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THE BICHROMATICITY OF A GRAPH

BOHDAN ZELINKA, Liberec

(Received February 15, 1979)

F. HARARY, D. Hsu and Z. MILLER in [1] define the bichromaticity of a bipartite
graph as follows. Let B be a connected finite bipartite graph on the vertex sets U, V.
(This means that the vertex set of B is the union of disjoint sets U, V' and each edge
of B joins a vertex of U with a vertex of V.) A bicomplete homomorphism of the
graph B onto a complete bigraph K, ; is such a homomorphism y of B onto K,
that for any two vertices x, y of B the equality y(x) = y(y) implies that x and y
are either both in U or both in V. The bichromaticity B(B) of the graph B is the maxi-
mal number of vertices of a complete bipartite graph onto which B can be mapped
by a bicomplete homomorphism.

Following [1], a bipartite graph will be shortly called a bigraph. If B is a bigraph
on the sets U, V and |U| > [V|, then U is called the majority of B and its cardinality
is denoted by p(B).

In [1] a problem was proposed to find f(B x K) in terms of B(B). The authors
noted that an exact formula determining (B x K,) as a function of B(B) would
yield a formula for B(Q,), where Q,, is the graph of the cube of dimension n. We shall
show that (B x K,) is not uniquely determined by B(B) and we shall give bounds
for B(B x K,) in terms of B(B). First we prove a theorem which will serve us as
a lemma.

Theorem 1. Let B be a connected finite bigraph on the sets U, V. Let there exist
a vertex x € U which is adjacent to all vertices of V and let the bigraph B, obtained
from B by deleting u be connected. Then

B(B) = B(By) + 1.

Proof. Let B, be mapped by a bicomplete homomorphism ¥/, onto the complete
bigraph K, , such that r + s = B(B,). Let U — {x} (or V) be mapped by this homo-
morphism onto a set U, (or ¥;) of the cardinality r (or s, respectively). Consider
the graph K, ., ; obtained from K, ; by adding a vertex y and joining it by edges
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with all vertices of V,. Then we define the mapping y of B onto K, ; such that
¥(v) = Yo(v) for each v + x and Y(x) = y. This is evidently a bicomplete homo-
morphism of B onto K, s and B(B) = B(B,) + 1. Now suppose f(B) = B(B,) + 2.
Then there exists a bicomplete homomorphism ' of B onto a bigraph K, , such
that p + ¢ = r + s + 2. Let U (or V) be mapped by ¥/’ onto a set of the cardinality p
(or g, respectively). By deleting y'(x) from K, , we obtain the graph K,_; ,. The
mapping ¥’ maps an induced subgraph of B, onto this graph K,_, ,, therefore also
the whole graph B, can be mapped by a bicomplete homomorphism onto K,_; ,.
But p—1+4+ ¢ =r+ s+ 1, which is a contradiction with the assumption that
B(By) = r + s. Therefore the assertion of the theorem is true.

Now we prove a theorem on B(B x K,).

Theorem 2. Let B be a connected finite bigraph which can be mapped by a bi-
complete homomorphism onto the complete bigraph K, where r <s. Then
B x K, can be mapped by a bicomplete homomorphism onto the complete bigraph
K, .+s. There exist bigraphs B with the property that B can be mapped by a bi-
complete homomorphism onto K, ,, where r < s and B(B x K,) = 2r + s.

Proof. Let B be a bigraph on the sets U, V. The graph B x K, can be described
as follows: Take two copies B’ and B” of the graph B and an isomorphic mapping ¢
of B’ onto B” and join each vertex x of B’ with its image ¢(x) by an edge. The sets
corresponding to U, Vin B’ will be denoted by U’, ¥’ and in B” by U”, V". Without
loss of generality suppose that in the bicomplete homomorphism ¥ which maps B’
onto K, ; the set U is mapped onto a set U, of the cardinality » and Vis mapped onto
a set V, of the cardinality s. Let K’, K” be two copies of K, . We map B’ onto K’
and B” onto K” by a bicomplete homomorphism corresponding to . The images
of U, U", V', V" will be consequently Up, Ug, Vg, Vg; we have |[Up| = |Ug| = r,
IV(;l = IV(;'I = s. Now we choose a surjection ¢ : V§ — Uj and we identify each
x € Ug with its image ¢(x). Thus we obtain a complete bigraph K, ,,, onto which
B x K, is mapped.

