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Abstract

The i.i.d. assumption in machine learning is
endemic, but often flawed. Complex data
sets exhibit partial correlations between both
instances and features. A model specifying
both types of correlation can have a number
of parameters that scales quadratically with
the number of features and data points. We
introduce the bigraphical lasso, an estima-
tor for precision matrices of matrix-normals
based on the Cartesian product of graphs.
A prominent product in spectral graph the-
ory, this structure has appealing properties
for regression, enhanced sparsity and inter-
pretability. To deal with the parameter ex-
plosion we introduce ℓ1 penalties and fit the
model through a flip-flop algorithm that re-
sults in a linear number of lasso regressions.
We demonstrate the performance of our ap-
proach with simulations and an example from
the COIL image data set.

1. Introduction

When fitting Gaussian models to data, an indepen-
dence assumption is usually made across data points
and the covariance matrix is fit by penalized likeli-
hood. The number of parameters in the covariance
matrix can be reduced by low rank constraints such
as factor analysis (see e.g. Tipping & Bishop, 1999) or
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by constraining the inverse covariance (or precision)
to be sparse (e.g. Banerjee et al., 2008). A sparse
precision matrix defines a Gaussian Markov random
field relationship which is conveniently represented by
a weighted undirected graph (Lauritzen, 1996). Nodes
that are not neighbors in the graph are conditionally
independent given all other nodes. Models specified in
this way encode conditional independence structures
between features.

An alternative Gaussian modeling approach was intro-
duced by Lawrence (2005) where the i.i.d. assumption
is across data features. Lawrence (2012) showed that
spectral dimensionality reduction methods have an in-
terpretation as sparse graphical models over the in-
stances (rows), with the parameters of the covariance
fit by maximum likelihood (or in the case of local lin-
ear embeddings (Roweis & Saul, 2000) by maximizing
a pseudolikelihood).

Feature independence or data point independence is a
model choice issue. Both are special cases of a more
general framework that models conditional indepen-
dence relationships between features and data points
together. This is the type of model that we study in
this paper. Specifically, we are concerned with esti-
mating a sparse graph that interrelates both features
and data points. In video data, for instance, both
the frames of the data and the image variables (pix-
els) are of course correlated. In Section 5 we illustrate
our modeling approach by estimating the conditional
independence structure for simple video in the COIL
data set. In gene expression data, as another example,
it may be of interest to extract a gene network from
the expression values and also estimate ancestral re-
lationships among the samples in a separate network.
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Such problems motivate the models and estimation al-
gorithms studied in this paper.

1.1. Graphical Lasso and the Matrix-Variate
Normal

The graphical lasso (GLasso, Friedman et al., 2008;
Banerjee et al., 2008) is a computationally efficient pe-
nalized likelihood algorithm for learning sparse Gaus-
sian Markov random fields (GMRF) over features of
i.i.d. vector-variate Gaussian samples.

The matrix variate normal (Dawid, 1981; Gupta & Na-
gar, 1999) is a Gaussian density which can be applied
to a matrix through first taking a vectorized (vec) rep-
resentation1 of the matrix samples X ∈ R

n×p and as-
suming the covariance matrix has the form of a Kro-
necker product (KP) between two covariance matri-
ces, separately associated with the rows and columns
of the data matrix. The KP assumption for the co-
variance implies that the precision matrix is also a KP,
which is formed from the KP of the precision matrices
associated with the rows and columns (Ψ⊗Θ).

One approach to sparse graphical modeling of matrix
data is to combine the KP-structured matrix normal
with the graphical Lasso. Dutilleul (MLE, 1999) used
a flip-flop approach for maximum likelihood estima-
tion of the parameters of the matrix-normal, and much
later Zhang & Schneider (2010) used it for MAP es-
timation with sparsity penalties on the precision ma-
trices. More recently, Leng & Tang (2012) applied
the SCAD penalty (Fan & Li, 2001) as well as the
Lasso penalty to the matrix normal. Tsiligkaridis et al.
(2013) analyzed the asymptotic convergence of Kro-
necker GLasso and carried out simulations showing
significant convergence speedups over GLasso.

