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Abstract

We consider the bilevel programming problem and its optimal value

and KKT one level reformulations. The two reformulations are studied in

a unified manner and compared in terms of optimal solutions, constraint

qualifications and optimality conditions. We also show that any bilevel

programming problem where the lower level problem is linear with re-

spect to the lower level variable, is partially calm without any restrictive

assumption. Finally, we consider the bilevel demand adjustment problem

in transportation, and show how KKT type optimality conditions can

be obtained under the partial calmness, using the differential theory of

Mordukhovich.

Keywords: Bilevel programming, Optimal value function, Constraint qualifi-
cations, Optimality conditions, Demand adjustment problem.
2000 AMS subject classifications: 90C30, 91A65, 90B06.

1 Introduction

In this paper we consider the (optimistic) bilevel programming problem also
called the leader’s problem, which is a special optimization problem partially
constrained by a second (parametric) optimization problem known as the fol-
lower’s problem. In order to write the bilevel programming problem as a one
level mathematical programming problem, two major reformulations have been
suggested in the literature [6], i.e. the KKT reformulation and the optimal
value reformulation. The KKT reformulation usually consist in replacing the
follower’s problem by its Karush-Kuhn-Tucker (KKT) conditions provided that
the latter problem is convex in the lower level variable and an appropriate con-
straint qualification (CQ) is satisfied. This reformulation introduces new vari-
ables, thus complicating the task of constructing a solution point of the KKT
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reformulation that would solve the original bilevel programming problem, hence
the two problems are not equivalent, at least locally [7]. Also the new variables
induce a complementarity slackness constraint which causes the failure of the
Mangasarian-Fromowitz constraint qualification (MFCQ).

Considering the convexity of the follower’s problem w.r.t. the lower level
variable, the latter problem can be rewritten as a generalized equation con-
taining the normal cone to its feasible set. Under this circumstance, the new
problem can also be seen as a (primal) KKT reformulation of the bilevel pro-
gramming problem, even though it is abstract in nature. At this stage, we will
show that the bilevel programming problem still maintains a good relationship
with its KKT reformulation. Hence the latter problem is also equivalent, for
local and global solutions, to the optimal value reformulation. Unfortunately,
this nice relationship between the two reformulations is not enjoyed in terms of
CQs. In fact, we will show in Section 3 that the KKT and the optimal value
reformulations may behave differently under a given CQ.

Further in the paper, we consider a simpler case where the lower level fea-
sible set is defined by inequality constraints and the normal cone to this set is
effectively computed. It is well-known that all first category CQs, i.e. those
implying the MFCQ also fail for this problem. We show here that the Guignard
CQ is weak enough to have some real chances to be satisfied. Also, it is possi-
ble to have fruitful relations between the KKT type optimality conditions of the
optimal value and the KKT reformulations of the bilevel programming problem.
Notably, the KKT optimality conditions of both reformulations may be iden-
tical when the follower’s problem is linear. Again, in the context of the KKT
reformulation of the bilevel problem, the latter and the optimal value reformu-
lation have an analogy in the failure of some well-known CQs. As a matter of
fact, the MFCQ fail for the optimal value reformulation because of the optimal
value constraint [13], while the failure for the same CQ for the KKT reformula-
tion is due to the complementarity slackness constraint [30]. In order to solve
this difficulty, we consider the partial calmness which was introduced by Ye and
Zhu [37] and designed for the purpose. In Section 4 of the paper, an important
result is proven: the bilevel programming problem where the follower’s problem
is linear in the lower level variable is partially calm at an arbitrary local optimal
solution. This result largely improves a result already established by Ye [35], in
the case where no constraint is imposed on the upper level variable.

Finally, in the last section of the paper, we consider an application of
bilevel programming in transportation. In fact, the demand adjustment problem
(DAP) in road networks has been modeled by Fisk [16] as a bilevel programming
problem. But like other bilevel transportation problems, the issue of optimality
conditions has not (or very little) been addressed in the literature. A reason
for this may be that in addition to the general burdens of bilevel programs,
i.e. the nonsmoothness, nonconvexity and the failure of classical CQs, as men-
tioned above, the feasible set of the traffic assignment problem has a special
structure figuring an interplay between the route and link flows, which does
not seem easy to handle. Writing the set of feasible link flows as a composi-
tion of two set-valued mappings, we use the sophisticated coderivative tool of
Mordukhovich, from the field of variational analysis, to design Karush-Kuhn-
Tucker type optimality conditions for the DAP. Hence, greatly improving the
works of Chen [4] and Chen and Florian [5], where Fritz-John’s type optimality
conditions were derived after considering some important simplifications.
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We first present in the next section some basic notations and background
material to be used in the paper. Mainly, relevant properties of the general-
ized differential theory of Mordukhovich (i.e. the Mordukhovich normal cone,
subdifferential and coderivative) are discussed. In Section 3, we introduce the
optimistic bilevel programming problem and the optimal value and KKT re-
formulations are considered. Their behavior for some CQs are analyzed and
compared, also their KKT type optimality conditions are derived and possible
links between them are studied. In Section 4, we consider the partial calmness,
which is an interesting CQ for the bilevel programming problem. Here we show
that it is automatically satisfied when the follower’s problem is linear in the
lower level variable, under very fairly weak considerations. Finally, in section
5, the DAP is introduced and we show that under the natural assumption that
routes of the network have limited capacities, the solution set-valued mapping of
the traffic assignment problem is inner semicompact. Hence the optimal value
function of the traffic assignment problem is automatically Lipschitz continuous
and KKT type optimality conditions of the DAP can simply be derived under
the partial calmness, which is satisfied at every local optimal solution when the
total cost of the route users is linear in the link flows.

2 Background material

In this section we present some basic concepts and notations used in this paper.
More details on the material, briefly discussed here can be found in the books
of Mordukhovich [24, 25] and Rockafellar and Wets [29]. We first consider some
initial notations: Let A be a subset of R

n, coA, clA and bdA denotes the
convex hull, the closure and the boundary of A respectively. For a matrix B,
B⊤ is the transposed matrix of B. For a ∈ R

n, a ≤ 0 should be understood
componentwise. Finally, ‖.‖ denotes an arbitrary norm in R

n and 〈., .〉 is used
for the inner product of Rn.

A function ψ : Rn → R
m is said to be locally Lipschitz continuous around

x ∈ R
n if there exist δ, κ > 0 such that

‖ψ(x)− ψ(y)‖ ≤ κ‖x− y‖, for all x, y ∈ x+ δB,

where B is the unit ball of Rn and κ is called the Lipschitz constant. ψ is locally
Lipschitz continuous if it is locally Lipschitz continuous around every point of
R
n. The function ψ is said to be Lipschitz continuous if the above inequality

holds with δ = ∞. The local Lipschitz continuity of the real-valued function
ψ : Rn → R is necessary for its convexity.

Next we assume that A is a closed subset of Rn. The Bouligand tangent
cone to A at some point x ∈ A is defined by

TA(x) =
{
d ∈ R

n|∃tk ↓ 0, dk → d : x+ tkdk ∈ A
}

and the regular normal cone to A at x ∈ A is given as

N̂A(x) =
{
d∗ ∈ R

n|〈d∗, d〉 ≤ 0 ∀d ∈ TA(x)
}

while the basic normal cone introduced by Mordukhovich is defined as

NA(x) =
{
d∗ ∈ R

n|∃d∗k → d∗, xk → x(xk ∈ A) : d∗k ∈ N̂A(xk)
}
.
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In contrast to the regular normal cone, which is always convex, the Mor-
dukhovich normal cone is generally nonconvex, thus cannot be polar to any
tangential approximation of A. Nevertheless, N̂A(x) and NA(x) both coincide
with the normal cone of convex analysis when A is convex. Additionally, the
Mordukhovich normal cone is contained in the Clarke normal cone for an arbi-
trary closed set A, and it induces some major tools of Variational Analysis, i.e.
the Mordukhovich subdifferential and coderivative.