Now let B be a complete bigraph K, ,, where s > 2. We shall prove that
B(K,, x K;) = s + 4. We use the notation introduced above; we have |U| =
= ]U’I e [U”| =2, |V| = lV’| = IV”| =s. Let K,, be a complete bigraph onto
which K, ; x K, can be mapped by a bicomplete homomorphism and such that
p + q = B(K,,, x K,). If each vertex x € U' U U” has the property that y/(x) + ()
for each y #+ x, where ¥ is the bicomplete homomorphism of K, ; X K, onto K, ;,
then neither the subgraph of K, ; induced by Y(U' v U") nor K, , are complete
bigraphs which is a contradiction. Therefore there exists at least one vertex x €
e U’ u U” to which a vertex y exists such that x # y and y(x) = y(y). Without loss
of generality let xe U’. Then y e U" U V". Let G, be the graph obtained from K,
by identifying x and y; the graph G, can be mapped by a bichromatic homomorphism
onto K, , and B(G,) = B(K, ). If y e U, then the vertex obtained by identifying x
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and y is adjacent to all vertices of U” U V' in G,. Let G, be the bigraph obtained
from G, by deleting this vertex; by Theorem 1 we have B(G,) = B(G,) — 1. Let
zeU”. The graph G, is a bigraph on the set V", U” U V' and z is adjacent to all
vertices of " in G;. Let G, be the bigraph obtained from G, by deleting z; we have
B(G,) = B(G,) — 1 = B(G,) — 2. But G, is a tree with the majority (U” — {z}) u V'
of the cardinality u(G,) = s + 1, therefore by Theorem 1 from [1] we have B(G,) =
= s+ 2 and this implies f(G) = B(G,) = s + 4. Now suppose that the images
of vertices of U’ in y are different. If the images of vertices of U” are equal, then we
proceed analogously as in the preceding case. Therefore suppose also that the images
of vertices of U” in y are different. Let U’ = {u}, u3}, U” = {uf, u3} and let uj be
adjacent with u] and u} with 4 in K, ; x K,. Then one of the following four cases
must occur:

(a) There exist vertices yy, y, of V" such that y, # y, and ¥(uj) = ¥(y,), Y(u3) =

= l/’()’z)-
(a’) There exist vertices zy, z, of ¥’ such that z, *+ z, and Y(uj) = Y(z,), Y(u3) =
= ‘l/(zz)-

(b) There exist vertices y; € V", z, € V' such that y(u}) = ¥(yy), ¥(uy) = ¥(z,).
(b’) There exist vertices y, € V", z, € V' such that y(u3) = ¥(y,), ¥(uy) = ¥(z2).
If the case (a) occurs, let G, be the graph obtained from K, ; x K, by identifying u}
with y, and u} with y,. We have then B(G,) = p + q. The graph G, is a bigraph
on the sets V", U” u V' and the vertices uy, u5 are adjacent with all vertices of V”
in G,. Let G, be the graph obtained from G, by deleting u; and uj; by Theorem 1
we have B(G,) = B(G,) — 2. Each vertex V" — {y,, y,} has degree 1 in G, and the
subgraph of G, induced by {y;, y,} v U” U V' is isomorphic to K, .. Evidently,
if G, is mapped onto a complete bigraph by a bicomplete homomorphism, then either
all vertices of U” U V' are mapped onto the same vertex, or each vertex of V" —
= {y1, ¥2} is mapped onto the same vertex as u} or uj. In the first case the mentioned
complete bigraph is K, ,, in the second case K, ;. Therefore f(G,) =s + 2 and
B(Go) = B(K» s x K;) = s + 4. The case (a’) is analogous. Let the case (b) occur
and let G, be the bigraph obtained from K, ; x K, by identifying u; with y, and uj
with z;. The vertices uj, u; fulfil the condition of Theorem 1; let G; be the graph
obtained from G, by deleting them. We have B(G,) = B(G,) — 2. The graph G,
is a tree with the majority of the cardinality s, therefore ﬁ(Gl) =s+ 1 and
B(K, s x K;) = B(Go) = s + 3. This is impossible, since by the above proved results
B(K,s x K;) 2 s + 4. Analogously in the case (b’). Therefore one of the cases
(a), (2’) occurs and B(K, , X K,) = s + 4. As r = 2, this is 2r + s.

