
The BINCOA Framework
for Binary Code Analysis

Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly,
Renaud Tabary, Aymeric Vincent

CEA LIST (Saclay, Paris)
LABRI (Bordeaux)

1/ 13



Binary code analysis

2/ 13



Binary code analysis at a glimpse

Recent research field
[Codesurfer/x86, SAGE, Jakstab, Osmose, TraceAnalyzer, McVeto, Vine, BAP ]

Many promising applications

off-the-shelf components (including libraries)

mobile code (including malware)

third-party certification

Advantages over source-code analysis

always available

no “compilation gap”

allows precise quantitative analysis (ex : wcet)

Very challenging

conceptual challenges

practical issues

3/ 13



Practical issues

Engineering issue : many different (large) ISAs

supporting a new ISA : time-consuming, error-prone, tedious

consequence : each tool support only a few ISAs (often one !)

Semantic issue : each tool comes with its own formal( ?) model

exact semantics seldom available

modelling hypothesises often unclear

Consequences

lots of redundant engineering work between analysers

difficult to achieve empiric comparisons

difficult to combine / reuse tools

4/ 13



The BINary COde Analysis project

French research project (CEA, Uni. Bordeaux 1, Uni. Paris 7)

Propose a common formal model for low-level programs

Dynamic Bitvector Automata (DBA)

Provide basic open-source tool support

basic DBA manipulation

• (future) front-ends from x86, PPC, ARM

Develop (complementary) binary-level analysers

OSMOSE (CEA), TraceAnalyzer (CEA), Insight (LABRI)

5/ 13



Long-term objective

• Mutualize engineering work
• Common semantic
• Ease collaboration between analyses

6/ 13



Dynamic Bitvector Automata

Main design ideas

small set of instructions

concise and natural modelling of common ISAs

low-level enough to allow bit-precise modelling

Can model : instruction overlapping, return address smashing,
endianness, overlapping memory read/write

Limitations : (strong) no self-modifying code, (weak) no dynamic
memory allocation, no FPA

7/ 13



Dynamic Bitvector Automata (2)

Extended automata-like formalism

bitvector variables and arrays of bytes

all bv sizes statically known, no side-effects

standard operations from BVA

Feature 1 : Dynamic transitions

for dynamic jumps

Feature 2 : Directed multiple-bytes read and write operations

for endianness and word load/store

Feature 3 : Memory zone properties

for (simple) environment

8/ 13



Dynamic Bitvector Automata (2)

Feature 1 : Dynamic transitions

some nodes are labelled by an address

dynamic transitions have no predefined destination

destination computed dynamically via a target expression

Feature 2 : Directed multiple-bytes read and write operations

array[expr ; k#], where k ∈ N and # ∈ {←,→}

Feature 3 : Memory zone properties

specify special behaviour for some segments of memory

volatile, write-aborts, write-ignored, read-aborts

8/ 13



Modelling with DBA

Procedure calls / returns : encoded as static / dynamic jumps

Memory zone properties, a few examples : ROM (write-ignored),
memory controlled by env (volatile), code section (write-aborts)

9/ 13



DBA toolbox

Open-source Ocaml code for basic DBA manipulation

Features

a datatype for DBAs

basic “typing” (size checking) over DBAs

import (export) from (to) a XML format

DBA simplification (see next)

GPL license, based on xml-light, ≈ 3 kloc

10/ 13



DBA toolbox - simplifications

Goal : simplify unduly complex DBAs typically obtained from
instruction-wise translation

useless flag computations / auxiliary variables / etc.

Inspired by standard compilation techniques [peephole, dead code, etc.]

beware of partial DBAs and dynamic jumps !

rethink these standard techniques in a partial CFG setting

Results : size reduction of −50% (all instrs), and between −30%
and −50% (non-goto instrs)

11/ 13



Binary-level analysers

Osmose (CEA) [ICST-08, STVR-11]

automatic test data generation (dynamic symbolic execution)

75 kloc of OCaml, front-ends : PPC, M6800, Intel c509

case-studies : programs from aeronautics and energy

> negotiations to become open-source

TraceAnalyzer (CEA, with Franck Védrine) [VMCAI-11]

safe CFG reconstruction (refinement-based static analysis)

29 kloc of C++, front-end : PPC

case-studies : programs from aeronautics

Insight (LABRI, with Emmanuel Fleury)

abstract interpretation and weakest precondition

C++, front-end : x86

case-studies (on-going) : polymorphic virus analysis

> aims at being open source when the API stabilizes

12/ 13



Conclusion

Current state

DBAs are a nice formalism to work with
[improve our former model]

common semantics allows exchange of information
[OSMOSE - Traceanalyzer]

basic DBA support

Ongoing and future work

open-source front-ends

extensions of DBAs : support for dynamic memory allocation

13/ 13