For a lower semicontinuous function ψ : Rn → R, the Mordukhovich subdif-
ferential of ψ at x ∈ R

n is defined by

∂ψ(x) =
{
x∗ ∈ R

n|(x∗,−1) ∈ Nepiψ(x, ψ(x))
}
,

where epiψ is the epigraph of ψ. The Mordukhovich subdifferential is always
nonempty and compact when ψ is locally Lipschitz continuous. Moreover

∂ψ(x) =
{
∇ψ(x)

}

provided ψ is continuously differentiable. The following convex hull property

co∂(−ψ)(x) = −co∂ψ(x), (1)

also holds true when ψ is locally Lipschitz continuous. If the function ψ : Rn →
R is convex, then ∂ψ(x) coincides with the subdifferential of convex analysis.
Also, if we consider two functions φ and ψ, locally Lipschitz continuous around
x, and nonnegative real numbers λ and µ, we have the sum rule

∂(λφ+ µψ)(x) ⊆ λ∂φ(x) + µ∂ψ(x), (2)

where equality holds if φ or ψ is continuously differentiable at x.
For the rest of this section we consider a set-valued mapping Φ : Rn ⇒ R

m,
its domain denoted by domΦ is the set of all x ∈ R

n such that Φ(x) 6= ∅ and its
graph is given as

gphΦ =
{
(u, v) ∈ R

n × R
m|v ∈ Φ(u)

}
.

The coderivative of Φ at (x, y) ∈ gphΦ is a positively homogeneous mapping
D∗Φ(x, y) : Rm ⇒ R

n defined for y∗ ∈ R
m as

D∗Φ(x, y)(y∗) =
{
x∗ ∈ R

n|(x∗,−y∗) ∈ NgphΦ(x, y)
}
, (3)

where the argument y is omitted if Φ is single-valued. Precisely, for a locally
Lipschitz continuous function Φ : Rn → R

m, we have for any y∗ ∈ R
m

D∗Φ(x)(y∗) = ∂〈y∗,Φ〉(x), (4)

with 〈y∗,Φ〉(x) = 〈y∗,Φ(x)〉 and ∂ being the Mordukhovich subdifferential de-
fined above. Again let’s mention that if the single-valued mapping Φ is contin-
uously differentiable around x, then for y∗ ∈ R

m

D∗Φ(x)(y∗) =
{
∇Φ(x)⊤y∗

}
, (5)

where ∇Φ(x) is the Jacobian matrix of Φ.
The set-valued mapping Φ is inner semicompact at a point x, with Φ(x) 6= ∅,

if for every sequence xk → x with Φ(xk) 6= ∅, there is a sequence of yk ∈ Φ(xk)
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that contains a convergent subsequence as k → ∞. It follows that the inner
semicompactness holds whenever Φ is uniformly bounded around x, i.e. there
exists a neighborhood U of x and a bounded set A ⊂ R

m such that Φ(x) ⊆
A, ∀x ∈ U. The mapping Φ is said to be inner semicontinuous at (x, y) ∈ gphΦ
if for every sequence xk → x there is a sequence of yk ∈ Φ(xk) that converges to
y as k → ∞. Clearly, the inner semicontinuity is a property much stronger than
the inner semicompactness and is a necessary condition for the following Aubin
property to hold. The mapping Φ : Rn ⇒ R

m satisfies the Aubin property
around the point (x, y) ∈ gphΦ if there are neighborhoods U of x, V of y and a
constant L > 0 such that

d(y,Φ(x2)) ≤ L‖x1 − x2‖, ∀x1, x2 ∈ U, ∀y ∈ Φ(x1) ∩ V,

where d stands for a distance on R
m ×R

m. When the graph of Φ is closed, the
Aubin property is equivalent to the so-called coderivative (or Mordukhovich)
criterion:

D∗Φ(x, y)(0) = {0}. (6)

3 Optimal value versus KKT reformulation

We are mainly concerned in this section with comparing the optimal value refor-
mulation and KKT reformulation of the bilevel programming problem in terms
of constraint qualifications, stationary points, local and global optimal solutions.
We first start by presenting these two reformulations and the links between their
local and global optimal solutions.

3.1 Reformulations and optimal solutions

We consider the optimistic bilevel programming problem to

minimize F (x, y) subject to x ∈ X ⊆ R
n, y ∈ Ψ(x), (7)

also called the upper level problem, where the function F : R
n × R

m → R

and the set-valued mapping Ψ from R
n to R

m describes the solution set of the
parametric optimization problem to

minimize f(x, y) subject to y ∈ K(x), (8)

K(x) being a closed subset of Rm for all x ∈ R
n and the function f : Rn×R

m →
R continuously differentiable. The difference between what is called the optimal
value reformulation of problem (7) and its so-called KKT reformulation resides
in the way the solution set Ψ(x) of the lower level problem (8) is expressed in
order to have a one level optimization problem.

For the optimal value reformulation,

Ψ(x) = {y ∈ K(x)|f(x, y) ≤ ϕ(x)}, (9)

where ϕ is the optimal value function of problem (8), defined as

ϕ(x) = min{f(x, y)|y ∈ K(x)}. (10)

5



Hence the following reformulation of problem (7):

minimize F (x, y) subject to (x, y) ∈ C, (11)

where
C = {(x, y) ∈ Ω|f(x, y) ≤ ϕ(x)} (12)

with Ω = {(x, y) ∈ R
n × R

m|x ∈ X, y ∈ K(x)}.

Theorem 3.1. A point (x, y) is a local (resp. global) optimal solution of (7) if
and only if it is a local (resp. global) optimal solution of (11).

Proof. Let (x, y) be a local optimal solution of (7), i.e. let U(x, y) be a neigh-
borhood of (x, y) such that

F (x, y) ≤ F (x, y), ∀(x, y) ∈ F ∩ U(x, y), (13)

where F is the feasible set of problem (7). Since (x, y) ∈ F implies x ∈ X, y ∈
Ψ(x) and

y ∈ Ψ(x) if and only if y ∈ K(x), f(x, y) ≤ ϕ(x), (14)

it follows that (x, y) ∈ C. It also follows from (14) that for every (x, y) ∈
C, (x, y) ∈ F . Hence (x, y) is also a local optimal solution of problem (11),
considering (13). The global case follows in the like manner. The converse can
also be proven analogously thanks to (14).

Meanwhile, if we assume the parametric problem (8) to be convex, i.e., the
function y → f(x, y) and the set K(x) are convex for all x ∈ X, then the lower
level solution set takes the form

Ψ(x) = {y ∈ R
m|0 ∈ ∇yf(x, y) +NK(x)(y)}. (15)

Furthermore we consider the following set-valued mapping defined from R
n×R

m

to R
m

NK(x, y) =

{
NK(x)(y) if y ∈ K(x)
∅ otherwise

(16)

suggested by Dempe and Dutta [15]. Then the bilevel programming problem
(7) can be reformulated as

minimize F (x, y) subject to (x, y) ∈ C ′, (17)

where
C ′ = {(x, y) ∈ Ω′|H(x, y) ∈ gphNK}, (18)

with Ω′ = X × R
m and H(x, y) = (x, y,−∇yf(x, y))

⊤.
For the next theorem, a point x will be said to be a local (resp. global)

optimal solution of min
x∈A

f(x) on B, if x ∈ B and there exist a neighborhood U(x)

of x such that f(x) ≤ f(x), ∀x ∈ A∩B∩U(x) (resp. f(x) ≤ f(x), ∀x ∈ A∩B).
Naturally, if B coincides with the whole space, this needs not be mentioned.

Theorem 3.2. A point (x, y) is a local (resp. global) optimal solution to problem
(7) if and only if (x, y) is a local (resp. global) optimal solution of problem (17)
on gphK.
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Proof. Let (x, y) be a local optimal solution to problem (7) on a neighborhood
U(x, y) of (x, y). Let’s denote by F the feasible set of (7), then we have

F (x, y) ≤ F (x, y), ∀(x, y) ∈ U(x, y) ∩ F . (19)

Let (x, y) ∈ F , we have x ∈ X, y ∈ Ψ(x) and since the lower level problem is
convex in y,

y ∈ Ψ(x) if and only if

{
y ∈ K(x)
−∇yf(x, y) ∈ NK(x, y).

(20)

Thus (x, y) ∈ C ′ ∩ gphK. It also follows from (20) that for every (x, y) ∈
C ′ ∩ gphK, (x, y) ∈ F . Hence (x, y) is a local optimal solution of problem (17)
on gphK, considering (19). The global case follows in the like manner.

Conversely, let (x, y) be a local optimal solution of (17) on gphK and let
U(x, y) be a neighborhood of (x, y) such that

F (x, y) ≤ F (x, y), ∀(x, y) ∈ U(x, y) ∩ C ′ ∩ gphK. (21)

Since (x, y) ∈ gphK, it follows from (20) that (x, y) ∈ F . Arguing as in the first
implication of the proof we conclude that (x, y) is also a local (resp. global)
optimal solution of problem (7).