Theorem 3. Let B be a connected finite bigraph on the sets U, V which can be
mapped by a bicomplete homomorphism onto a complete bigraph K, ;, where
r < s. Let there exist an automorphism of B which maps U onto V and V onto U.
Then B x K, can be mapped by a bicomplete homomorphism onto a complete
bigraph K, ,;.
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Proof. We use the same notation as in the proof of Theorem 2. Note that if U
can be mapped onto U, and V onto ¥V, by a bicomplete homomorphism, then also U
can be mapped onto ¥, and ¥ onto U, (superposing the original homomorphism with
the mentioned automorphism). Then also the images of U’,U”, V', V" can be
consequently Uy, Vg, Vg, Ug. By an analogous procedure as in the proof of Theorem 2
we obtain a complete bigraph K, ,..

Now we can give bounds for §(B x K,).

Theorem 4. Let B be a connected finite bigraph with at least three vertices. Then
B(B) +2 < B(B x K;) <2 B(B),

and these bounds cannot be improved.

Proof. Let the notation be the same as in the proof of Theorem 2. If we identify
all vertices of U” and all vertices of V", we obtain a graph isomorphic to the graph
obtained from B by adding two vertices and an edge which joins them, joining one
of them with all vertices of U and the other with all vertices of V. By Theorem 1 the
bichromaticity of this graph is ﬁ(B) + 2 and thus the lower bound is obtained.
The case B = K, ; investigated in the proof of Theorem 2 shows that this bound
cannot be improved. Let K,, be a complete bigraph with p + g = B(B x K)
onto which B x K, can be mapped by a bicomplete homomorphism . The vertex
set of this graph is the union of the vertex sets of y(B') and y(B"). Each of these sets
has the cardinality at most §(B), therefore B(B x K,) < 2 B(B). Consider the path P,
with n vertices, n even. By Corollary 1a from [1] we have p(P,) = [4(n + 3)] =
= 4n + 1. Let the vertices of this path be u, ..., u, and the edges uu;,, for i =
=1,...,n — 1. Now P, x K, is the graph with the vertex set {u}, ..., u,, uf, ..., uj
and with the edges ujuj,(, ujui,; for i=1,...,n —1 and ujuj for i =1,...,n.
This is a bigraph on the sets U = {u}|i = 1(mod2)} U {u}|i = 0(mod 2)},
V= {u;|i=0(mod2)} u{uj|i=1(mod?2)}. There exists a bicomplete homo-
morphism ¥ onto a complete bigraph K, , such that y(x) = ¥(y) if and only if either
x =y or{x,y}  {uj|i=1(mod2)} or {x,y} = {uf | i = 0(mod 2)}. Therefore
B(P, x K;) = n + 2 = 2 B(P,) and the upper bound cannot be improved.

Theorem 5. Let B be a connected finite bigraph on the sets U, V. Let there exist
an automorphism of B which maps U onto V and V onto U. Then

3u(B) < B(B x K,) < 2f(B).

This is an immediate consequence of Theorems 3 and 4.

As we see, the number B(B x K,) is not uniquely determined by the number B(B).
Therefore our results cannot yield a formula for the bichromaticity of the graph of
the cube of dimension n as a function of n. We shall give only partial results.
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Theorem 6. Let Q, denote the graph of the cube of dimension n. Then
ﬁ(QI)=2, B(Q2)=47 ﬁ(Q3)=67 B(Qn)gzn—l +4f0r ’124

Proof. The computation of B(Q;), B(Q,) and B(Q3) is left to the reader. Now
consider Q, as a bigraph on the sets U, V. To each vertex x of Q, there exists a unique
vertex X corresponding to the vertex of the cube which is opposite to the vertex of the
cube corresponding to x. If x € U, then also X e U. By identifying each pair {x, X}
for x € U we obtain the complete bigraph K, . Using Theorem 3 we prove by induc-
tion that Q, for each n = 4 can be mapped by a bicomplete homomorphism onto K, ,
where s = 2"~!. Therefore f(Q,) = 2"~* + 4 for each n = 4.

