The BINCOA Framework
for Binary Code Analysis

Sébastien Bardin, Philippe Herrmann, Jérome Leroux, Olivier Ly,
Renaud Tabary, Aymeric Vincent

CEA LIST (Saclay, Paris)
LABRI (Bordeaux)

1/ 13

Model

x>0/x:= x-1

Assembly

Source code

int foo(int x, inty) {
int k= x;
int c=y;
while (c>0) do {
k++;
G5l
return k;

}

_start:
load A 100
add B A
cmp B O
jle label

label:
move @100 B

Executable

ABFFF780BD70696CA101001BDE45
145634789234ABFFE678ABDCF456
5A2B4C6D009F5F5D1E0835715697
145FEDBCADACBDAD459700346901
3456KAHA305G67H345BFFADECAD3
00113456735FFD451E13AB080DAD
344252FFAADBDA457345FD780001
FFF22546ADDAE989776600000000

2/ 13

Recent research field
[Codesurfer/x86, SAGE, Jakstab, Osmose, TraceAnalyzer, McVeto, Vine, BAP |

Many promising applications
m off-the-shelf components (including libraries)
m mobile code (including malware)
m third-party certification

Advantages over source-code analysis
m always available
m no “compilation gap”
m allows precise quantitative analysis (ex : wcet)

Very challenging
m conceptual challenges
m practical issues

3/ 13

Engineering issue : many different (large) ISAs

m supporting a new ISA : time-consuming, error-prone, tedious

m consequence : each tool support only a few ISAs (often one!)

Semantic issue : each tool comes with its own formal(?) model
m exact semantics seldom available

m modelling hypothesises often unclear

Consequences

m lots of redundant engineering work between analysers
m difficult to achieve empiric comparisons

m difficult to combine / reuse tools

4/ 13

French research project (CEA, Uni. Bordeaux 1, Uni. Paris 7)
Propose a common formal model for low-level programs
m Dynamic Bitvector Automata (DBA)

Provide basic open-source tool support

m basic DBA manipulation
e (future) front-ends from x86, PPC, ARM

Develop (complementary) binary-level analysers

m OSMOSE (CEA), TraceAnalyzer (CEA), Insight (LABRI)

5/ 13

tput

W
1
J

Decoder
ARM
Decoder
PPC

L »| Decoder | —
€509

| ,| Decoder
68000

)

tput

)

tput

il
)

output

'E

e Common semantic
e Ease collaboration between analyses

6/ 13

Main design ideas

m small set of instructions
m concise and natural modelling of common ISAs

m low-level enough to allow bit-precise modelling

Can model : instruction overlapping, return address smashing,
endianness, overlapping memory read/write

Limitations : (strong) no self-modifying code, (weak) no dynamic
memory allocation, no FPA

7/ 13

Extended automata-like formalism

m bitvector variables and arrays of bytes
m all bv sizes statically known, no side-effects

m standard operations from BVA

Feature 1 : Dynamic transitions

m for dynamic jumps

Feature 2 : Directed multiple-bytes read and write operations

m for endianness and word load/store

Feature 3 : Memory zone properties

m for (simple) environment

8/ 13

Feature 1 : Dynamic transitions

m some nodes are labelled by an address
m dynamic transitions have no predefined destination

m destination computed dynamically via a target expression

Feature 2 : Directed multiple-bytes read and write operations

m array[expr; k7], where k € N and # € {<, —}

Feature 3 : Memory zone properties

m specify special behaviour for some segments of memory

m volatile, write-aborts, write-ignored, read-aborts

8/ 13

0x5003 : move RO 5
[ox5003 : addaB |
[0x5003 : goto 0x1009
[ox5003 : goto A |

O RO :=5 ;O

0x5003 0x5007
Ax := A+B Fc := (Ax<A) A := Ax
O—0 O—0
/
0x5003 0x5007
0x5003 0x1000
: Jump A

0x5003

Procedure calls / returns : encoded as static / dynamic jumps

Memory zone properties, a few examples : ROM (write-ignored),
memory controlled by env (volatile), code section (write-aborts)

9/ 13

DBA toolbox

Open-source Ocaml code for basic DBA manipulation

Features
m a datatype for DBAs
m basic “typing” (size checking) over DBAs
m import (export) from (to) a XML format
m DBA simplification (see next)

GPL license, based on xml-light, ~ 3 kloc

10/ 13

Goal : simplify unduly complex DBAs typically obtained from
instruction-wise translation

m useless flag computations / auxiliary variables / etc.

Inspired by standard compilation techniques [peephole, dead code, etc.]

m beware of partial DBAs and dynamic jumps!

m rethink these standard techniques in a partial CFG setting

Results : size reduction of —50% (all instrs), and between —30%
and —50% (non-goto instrs)

11/ 13

Osmose (CEA) [ICST-08, STVR-11]

m automatic test data generation (dynamic symbolic execution)
m 75 kloc of OCaml, front-ends : PPC, M6800, Intel c509

m case-studies : programs from aeronautics and energy

> negotiations to become open-source

TraceAnalyzer (CEA, with Franck Védrine) [VMCAI-11]

m safe CFG reconstruction (refinement-based static analysis)
m 29 kloc of C++, front-end : PPC
m case-studies : programs from aeronautics

Insight (LABRI, with Emmanuel Fleury)

m abstract interpretation and weakest precondition

m C++, front-end : x86

m case-studies (on-going) : polymorphic virus analysis
> aims at being open source when the API stabilizes

12/ 13

Conclusion

Current state
m DBAs are a nice formalism to work with
[improve our former model]

m common semantics allows exchange of information
[OSMOSE - Traceanalyzer]

m basic DBA support

Ongoing and future work

m open-source front-ends

m extensions of DBAs : support for dynamic memory allocation

13/ 13

