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Abstract

In this paper, we provide the different types of bifurcation diagrams for a superconducting cylinder placed in a mag-
netic field along the direction of the axis of the cylinder. The computation is based on the numerical solutions of the
Ginzburg–Landau model by the finite element method. The response of the material depends on the values of the exterior field,
the Ginzburg–Landau parameter and the size of the domain. The solution branches in the different regions of the bifurcation
diagrams are analyzed and open mathematical problems are mentioned. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we want to give a detailed description
of the bifurcation diagrams of an infinite supercon-
ducting cylinder of cross-sectionΩ, submitted to an
exterior magnetic fieldh0. The response of the mate-
rial varies greatly according to the value ofh0, the size
of the cross-section and the Ginzburg–Landau parame-
terκ that characterizes the material: superconductivity
appears in the volume of the sample for low fields and
small samples, under the form of vortices for higher
fields, bigger samples and larger values ofκ, and is
destroyed for high fields. The type of response of a su-
perconducting material has been studied numerically
and theoretically by various authors in various asymp-
totic regimes [2,4,7,8,11–14,18,19,23,28–31,33–37].
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Here, we want to give a complete numerical picture of
the bifurcation diagrams for all values of the parame-
ters. This type of computation has already been done
in dimension 1 by one of the authors using auto [3].
Here, the computation is made in a two-dimensional
domain using numerical solutions of the well-known
Ginzburg–Landau model [38] based on a code first
developed in [18]. We examine the behavior of the
energy, the magnitude of the order parameter and
the magnetization versus the magnetic field for var-
ious solution branches. We also provide some anal-
ysis on the detailed findings such as the stability of
solutions.

The paper is organized as follows: the Ginzburg–
Landau model is briefly stated in Section 2 and the
main features of the numerical codes used in the com-
putation are described in Section 3. The complete
phase diagrams are given in Section 4 along with de-
tailed analysis. A conclusion is given in Section 5.

0167-2789/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
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2. The Ginzburg–Landau model

Let Ω denote a two-dimensional bounded domain
which represents the cross-section of a three-dimen-
sional cylinder occupied by the superconducting sam-
ple. Assume that the cylinder is homogeneous along
its axis and a constant applied fieldH0 is placed along
the axis direction as well. Then, the Gibbs free energy
G may be written in the following form [38]:

G(ψ,A)=
∫
Ω

(
fn + α|ψ |2 + β

2
|ψ |4

)
dΩ

+
∫
Ω

[
1

2ms

∣∣∣∣
(
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c

)
ψ

∣∣∣∣
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+|curlA|2
8π

− curlA · H0

4π

]
dΩ.

Here,ψ is the (complex-valued) order parameter,A

the magnetic potential, curlA is the magnetic field,α
and β are constants (with respect to the space vari-
ablex) whose values depend on the temperature,c the
speed of light,es andms are the charge and mass, re-
spectively, of the superconducting charge-carriers, and
2π� is the Planck’s constant.

After proper nondimensionalization, we can refor-
mulate the free energy functional as:

G(ψ,A)=
∫
Ω

|(∇ − iA)ψ |2 + κ2

2
(1 − |ψ |2)2

+|curlA − h0|2 dΩ,

whereκ is the Ginzburg–Landau parameter represent-
ing the ratio of the penetration depth and the coher-
ence length,h0 the applied magnetic field andd the

Fig. 1. A single vortex solution of (1).

characteristic size of the domainΩ, i.e. Ω = dD,
whereD is a fixed domain.

The system that we are going to study is the fol-
lowing Ginzburg–Landau equations derived as the
Euler–Lagrange equations for the minimizers of
the functionalG [22]:

−(∇ − iA)2ψ = κ2ψ(1 − |ψ |2) in Ω,

−curl curlA=|ψ |2A + i

2
(ψ∗∇ψ − ψ∇ψ∗) in Ω,

(1)

which are supplemented by the boundary conditions

(∇ψ − iAψ) · n = 0 on ∂Ω,

curlA = h0 on ∂Ω,

and gauge constraints

divA = 0 in Ω, A · n = 0 on ∂Ω.

Here,∂Ω is the boundary ofΩ andn its unit outer nor-
mal. With the above nondimensionalization,|ψ | takes
values between 0 and 1; the normal state corresponds
to |ψ | = 0 while the Meissner state corresponds to
|ψ | = 1.