While the KP structure arises naturally when consid-
ering matrix-normals, it results in relatively dense de-
pendencies between the rows. More precisely, if Ψij

in Ψ ⊗Θ is non-zero (for example, corresponding to
an edge between samples i and j in the design matrix
X) then many edges between features of sample i and
sample j (as many as in Θ) will also be active. A
sparser structure would benefit situations where the
connection between a feature of some sample and a
different feature of any other sample is of no interest
or redundant. For instance in a video, it is reasonable
to assume that the neighbors of pixel (i, j) in frame k
are conditionally independent of the neighbors of pixel
(i, j) in frame k+1, conditioned on pixels (i, j) of both
frames.

1Vectorization of a matrix involves converting the ma-
trix to a vector by stacking the columns of the matrix.

1.2. The Bigraphical Lasso

We propose the bigraphical lasso (BiGLasso), a model
for matrix-variate data that preserves their col-
umn/row structure and, like the KP-structured ma-
trix normal, simultaneously learns two graphs, one
over rows and one over columns of the matrix sam-
ples. The model is trained in a flip-flop fashion, so
the number of lasso regressions reduces to O(n + p).
However, the model preserves the matrix structure by
using a novel Kronecker sum (KS) structure for the
precision matrix, (Ψ⊗ I) + (I⊗Θ) instead of the KP.
This structure enjoys enhanced sparsity in comparison
to the conventional KP structure of matrix normals.

Graph Cartesian Product When operating on ad-
jacency matrices, the KS is also known in algebraic
graph theory as the Cartesian product of graphs and
is arguably the most prominent of graph products
(Sabidussi, 1959; Chung, 1996; Imrich et al., 2008).
This endows the output of the BiGLasso with a more
intuitive and interpretable graph decomposition of the
induced GMRF, see figure 1 for an example.

Enhanced Sparsity For a matrix density λ ∈ [0, 1]
of both precision matrices the KS has O(λnp(n + p))
non-zeros, whereas the KP has O(λn2p2) non-zeros.

Better Information Transfer in GPs Kronecker
product (KP) forms have a known weakness, referred
to in the Gaussian process (GP) literature as the can-
cellation of inter-task transfer. Zellner (1962), Bink-
ley & Nelson (1988) pointed out how the considera-
tion of correlations between regression equations leads
to a gain in efficiency. A KP covariance function can
compromise potentially useful dependencies between
the responses of a multi-output GP. In particular,
Bonilla et al. (2008, §2.3) showed the following regard-
ing multi-output GPs: if a noise-free covariance is KP-
structured2 and the same inputs are conditioned for all
outputs3, then the predictive mean uncouples the dif-
ferent tasks, that is, the posterior (GP conditioned on
inputs) factorizes across the outputs such that they
are independently computable. The property does not
apply under the presence of additive noise, hence the
outputs remain coupled. This result first arose in geo-
statistics under the name of autokrigeability (Wacker-
nagel, 2003) and is also discussed for covariance func-
tions in (O’Hagan, 1998). On the contrary, due to
its additive form a KS-structured noise-free covariance
enables inter-task transfer.

2One factor for covariances between outputs and one for
covariances between points.

3A conditioning structure referred to as a block design.
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(a) (b)

Figure 1. When acting on adjacency matrices of graphs, the Kronecker-sum acts as the Cartesian-product (a) and the
Kronecker-product as the tensor-product (b). The lattice-like structure of the Cartesian-product is ideal for modeling
dependencies between features as well as samples. More generally, since the Cartesian-product is associative, it can be
generalized to model GMRFs of higher-dimensional arrays. Note that here we do not include self-edges (zeros on the
diagonals). Based on figures created by David Eppstein, http://en.wikipedia.org/wiki/Graph_product.

The autokrigeability result relies on the factorisable
property of the inverse of a KP, (Ψ⊗Θ)−1 = Ψ−1 ⊗
Θ−1. This property enables a simple flip-flop approach
to fitting but also forbids the exploitation of correla-
tion between different outputs. On the other hand,
by coupling the outputs with additive noise on the
KP, flip-flop is no longer straightforward. Stegle et al.
(2011) addressed this issue by adding i.i.d. noise to a
KP covariance — a low-rank factor for confounding
effects and a sparse-inverse factor for inter-sample de-
pendencies — and exploiting identities of the vec(.)
notation for efficient computation within the matrix
normal model.

