lagrangian position q originates a non-local term, when written at

the corresponding Eulerian position x. Using the Zel’dovich approximation x\q+Du (1), one obtains d (1)

q \d (1)

x ÐDu (1) ·Hd (1)

x .

Finally, defining dh\d (1)

h +d (2)

h , one gets d (1)

h \(1+bL

1) d (1) and

d (2)

h \&12 21Ð
E

D 23+bL

1 +
1

2 
bL

2' d (1)2ÐD (1+bL

1) u (1) ·Hd (1)+
1

2 
D 2 21+

E

D 23 qau (1)

b qau (1)

b . (58)

Thus the non-locality has the effect of modifying the inertia term u (1) ·Hd (1), which gets multiplied by the factor (1+bL

1). The

dynamical properties of the random field dh may be equivalently analysed in terms of its Fourier transform d̃h (k, t) where k is

the comoving wavevector. Thus the second-order solution (58) may be written as

d̃ (2)

h (k, D)\h dk1dk2

(2p)3
dD(k1+k2Ðk)H (2)

S (k1 , k2; bL

1 , bL

2 ; W) d̃1(k1 , D) d̃1(k2 , D), (59)
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where the symmetrized kernel H (2)

S reads

H
(2)

S (k1 , k2; bL

1 , bL

2 , W)=&12 21Ð
E

D 23+bL

1 +
1

2 
bL

2'+1+bL

1

2 2k1

k2

+
k2

k13 k1 · k2

k1k2

+
1

2 21+
E

D 23 2k1 · k2

k1k2 3
2

. (60)

The corresponding kernel for the Einstein–de Sitter case reads

H
(2)

S (k1 , k2; bL

1 , bL

2 , W\1)=&57+bL

1 +
1

2 
bL

2'+1+bL

1

2 2k1

k2

+
k2

k13 k1 · k2

k1k2

+
2

7 2k1 · k2

k1k2 3
2

. (61)

3.3 Halo bispectrum and skewness

A possible application of these results is the evaluation of the bispectrum and corresponding skewness of the halo distribution.

A related calculation has been performed by Fry (1996), who assumed the bias to be local in Eulerian space at zf. It should

be clear that our model is quite different from the local Eulerian bias prescription applied to the analysis of the skewness by

Fry & Gaztañaga (1993). Moreover, the latter treatment, unlike ours, lacks of any prediction for the value of the different bias

parameters. We recall that the value of the gravitationally induced skewness of the mass is

S\

,d3.

,d2.2
\4Ð2 

E

D 2
, (62)

for unfiltered fields, and

S (R)\
,d3

R
.

,d2

R
.2

\4Ð2 
E

D 2
Ðg (R), (63)

for a spherical top-hat filter, where g=Ðd ln s (R)2/d ln R (Bernardeau 1994). The smoothing radius R should not be

confused with R, defining the halo mass: one is obviously interested in computing the skewness on a smoothing scale much

larger than the typical size of the single objects. In the Einstein–de Sitter universe, and for a scale-free power spectrum with

spectral index n, the latter reduces to S (R)\34/7Ð(n+3), for Ð3RnR1.

The derivation of the halo skewness ,d3

h.23,d (1)2

h d (2)

h . is simple. Assuming that the Eulerian halo density field is smoothed

by a top-hat filter, the halo skewness parameter Sh is, for a generic value of W,

Sh (R; z, W)\3 
,d (1)2

h d (2)

h .

,d (1)2

h .2
\

4Ð2
E

D 2
+6bL

1 (z !M, zf)+3bL

2 (z !M, zf)Ð[1+bL

1 (z !M, zf)]g(R)

[1+bL

1 (z !M, zf)]2
. (64)

It is of interest to write the halo skewness in the Einstein–de Sitter universe and for a scale-free linear power spectrum,

Sh (n; z, W\1)\

34
7 +6bL

1 (z !M, zf)+3bL

2 (z !M, zf)Ð(n+3) [1+bL

1 (z !M, zf)]

[1+bL

1 (z !M, zf)]2
. (65)

As for the mass skewness, the dependence on the smoothing scale R now simply translates into a dependence on the spectral

index n. The asymptotic value of Sh (n; z, W\1) for a fixed formation redshift zf, is 34/7Ð(n+3) as zhÐ1. This limit gives the

value of the underlying mass skewness: in the absence of merging the haloes would evolve towards an unbiased distribution

in the far future. The skewness parameter is shown in Fig. 3 for different values of W0 and for a scale-free model with n\Ð2.