This Ginzburg–Landau model has a special fam-
ily of solutions called thenormal solutions: ψ = 0
and curlA = h0, which correspond to the situation
where superconductivity is destroyed. According to
the values of the different parametersκ, d andh0, the
system may have other solutions:superconducting
solutions, for whichψ is never 0 andvortex solutions
for which ψ has isolated zeroes (see Figs. 1 and 2).
For a complete introduction to the topic, one may
refer to [38].
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Fig. 2. A solution of (1) with two vortices.

3. Numerical codes

The numerical code that we are using is based on the
finite element approximations of the Ginzburg–Landau
model, first proposed in [18] and later used in many
settings, see [19,26,39] for instance. The codes have
many different variants that can be used to simu-
late the solutions of the Ginzburg–Landau model in
the high κ setting [11,17], thin films with variable
thickness [10], samples with normal inclusions [19]
as well as layered materials. Here, we choose the
standard version that solves the Ginzburg–Landau
equations on a rectangular domainΩ and d will
denote the characteristic size of the rectangle. We
note that other numerical methods, such as the gauge
invariant difference methods [16], i.e. the so-called
bond-and-link variable methods or the method of
eigenfunctions, have also been used to compute the
phase diagrams for the Ginzburg–Landau equations
[6,15].

In our implementation of the finite element approx-
imation, we use a uniform triangular grid with piece-
wise quadratic polynomials for bothψ andA. It is
shown that (see [18] for instance), if(ψδ,Aδ) is the fi-
nite element solution on a given mesh with mesh size
δ, the convergence of the approximation is assured,
and asymptotically, we have

‖ψ − ψδ‖2 + ‖A − Aδ‖2 = O(δ3),

where ‖ · ‖2 denotes the standard mean squareL2

norm. For each set of calculation, we refine the mesh
size until numerical convergence is evident.

In Figs. 1 and 2, we present a few typical plots for
the numerical solutions of Eq. (1). For each solution,
the plots include a surface plot of the magnitude of the
order parameter, a surface plot of the magnetic field
given by curlA and a vector plot of the superconduct-
ing current. In Fig. 1, we have a solution with a single
vortex at the center of the domain which corresponds
to the parameter valuesκ = 0.23,d = 16.8 andh0 =
0.563.

In Fig. 2, we present the plots for a solution with
two vortices corresponding toκ = 0.8, d = 4 and
h0 = 1.2.

For fixedκ, d andh0, we are interested in finding
the number of solutions of (1) and their stability. A
continuation in the parameter spaces is used for getting
solutions with different parameter values. Withκ, d
given buth0 allowed to vary, for a computed solution
branch, we plot‖ψ‖∞, the maximum magnitude of the
order parameterψ in the domain, the free energyG and
the magnetization versus the applied fieldh0. These
phase diagrams or bifurcation diagrams will give us
information on the solutions (number and stability) for
eachh0. They were drawn by Ginzburg [21] in some
limiting cases of the parameters. Here we want to give
a more complete description of these diagrams for all
values of the parameters.

The results of our numerical computations allow
us to separate theκ–d plane into different regions
depending on the shape of the bifurcation diagram. A
solution branch may exist in one region but may cease
to exist in another one, it may also develop hysteresis
in some regions.
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Fig. 3. The curvesκ1(d), κ2(d), κ3(d) and κ4(d).

4. The bifurcation diagrams

It is well known that for large fields(h > h∗), the
only solution is the normal solution [23]. For smaller
fields (h < h∗), the normal solution always exists but
there are other solutions which display four different
types of behaviors. These behaviors depend on the
values ofκ andd. In Fig. 3, we have plotted four curve
segments{κi(d)}4

1 separating theκ–d plane into four
regions{Ri}4

1.
The four curve segments in Fig. 3 are the results

of the computation described in the earlier section.
All four curves meet close toκ = 1/

√
2, κ2(d) is of

the form 2.112/d, κ3(d) is tending to 0.4 at infinity.
The four regions correspond to the four types of behav-
iors for the bifurcation diagrams. For convenience, for
eachi = 1,2,3,4, we used = di(κ) to denote the in-
verse function of the functionκ = κi(d) wherever the
inverse is well-defined. What distinguishes the differ-
ent regions are features like the existence (or the lack
of existence) of vortex solutions, the global and local
stability of solutions and the hysteresis phenomena.