To summarize our contributions, in contrast to exist-
ing approaches that use the KP structure, the KS pre-
serves the inter-task transfer. Our algorithm main-
tains the simplicity of the flip-flop with a simple trick
of transposing the matrix-variate (samples become fea-
tures and vice versa). At the same time, the induced
Cartesian factorization of graphs provides a more par-
simonious interpretation of the induced Markov net-
work.

The rest of this paper is structured as follows. We
describe the matrix normal model with the KS-
structured inverse-covariance in §2. In §3, we present
the BiGLasso algorithm for learning the parameters of
the KS inverse-covariance. We present some simula-
tions in comparison to a recent KP-structured matrix
normal model of Leng & Tang (SMGM, 2012) in §4 and
an application to an example from the COIL dataset
in §5. We conclude in §6.

2. Matrix-normal model with the

Kronecker-sum structure

To motivate our KS-structured model, first we con-
sider the standard case where matrix-variate data Y
are sampled i.i.d. from a matrix-normal distribution
(or matrix Gaussian). This is a generalization of the
Gaussian distribution towards higher-order tensor sup-
port4. The matrix normal can be reparametrized such
that the support is now over vectorised representa-
tions of random matrices and it naturally follows a
KP-structured covariance,

vec(Y) ∼ N
(
0,Ψ−1

n ⊗Θ−1
p

)
. (1)

2.1. The KP-based SMGM

Under the sparsity assumption of the KP-structured
precision matrix Ψn ⊗ Θp, the SMGM estimator
(Sparse Matrix Graphical Model) of Leng & Tang
(2012) is an extension of GLasso that iteratively mini-
mizing the ℓ1-penalized negative likelihood function of
(Ψn,Θp) for the KP-structured matrix normal:

min
Θp,Ψn

{
1

Nnp

N∑

i=1

tr
(
YiΘpY

⊤
i Ψn

)
−

1
n
log|Ψn| −

1
p
log|Θp|+ λ1||Ψn||1 + λ2||Θp||1

}
,

(2)

where Yi is the i-th matrix sample, N is the sample
size and λ1, λ2 the regularization parameters.

Complexity and Biconvexity The SMGM objec-
tive is a non-convex problem as the trace produces

4A vector is an order-1 tensor, a matrix is an order-2
tensor and so on.
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interaction terms between the two precision matri-
ces. However, it is biconvex as convexity holds only
with respect to either precision matrix individually but
not jointly. The flip-flop approach to minimization
proceeds by fixing one of the precision matrices (say,
the columns-precision matrix Θp), thus reducing the
above to a convex GLasso problem on Ψn with a pro-
jected covariance (

∑
i YiΘpY

⊤
i ). Similarly, another

GLasso step fits the the columns-precision matrix Θp

with a fixed rows-precision Ψn. As such its complex-
ity on each iteration is that of two GLasso problems or
O(n+p) lasso regressions. Note that each GLasso step
involves an additiveO(N) time-complexity term as the
summation depends on a new estimate of the precision
matrix, so in total the complexity is O(n+ p+N).

2.2. The KS-based BiGLasso

Let Y ∈ R
n×p be a random matrix. If its rows are

generated as i.i.d. samples from N (0,Σp), then the
sampling distribution of the sufficient statistic Y⊤Y
isWishart(n,Σp) with n degrees of freedom and scale
matrix Σp. Similarly, if the columns are generated
as i.i.d. samples from N (0,Γn), then the sampling
distribution is Wishart(p,Γn).

From a maximum entropy viewpoint we can constraint
these second-order moments in a model both for the
features and the datapoints of a design matrix.

To do so, we combine these sufficient statistics in a
model for the entire matrix Y as

p(Y) ∝ exp
{
−tr

(
ΨnYY⊤

)
− tr

(
ΘpY

⊤Y
)}

, (3)

where Ψn ∈ R
n×n and Θp ∈ R

p×p are positive defi-
nite matrices. This is equivalent to a joint factorized
Gaussian distribution (see §3 in supplementary mate-
rial) for the n×p entries of Y, with a precision matrix
of the form

Ω , Ψn ⊕Θp = Ψn ⊗ Ip + In ⊗Θp , (4)

where ⊗ is the Kronecker-product and ⊕ the
Kronecker-sum operator. Thus,

ωij,kl = ψi,kδj,l + δi,kθj,l , (5)

for i, k ∈ {1, . . . , n} and j, l ∈ {1, . . . , p}. As an
immediate benefit of this parameterization, while the
full covariance matrix has O(n2p2) entries, these are
governed in our model by only O(n2+p2) parameters.

