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The bimean: A measure of central tendency
that accommodates outliers

PETER R. KILLEEN
Department of Psychology, Arizona State University, Tempe, Arizona

Observations that depart considerably from the center of a distribution demand special con­
sideration. They may be retained, trimmed, or weighted less than other data. This article pro­
vides a BASIC program that implements Mosteller and Tukey's (1977) technique for weighting
observations less as they depart from the middle of a distribution. Influence curves for this
"bisquare-weighted mean," or "bimean,' are displayed and compared with more traditional mea­
sures of central tendency.

When data are averaged, they are subjected to a se­
quence of mathematical operations to derive an index that
is representative of their central tendency. One of the sim­
plest operations is the calculation of the arithmetic mean,
which yields a number with several desirable statistical
properties. But the arithmetic mean is not always the best
measure of central tendency. If the data are exponentially
distributed, the geometric mean might be more appropri­
ate, as it would be if probable error was proportional to
the magnitude of the datum. In general, estimators are
chosen based on the nature of the distribution of the data,
and on the ease of computation and description of the es­
timator.

The use of most traditional averaging procedures pre­
sumes that all of the data belong in the sample. But there
is always some possibility that an error has crept into the
sample, due, for example, to clerical errors, aberrant sub­
ject responses, or equipment malfunctions. Ideally, these
data should be excluded, but how are they discriminated
from the good data? If the intrusive data are very differ­
ent from the rest, they can be discarded upon inspection.
Few experimentalists would retain a data point that is 5
or 6 SD from the mean, but what about one that is 3 SD
from the mean? Confidence increases as the data points
move toward the center of the distribution, but there is
no discrete point at which confidence goes from 0% to
100%.

Some techniques that are employed to minimize the im­
pact of outliers, such as trimming (e.g., deleting the up­
per and lower 5% of the data) or Winsorizing (e.g., re­
assigning the values of the most extreme data as those of
their nearest neighbors), are based on step functions in
confidence about the data. An extreme step function is
embodied in the median, which gives 100% confidence
to the middlemost datum (or 50% to each of a pair of
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middlemost data) and 0% confidence to the rest. Whereas
the median is maximally robust against outliers, it is an
inefficientmeasure of the central tendency of the data. Bar­
nett and Lewis (1978) and Huber (1972) reviewed treat­
ment of outliers by experimentalists and systematically
evaluated the techniques designed to cope with them.

THE BIMEAN

Hoaglin, Mosteller, and Tukey (1983) and Mosteller
and Tukey (1977) have provided an alternate measure of
central tendency, the "bisquare-weighted mean." This
measure has also been referred to as the "biweight," but
as it is a mean and not a weight, the contraction' 'bimean"
seems more appropriate and will be used here. This proce­
dure provides a continuous weighting of data as a func­
tion of their proximity to the adjusted center of the distri­
bution. The weight is w, = (l-Ui2) 2 where
ui=(xi-BWM)/(cS) and 0 ::5 u, ::5 1. BWM is the bi­
mean, a weighted arithmetic mean of the data, each da­
tum being weighted by wi. Because the weights are de­
fined in terms of the ui and depend on the value of the
bimean, calculation of the bimean must be iterative, be­
ginning with an estimated value for BWM, such as the
median. S is a robust measure of spread, such as the semi­
interquartile range, and c is a parameter that specifieshow
quickly the weights will roll off. For large values of c
(e.g., ~ 20), all weights are close to 1.0, and the bimean
approximates the simple arithmetic mean. Smaller values
of c give less weight to the tails of the distribution. The
iterative process converges quickly: New estimates are
within .01 % of the previous estimates after four or five
iterations.