We now provide detailed descriptions of the solution
behavior for each region in Fig. 3.

Region 1: d < d1(κ) and d < d2(κ). This corre-
sponds to the situation where the cross-section of the
superconducting sample is small enough. The bifurca-
tion diagram is illustrated in Fig. 4. The corresponding
plot of the energy is given in Fig. 5 and the magneti-
zation curve in Fig. 6.

Fig. 4. The bifurcation curve ford = 2.0 andκ = 0.3.

Fig. 5. The energy ford = 2.0 andκ = 0.3.

Throughout this region, there is a unique nonnormal
solution forh < h∗. This solution is a superconduct-
ing solution which is the global minimizer of the free
energyG. The curve‖ψ‖∞ againsth is monotonically

Fig. 6. The magnetization ford = 2.0 andκ = 0.3.
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decreasing. When increasing the field, the magnitude
of the superconducting solution decreases until it turns
normal ath0 = h∗. Conversely, when decreasing the
field, the normal solution turns superconducting also
for h0 = h∗. The transition to the normal solution is
of second-order, i.e. the energy of the superconducting
solution tends to the energy of the normal solution at
the transition and there is no hysteresis phenomenon.
This can also be seen on the magnetization curve of
Fig. 6.

There is no vortex solution for the parameters(d, κ)

in this region. This reflects the fact thatd is too small
to allow enough room for a vortex to exist since a
vortex core is of typical sizeC/κ.

In [2], it is proved that ford < min{d0, d1/κ},
a solution of the Ginzburg–Landau equations has no
vortex, and for such a solution,ψ is almost constant
in the domain and is unique up to multiplication by
a constant of modulus 1. Also it is proved that the
bifurcation curve for‖ψ‖∞ is decreasing and thath∗ is
asymptoticallyC/d whend tends to 0. More precisely,
for a disk, whend tends to 0, the limiting curve is
‖ψ‖2∞ = 1 − d2h2

0/2κ
2.

Region 2: κ > κ2(d) and κ > κ3(d). In contrast
with Region 1, this region corresponds to the situa-
tion where the typical size of vortices(C/κ) is small
enough compared to the size of the domain. This re-
gion displays the typical type II behavior of super-
conductors. The bifurcation diagram is illustrated in
Fig. 7, the energy in Fig. 8 and the magnetization curve
is given in Fig. 9.

Fig. 7. The bifurcation curve ford = 3.2 andκ = 1.

Fig. 8. The energy ford = 3.2 andκ = 1.

It has been well understood both physically and in
more recent years mathematically that, for sufficiently
largeκ, there are vortex solutions which are the global
minimizers of the free energy for a certain range of
fields. The number of vortices depends on the strength
of the applied field. The maximum number of vortices
increases withd andκ, a type II behavior.

For very small fields, the global minimizer is the su-
perconducting solution (solid line). As the field is in-
creased, the superconducting solution loses its global
stability (h = hc1 and for even larger fields loses its
local stability,h = h∗

0). Then the global minimizer
starts to nucleate vortices. In Figs. 7–9, the solution
branch corresponding to a one vortex solution is illus-
trated by a dotted line and to a two vortex solution by
a dashed line.

Let n be a nonnegative integer (the flux quanta).
Hysteresis phenomena occur in our experiments when

Fig. 9. The magnetization ford = 3.2 andκ = 1.
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going from a solution withn vortices to a solution
with n+ 1 vortices: when increasing the field, the so-
lution with n vortices remains locally stable, though
it is no longer a global minimizer untilh∗

n where it
jumps to a solution withn + 1 vortices. Similarly
when decreasing the field, the solution withn+1 vor-
tices remains locally stable down tohn+1∗ < h∗

n. Such a
hysteresis pattern is typical for parameters in this re-
gion. The fieldsh∗

n andhn+1∗ correspond to the critical
field where the vortex solution loses its local stability
and their values can be identified from Figs. 7 and 8
(transition from superconducting solution to 1 vortex
solution and from one vortex to two vortices).

Nevertheless, the transition from normal to the last
vortex solution is of second-order since the vortex so-
lution is stable, as can be seen from the energy and
magnetization curves. This transition occurs at a field
that is usually calledhc3 in the literature.