Given data in the form of some design matrix Y, the
BiGLasso estimates the sparse KS-structured inverse-
covariance of a matrix normal through the ℓ1-penalized

negative likelihood function of (Ψn,Θp):

min
Θp,Ψn

{
n tr (ΘpS) + p tr (ΨnT)− ln|Ψn ⊕Θp|

+ λ‖Θp‖1 + γ‖Ψn‖1
}
,

(6)

where S , 1
n
Y⊤Y and T , 1

p
YY⊤ (7)

are empirical covariances across the datapoints (rows)
and features (columns) respectively.

Complexity and Convexity The BiGLasso objec-
tive is a convex problem because the negative log-
determinant is convex and the KS is an affine op-
eration. Therefore any coordinate descent algorithm
for (6) converges to the global minimum. A solu-
tion simultaneously estimates two graphs – one over
the columns of Y, corresponding to the sparsity pat-
tern of Θp, and another over the rows of Y, corre-
sponding to the sparsity pattern of Ψn. Note that (6)
does not require a summation over the datapoints in
each step as was the case in (2). Also note that since
ωii,jj = ψii + θjj , the diagonals of Θp and Ψn are not
identifiable (though we could restrict the inverses to
correlation matrices). However, this does not affect
the estimation of the graph structure (locations of ze-
ros). Similarly, the BiGLasso time complexity is that
of two GLasso problems or O(n+ p) lasso regressions.
Note that a naive GLasso approach on matrix data
would be O(np) but both the BiGLasso and SMGM
exploit the special KS or KP precision structures that
they respectively assume.

3. A penalized likelihood algorithm for

the BiGLasso

A note on notation If M is an np × np matrix
written in terms of p× p blocks, as

M =



M11 . . . M1n

...
. . .

...
Mn1 . . . Mnn


 ,

then trp(M) is the n × n matrix of traces of such
blocks5:

trp(M) =



tr (M11) . . . tr (M1n)

...
. . .

...
tr (Mn1) . . . tr (Mnn)


 .

We alternate between optimizing over Ψn while hold-
ing Θp fixed and optimizing over Θp while holding Ψn

fixed.

5In a sense, this generalizes the conventional trace op-
erator as trnp(M) = tr (M).
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First we consider the case where there is no regular-
ization. From (6), the first step of the optimization
problem is reduced to

min
Ψn

{
p tr (ΨnT) − ln|Ψn ⊕Θp|

}
. (8)

Section 2 in the supplementary material shows how to
take the gradient of (8) with respect to Ψn. Com-
bining (5) and (6) of the supplementary material we
obtain the stationary point:

T− 1
2p
T ◦ I = 1

p
trp(W)− 1

2p
trp(W) ◦ I , (9)

where we define W , (Ψn ⊕ Θp)
−1. We partition

V , 1
p
trp(W) as

V =

[
v11 v⊤

1\1

v1\1 V\1\1

]
, (10)

where v1\1 is a vector of size n − 1 and V\1\1 is a
(n− 1)× (n− 1) matrix. Despite the complex form of
the stationarity condition, only the lower-left block of
its partition will be of use:

t1\1 = 1
p
trp(W1\1) = v1\1, and also from (7),

t1\1 = (t21, . . . , tn1)
⊤ = 1

p
(y⊤

2 y1, . . . ,y
⊤
n y1)

⊤.

(11)

Similarly, we partition W into blocks:

W =

[
W11 W⊤

1\1

W1\1 W\1\1

]
,

where W11 is a p×p matrix and W1\1 is a p(n−1)×p
matrix. Then from the bottom-left block of

WΩ =

[
W11 W⊤

1\1

W1\1 W\1\1

]


ψ11Ip +Θp . . . ψinIp

...
. . .