The term gphK in Theorem 3.2 can be dropped if we assume that the lower
level feasible set is independent of the parameter x, i.e. if we set K(x) := K for
all x ∈ X. In this case the feasible set of problem (17) takes the form

C ′ = {(x, y) ∈ X ×K|(y,−∇yf(x, y)) ∈ gphNK},

hence the previous result remains true without needing the term gphK.
Following Theorem 3.1 and Theorem 3.2, it can be observed that by transi-

tivity, a point (x, y) will be a local (resp. global) optimal of problem (11) if and
only if (x, y) is a local (resp. global) optimal of problem (17) on gphK. But
this equivalence will be lost for local solutions, at least if K(x) is defined by
a system of inequalities and the normal cone NK(x) is to be computed instead
of writing the feasible set of (17) with gphNK . In fact, the computation of
NK(x) will introduce new variables, thus complicating the task of constructing
a solution point of the KKT reformulation that would solve the original bilevel
problem. We do not pursue this goal here. For more details on this direction,
the interested reader is referred to the paper of Dempe and Dutta [7].

3.2 CQs and stationary points

Let’s consider a general Lipschitz optimization problem to

minimize φ(z) subject to z ∈ C, (22)

with C defined as
C = {z ∈ D|ψ(z) ∈ E}, (23)

where D ⊆ R
k and E ⊆ R

l are closed and ψ : R
k → R

l and φ : R
k → R

are locally Lipschitz continuous functions. Next let’s consider the constraint
qualification denoted by MMFCQ:

⋃

z∗∈NE(ψ(z))\{0}

D∗ψ(z)(z∗) ∩ −ND(z) = ∅ (24)
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which is nothing but the coderivative criterion (6) for the set-valued mapping

Φ(λ) = {z ∈ D|ψ(z) + λ ∈ E}

at the point (0, z) ∈ gphΦ [19]. Equation (24) can also be seen as an extension
of the well-known Mangasarian-Fromowitz constraint qualification (MFCQ) to
nonsmooth optimization problems, see e.g. Dempe and Zemkoho [13] for an
illustration. The following result giving KKT type optimality conditions for
problem (22) can now be stated.

Theorem 3.3. Let z be a local optimal solution to problem (22) and assume
that z satisfies the MMFCQ, then

0 ∈ ∂φ(z) +
⋃

z∗∈NE(ψ(z))

D∗ψ(z)(z∗) +ND(z). (25)

Proof. Since the function ψ is locally Lipschitz continuous and the sets D and E
are closed, then the feasible set C of problem (22) is also closed. Hence, it follows
from Mordukhovich [25, Proposition 5.3] that being a local optimal solution to
(22), z satisfies

0 ∈ ∂φ(z) +NC(z)

given that φ is also locally Lipschitz continuous. Now, looking the feasible set
of (22) as C = Φ(0), it follows from Henrion, Jourani and Outrata [18, Theorem
4.1] that

NC(z) ⊂
⋃

z∗∈NE(ψ(z))

D∗ψ(z)(z∗) +ND(z)

under the CQ (24); and the result follows.

The KKT type optimality condition in (25) can also be obtained under the
weaker CQ ⋃

z∗∈NE(ψ(z))\{0}

D∗ψ(z)(z∗) ∩ −bdND(z) = ∅ (26)

where instead of the normal cone ND(z) in (24) we consider its boundary
bdND(z), provided that D is semismooth and regular (in the sense of Clarke)
at z [19].

Coming back to our bilevel programming problem (7), we first consider the
optimal value reformulation (11), then the CQ (24) takes the following form:

∂G(x, y) ∩ −NΩ(x, y) = ∅, (27)

with G(x, y) = f(x, y) − ϕ(x). It is easy to show that the CQ (27) is violated
at any feasible point of problem (11) under the fairly mild assumption that the
sum rule

∂(G + δΩ)(z) ⊆ ∂G(z) + ∂δΩ(z)

holds. This last inclusion is automatically satisfied if ϕ is locally Lipschitz
continuous and finite around z. For more details on condition (27) we refer the
interested reader to [13].

We now apply the MMFCQ to the KKT reformulation (17) and we have the
following corresponding CQ:

⋃

z∗∈NgphNK
(H(x,y))\{0}

D∗H(x, y)(z∗) ∩ −NΩ′(x, y) = ∅, (28)

8



which can equivalently be written as

0 ∈ D∗H(x, y)(z∗) +NΩ′(x, y)
with z∗ ∈ NgphNK

(H(x, y))

}
⇒ z∗ = 0. (29)

Hence, we have the following corollary of Theorem 3.3 by assuming that the
function F is continuously differentiable and f twice continuously differentiable.

Corollary 3.4. Let (x, y) be a local optimal solution to (17) and assume that
the following CQ is satisfied:

(
− u+∇2

xyf(x, y)
⊤w, −v +∇2

yyf(x, y)
⊤w

)
∈ NX×Rm(x, y)

with (u, v, w) ∈ NgphNK
(x, y,−∇yf(x, y))

}
⇒





u = 0
v = 0
w = 0.

Then there exist (u, v, w) ∈ NgphNK
(x, y,−∇yf(x, y)) and γ ∈ NX(x) such that

(i) −∇xF (x, y) +∇2
xyf(x, y)

⊤w = u+ γ

(ii) −∇yF (x, y) +∇2
yyf(x, y)

⊤w = v.

Proof. We simply have to notice that since the vector-valued function H is
continuously differentiable, then it follows from equality (5) that

D∗H(x, y)(z∗) = ∇H(x, y)⊤z∗ =

[
u−∇2

xyf(x, y)
⊤w

v −∇2
yyf(x, y)

⊤w

]

with z∗ = (u, v, w) ∈ NgphNK
(x, y,−∇yf(x, y)). The result then follows given

that NΩ′(x, y) = NX×Rm(x, y) = NX(x)× {0}.

Considering the case where the lower level feasible set does not depend on
the upper level variable x, the variable x makes no sense in the definition of the
set-valued mapping in (16). Hence, in this situation the CQ in Corollary 3.4
takes the form

(
∇2
xyf(x, y)

⊤v, −u+∇2
yyf(x, y)

⊤v
)
∈ NX×Rm(x, y)

with (u, v) ∈ NgphNK
(y,−∇yf(x, y))

}
⇒ [u = 0, v = 0],

(30)
where K(x) := K for all x ∈ X, cf. Dutta and Dempe [15].

The result of Corollary 3.4 was also given in [10] at the difference that we
present it here as a consequence of the more general result of Theorem 3.3. It
is also worth mentioning that if the upper level feasible set X is convex, then as
mentioned above, the optimality conditions in Corollary 3.4 can still be obtained
if instead of the normal cone NX×Rm(x, y) of the CQ, we consider its boundary
bdNX×Rm(x, y), thus providing a weaker CQ.

We now provide an example of bilevel programming problem, inspired from
[10], and presenting a difference of behavior between the optimal value reformu-
lation (11) and the KKT reformulation (17) under the constraint qualification
(24) also denoted above as MMFCQ.

Example 1. Consider the bilevel programming problem (7) with the functions
F, f : R2 → R defined respectively as F (x, y) = (x − 1)2 + y2 and f(x, y) =
(x2 +1)y. The upper and the lower level feasible sets are respectively defined as
X = R+ = [0,∞) and K(x) = R+.
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Let’s first mention that Ψ(x) = {0} for all x ∈ X, hence (1, 0) is the unique
solution of the problem. Next we consider the KKT reformulation (17) and its
corresponding MMFCQ as in (30) given that K(x) is independent of x. Since
NX(1) = {0} the CQ (30) is satisfied at (1, 0) given that ∇2

xyf(1, 0) = 2.
Finally, for the optimal value reformulation (11), we have ϕ(x) = 0 for all

x ∈ X and Ω = R+ × R+. Hence ∇G(1, 0) = (0, 1)⊤ and NΩ(1, 0) = NR+
(1) ×

NR+
(0) = {0} × R−. Clearly we have ∇G(1, 0) ∈ {0} × R+ = −NΩ(1, 0).

Thus illustrating the violation of the MMFCQ at (1, 0) for the optimal value
reformulation (11).

Our next concern is to compare the stationary points of the KKT refor-
mulation (17) and the optimal value reformulation (11) of problem (7). But
given that estimating the normal cone NgphNK

may be difficult (cf. [15] and
references therein), we consider for the rest of this section, a simplified bilevel
programming problem (7) where

X = {x ∈ R
n|G(x) ≤ 0}, and K(x) = {y ∈ R

m|g(x, y) ≤ 0},

with the functions G : Rn → R
p and g : Rn × R

m → R
k being sufficiently

smooth as required in the sequel. If in addition to the convexity of the function
y → f(x, y) and the set K(x), i.e. of y → g(x, y), an appropriate CQ, like
the smooth MFCQ is satisfied at all points y ∈ Ψ(x), x ∈ X, then we have the
following equality [28]:

NK(x)(y) = {∇yg(x, y)
⊤β|β ≥ 0, β⊤g(x, y) = 0}.