Figure 1 shows the "influence curves" generated by
introducing an alien datum into the set 36, 43, 48, 52,
57, 64. These numbers are approximately normally dis­
tributed, with mean = 50 and SD = 10. A seventh num­
ber (x) is added, first with the value of 50, and then vari­
ous measures of central tendency are calculated. Then,
the value of x is incremented, and the process is repeated.
The influence is symmetric around the mean, so that only
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has a greater impact on the bimean when it is smaller.
This increased impact is because the larger weight for the
outlier that is closer to the center of the distribution more
than offsets its smaller value. For values of c greater than
15, the bimean is very close to the arithmetic mean. The
bimean assumes the value of the arithmetic mean as c ap­
proaches infinity.

Because the bimean is more efficient than the median,
its use effectively increases the number of data in terms
of that statistic (by 40%, when the data are drawn from
a Gaussian distribution). Because it is less efficient than
the mean, use of the bimean effectively diminishes (by
4 %) the number of data in terms of that statistic. It is clear
from Figure 1 that the bimean is very robust against out­
liers, and 4 % is small insurance to pay for that protec­
tion. Routine use of the bimean saves the investigator from
the painful and ad hoc decision of when to reject data as
outliers. It is acceptable to editors (see, e.g., Roberts &
Holder, 1985).

Figure 1. Influence curves for the median (open circles), mean
(open squares), bimean with c =6 (filled circles) and bimean with
c =9 (filled squares). These curves show the mean of the distribu­
tion of data (36, 43,48,52,57,64, x) as the value of the outlier,
x, is incremented from 50 to 125.

values ~ 50 are examined. The results of these calcula­
tions are shown in Figure 1, which displays the influence
curves for the median, arithmetic mean, and bimeans with
c=6 and c=9.

The arithmetic mean (open squares) is of course a linear
function of the value of the outlier, whereas the median
(open circles) increases with the value ofthe outlier until
the outlier is no longer the middlemost number and,
thereafter, remains fixed and independent of the value of
the outlier. Both bimeans are close to the arithmetic mean
until the value of the outlier exceeds two standard devia­
tions (70, in terms of the original six data), at which point
they begin to diverge. For c =6 (filled circles) the weight
on the outlier decreases to 50% at 3 SD, and to 1% at
5 SD. For c=9 (filled squares) the weight on the outlier
decreases to 50% between 4 and 5 SD, and to 1% at 7 SD.

Table 1 shows the bimean calculated for a range of
values of c when the outlier is 3 and 4 SD from the mean.
Note that for small and moderate values of c, the outlier

Table 1
The Effect of c on the Himean When the Outlier is 3 (x = 80)