...
ψn1Ip . . . ψnnIp +Θp




= In ⊗ Ip ,

(12)

we get

W1\1(ψ11Ip +Θp) +W\1\1(ψ1\1 ⊗ Ip) = 0n−1 ⊗ Ip

W1\1 +W\1\1



(ψ11Ip +Θp)

−1ψ21

...
(ψ11Ip +Θp)

−1ψn1


 = 0n−1 ⊗ Ip

(13)
W1\1 + W2\1(ψ11Ip +Θp)

−1ψ21 + . . .

· · ·+ Wn\1(ψ11Ip +Θp)
−1ψn1 = 0n−1 ⊗ Ip ,

with 0n−1 as the vector of n − 1 zeros. According to
the stationary point in (11), taking the blockwise trace
trp(.) of both sides, gives the equation:

p t1\1 +A\1\1ψ1\1 = 0n−1, where (14)

A⊤
\1\1 ,




trp
{
W2\1(ψ11Ip +Θp)

−1
}⊤

...

trp
{
Wn\1(ψ11Ip +Θp)

−1
}⊤


.

By imposing an ℓ1 penalty on ψ1\1, this problem re-
duces to a Lasso regression:

min
ψ

1\1

{
‖−p t1\1 −A\1\1ψ1\1‖

2
2 + λ‖ψ1\1‖1

}
. (15)

After estimating ψ1\1, we compute W1\1 by substi-
tuting into (13). It remains to compute W11. This
follows from (12), which gives

W11 = (I−W⊤
1\1(ψ1\1 ⊗ I))(ψ11I+Θp)

−1 . (16)

This algorithm iteratively estimates columns of Ψn

and W in this manner. The procedure for estimat-
ing Θp, for fixed Ψn, becomes directly parallel to the
above simply by transposing the design matrix (sam-
ples become features and vice-versa) and applying the
algorithm. Algorithm 1 outlines the BiGLasso. In our

Algorithm 1 BiGLasso

Input: Y, λ, γ and initial estimates of Ψn and Θp

T← p−1YY⊤

repeat
# Estimate Ψn :
for i = 1 . . . n do
Partition Ψn into ψii,ψi\i and Ψ\i\i.
Find a sparse solution of (15).
Substitute ψi\i into (13) to compute Wi\i.
Compute Wii with (16).

end for
# Estimate Θp :
Proceed as if estimating Ψn with input Y⊤, λ, γ.

until (6) converges or maximum iterations reached.

experiments we treat λ and γ as the same parameter
and the precision matricesΨn andΘp are initialized as
identity matrices. The empirical mean matrix is sub-
tracted from each dataset. Although cross-validation
can be used to tune the regularization parameters, it
typically overselects.

4. Simulations

To empirically assess the efficiency of BiGLasso,
we generate the datasets described below from cen-
tered Gaussians with Kronecker-product (KP) and
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Figure 2. Simulation results on data generated from
Kronecker-sum structures. Each box shows a recall-
precision plot for a particular setup (shown along the top
and right margin). Structure recovery can be exact, as
the sample size increases for the A3/A3 combination (most
right column).

Kronecker-sum (KS) precision matrices. We run the
BiGLasso and SMGM using the ℓ1 penalty. The Θp

and Ψn precision matrices in both cases are generated
in accordance to (§4, Leng & Tang, 2012); namely, as
either of the following d×d blocks (d being either p or
n) of increasing density:

1. A1: Inverse AR(1) (auto-regressive process) such
that A1 = B−1 with Bij = 0.7|i−j|.

2. A2: AR(4) with Aij = I(|i− j| = 0) + 0.4I(|i−
j| = 1) + 0.2I(|i − j| = 2) + 0.2I(|i − j| =
3) + 0.1I(|i − j| = 4), I(.) being the indicator
function.

3. A3 = B + δI, where for each Bij = Bji, i 6= j,
P (Bij = 0.5) = 0.9 and P (Bij = 0) = 0.1. The
diagonal is zero and δ is chosen such that the con-
dition number of A3 is d. Since the condition
number is k(A3) = d = λ1+δ

λd+δ
, the ratio of largest-

to-smallest eigenvalue, then δ = dλd−λ1

1−d
.