Hence the KKT reformulation takes the form:

minimize F (x, y)

subject to





∇yf(x, y) +∇yg(x, y)
⊤β = 0

β⊤g(x, y) = 0
β ≥ 0, g(x, y) ≤ 0
G(x) ≤ 0
(x, y, β) ∈ R

n × R
m × R

k.

(31)

If we apply the MMFCQ to this problem by setting D = R
n × R

m × R
k,

E = R
p+2k × {0m+1} and the components of ψ being defined by the constraint

functions of problem (31) we obtain a CQ which coincides with the dual form of
the ordinary Mangasarian-Fromowitz CQ for smooth problems. Unfortunately,
this CQ is violated at an arbitrary feasible point of (31), cf. Scheel and Scholtes
[30]. This seems to contradict what has been mentioned in Example 1, where
the problem considered clearly falls in the same class of problems in (31). For
an attempt to interpret this fact, we properly write the KKT reformulation of
the problem of Example 1 in the classical form of (31):

minimize (x− 1)2 + y2

subject to x ≥ 0, y = 0.
(32)

This clearly illustrates that the classical MFCQ is satisfied at (1, 0) given that
the constraints x ≥ 0, y = 0 are all linear. But the reason for this can be at-
tributed to the disappearance of the variable β, which is supposed to help pre-
serve the complementarity constraint in (31) causing the failure of the MFCQ.
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Hence, the problem of Example 1 should be seen not as a legitimization of how
good the MFCQ could be as a CQ for the bilevel programming problem, but
rather as an artificial problem designed simply with the purpose to show that
for a given bilevel optimization problem, the behavior vis-à-vis a CQ, may vary
depending on the reformulation considered. Nevertheless, a formal relation be-
tween the outcomes of the MMFCQ on the (primal) KKT model (17) and the
KKT reformulation in (31) needs to be established, in order to have an overview
on the situation. But we do not intend to address this issue here, rather we keep
it as topic for future research.

In order to derive KKT type optimality conditions for problem (31), we
consider the Guignard CQ defined as follows and which is weaker than the
MFCQ. For an optimization problem to

minimize f(x)
subject to g(x) ≤ 0, h(x) = 0,

(33)

where the functions f : Rn → R, g : Rn → R
p and h : Rn → R

q are continuously
differentiable, if we denote by A the feasible set of problem (33), the Guignard
CQ is satisfied at x ∈ A if

KA(x)
∗ = −N̂A(x), (34)

where the set in the left hand side of the equality denotes the dual cone of the
linearized tangent cone to A at x ∈ A:

KA(x) = {d ∈ R
n| ∇gi(x)

⊤d ≤ 0, ∀i : gi(x) = 0
∇hi(x)

⊤d = 0, ∀i : i = 1, . . . , q}.

Theorem 3.5. Let (x, y, β) be a local optimal solution to problem (31) and
assume that the Guignard CQ is satisfied at (x, y, β). Then we have β ≥ 0 and
there exist λ ≥ 0, α ≥ 0, γ ≥ 0 and ν such that:

∇xF (x, y) +∇xg(x, y)
⊤(α− λβ) +∇G(x)⊤γ

+
[
∇2
xyf(x, y) +∇2

xyg(x, y)
⊤β

]⊤
ν = 0 (35)

∇yF (x, y) +∇yg(x, y)
⊤(α− λβ) +

[
∇2
yyf(x, y) +∇2

yyg(x, y)
⊤β

]⊤
ν = 0 (36)

∇yf(x, y) +∇yg(x, y)
⊤β = 0 (37)

α⊤g(x, y) = 0 (38)

β⊤g(x, y) = 0 (39)

γ⊤G(x) = 0. (40)

Proof. Let us set

φ(x, y, β) = (−β⊤g(x, y), g(x, y), G(x),−β)⊤

and
ψ(x, y, β) = ∇yf(x, y) +∇yg(x, y)

⊤β,

then (x, y, β) is a local optimal solution of the problem

minimize F (x, y)
subject to φ(x, y, β) ≤ 0, ψ(x, y, β) = 0,

(41)
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since β⊤g(x, y) = 0 if and only if −β⊤g(x, y) ≤ 0, given that β ≥ 0 and
g(x, y) ≤ 0. Further let’s denote by A the feasible set of the previous problem.
It follows from Mordukhovich [25, Proposition 5.1] that

−∇F (x, y, β) ∈ N̂A(x, y, β).

Applying the Guignard CQ, we have

∇F (x, y, β) ∈ KA(x, y, β)
∗.

That is
−∇F (x, y, β)⊤d ≤ 0, ∀d ∈ KA(x, y, β).

Hence, it follows from Farkas’ Theorem of the alternative [20] that there exist
µ = (λ, α, γ)⊤ ≥ 0 and ν such that

∇F (x, y) +∇φ(x, y, β)⊤µ+∇ψ(x, y, β)⊤ν = 0 (42)

∇yf(x, y) +∇yg(x, y)
⊤β = 0 (43)

α⊤g(x, y) = 0 (44)

β⊤g(x, y) = 0 (45)

γ⊤G(x) = 0, (46)

by including the feasibility of (x, y, β) to problem (31) and considering only the
derivative w.r.t. x and y in equality (42). It should also be clear that equality
(44) is due to the definition of KA(x, y, β) and by setting αi = 0, for all i such
that gi(x, y) < 0. It is also worth mentioning that considering −β⊤g(x, y) ≤ 0
in (41) simply helps to obtain the nonnegativity of the multiplier λ. The result
then follows by decomposing (42) into the partial derivative w.r.t. x and y

respectively.

We now give an example of bilevel programming problem showing that the
Guignard CQ has some real chances to hold.

Example 2. We consider the problem to

minimize x+ y

subject to





x ≥ 0
minimize xy
subject to y ≥ 0.

In this case, f(x, y) = xy, X = {x ≥ 0} ⊂ R and K(x) = {y ≥ 0} ⊂ R.
Hence, −∇yf(x, y) ∈ NK(x)(y) is equivalent to x ≥ 0 and xy = 0, given that
NK(x)(y) = {−β|β ≥ 0, βy = 0}. The above problem then takes the form

minimize x+ y

subject to x, y ≥ 0, xy = 0
(47)

and following Flegel [17], the Guignard CQ holds at the unique optimal solution
point (0, 0).

An important point to make here is that even though the variable β does
not appear in the KKT reformulation (47), the MFCQ still fails here, which is
not the case for (32).
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For some more details on the application of the Guignard CQ to MPECs
(mathematical programming problems with equilibrium constraints), we refer
the interested reader to Flegel [17]. We also remaind that problem (31) is a
special MPEC.

As far as the stationary points of the optimal value reformulation (11) are
concerned, we have already shown above that if we plug the data of (11) in the
MMFCQ, the latter is violated at an arbitrary feasible point provided simply
that ϕ is locally Lipschitz continuous and finite around the corresponding point.
By passing from the normal cone NΩ to its boundary bdNΩ, i.e. instead of the
CQ (27), the weaker CQ:

∂G(x, y) ∩ −bdNΩ(x, y) = ∅ (48)

may have some chances to hold for problem (11). Hence the following result.

Theorem 3.6. Let (x, y) be a local optimal solution to problem (11) and assume
that the CQ (48) is satisfied at (x, y). We also let ϕ be convex and finite on R

n.
We further assume that the functions G and g are convex and there exist (x̃, ỹ)
such that G(x̃) < 0 and g(x̃, ỹ) < 0. Then there exist λ ≥ 0, α ≥ 0, β ≥ 0 and
γ ≥ 0 such that:

∇xF (x, y) +∇xg(x, y)
⊤(α− λβ) +∇G(x)⊤γ = 0 (49)

∇yF (x, y) +∇yg(x, y)
⊤(α− λβ) = 0 (50)

∇yf(x, y) +∇yg(x, y)
⊤β = 0 (51)

α⊤g(x, y) = 0 (52)

β⊤g(x, y) = 0 (53)

γ⊤G(x) = 0. (54)

Proof. The convexity of the functions G and g imply the convexity of the set
Ω = {(x, y)|G(x) ≤ 0, g(x, y) ≤ 0}. Next, being finite and convex on R

n, the
value function ϕ is locally Lipschitz continuity around x. Hence, it follows from
Dempe and Zemkoho [13, Lemma 3.3], Mordukhovich [25, Proposition 5.3] and
the sum rule (2) that there exist λ ≥ 0 such that

0 ∈ ∇F (x, y) + λ∇f(x, y) + λ∂(−ϕ)(x)× {0}+NΩ(x, y). (55)

Now, let x∗ ∈ ∂ϕ(x). Since ∂ϕ(x) coincides with the subdifferential of ϕ in the
sense of convex analysis (as mentioned in Section 1), then

ϕ(x)− ϕ(x) ≥ 〈x∗, x− x〉, ∀x ∈ R
n.