There have been many numerical works on these
vortex solutions: see for instance [14,36,37]. In [37],
the phenomena of bifurcation from normal state to
giant vortex and from giant vortex to single vortices
is largely studied and this refine our analysis or Re-
gion 2. Recently, a rigorous analysis of vortices, their
number and the critical thermodynamic fields in the
high kappa limit has been done by Sandier and Serfaty
[33–35], in particular they obtain in the high kappa
limit that hc1 (the field for which the energy of the
superconducting solution is equal to the energy of the
one vortex solution) is of orderC logκ and the field
h∗
n is asymptotic tohc1 + n log logκ. Another study

has been made by Akkermans and Mallick [4] forκ

close to 1/
√

2; they are able to compute the energy as
a function of the applied field and they find that the
profile is parabolic as illustrated in Fig. 8.

The onset of superconductivity in decreasing fields
(instability of normal solutions and computation of the
fields of nucleation) has been analyzed by Bernoff and
Sternberg [8] and Del Pino et al. [13]. Other works
concerning the linearized problem include [24,28,29]
and also [25,30] in dimension 3. Their works provide,
asd andκ tends to∞, an asymptotic development of
hc3, the field at which the normal solution bifurcates
to a vortex solution. This is what is called surface
superconductivity. Linearizing the Ginzburg–Landau

equation has been done near the normal solution. In
the high kappa limit, their computation yields

hc3 ∼ κ2

λ1
+ Cκκmax + o(κ), (2)

whereκmax is the maximal curvature of the domain
andλ1 is the first eigenvalue of the linearized problem
and is approximately equal to 0.59. In the highd limit,
it yields

hc3 ∼ κ2

λ1
+ Cκκmax

d2
+ o

(
1

d2

)
. (3)

This expansion is consistent with the work of
Saint-James and De Gennes [32] who got the first
term of this expansion in the case of an infinite plane
in one dimension. This work in one dimension was
made rigorous by [9]. In two dimensions, one has to
take into account the curvature of the cross-section.
In the case of the disk, the equivalent of expansions
(2) and (3) have been carried out by [7] in the limit
κd is large.

Pan [31] has rigorously analyzed the state of the
material when the magnetic field is further decreased
from the nucleation. He proves that the wave func-
tion ψ is nonzero in a uniform neighborhood of the
boundary.

The hysteresis phenomenon has been rigorously
analyzed in [27] for the superconducting solution
(n = 0).

Some interesting questions to be addressed here are:
what are the critical fields for the vortex solutions
losing their local stability (h∗

n andhn∗)? Can we find
them in some asymptotic limit such asd large orκ
large orκd large? Can we prove the existence of these
hysteresis phenomena for the general case?

Curve κ2(d). For fixedκ above 0.7, whend is in-
creased from 0, the point(d, κ) is first in Region 1.
Then it reaches the critical valued2(κ). Ford = d2(κ),
the bifurcation diagram‖ψ‖∞ versush is decreasing
and the superconducting solution bifurcates from the
normal solution ath = h∗. For d a little larger than
d2(κ), there is a vortex solution bifurcating from the
normal solution close toh∗. Hence ford = d2(κ), at
h = h∗, the linearized problem near the normal state
has two eigenfunctions: one without vortices and one
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with a vortex. This is how uniqueness of solution is
lost when increasingd, though the assertion need to
be proved mathematically.

LetD be the fixed domain such thatΩ = dD. Then
a bifurcated solution near the normal state(0, h0a0)

(wherea0 is such that curla0 = 1 in D anda0n = 0
on ∂Ω) is of the form(εφ, h0a0 + εB). Letω = h0d.
The second variation ofG near the normal state is

∂G2

∂ε2
(εφ, h0a0 + εB)

= 1

d2

∫
D

|(i∇ + ω2a0)φ|2 − κ2d2|φ|2 + |curlB|2.

Let

λ(ω)= inf

(∫
D

|(i∇ + ω2a0)φ|2, ‖φ‖L2 = 1,

φ ∈ H 1(D,C)

)
.