or 4 (x = 90) SD Removed From the Mean

BWM

c x = 80 x = 90

4 50.9 50.0
5 52.3 50.4
6 53.0 51.9
7 53.4 53.0
8 53.7 53.7
9 53.8 54.2

10 53.9 54.5
15 54.1 55.2
CX> 54.3 55.7

Table 2
Program Listing

10 • "B.U1EAN-: ce Lcu i ates blSqUare-wtughted mean$
.20 DIM X(b4),U(04),W(64)
30 DEFINT t-L,N
40 C ,. T Set C between 5 and 10; smallel'" values increase wllfightinca
45 CRIT=.0001' Critel"1on for ending iteration (reI change in BWM)
50 S=0=S2=12I:BWMOLO""lZl=CHNG=1 :F53$ = •••••••••••
100 • Input
105 PRINt
110 INPUT -. DATA- ,N
120 FOR 1=1 TO N
130 PRINT I;:INPUT X{I)
14i1 IF XC 1)::-9999 THEN 1=1-2: GOTO 170' A.do previous input
150 S=S+X (I)
Iblll S2=52+X(I)*X(I)
170 NEXT I
180 MEAN = SIN
1905D=SQR«S2-S*S/Nl/(N-1»' SalFlPl. std daly
2ll11l CLS
21111 ' Rank data
220 FOR 1=1 TO N-l
230 FOR JaN TO 1+1 STEP -1
240 IF X(J»X(J"-t) "FHEN SWAP X(J),X(J-l1
250 NEXT J:NEXT I
26111 NI"I=INT(N/2)' C.. lculat......dian
278 IF 2*Nf10N Tt£N I'1ED II' X(Nf't+l) ELSE P1ED • (X(Nt'I)+XO.,+t) )/2
28lI DPTH s INT«N+ll 14)
290 Wl-( (DPTH+. 5 )/N-. 25 )*NIW2s1-Wll' Interpolat. tor quarti 1.-
3811 QI-X(DPTH)+Wl+X(OPTH+ll+W2
318 QJ-X(N-DPTH+l ).Wl+)(N-DPTH)+W2
328 BJQR - (QI-Q3)/2' Semi-int.rquartU. "an9_
330 SPRD = CoSI QR
341 JWt1 .. H1ED+I'1EAN) /2' Jni h.l .sh.... t. ot BWPt
351iJ PRJNT ·C -- IC,· IWf1 --;
371 WHJLE ABS(CHN6) ) CRIT' Loop until rei chan,. tall. to crit.rion
38IlI BWSoo8' WSail
398 PRINT USING F53S;_;
_ FOR 1=1 TO N
418 U(i)sIXli)-BWIU/SPRD
421 IF ABS(U(J»)! TtEN W(1)-eI60TO 441" K_p !Might. po.itiv.
431 WCU-(1-U(I)*UU»"2" Bi-squar. weights
448 :aws-JWS+W(I)*X(I)1 W.ighted SUIll4" wsaWS+W(J)1 Su_ of _ights
468 NEXT I
478 _BWS/WS
47' CHN&-CBWMOLD-BWf'f) '''''" Relative chang. in IWI'I
478 BWI1OLo-_
4811 WEND
485 1 Calculate ....di.n Absolut. Devi.tion
491 FOR I-I TO N-l ' Rank (nor..lized) deviations
5111 FOR JaN TO 1+1 STEP -1
518 IF ABSCUIJ»>ABSCUIJ-l» THEN SWAP UIJ),UIJ-ll
528 NEXT J' NEXT I
538 IF 2_0N THEN I1ADsSPRDitABSIUINlt+ll)

ELSE PlAo-SPIlDitIABSCUINl'l) )+ABSIUINl'l+Il» 12
_ • OutpUt

620 PRINT,PRINTIPRINT "DATA"." WEIGHTS"
6>31 FOR I-N TO 1 STEP -lIPRINT X(1),W(UINEXT I
648 PRINT
651 PRINT "BI~EAN s';BW~ITAB(38) ;"SE~I-INTRQRTL RANGE s' ISIQR
bb8 PRINT -MEDIAN --,f1EDfTAB(311J)'-f1EDIAN ABSOLUTE DEV z-'I"lAD
670 PRINT 'MEAN .·;~EAN;TAB(38); • STANDARD DEVIATION =" ;SD
68lI RUN
7ll11l END
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A program that calculates bimeans, ranks the data, and
reports other measures of location and spread is listed in
Table 2. Sample output is printed in Table 3.

I have used bimeans for several years to average be­
havioral data both within and across subjects, and to esti­
mate representative parameters of models whose effect
on predictions is often strongly nonlinear. This estimator
cannot, of course, reduce the importance of good ex­
perimental control and sampling techniques. As users
grow more comfortable with this estimator, they tend to
use smaller values for c; values around 7 are most com­
monly employed.

Data Weights
36 .8528539
43 .9459867
48 .9852256
52 .9989772
57 .9935695
64 .9444401
80 .6757846

c = 7 BWM =

Table 3
Sample Output

53.143 53.376 53.418 53.425

PROGRAM LANGUAGE AND REQUIREMENTS

The program is written in MICROSOFT BASIC and
is run on a Tandy 2000. With the exceptions of the
"swap" and "while/wend" commands, which are eas­
ily modified, the program should be readily transporta­
ble to other computers and other operating systems.
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Bimean
Median
Mean

# Data?

= 53.42612
= 52
= 54.28572

Serni-Intrqrtl Range = 9
Median Absolute Dev = 10.42484
Standard Deviation = 14.54549
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