Considering the definition of ϕ including the fact that y ∈ Ψ(x) (since (x, y) is
feasible to (11)) we have

f(x, y)− 〈x∗, x〉 ≥ f(x, y)− 〈x∗, x〉, ∀(x, y) : g(x, y) ≤ 0,

which means that (x, y) is an optimal solution of the problem to

minimize f(x, y)− 〈x∗, x〉 subject to g(x, y) ≤ 0.

Hence, from the classical Lagrange multiplier rule, there exist β ≥ 0 such that

x∗ = ∇xf(x, y) +∇xg(x, y)
⊤β (56)

∇yf(x, y) +∇yg(x, y)
⊤β = 0 (57)

β⊤g(x, y) = 0 (58)
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given that there exist (x̃, ỹ) such that g(x̃, ỹ) < 0.
On the other hand, given the existence of (x̃, ỹ) such that G(x̃) < 0 and

g(x̃, ỹ) < 0, it follows from Rockafellar [28, Theorem 4.3] that

NΩ(x, y) ⊆
{
∇g(x, y)⊤α+ (∇G(x)⊤γ, 0)|α ≥ 0, α⊤g(x, y) = 0

γ ≥ 0, γ⊤G(x) = 0
}
.

(59)

Combining (55)-(59), there exist λ ≥ 0, α ≥ 0, β ≥ 0 and γ ≥ 0 satisfying
(51)-(54) and

∇xF (x, y) +∇xg(x, y)
⊤(α− λβ) +∇G(x)⊤γ = 0 (60)

∇yF (x, y) + λ∇yf(x, y) +∇yg(x, y)
⊤α = 0 (61)

given that ∂(−ϕ)(x) ⊆ −∂ϕ(x), following (1) and considering the convexity of
ϕ. By inserting the expression of ∇yf(x, y) from (57) in equation (61), we have
the result.

For ϕ to be convex and finite on R
n, one can assume that f is convex and

X = R
n = domΨ.

Remark 3.7. Something interesting about the result in Theorem 3.6 is that
on the initial optimal value reformulation (11), the Slater CQ is violated at
an arbitrary feasible point because the optimal value constraint f(x, y) ≤ ϕ(x)
is in fact an equality. But thanks to the CQ (48), this difficulty is discarded,
thus paving the way for the Slater CQ to be brought in as a second CQ to help
estimate the normal cone to Ω. As we will realize in the next sections, the partial
calmness acts almost identically.

In a natural way, we define the system of equations (49)-(54) of Theorem
3.6 as the KKT type optimality conditions of the optimal value reformulation
(11), while the equations in (35)-(40) are considered as the KKT type optimality
conditions of the KKT reformulation (31). Hence, the following consequences
are obvious.

• Let the point (x, y, α, β, γ, λ, ν) satisfy (35)-(40) with ν = 0, then the point
(x, y, α, β, γ, λ) satisfies (49)-(54).

• If the point (x, y, α, β, γ, λ) satisfies (49)-(54), then (x, y, α, β, γ, λ, 0) sat-
isfies (35)-(40).

• If the lower level functions f and g are linear in (x, y), then the point
(x, y, α, β, γ, λ) satisfies (35)-(40) if and only if it satisfies (49)-(54), given
that in this case the second order derivative terms will disappear from
(35)-(40).

Part of the above observations have also been made by Ye [36] in a different
context.

Before we conclude this section, it may be of a particular interest to mention
that when the lower level problem is not convex, it would not be legitimate to at-
tempt solving the bilevel programming problem by using the KKT reformulation
(31). As a matter of fact, Mirrlees [23] showed that in such a situation, one may
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not be able to identify an optimal solution of the initial problem. Moreover, the
optimal solution of the bilevel programming problem may not even satisfy the
optimality conditions derived using the KKT reformulation. In order to solve
this difficulty and some possibly unwanted behavior that may occur using the
optimal value reformulation, Ye and Zhu [39] recently suggested a combination
of the KKT and the optimal value reformulations in order to obtain optimality
conditions for the bilevel programming problem. Concretely, it is assumed that
the KKT conditions of the lower level problem are satisfied without considering
the convexity assumption above and hence the following one level optimization
problem is considered:

minimize F (x, y)

subject to





f(x, y)− ϕ(x) ≤ 0
∇yf(x, y) +∇yg(x, y)

⊤β = 0
β⊤g(x, y) = 0
β ≥ 0, g(x, y) ≤ 0
G(x) ≤ 0
(x, y, β) ∈ R

n × R
m × R

k.

The techniques used to design KKT type optimality conditions for the MPECs
are then applied to the above problem.

To close this section, we recall that in general, the smooth MFCQ is violated
at any feasible point of the KKT reformulation (31) of the bilevel programming
problem (7). Thus, also implying the failure of the smooth Slater and the
linear independence CQ. The same observation can be made for the optimal
value reformulation (11), considering the nonsmooth versions of the MFCQ,
the Slater and the linear independence CQ [13, 37]. An interesting question is
how would the other CQs behave for both reformulations. Already Chen [4]
showed that the smooth version of the Arrow-Hurwicz-Uzawa fails for a class of
bilevel problems, considering the KKT reformulation. So it could be interesting
to see how it behaves for the optimal value reformulation. It is also worth
mentioning that the failure of the MMFCQ for the KKT model (31) is due to
the complementarity constraint β⊤g(x, y) = 0, while its failure for the optimal
value model (11) is caused by the optimal value constraint f(x, y) ≤ ϕ(x). A
possible way to avoid this common problem to the two reformulations consist,
for each reformulation, to move the corresponding constraint to the leader’s
objective. In the next section, we consider the partial calmness, a CQ that will
be shown to be very effective in doing exactly that.

4 Partial calmness

From now on we focus our attention on the optimal value reformulation of the
bilevel programming problem (7). That is the problem to

minimize F (x, y)

subject to

{
f(x, y) ≤ ϕ(x)
x ∈ X, y ∈ K(x).

(62)

Let (x, y) be a feasible point of (62). Problem (62) is partially calm at (x, y) if
there is a number µ > 0 and a neighborhood U of (x, y, 0) such that

F (x, y)− F (x, y) + µ|u| ≥ 0, (63)
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for all (x, y, u) ∈ U feasible to the partially perturbed problem to

minimize F (x, y)

subject to

{
f(x, y)− ϕ(x) + u = 0
x ∈ X, y ∈ K(x).

(64)

As we already mentioned in the conclusion of the previous section, our interest
to the partial calmness is led by its capacity to help move the optimal value
constraint function (x, y) → f(x, y) − ϕ(x) from the feasible set to the upper
level objective function, thus providing an order one exact penalty function.
This paves the way to more tractable constraints in the perspective of KKT
type optimality conditions for the bilevel programming problem.

Theorem 4.1. [37] Let (x, y) be a local optimal solution of problem (62). This
problem is partially calm at (x, y) if and only if there exists µ > 0 such that
(x, y) is a local optimal solution of the partially penalized problem to

minimize F (x, y) + µ(f(x, y)− ϕ(x))
subject to x ∈ X, y ∈ K(x).

(65)

From this result, it is clear that the optimality conditions derived in Theorem
3.6 could also be obtained if we replace the CQ (48) by the partial calmness.
But a difference in the multipliers needs to be pointed. In fact, under the partial
calmness, the multiplier λ of Theorem 3.6 is positive, even though the partial
calmness is a weaker CQ than the CQ in (48) as shown by Dempe and Zemkoho
[13].

In their seminal paper [37] where Ye and Zhu introduced the partial calm-
ness, it was proven that a bilevel programming problem with a lower level prob-
lem linear in (x, y), is partially calm. We show in the next theorem that this
proof can be adapted to the case where the follower’s problem is linear only in
the lower level variable y. Clearly we consider the optimistic bilevel program-
ming problem to

minimize F (x, y) subject to x ∈ R
n, y ∈ Ψ(x), (66)

where the set-valued mapping Ψ from R
n to R

m describes the solution set of
the parametric optimization problem to

minimize a(x)⊤y + b(x) subject to C(x)y ≤ d(x), (67)

with a : Rn → R
m, b : Rn → R, C : Rn → R

p×m and d : Rn → R
p. Next we

consider the following optimal value reformulation of problem (66):

minimize F (x, y)

subject to

{
a(x)⊤y + b(x) ≤ ϕ(x)
C(x)y ≤ d(x).