Hence, ifλ(ω) > κ2d2, the normal solution is stable,
if λ(ω) < κ2d2, the normal solution is unstable and
if λ(ω) = κ2d2, degenerate stability occurs. For the
eigenvalueλ(ω) = κ2d2, bifurcation of nonnormal
solutions occurs. Thus, one has to study

(∇ − iω2a0)
2φ = λ(ω)φ in D,

∂φ

∂n
= 0 on ∂D, (4)

with λ(ω) = κ2d2. For most values ofκ andd, the
field h such that the first eigenvalueλ(ω) is equal
to κ2d2 yields a single eigenfunction. In Region 1,
the eigenfunction has no vortex while in Region 2,
the eigenfunction has a vortex. Thus, the curveκ2(d)

corresponds to those values ofκ and d for which
the eigenvalue has two different eigenfunctions, one
without vortices and one with a vortex, i.e. onκ2(d),
the vortex state starts to exist.

This situation has been studied in the case of a ball
in [7]. See also [5] for more recent developments. In
this case, the solutions of (4) withn vortices are of
the formξn(r)exp(inθ) and have eigenvalueλ(ω, n).
In particular, in [7] they draw the functionλ(ω, n)
versusω. The curvesλ(ω,0) and λ(ω,1) intersect
exactly once forω = ω0 and λ = λ0. Because of
the bifurcation conditionλ(ω) = κ2d2, it implies that

κ2d2 = λ0, hence the curveκ2(d) is of the formκd =
constant. It would be interesting to give a rigorous
proof that the curvesλ(ω,0) andλ(ω,1) intersect only
once for the case of the disk and for the case of a more
general domain. In Region 1, that is belowκ2(d), the
first eigenfunction is simple and leads to a solution
without vortex. In Region 2, that is aboveκ2(d), the
first eigenfunction is simple and leads to a solution
with one vortex, but we expect that there is also an
eigenfunction with no vortex for a lower fieldh.

Similarly, the curvesλ(ω, n) andλ(ω, n + 1) also
intersect only once on the numerics of [7] which means
in our setting that there are curvesκd = Cn at which
the eigenvalue has two eigenfunctions withn andn+1
vortices. Aboveκd = Cn, a solution withn+1 vortices
starts to bifurcate from the normal state and below it,
a solution withn vortices starts to bifurcate from the
normal state, so that the curveκd = Cn are the critical
curves for the existence ofn + 1 vortices.

In the general case that we are studying, it is totally
open to prove that there is a unique value ofω such
thatλ(ω) has two eigenvalues, one with a vortex and
one without. This would yield toκ2(d) = C/d, which
is what we have found numerically. Moreover, we ob-
serve that the field of bifurcationh∗ satisfiesh∗d = ω

hence is constant alongκ2(d).
Taking this analysis of bifurcation a little further

allows us to define

H(κ, d) = {h, s.t. λ(
√

hd) = κ2d2}.
In Region 1, we expect thatH has a single element
while in Region 2, we expect this set to have several
elements corresponding to the various branches of so-
lutions with several vortices bifurcating from the nor-
mal state. But this analysis is open even in the case of
the disk.

Region 3: κ4(d) < κ < κ3(d). For parameters in
this region, i.e. large domains and intermediateκ (in
a relative sense), a typical phase diagram is illustrated
in Fig. 10 with the energy in Fig. 11 and the magneti-
zation in Fig. 12. Three solution branches are shown
which represent the normal solution, the supercon-
ducting solution (solid line) and a solution with a sin-
gle vortex (dashed line). A profile for one of the vortex
solutions is given in Fig. 1.
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Fig. 10. The bifurcation curve ford = 6.274 andκ = 0.35.

Fig. 11. The energy ford = 6.274 andκ = 0.35.

The superconducting solution displays a hysteresis
behavior as before, but when increasing the field, it
turns normal instead of going on the vortex branch as
in Region 2. More precisely, as the field is increased,

Fig. 12. The magnetization ford = 6.274 andκ = 0.35.

the superconducting solution loses its global stabil-
ity, then its local stability and its drops to the normal
branch when the super-heating field is reached. Con-
versely, when decreasing the field from the normal
state, the solution gets on the vortex branch, though it
is only a local minimizer. So the transition when go-
ing down the field is of second-order as can be seen
on the magnetization curve (Fig. 12), but when going
up, there is a hysteresis. When decreasing the field fur-
ther, the solution jumps to the superconducting branch.
The vortex solution is never a global minimizer. In
fact, our numerical experiments indicate that there are
only locally stable vortex solutions. Such behavior as
in Fig. 12 had already been observed in [36].