For objects observed at the present time, z\0, we vary the collapse epoch zf, which may simulate different models of galaxy

formation inside dark haloes. By varying together z\zf, we instead show the skewness evolution in the instantaneous merging

model. We also consider the case of varying only z: this gives the evolution of the skewness in a model in which the objects did

not suffer any merging after their formation at zf. Finally, we show the evolution of the skewness parameter of filtered mass

fluctuations; note that the Einstein–de Sitter case displays no redshift dependence, simply because of self-similarity; for

sensible values of W081 also the mass skewness of non-flat Friedmann models experiences very little evolution. The redshift

dependence of Sh is therefore mostly due to that of the Lagrangian bias factors. Quite interesting, in this respect, is the fact

that the halo skewness plotted in the two top panels of Fig. 3 displays a turning point in its redshift dependence: this typically

occurs when M2M
*

(zf).
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Of particular interest is also the expression for the halo bispectrum Bh defined by the relation

,d̃h (k2 , D) d̃h (k2 , D) d̃h (k3 , D).=(2p)3dD(k1+k2+k3) Bh (k1 , k2 , k3; D). (66)
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The leading term shows the characteristic hierarchical pattern

Bh (k1 , k2 , k3; D)\D 4[1+bL

1 (z !M, zf)]2[2H (2)

S (k1 , k2; bL

1 , bL

2 , W) P (k1) P (k2)+cyclic terms], (67)

where P (k) is the primordial density power spectrum defined by ,d̃1(k1, D) d̃1(k2, D).\(2p)3dD(k1+k2) D 2P (k1), and the two

cyclic terms are obtained by the substitutions k1hk2 , k1hk3 and k2hk3 . Typically, as for the hierarchical mass bispectrum, the

halo bispectrum is largely scale-dependent, while its dependence on the k-shape is rather weak. One way to eliminate the scale

dependence and look at the residual shape dependence is to analyse the ‘effective’ bispectrum amplitude Q (Fry 1984),

Q=
Bh (k1 , k2 , k3; D)

Ph (k1 , D) Ph (k2 , D)+Ph (k1 , D) Ph (k2 , D)+Ph (k2 , D) Ph (k3 , D)
. (68)

The halo power spectrum is biased with respect to the mass one, Ph (k, D)\D 2[1+bL

1 (z)]2P (k). For a power-law spectrum, the

amplitude Q generally depends on the spectral index n, owing to the wavenumber modulation introduced by the kernel

H
(2)

S (k1 , k2) (cf. Fig. 4). For equilateral triangle configurations, Q gets an n-independent value, namely

Figure 3. The filtered skewness parameter is plotted, for W0\0.5, 1, 1.5, for a scale-free model with n\Ð2. The halo masses are selected

with the same linear mass variance s 2

M\10, corresponding to the same present-day bias parameters. We take everywhere dc\1.69. The top-

left panels refers to objects observed at z\0, with varying formation redshift zf. The top-right panels shows the effect of varying simultane-

ously z\zf. In the bottom-left panel we fix zf\5 and look at different observation redshifts zRzf. The bottom-right panel, finally, shows the

evolution of the skewness parameter of filtered mass fluctuations.
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Qeq(W; z)\

1
4 &1Ð3

E

D 2'+2bL

1 (z !M, zf)+bL

2 (z !M, zf)

[1+bL

1 (z !M, zf)]2
, (69)

reducing to

Qeq(W\1; z)\

4
7+2bL

1 (z !M, zf)+bL

2 (z !M, zf)

[1+bL

1 (z !M, zf)]2
, (70)

in the Einstein–de Sitter universe.

3.4 Local Lagrangian bias

So far, our model has been treated as being fully predictive. Once the cosmological scenario and the structure formation

model have been fixed, our algorithm contains no fitting parameters. This is because we used a local version of the PS theory

to generate the Lagrangian halo density contrast. One could, however, take a more general point of view and assume that the

Lagrangian halo density contrast dh (q) is specified in terms of the linear background density field ebg(q, z)\D (z) e0(q) by a set

of unknown bias parameters b̂L

l
(z), as follows:

dh (q)\ +
l

l\1

b̂L

0l

l !
e0(q)l\ +

l

l\1

b̂L

l
(z)

l !
ebg(q, z)l. (71)

Defining now b1=b1(z)\1+b̂L

1 (z) and b2=b2(z)\2b̂L

1 (z)+b̂L

2 (z), according to equation (28), and replacing these expansions

in our previous treatment, we recover the general expression (59) for the second-order halo density contrast, with the more

general kernel

H
(2)

S (k1 , k3; b1 , b2 , W)\
1

2 &21Ð
E

D 23+b2'+b1

2 2k1

k2

+
k2

k13 k1 · k2

k1k2

+
1

2 21+
E

D 23 2k1 · k2

k1k2 3
2

. (72)

Comparing this relation with the analogous one obtained with a local Eulerian bias expansion (e.g. Fry, Melott & Shandarin

1995; Matarrese, Verde & Heavens 1997), we see that the bispectrum for a set of objects selected by a local Lagrangian bias

differ from the results of the local Eulerian bias by the extra inertia term

b1Ð1

2 2k1

k2

+
k2

k13 k1 · k2

k1k2

, (73)

which implies a different shape dependence.