(68)

Theorem 4.2. Let (x, y) be an optimal solution to (68), we assume that F is
Lipschitz continuous and domΨ = R

n. Then (68) is partially calm at (x, y).

Proof. Consider a neighborhood U of (x, y, 0) and let (x′, y′, u) ∈ U satisfying

a(x′)⊤y′ + b(x′)− ϕ(x′) + u = 0
C(x′)y′ ≤ d(x′).

(69)
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Since domΨ = R
n, let y(x′) be a solution to the lower level problem (67) for

the parameter x′, i.e. the couple (x′, y(x′)) is feasible to problem (68). Further
let yo(x

′) be the projection of y′ on Ψ(x′) then, denoting by e = (1, . . . , 1)⊤ a
m-dimensional vector, we have

‖y′ − yo(x
′)‖ = min

y
{‖y′ − y‖ : y ∈ Ψ(x′)}

= min
ε,y

{ε : ‖y′ − y‖ ≤ ε, y ∈ Ψ(x′)}

= min
ε,y

{ε : −εe ≤ y′ − y ≤ εe, y ∈ Ψ(x′)}.

The last equality describes the linear program

min
ε,y

ε




−εe+ y ≤ y′

−εe− y ≤ −y′

a(x′)⊤y ≤ ϕ(x′)− b(x′)
C(x′)y ≤ d(x′),

having as dual the problem

max
ξ1,ξ2,ξ3,ξ4

〈
(ξ1, ξ2, ξ3, ξ4)

⊤, (y′,−y′, ϕ(x′)− b(x′), d(x′))⊤
〉





−e⊤ξ1 − e⊤ξ2 = 1
ξ1 − ξ2 + ξ3a(x

′) + C(x′)⊤ξ4 = 0
(ξ1, ξ2, ξ3, ξ4) ∈ R

m
− × R

m
− × R− × R

p
−.

By inserting the constraint ξ1 − ξ2 + ξ3a(x
′) + C(x′)⊤ξ4 = 0 in the objective

function of the dual problem, we have the equivalent problem

max
ξ1,ξ2,ξ3,ξ4

ξ3
(
ϕ(x′)− a(x′)⊤y′ − b(x′)

)
+
(
d(x′)− C(x′)y′

)⊤
ξ4

−e⊤ξ1 − e⊤ξ2 = 1, ξ1, ξ2, ξ3, ξ4 ≤ 0.

Thus there is at least one vertex (ξo1 , ξ
o
2 , ξ

o
3 , ξ

o
4) of the system

−e⊤ξ1 − e⊤ξ2 = 1, ξ1, ξ2, ξ3, ξ4 ≤ 0 (70)

such that

‖y′ − yo(x
′)‖ = ξo3

(
ϕ(x′)− a(x′)⊤y′ − b(x′)

)
+

(
d(x′)− C(x′)y′

)⊤
ξo4 ,

which implies
‖y′ − yo(x

′)‖ ≤ ξo3u

given that (x′, y′) satisfies (69). Also notice that u ≤ 0 considering the definition
of ϕ. Since the number of vertices satisfying (70) is finite, let ξB3 ∈ R be the
smallest (2m+ 1)th component of such vertices, then

‖y′ − yo(x
′)‖ ≤ |ξB3 ||u|. (71)

On the other hand we recall that F is Lipschitz continuous. Denote by KF

its Lipschitz constant, given that (x, y) is an optimal solution to problem (68)
and (x′, yo(x

′)) being feasible, we have

F (x′, y′)− F (x, y) ≥ F (x′, y′)− F (x′, yo(x
′))

≥ −KF ‖y
′ − yo(x

′)‖
≥ −µ|u|,

(72)

where µ = KF |ξ
B
3 | and considering inequality (71).
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In [12], a similar proof was already given for the simpler case where f(x, y) =
x⊤y and K(x) = {y|Ay = b, y ≥ 0}. It is easy to see that this case can simply be
imbedded in Theorem 4.2 by rearranging the lower level constraints as: Ay ≤ b,

−Ay ≤ −b and −y ≤ 0.
We now consider the bilevel programming problem (66) in the case where

X 6= R
n. It is no more certain that this problem would be partially calm without

an additional assumption. For this reason we consider the following definition
of the notion of uniformly weak sharp minimum introduced in [37].

Definition 4.3. The family of parametric optimization problems {(8)|x ∈ X}
is said to have a uniformly weak sharp minimum if there exist µ > 0 such that

f(x, y)− ϕ(x) ≥ µd(y,Ψ(x)), ∀y ∈ K(x), ∀x ∈ X.

It can easily be shown that if the upper level objective function F is Lip-
schitz continuous in y uniformly in x, then the bilevel programming problem
(7) is partially calm at every local optimal solution, provided that the family
of parametric optimization problems {(8)|x ∈ X} has a uniformly weak sharp
minimum. Ye [35] considered the bilevel programming problem (7) where the
lower level problem is defined as

minimize f(x, y) subject to y ∈ R
m, g(x, y) ≤ 0, (73)

with the functions f and g both linear in y and the following was proven:

Theorem 4.4. Assume that domΨ = X. Let

g(x, y)⊤ = (g1(x, y), . . . , gk(x, y), f(x, y)− ϕ(x))

and assume that there exists µ > 0 such that

c(x) := sup
w,y′,I

{
wk+1 : y′ ∈ Ψ(x), wi > 0, gi(x, y

′) = 0, ∀i ∈ I

‖
∑
i∈I wi∇ygi(x, y

′)‖1 = 1,
vectors {∇ygi(x, y

′) : i ∈ I} are linearly independent,
{k + 1} ⊆ I ⊆ {1, . . . , k + 1}

}

≤ µ, ∀x ∈ X such that there exists I as in the previous line.

Then, there exist α > 0 such that:

f(x, y)− ϕ(x) ≥ µ−1αd(y,Ψ(x)), ∀y ∈ K(x), ∀x ∈ X.

We can easily observe that the follower’s problem (73) is nothing but the
lower level problem considered in (67). Hence if X = R

n, then the result in
Theorem 4.2 remains true for the bilevel programming problem (66) where the
lower level problem is defined in (73). It thus seems clear that in this case
the assumption of Theorem 4.4 , which may be quite difficult to check (see
Mangasarian and Shiau [21]), is not useful. Nevertheless, when X 6= R

n, the
previous result takes all its importance. For more details on sufficient conditions
for the uniformly weak sharp minimum to be satisfied we refer the interested
reader to Dempe and Zemkoho [13], Ye [35], Ye and Zhu [37, 38], and Ye, Zhu
and Zhu [40].
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5 Application to the DAP

We consider a transportation network G = (N ,A), where N and A denote the
set of nodes and directed links (arcs), respectively. Let W ⊂ N 2 denote the set
of origin-destination (O-D) pairs. Each O-D pair w ∈ W is connected by a set
of routes (paths) Pw, each member of which is a set of sequentially connected
links. We denote by P =

⋃
w∈W Pw the set of all routes of the network and by

α = |A|, ω = |W| and π = |P|, the cardinalities of A, W and P, respectively.
Let the matrix (Λ = [Λwp]) ∈ R

ω×π denote the O-D-route incidence matrix
in which Λwp = 1 if route p ∈ Pw and Λwp = 0 otherwise, and the matrix
(∆ = [∆ap]) ∈ R

α×π denotes the arc-route incidence matrix; here ∆ap = 1
if arc a is in route p and ∆ap = 0 otherwise. The network is assumed to be
strongly connected, i.e. at least one route joins each O-D pair.