We note that, for values of the Ginzburg–Landau
parameterκ in this region, the vortex state has not
been frequently studied in the literature, except for su-
perconducting sample with extreme geometrical con-
ditions such as thin films, disks and rings. In the latter
cases, the material displays typical type II behavior for
all ranges ofκ as the Ginzburg–Landau model can be
simplified to allow an almost uniform penetration of
the magnetic field [10]. However, the current study is
done for three-dimensional infinite cylinders and the
simplified models are not directly applicable. In fact,
from the plot of the magnetic field given in Fig. 1,
we see that there is considerable variation in the field
strength over the cross-section.

Curve κ3(d). Let us callHc, the thermodynamic
critical field introduced by Ginzburg [21]: the energy
of the superconducting solution is equal to the energy
of the normal solution at this field (in our nondimen-
sionalization, it means that the energy of the supercon-
ducting solution is 0). The curveκ3(d) corresponds to
the situation where there is a small amplitude vortex
solution bifurcating from the normal solution exactly
at Hc. One could hope to determine this curve math-
ematically.

We notice that asd tends to infinity,κ3(d) tends to a
finite limit close to 0.4 which is less than 1/

√
2. Using

(3), one can get that in the highd limit, κ is close to
λ1Hc, whereλ1 is the first eigenvalue of the linearized
problem (4) in an infinite domain and is close to 0.59.
In Ginzburg’s [21] computations (see also [38]),Hc is
exactly 1/

√
2 in the limit d = ∞. This givesλ1/

√
2
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as a limit forκ3(d) at infinity, which is close to 0.42. A
rigorous mathematical justification of this asymptotic
behavior remains to be provided.

Let us recall that the critical value ofκ equal to
1/

√
2 that separates type I and type II superconduc-

tors was discovered by Ginzburg studying the bifurca-
tion of thesuperconducting solution from the normal
state for an infinite domain. Then Saint-James and De
Gennes discovered surface superconductivity, i.e. su-
perconductivity is nucleated first in the surface and
thus appears for higher fields than that was calculated
by Ginzburg. Here, we see that forκ less thanκ3(d),
the vortex solution is no longer stable but is locally
stable near the bifurcation.

Region 4: κ < κ4(d) and d > d1(κ). For parameters
in this region, i.e.κ small but domains large enough,
the typical bifurcation diagram is illustrated in Fig. 13
with the energy in Fig. 14 and the magnetization in
Fig. 15.

There are superconducting solutions displaying a
hysteresis phenomenon and no locally stable vor-
tices. The superconducting solution is not always
the global minimizer, but when increasing the field,
the sample remains superconducting until reaching a
super-heating fieldh∗, where the solution becomes
normal with a discontinuous transition. Similarly,
when decreasing the field, the sample stays normal
until the field h∗ which is less thanh∗, where it
turns superconducting by a discontinuous transition.
Mathematically, we believe that there is a range of
fields, betweenh∗ and h∗ where there are multiple

Fig. 13. The bifurcation curve ford = 4 andκ = 0.3.

Fig. 14. The energy ford = 4 andκ = 0.3.

superconducting solutions. This is in analogy with
what happens for the one-dimensional case. For more
rigorous analysis of the one-dimensional models, we
refer to [3].

Next, we also note that there is no locally stable
vortex solution in the region. It is well-known that
asymptotically for smallκ, the vortex solution is not
energetically favorable, and the material belongs to
the typical type I regime [20,38] where the phase tran-
sition is characterized by the superconducting/normal
interface rather than the vortex state. When varying
the field, the superconducting or normal solutions will
not turn into a one vortex solution. However, if we
do continuation from a vortex solution for a bigger
value of κ (in Region 3), and decreaseκ, we can
still find existence of solutions with vortices when we

Fig. 15. The magnetization ford = 4 andκ = 0.3.
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reduceκ to values in Region 4 despite the instabil-
ity of vortex solutions. For even smallerκ, contin-
uations inκ or in other parameters from the vortex
solutions fails to produce any new vortex solutions.
We believe that when decreasingκ, the vortex solu-
tion first loses its stability near the normal solution
(on the curveκ4(d)), but it remains locally stable for
‖ψ‖∞ a little higher in the branch. For very smallκ
(especially less thanC/d), we believe that there is no
vortex solution at all. This has been proved in [7] in
the case of a disk. It is an open problem to prove that
for fixed d and forκ small enough, vortex solutions
do not exist.