The halo bispectrum amplitude Q (y), at z\zf\0, for configurations with sides k1\1, k2\1/2, separated by an angle y, is

shown in Fig. 4, for scale-free models with n\Ð2 and Ð1, with W\1. Two different cases are considered: our local

Lagrangian bias model, with linear Eulerian parameters b1\2 and b2\1, and the local Eulerian bias model of Fry &

Gaztañaga, with the same Eulerian bias parameters.

Similar reasoning would apply to the skewness, for which the local Lagrangian versus Eulerian bias hypothesis implies a

change of the scale dependence, through the extra term

Ð
b1Ð1

(b1)
2

g (R). (74)

With adequate modelling of galaxy formation inside dark matter haloes (e.g. Kauffmann et al. 1997, and references therein)

the results of this section can be used to predict the clustering properties of galaxies at different redshifts. In particular, the

specific shape dependence of the bispectrum (and related scale dependence of the skewness), implied by our local Lagrangian

bias prescription, would reflect into a detectable signature in the statistical properties of the galaxy distribution. Our model

therefore provides a valid alternative to local Eulerian bias schemes (e.g. Cen & Ostriker 1992; Coles 1993; Fry & Gaztañaga

1993; Catelan et al. 1994; Mann et al. 1998).

4 CO N CLU S I O N S

In this paper we studied the non-linear evolution of the clustering of dark matter haloes, using a stochastic approach to single

out the halo formation sites directly in Lagrangian space. Our model is based on a local version of the Press–Schechter theory,
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which becomes free of the cloud-in-cloud problem after a suitable coarse-graining procedure is applied. The non-linear

evolution of the halo distribution is then followed exactly by relating it to the dynamics of the Lagrangian patch of fluid which

the nascent halo belongs to.

This formalism allowed us to obtain the bias random field relating the local halo density contrast to the underlying mass

distribution. The expression for the halo bias field, reported in equations (48) and (49), represents the most relevant result of

our paper. Because of the locality in Lagrangian space inherent in our approach, such a bias field turns out to be non-local in

Eulerian coordinates, which has relevant implications for the clustering properties of luminous objects like galaxies and galaxy

clusters that formed inside dark matter haloes.

Our method contains two Lagrangian smoothing scales. The scale R, selecting the halo mass, and the background scale

R0aaR allow us to define the Lagrangian halo counting field as the local PS mass function in a patch with comoving

background density rb[1+ebg(q, z)], ebg being the linear mass fluctuation smoothed on the scale R0 . Given the role of the latter,

it would appear that our description of halo clustering makes sense only on scales larger than R0 . On the other hand, the

derivation of the Lagrangian correlation function in Section 2.4, which does not make use of the background field, suggests

that we can actually extrapolate our Lagrangian results down to separation comparable to the halo size. This result is further

confirmed by an analysis in terms of space-correlated Langevin equations (Porciani et al. 1998). The numerical results of MW

and Mo et al. (1996) support the idea that such an extrapolation would apply even in the non-linearly evolved case. In our

treatment of the non-linear regime, the background scale R0 appears with a complementary role. It is the minimum scale

ensuring that the nascent haloes are indeed comoving with the Lagrangian fluid patch to which they belong. This would

reasonably require that the Lagrangian fluid elements evolve with negligible orbit crossing (e.g. Kofman et al. 1994).

Once again, let us stress that our approach makes no assumptions about the merger rates of the considered objects. The

clear distinction between observed and formation redshift, z and zf, in our approach implies that the instantaneous merging

hypothesis, implicit in the standard PS model, as well as any other realistic approximation can be easily accommodated into

our scheme as just the way to relate zf and z.