Figures 2 and 3 show the recall =
#{Ω̂ij 6=0 & Ωij 6=0}

#{Ωij 6=0}

(or true-positive rate) and precision =
#{Ω̂ij=0 & Ωij=0}

#{Ω̂ij=0 & Ωij=0}+#{Ω̂ij=0 & Ωij=1}
across 50 repli-

cations to assess the Ω̂ estimates under various
setups.

Each box shows a particular setup that varies in block
combination (A1,A2,A3), in block sizes (n, p), in sam-
ple size N generated from the matrix-normal and by

A1 / A1 A2 / A1 A2 / A2 A3 / A1 A3 / A2

N:100
n:10
p:10

N:10
n:20
p:20

N:100
n:20
p:20

0 1
0

1

Recall

P
re

c
is

io
n

Overall density →

A3 / A3

N:10
n:10
p:10

 

 

BiGLasso

SMGM

Figure 3. Simulation results on data generated from
Kronecker-product structures.

the structure used (KS or KP) to generate the sample.
Each curve in a box is the solution-path of a replication
in precision-recall space for a range of regularization
settings λ = 5x, for x ∈ [−6,−2] interpolated 10 times.
The blocks are arranged such that the overall density
of the structured precision matrices increases from left
to right.

We note that since blocks A1,A2 have a fixed form,
for such combinations each curve is a different sample
from the same graph structure. Only A3 is random so
in combinations involving A3, each box has a differ-
ent random A3 and consequently generates a set of 50
replicates from a different graph. At a glance this has
little effect.

Figures 2 and 3 also compare against the results
of SMGM (using the Lasso penalty) on data sim-
ulated from the matrix-normal with KS structures.
Leng & Tang (2012) had also ran comparisons against
the MLE method of Dutilleul (1999) (an unpenal-
ized variant of SMGM), ridge-SMGM (SMGM with
an ℓ2 penalty instead of ℓ1) and the GLasso of
Friedman et al. (2008) (on vectorized samples from
N

(
0,Ψ−1

n ⊗Θ−1
p

)
, i.e. ignoring the matrix struc-

ture). They consistently outperformed all of these
methods, so for brevity we compare only against the
SMGM. Similarly, figure 3 visualizes the simulations
under KP structures.

By the empirical distributions of these solution-paths
(50 for each model in each box), it is no surprise that
the intrinsically denser SMGM tends to have low pre-
cision (many false-positives) for smaller values of λ.
On the contrary, BiGLasso tends to have low recall
(many false-negatives) due to its intrinsically sparser
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structure.

Block A3 is the only randomized sparse structure
whereas A1 and A2 are more “artificial” as they re-
spectively model an inverse-AR(1) and AR(4) and
they yield banded precision matrices. Of interest is
the observation that the largest effect of the increase
in sample size (10→ 100) seems to occur on the A3/A3
combination (right end column of boxes). More pre-
cisely in Figure 2, we note the difference from box
(1,6) to (2,6) and from (3,6) to (4,6). The sample size
is very effective: with sufficiently large sample size N,
BiGLasso starts to recover exactly and SMGM occu-
pies lower regions in general.

In Figure 3, since the data generation process uses
Kronecker-product structures, the SMGM is expected
to outperform our method. Indeed for lower-density
structure, the recovery rate of the SMGM seems con-
sistently better than BiGLasso. and recovery can be
almost exact for the SMGM for combination A1/A1.
However, as the overall density increases, the perfor-
mance of BiGLasso is balanced. Again, for combi-
nations involving A3, larger sample sizes benefit Bi-
GLasso more.

In summary, KP-simulated data proved harder to
tackle for both methods than KS-generated data.
These simulations have shown that the BigLasso con-
sistently outperforms the SMGM on KS-simulations,
with the possibility of exact recovery on large sample
sizes. On KP-simulations the comparison is less clear,
but the BiGLasso proves more practical for denser
Kronecker-product structures and the SMGM more
practical for sparser structures.

5. An Example from the COIL Dataset

In this section we carry out a simple video analysis of
a rotating rubber duck from the COIL dataset6. The
video consists of gray-scaled images, see Figure 4.