Curve κ1(d). If κ is fixed below 0.7 andd is in-
creased, then the curved1(κ) is crossed. It remains
establish the mathematical existence of this curve. In
the particular case whereκ is very small, the order
parameterψ is almost constant, there are no vortices
in the domain so that system (1) simplifies to

(A = |ψ |2A, in Ω curlA = 1 on ∂Ω,

where|ψ | is a constant that depends onh0. The bound-
ary condition forψ yields

∫ |ψ |(|ψ |2 + h2
0A

2 − 1) =
0, which is the equation of the bifurcation curve. One
has to find the criticald for which the curve|ψ |(h0)

changes direction of bifurcation near|ψ | = 0, so that
the bifurcation goes from stable for smalld to unsta-
ble for largerd. Another way to study this curve is to
make the bifurcation analysis near the normal state,
described in the analysis ofκ2(d), which yields to
(4). Then one would need to take this development to
higher order to get the sign of energy of the bifurcated
branch. This sign changes onκ1(d). The fact that the
bifurcation from the normal state is unstable for large
d has not been studied.

Curve κ4(d). Another open problem is to determine
the behavior ofκ4(d) as d tends to infinity. We ex-
pect it to be of the orderC/d for some constantC.
We believe that the analysis that we have explained
for the curveκ2(d) is the same here, i.e. onκ4(d) as
well the eigenvalue has two eigenfunctions. The same
analysis of the linearized problem needs to be per-
formed. The difference withκ2(d) is that the eigen-
function with no vortex is stable onκ2(d) and unstable
on κ4(d).

The point of intersection. Note that all curves
κi(d) intersect at the same point. Indeed the point
of intersection ofκ2(d) andκ4(d) has an eigenvalue
with two eigenfunctions, one of which (the one with-
out vortices) changes stability. Hence this point also
belongs toκ1(d) since onκ1(d) the stability of the
solution without vortex changes. Finally, this point
belongs toκ3(d) since the energy of the bifurcated
solution is zero for both eigenfunctions, in particular
for the vortex solution. We want to point out that a
similar analysis for the intersection of these curves has
been performed in [1] in the one-dimensional setting
and it yields to a solvability condition of fourth-order
at the point of intersection.

The aspect ratio. As we have said,d is the char-
acteristic size of the rectangle, but we have not taken
into account the variations in the aspect ratio. In fact,
the shape of the curvesκi(d) are independent of the
aspect ratio. Only the values of the limits whend and
κ are small depend on it.

Indeed, when the aspect ration gets very large, the
problem is reduced to a one-dimensional problem
studied in [3]. The curvesκi(d) found in [3] have
exactly the same shape as here and the regionsRi

are similar. Only the asymptotic limits in the caseκ
andd small will change and the value of the constant
such thatκd = constant for the definition ofκ2 and
κ4. Nevertheless, for larged, the limits of the curve
κ3 is the same, i.e. 0.4 and this is related to the same
eigenvalue problem.

5. Conclusion

We have obtained very detailed bifurcation dia-
grams for the Ginzburg–Landau model of a two-
dimensional cross-section of a three-dimensional
superconducting cylinder when the applied field is
along the direction of the axis. Detailed analysis are
provided for the solution branches in the different
regions of the(κ, d) plane. What distinguishes the
different regions are features like the existence (or the
lack of existence) of vortex solutions, the global and
local stability of solutions, and the hysteresis phenom-
ena. We note that the analysis includes regions with
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small and hysteresis phenomena. We note that the
analysis includes regions with small and intermediate
values ofκ which is not often featured in the existing
studies, as most of the works in the literature focus
on the vortex state which appears for larger values of
κ or for thin films. Though we have computed the
bifurcation diagrams with rectangular cross-sections,
they are very representative of the general cases. Nat-
urally, for small samples, the geometric conditions
may have a stronger effect on leading to detailed
alternations to the bifurcation curves. A change of
topology, such as rings or shells, may present other
complications [6] but we expect similar bifurcation
diagrams remain valid. In addition, comparisons with
existing theories have been made in the paper. Some
remaining questions have also been raised.
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