We also consider the column vectors (d = [dw]) ∈ R
ω, (q = [qp]) ∈ R

π
+

and (v = [va]) ∈ R
α to denote the travel demand, the route flow and arc flow,

respectively. Finally we denote by (c = [cp]) ∈ R
π
+ the column vector denoting

the route capacity. For a given demand d, a route flow q is feasible if it does
not exceed the capacity and satisfies the O-D demand constraint Λq = d. Let’s
denote by Q the set-valued mapping from R

ω to R
π describing the set of such

flows, then
Q(d) = {q ∈ R

π
+|q ≤ c,Λq = d}. (74)

For a given demand d, a link flow is feasible if there is a corresponding feasible
route flow q such that the flow conservation constraint ∆q = v, is satisfied.
Hence, the following set-valued mapping from R

ω to R
α

V (d) = {v ∈ R
α|∃q ∈ Q(d),∆q = v}, (75)

denotes the set of feasible link flows. We let the separable function t from R
α

to R
α denote the route cost, i.e. for each a ∈ A, the component ta(va) of the

vector t(v) gives the traffic cost on the arc a, under the flow va. We assume the
route cost to be additive, thus the components of c(v) = ∆⊤t(v) give the cost
on each route p ∈ P. Finally, we introduce the vector ϑ(v) = [ϑw(v)] ∈ R

ω of
minimum cost between each O-D pair w ∈ W, i.e. ϑw(v) = minp∈Pw

cp(v).
The user equilibrium principle of Wardrop [31] states that for every O-D

pair w ∈ W, the travel cost of the routes utilized are equal and minimal for
each individual user, i.e. for any route p ∈ P and O-D pair w ∈ W, we have

{
cp(v) = ϑw(v) if qp > 0
cp(v) ≥ ϑw(v) if qp = 0

(76)

for any given demand d. It follows from Beckmann, McGuire and Winsten [2]
that for any given demand d, obtaining Wardrop’s user equilibrium is equivalent
to solving the parametric optimization problem

minimize f(d, v) =
∑
a∈A

∫ va
0
ta(s)ds

subject to v ∈ V (d),
(77)

provided that each link cost function ta : R → R is continuous and positive. The
latter assumptions will be maintained for the rest of this section such that for
each demand vector d, the Wardrop’s user equilibrium arc flow will be defined as
the solution of the optimization problem (77) also called the traffic assignment
problem.
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In transportation planing, the demand mentioned in the model of the traf-
fic assignment model above is a strategic data in a broader sense given that
a comprehensive decision making, in many other aspects, highly depends on
how accurate it is estimated. Fisk [16] has suggested a bilevel formulation of
the problem of estimating the origin-destination (O-D) matrix or O-D demand
adjustment problem (DAP) from an outdated matrix and using some observed
traffic counts:

minimize F (d, v)
subject to d ∈ D, v ∈ Ψ(d)

(78)

where D is a closed set and Ψ(d) is the solution set of the traffic assignment
problem (77) for a given O-D matrix d organized as a vector. Here the leader’s
cost function F may be the combination of the error measurements between
the target matrix and the observed traffic flows, respectively. For more details
on the model and some solution approaches, we refer the interested reader to
Abrahamsson [1], Chen [4], Chen and Florian [5], Fisk [16], Migdalas [22], Yang
[32] and Yang et al. [33].

One interesting thing about the traffic assignment problem (77) or the DAP
model as a whole is the flow conservation constraint ∆q = v materializing the
relation between the link flow v and the route flow q. A difficulty in handling
this problem seems to be caused by this constraint since it is not really clear
w.r.t. which variable between v and q the lower level problem should be con-
sidered. But what is perceivable is that one may find many combinations of q
that would give v. Thus, the uniqueness of v would not imply that of q. We
materialize this fact by explicitly defining the set of feasible route flows for a
given couple of demand and link flow, cf. (86). Then, exploiting the mentioned
flow conservation constraint, which also induces a special structure for the fea-
sible set of the traffic assignment problem, defined for each demand vector d
as the composition of the route flow set-valued mappings Q and the function
J : Rπ → R

α, with J(q) = ∆q such that V (d) = J(Q(d)), we design a new es-
timation of the subdifferential of the value function ϕ of the traffic assignment
problem leading, perhaps for the first time, to KKT type optimality conditions
for the demand adjustment problem.

Problem (78) can be reformulated as

minimize F (d, v)

subject to

{
f(v) ≤ ϕ(d)
d ∈ D, v ∈ V (d),

(79)

ϕ being the optimal value function of the problem (77) parameterized by the
demand d. Chen [4] and Chen and Florian [5] suggested Fritz John’s type opti-
mality conditions for problem (79) after a number of simplifications, including
that of considering the flow conservation constraint ∆q = v as exogenous, thus
dropping it in some sense. We do not make such simplifications here; hence
problem (79) can be rewritten as

minimize F (d, v)
subject to f(v) ≤ ϕ(d), (d, v) ∈ Ω,

(80)

where Ω = (D×R
α)∩ gphV , with gphV representing the graph of the link flow

set-valued mapping V . As already mentioned above V (d) = J(Q(d)) and we
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can easily observe that the graph of Q is given by

gphQ = {(d, q) ∈ R
ω × R

π| − d+ Λq = 0, 0 ≤ q ≤ c}. (81)

For (d, q) ∈ gphQ, we consider the set

Po(q) = {r ∈ P|qr = 0} (82)

of unused routes of the network and the set

Pc(q) = {r ∈ P|qr = cr} (83)

of routes used at their full capacity. Then P can be partitioned into Po(q),Pc(q)
and Pu(q), where Pu(q) is the set of routes used but which are not at full
capacity. Thus, P = Po(q) ∪ Pc(q) ∪ Pu(q).

To make the further explanations more clear, we make the following technical
assumption: we assume that P is an ordered set such that for a route r ∈ P ,
we associate an index |r| ∈ N and we define the π−dimensional vector er as

er = (0, . . . , 0, 1, 0, . . . , 0)⊤, (84)

where 1 is at position |r|, in order to symbolize the utilization of the correspond-
ing route by a network user. Next we let [Λw]w∈W be the collection of rows of
the OD-route incidence matrix Λ. Then, for (d, q) ∈ gphQ the normal cone to
gphQ at (d, q) is given as

NgphQ(d, q) =
{(

−
∑
w∈W

λwe
w,

∑
r∈Pc(q)

λcre
r −

∑
r∈Po(q)

λore
r +

∑
w∈W

λwΛ
⊤
w

)
:

(λw)w∈W ∈ R
ω, (λor)r∈P0(q), (λ

c
r)r∈Pc(q) ≥ 0

}
,

(85)
following Rockafellar [28, Theorem 4.3], where [ew]w∈W is the collection of
columns of the identity matrix of Rω×ω.

We now establish an estimation of the normal cone to the graph of the
feasible link flows set-valued mapping, which will be very useful in deriving
KKT type optimality conditions for the DAP.

Lemma 5.1. We let (d, v) ∈ gphV ; if (d∗, v∗) ∈ NgphV (d, v), then there exists
q with v = ∆q and (d, q) ∈ gphQ such that (d∗,∆⊤v∗) ∈ NgphQ(d, q).

Proof. Let (d, v) ∈ gphV , by definition (d∗, v∗) ∈ NgphV (d, v) if and only if
d∗ ∈ D∗V (d, q)(−v∗). Since Q(d) ⊂ |c|B, for all d ∈ R

ω, where B is the unit ball
of Rπ and |c| = max{ci|i = 1, . . . , π} (c is the route capacity vector), then the
set-valued mapping (d, v) ⇒ Q(d)∩ J−1(v) is uniformly bounded around (d, v).
Hence, including the continuous differentiability of the function J , it follows
from Rockafellar and Wets [29, page 454] that there exists q with v = ∆q
and (d, q) ∈ gphQ such that d∗ ∈ D∗Q(d, q)(∆⊤(−v∗)), that is (d∗,∆⊤v∗) ∈
NgphQ(d, q).

In order to focus on the main ideas we consider the simplified situation
where D = R

ω and the upper and lower level cost functions F and f are
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all continuously differentiable. Nevertheless, all the results here can easily be
extended to more general cases. Let’s denote by

Λ(d, q) =
{
(λω, λc, λo)|λω = (λw), λ

c = (λcr) ≥ 0, λo = (λor) ≥ 0,

−
∑

r∈Pc(q)

λcre
r +

∑
r∈Po(q)

λore
r −

∑
w∈W

λwΛ
⊤
w = ∆⊤∇vf(d, v)

}

the set of Lagrange multipliers for the traffic assignment problem and by

H(d, v) = {q ∈ R
π|∆q = v, (d, q) ∈ gphQ} (86)

the set of route flows corresponding to the feasible demand-link flow couple
(d, v). Then, the subdifferential of the optimal value function of the traffic
assignment problem can be estimated as follows.