Now we shall add some more results on the bichromaticity of a graph.

Theorem 7. Let B be a finite bigraph obtained from the complete bigraph K, ,,
where n = 3, by deleting edges of a complete matching of K, . Then

B(B) = [4n] .

Proof. Let  be a bicomplete homomorphism of B onto K, ; for some r and s.
Consider a bijection y : U — V¥ such that for each x e U the vertex y(x) is the unique
vertex of V non-adjacent to x. If x € U, then there exists y € U such that either
¥(y) = Y(x) or ¥ y(y) = ¥ y(x); otherwise Y(x) and ¥ p(x) would not be adjacent.
We can define a mapping ¢ : U — U so that if x € U, then we put 5(x) equal to
a vertex y with the property that Y(y) = ¥(x), or ¥ p(y) = ¥ y(x). This mapping
defines a graph H on the vertex set U such that two vertices x and y are adjacent
if and only if y = §(x) or x = §(y). If x and y are adjacent in H, then the four
vertices x, , y(x), y(y) are mapped by ¢ onto at most three vertices. Therefore the
difference between the number of vertices of B and r + s is equal at least to the
number of edges of H. The graph H must be a graph without isolated vertices.
Hence the minimal number of edges of H is 4n for n even and 4(n + 1) for n odd.
We have proved that f(B) < 2n — 4n = §nfornevenand f(G) < 2n — 4(n + 1) =
= 3n — 1 = [3n] for n 0dd. The equality can be proved by showing the correspon-
ding bicomplete homomorphism . We choose a partition & of U such that if n is
even, then each class of Z consists of two elements, and if n is odd, then one class
of 2 consists of three elements and each other class consists of two elements. The
number of classes of 2 is [4n]. Now we can define a bicomplete homomorphism y
of B onto K, , where r = [4n], s = n so that y(x) = y(y) if and only if either
x = y or x and y belong to the same class of £.

Theorem 8. Let B be a finite bigraph obtained from the complete bigraph K, ,
for even n = 4 by deleting all edges of a Hamiltonian circuit of K, ,. Then

B(B) = 3n.
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Proof. As the graph B from this theorem is a spanning subgraph of the graph B
from Theorem 7, its bichromaticity cannot be greater than $n. Therefore it suffices
to describe a bicomplete homomorphism  of B onto K, ;, where r = 4n, s = n.
Let C be the mentioned Hamiltonian circuit of K, ,. To each vertex u e U there
exists exactly one vertex # € U’which is opposite to u in C. The neighbourhoods of u
and # in C are disjoint, therefore we may define the bicomplete homomorphism
of B onto K, ; so that y/(x) = y(y)if and only if either x = yorxeU, ye U, X = y.

In the end we shall give a result on infinite bigraphs. For infinite connected bigraphs
the bichromaticity can be defined analogously as for finite ones.

Theorem 9. The bichromaticity of an infinite connected bigraph is equal to the
cardinality of its vertex set. '

Proof. Let B be an infinite connected bigraph on the sets U, V. The bichromaticity
of B evidently cannot be greater than the cardinality of its vertex set. Without loss
of generality let |U| = |V] As U v Vis infinite, also U is infinite and |U| = IU v V|.
If  is a bicomplete homomorphism of B such that y(x) = y(y) if and only if either
x =y or {x,y} eV, then ¥ maps B onto a star with the vertex set of the same
cardinality as the vertex set of B and the assertion is proved.

This theorem shows that the considerations on the bichromaticity of an infinite
bigraph are trivial. Nonetheless, it might be interesting to study the pairs {r, s}
with the property that B can be mapped by a bicomplete homomorphism onto K, .
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