Our method for evolving the spatial distribution of the haloes is indeed much more general than the specific application we

have considered so far. Given any Lagrangian population of objects specified by some set of physical properties M (like mass

and formation threshold in our halo model), with conserved mean comoving number density n̄obj(M) and local Lagrangian

density contrast dobj(q !M), our results imply that, at any redshift z, their comoving local density in Eulerian space is given

by

nobj(x, z !M)\n̄obj(M) h dq [1+dobj(q !M)]dD[xÐx(q, z)], (75)

where x(q, z)\q+S (q, z), and S (q, z) is the displacement vector of the qth Lagrangian element. Smoothing the initial

gravitational potential on some scale R0 is again required, so that the objects assigned to the qth patch can be sensibly assumed
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Figure 4. The halo bispectrum amplitude Q (y) for configurations with sides k1\1, k2\1/2, separated by an angle y is plotted versus y for

scale-free models with n\Ð2 and Ð1 at z\zf\0 and in a flat universe. Two cases are shown for each panel: the local Lagrangian bias

model, with linear Eulerian parameters b1\2 and b2\1 (solid line), and the local Eulerian bias model, with the same bias parameters

(dashed line).
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to be comoving with it. This method could be used, for instance, to follow the clustering of the Lagrangian density maxima in

the non-linearly evolved mass density field. This suggests that, starting from low-resolution numerical simulations, one can

generate mock catalogues of the given class of objects, with local density correctly specified up to some resolution scale. One

can understand the last relation as a local version of the Chapman–Kolmogorov equation of stochastic processes (e.g. van

Kampen 1992), stating that the local Eulerian object distribution is the convolution of the Lagrangian object density with the

‘conditional particle density’, dD[xÐx(q, z)], i.e., the probability that a particle is found in x at redshift z, given that it was in

q as zhl, the only underlying hypothesis being, once again, that these objects move exclusively by the action of gravity. It may

be worth noting that the latter equation is actually more general than equation (38), as it also holds in the presence of

multistreaming.

Our non-linear stochastic approach can be already considered successful in that, besides recovering the PS mass function,

it provides a self-consistent derivative of the Eulerian halo bias, which, to a first approximation, reduces to the MW formula.

We, however, also predict both quantitative and qualitative corrections to the MW results, that clearly need to be checked

against the outputs of numerical simulations. A definite prediction of our analysis is, for instance, the form of the skewness

and of the bispectrum of the spatial halo distribution, which significantly deviates from that deduced with any local Eulerian

bias prescription.
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AP P E N D I X  A:  GRO WTH  FACTO RS  I N  F R I E D M A N N  U N I VE RS E  M O D E LS

The expressions for the first- and second-order growth factors D (z) and E (z) have not been given in the main text. An easy

derivation can be given following Shandarin (1980) and using the relation

WÐ1Ð1\(WÐ1

0 Ð1) (1+z)Ð1. (A1)

We consider only cases with vanishing cosmological constant. The growth factor D (z; W0) of linear density perturbations reads,

for the different geometries,

5

2
+

15

2

W0(1+z)

1ÐW0 &1Ð
1

2 X1+W0z

1ÐW0

ln 2 W0(1+z)

2ÐW0(1Ðz)Ð2Z(1ÐW0) (1+W0z)3' (W0s1)

D (z; W0)\ (1+z)Ð1 (W0\1) (A2)

Ð
5

2
+

15

2

W0(1+z)

W0Ð1 &1+X1+W0z

W0Ð1
arctan 2ÐX W0Ð1

1+W0z3' (W0a1).8
The expressions for the second-order growth factors E (z; W0) are slightly more cumbersome:

E (z; W0)\Ð
25

8
Ð

225

8

W0(1+z)

1ÐW0 *1Ð
1

2 X1+W0z

1ÐW0

ln & W0(1+z)

2ÐW0(1Ðz)Ð2Z(1ÐW0) (1+W0z)'
+

1

2 8ÐX1+W0z

1ÐW0

+
1

2

W0(1+z)

1ÐW0

ln & W0(1+z)

2ÐW0(1Ðz)Ð2Z(1ÐW0) (1+W0z)'9
2

+ (W0s1), (A3)

E (z; W0)\Ð
3

7 (1+z)2
(W0\1), (A4)

E (z; W0)\Ð
25

8
+

225

8

W0(1+z)

W0Ð1 81+X1+W0z

W0Ð1
arctan 2ÐX W0Ð1

1+W0z3
+

1

2 &X1+W0z

W0Ð1
+

W0(1+z)

W0Ð1
arctan 2ÐX W0Ð1

1+W0z3'
2

9 (W0a1). (A5)

Notice that we are implicitly adopting here the normalization suggested by Shandarin (1980), so that, in the limit zhl

one recovers the Einstein–de Sitter case, D (z; W0)h(1+z)Ð1. However, in the main text we normalized to unity the linear

growing factors extrapolated to the present time; so, for any geometry, we define D (z)=D (z; W0)/D (z\0; W0) and

E (z)=E (z; W0)/[D (z\0; W0)]2.
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