Theorem 5.2. For every (d, v) ∈ gphΨ, the optimal value function ϕ of the
traffic assignment problem is locally Lipschitz continuous around d and

∂ϕ(d) ⊆
⋃

v∈Ψ(d)

⋃

q∈H(d,v)

⋃

(λω,λc,λ0)∈Λ(d,q)

{
−

∑

w∈W

λwe
w +∇df(d, v)

}
. (87)

Moreover, if we assume that Ψ is inner semicontinuous at (d, v), then

∂ϕ(d) ⊆
⋃

q∈H(d,v)

⋃

(λω,λc,λ0)∈Λ(d,q)

{
−

∑

w∈W

λwe
w +∇df(d, v)

}
. (88)

Proof. At first the set-valued mapping V = JoQ satisfies Aubin property as
the composition of the set-valued mapping Q satisfying Aubin property (the
system 0 ≤ q ≤ c, Λq = d is linear in q) and the locally Lipschitz continuity of
J (see [29, Corollary 10.38]) given that Q is uniformly bounded, i.e. we have
Q(d) ⊆ |c|B, ∀d ∈ R

ω, with B being the unit ball of Rπ and |c| = max{ci|i =
1, . . . , π}. Since J is a continuous function, we then have Ψ(d) ⊆ V (d) =
J(Q(d)) ⊆ J(|c|B), ∀d ∈ R

ω, with J(|c|B) bounded. This means that the set-
valued mapping Ψ is uniformly bounded, hence inner semicompact, cf. Section
2. Combining the inner semicompactness of Ψ and the Aubin property for V ,
the value function ϕ is locally Lipschitz continuous following Mordukhovich and
Nam [26, Theorem 5.2].

On the other hand, with the continuous differentiability of f , it follows from
[27, Theorem 7] that

∂ϕ(d) ⊆
⋃

v∈Ψ(d)

{
∇df(d, v) +D∗V (d, v)(∇vf(d, v))

}
(89)

and
∂ϕ(d) ⊆

{
∇df(d, v) +D∗V (d, v)(∇vf(d, v))

}
, (90)

under the inner semicompactness of Ψ at d (fulfilled) and the inner semiconti-
nuity of Ψ at (d, v), respectively. Moreover, it follows from the definition of the
coderivative that d∗ ∈ D∗V (d, v)(∇vf(d, v)) if and only if (d∗,−∇vf(d, v)) ∈
NgphV (d, v). Hence, from Lemma 5.1, there exists q ∈ H(d, v) such that

22



(d∗,−∆⊤∇vf(d, v)) ∈ NgphQ(d, q), which implies the existence of (λω, λc, λo),
with λω = (λw), λ

c = (λcr) ≥ 0, λo = (λor) ≥ 0 such that

d∗ = −
∑

w∈W

λwe
w (91)

and
∆⊤∇vf(d, v) = −

∑

r∈Pc(q)

λcre
r +

∑

r∈Po(q)

λore
r −

∑

w∈W

λwΛ
⊤
w . (92)

Hence, the inclusion in (87) follows by the combination of (89) and (91)-(92).
Inclusion (88) follows analogously by exploiting (90).

We are now able to give KKT optimality conditions for the DAP under the
partial calmness defined in section 4.

Theorem 5.3. Let (d, v) be a local optimal solution to problem (80), assumed
to be partially calm at (d, v). Then there exist q ∈ R

π, µ > 0, (λω, λc, λo), and

vs ∈ Ψ(d), qs ∈ R
π, (λωs , λ

c
s, λ

o
s) and ηs ≥ 0, s = 1, . . . , ω+1, with

∑ω+1
s=1 ηs = 1

such that

∇dF (d, v) + µ∇df(d, v)−
∑

w∈W

λwe
w + µ

ω+1∑

s=1

ηs

( ∑

w∈W

λswe
w −∇df(d, vs)

)
= 0

∆⊤
(
∇vF (d, v) + µ∇vf(d, v)

)
=

∑

r∈Po(q)

λore
r −

∑

r∈Pc(q)

λcre
r −

∑

w∈W

λwΛ
⊤
w

∆⊤∇vf(d, vs) = −
∑

r∈Pc(qs)

λcsre
r +

∑

r∈Po(qs)

λosre
r −

∑

w∈W

λswΛ
⊤
w

0 ≤ q ≤ c, Λq = d, ∆q = v

0 ≤ qs ≤ c, Λqs = d, ∆qs = vs

λω = (λw), λ
c = (λcr) ≥ 0, λo = (λor) ≥ 0

λωs = (λsw), λ
c
s = (λcsr) ≥ 0, λos = (λosr) ≥ 0.

Proof. Under the partial calmness, it follows from Theorem 4.1 that there exists
µ > 0 such that (d, v) solves

minimize F (d, v) + µ(f(d, v)− ϕ(d))
subject to (d, v) ∈ gphV.

Since gphV is closed and ϕ is locally Lipschitz continuous around d, it follows
from Mordukhovich [25, Proposition 5.3] that

0 ∈ ∂(F + µ(f − ϕ))(d, v) +NgphV (d, v). (93)

Considering the sum rule (2) and the convex hull property (1) we have

0 ∈ ∇F (d, v) + µ∇f(d, v)− µcoϕ(d)× {0}+NgphV (d, v).

Hence it follows from Lemma 5.1 that there exist v∗ ∈ R
α, q ∈ R

π, µ > 0, and
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(λω, λc, λo), with λω = (λw), λ
c = (λcr) ≥ 0, λo = (λor) ≥ 0 such that

−
∑

w∈W

λwe
w +∇dF (d, v) + µ∇df(d, v) ∈ µco∂ϕ(d) (94)

∆⊤v∗ =
∑

w∈W

λwΛ
⊤
w +

∑

r∈Pc(q)

λcre
r −

∑

r∈Po(q)

λore
r (95)

v∗ = −∇vF (d, v)− µ∇vf(d, v) (96)

0 ≤ q ≤ c, Λq = d, ∆q = v. (97)

On the other hand, if we take d∗ ∈ coϕ(d), then it follows from Caratheodory’s
Theorem (see e.g. Mangasarian [20]) that there exist ηs ∈ R and d∗s ∈ ∂ϕ(d),

with s = 1, . . . , ω + 1 such that d∗ =
∑ω+1
s=1 ηsd

∗
s,

∑ω+1
s=1 ηs = 1, ηs ≥ 0. Hence,

the result follows from (94)-(97) and the inclusion (87).

Additionally, if we consider the inner semicontinuity of the solution set-
valued mapping Ψ, the following result can be stated and we omit the proof
since it is analogous to the previous one, given that only the estimation of the
subdifferential of the optimal value function differs.

Theorem 5.4. Let (d, v) be an optimal solution to problem (80), assumed to be
partially calm at (d, v). We also assume that Ψ is inner semicontinuous (d, v).
Then there exist q ∈ R

π, µ > 0, (λω, λc, λo), and qs ∈ R
π, (λωs , λ

c
s, λ

o
s) and

ηs ≥ 0, s = 1, . . . , ω + 1, with
∑ω+1
s=1 ηs = 1 such that

∇dF (d, v)−
∑

w∈W

λwe
w + µ

ω+1∑

s=1

ηs
∑

w∈W

λswe
w = 0

∆⊤
(
∇vF (d, v) + µ∇vf(d, v)

)
=

∑

r∈Po(q)

λore
r −

∑

r∈Pc(q)

λcre
r −

∑

w∈W

λwΛ
⊤
w

∆⊤∇vf(d, v) = −
∑

r∈Pc(qs)

λcsre
r +

∑

r∈Po(qs)

λosre
r −

∑

w∈W

λswΛ
⊤
w

0 ≤ q ≤ c, Λq = d, ∆q = v

0 ≤ qs ≤ c, Λqs = d, ∆qs = v

λω = (λw), λ
c = (λcr) ≥ 0, λo = (λor) ≥ 0

λωs = (λsw), λ
c
s = (λcsr) ≥ 0, λos = (λosr) ≥ 0.

A generalization of Theorem 5.3 and Theorem 5.4 to the case where the set
D is different from R

ω is possible if we additionally require (d, v) to satisfy

NgphV (d, v) ∩ND×Rα(d, v) = {0}

in order to add the normal cone ND×Rα(d, v) to the right hand side of the
condition in (93). For the inner semicontinuity of Ψ, it is automatically achieved
if we assume that the solution of the traffic assignment problem is locally unique
and determines a continuous function. This is usually the case for most of the
bilevel transportation problems considered in the literature [4, 32, 33]. It is
obtained by assuming that for every link a ∈ A, the link cost ta is strictly
increasing in va. Finally, as far as the partial calmness of the DAP is concerned,

24



it follows from Theorem 4.2 that this will be satisfied if the traffic cost of the
road users expressed by f is linear in the link flow.
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