Figure 4. Video of a rotating rubber duck. Original reso-
lution of 128×128 pixels (back row) and reduced resolution
of 9× 9 pixels (front row).

The goal is on two fronts: to recover the conditional
dependency structure over the frames and the struc-

6http://www.cs.columbia.edu/CAVE/software/
softlib/coil-20.php

ture over the pixels. For simplicity, we reduced the
resolution of each frame and sub-sampled the frames
(at a ratio 1:2). After vectorizing the frames (stack-
ing their columns into 81 × 1 vectors) and arranging
them into a design matrix Y, the resulting single “dat-
apoint” that BiGLasso has to learn from is 36 × 81
(#frames × vectorized frame length). Unlike our pre-
vious simulations where we had many matrix-samples,
here the challenge is to learn from this single matrix
(N = 1).

Despite the big loss in resolution, the principal com-
ponent (PCA) subspace of the rotating duck seems to
remain smooth, see Figure 5. Being a time-series, the
video is expected to resemble a 1D manifold, “homeo-
morphic” to the one recovered by PCA shown in figure
5, so we applied the BiGLasso on the reduced images.

Figure 5. 1D manifold of the rotating duck in 3D space, re-
covered by PCA and projecting onto the 3 principal eigen-
vectors of Y⊤Y. The black curve serves as a shadow to
aid perspective. Note that the blue line is drawn only by
knowledge of the frame ordering and PCA is responsible
solely for the reduced embedding.

Indeed, the left panel of figure 6 shows the row-
precision parameter of BiGLasso capturing amanifold-
like structure where the first and last frames join, as
expected of a 360◦ rotation. The model recovered the
temporal manifold structure, or in other words, we
could use it to connect the dots in Figure 5 in case the
true order of the frames was unknown (or randomly
given to us).

The right panel of Figure 6 shows the conditional de-
pendency structure over the pixels. This figure shows
strong dependencies at intervals of 9 — that is, roughly
in line with the size of a frame (due to the column-wise
ordering of the pixels). This is expected, as neighbor-
ing pixels are more likely to be conditionally depen-
dent.
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Figure 6. The estimated row and column-precision of Bi-
GLasso with λ = γ ≈ 10−3.

A more intuitive picture of the induced Markov net-
work is shown in Figure 7. A Gaussian graphical model
can be naturally interpreted as a system of springs,
where the off-diagonal entries of the inverse-covariance
represent the negative stiffness of the springs. There-
fore by the colorbar, a negative-color represents an
“attracting” spring between those two pixels and a
positive-colour represents a “repulsing” spring. Nat-
urally, in the frames network almost all non-zero ele-
ments are negative.

Figure 7. The Markov network induced by the column-
precision over the pixels (superimposed over the first frame
for reference of the pixel locations).

6. Conclusion

In this paper we proposed new techniques for mod-
eling conditional dependencies, as encoded by the
inverse-covariance of a matrix normal density. In high-
dimensional cases the Markov network structures in-
duced by a graph could be approximated by factorisa-
tions such as the tensor-product (Kronecker-product of
precision matrices). In this work, we motivated a novel
application of the Cartesian factorization of graphs
(Kronecker-sum of precision matrices), as a more par-
simonious and interpretable structure for inter-sample
and inter-feature conditional dependencies. We intro-

duced the bigraphical Lasso, an algorithm for the si-
multaneous point-estimation of the structures of two
Gaussian graphical models: one over the rows of a
matrix-sample and the other over its columns. This
was demonstrated to good effect through simulations
as well as a small example from the COIL dataset.

For future research, the Kronecker sum structure may
be of interest in both Gaussian processes and mod-
eling higher order tensors. In multi-output GPs, a
Kronecker-product noise-free covariance decouples the
outputs when a block design is used. The additive
form is an appealing feature of the Kronecker-sum for
the preservation of inter-task transfer, thereby leading
to potential applications on Kronecker-sums of kernels
for multi-output Gaussian processes. The associativ-
ity of the Kronecker sum may also yield an approach
to the modeling of datasets organized into 3 or higher-
dimensional arrays (amounting to GMRFs over higher-
order tensors) with dependencies across any subset of
the array dimensions.

Software and Data

Related source code for reproducing the experiments
will appear on github.com/alkalait/biglasso.
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