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We study the effects of hydrostatic pressure over the ground state binding energy of light hole excitons confined in GaAs − Ga1−xAlxAs

spherical quantum dots. We applied the variational method using 1s-hydrogenic wavefunctions, in the framework of the effective mass

approximation. We computed the exciton binding energy as a function of the dot radius, Al concentrations and pressures. Our results show

that (i) the hydrostatic pressure increases the binding energy, for all quantum dot radii; (ii) the binding energy is an increasing function

of the Al concentration, for fixed radius and pressure, especially for a smaller dot; (iii) the binding energy follows approximately a linear

dependence with the pressure, for fixed radius and Al concentration.
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El efecto de la presión hidrostática sobre la energı́a de enlace de excitones ligeros confinados en puntos cuánticos esféricos de GaAs −

Ga1−xAlxAs es estudiado. Nosotros usamos el método variacional y consideramos funciones de onda hidrogenoides 1s bajo la aproxi-

mación de la masa efectiva. Se calculó la energı́a de enlace como función del radio, la concentración de aluminio Al y la presión. Nuestros

resultados muestran que (i) la presión hidrostática aumenta la energı́a de enlace para todos los radios considerados; (ii) la energı́a de enlace

es una función creciente de la concentración de aluminio, para valores fijos del radio y la presión, especialmente para radios pequeños; (iii) la

energı́a de enlace sigue de manera aproximada una dependencia lineal con la presión, para radios y concentraciones de aluminio fijos.

Descriptores: Puntos cuánticos; excitones; presión hidrostática.

PACS: 73.20.Dx; 73.20.Hb; 73.21.La

1. Introduction

The progress in nanoscale technology has made possible the

fabrication of quasi-zero-dimensional quantum dots (QDs),

the quantum size effects in semiconductor QDs greatly in-

creases highly the electron-hole attraction inside them; in

consequence the correlated electron-hole pairs (excitons) re-

main present even at room temperature. It produces impor-

tant changes in the optical properties of QDs as compared

to those of the corresponding bulk material; the transitions

between Wannier excitonic states are an important element

linked to those changes [1–4]. In the last few decades, a

proper quantitative understanding of the changes in the op-

tical properties of low-dimensional heteroestructures, such

as QDs, has been of great interest, due to their importance

for potential applications in electronic and optoelectronic

devices; theoretical studies predicted that low-dimensional

semiconductor heteroestructures would offer the advantage

of lower switching energy and enhanced oscillator strength

over the confined region, which may be used for application

to high-performance devices [5, 9].

Many people have studied the effects of quantization for

the excitons in microcrystals or quantum dots; Brus [10] has

given a variational calculation for the size dependence of the

electron-hole pair state, Nair et al. [11] calculated the low-

est electron-hole state in semiconductor microcrystals, as a

function of their size, using the variational principle with a

three-parameter Hylleraas wave function; for very small par-

ticles, the Coulomb interaction was treated as a perturbation

and they considered an infinite confinement potential.

Kayanuma [12] made a simple variational calculation to

find the ground-state energy for an exciton confined in a mi-

crocrystal with finite potential barriers. He found that the

effect of penetration of the wavefunction outside the micro-

crystal is quite large in the strong-confinement region, and is

consistent with the relatively small blue-shift of the excitation

energy observed in CdS microcrystals. Einevoll [13] made a

theoretical study of excitons confined in CdS and ZnS QDs,

using a single-band effective-mass approximation for the car-

riers; the confinement potential for the hole and electron were

modeled as spherically symmetric potential wells with finite

barrier heights, finding a good agreement with experimental

data. In the same way J.L. Marin et al. [4] used the varia-

tional method, and the effective-mass approximation, to cal-

culate the ground-state energy of excitons confined in spheri-

cal QDs, with finite height potential walls as a function of the

particle radius. They used 1s-hydrogenic-like wavefunctions

for the electron and hole, obtaining a good agreement for a

5-40Åradius with experimental data of CdS, CdSe, PbS and

CdTe crystallites.

Photoluminescence studies of self-organized In-

AlAs/AlGaAs quantum dots under pressure were carried

out by Phillips et al. [6]. The effect of hydrostatic pres-

sure on the optical transitions in self-assembled InAs/GaAs

quantum dots was studied by Duque et al. [7]. Oyoko et

al. [8] studied donor impurities in a parallelepiped-shaped

GaAs-(Ga,Al)As quantum dot, and they found that the donor

binding energy increases with increasing uniaxial stress and

decreasing sizes of the quantum dot. Raigoza et al. [9] found
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the effects of hydrostatic pressure on the exciton states in

GaAs/Ga1−xAlxAs semiconductor quantum wells via a

variational procedure, in the frame of the effective-mass

and non-degenerate parabolic band approximation; a good

agreement with available experimental measurements was

obtained. Exciton states in quatum well-wires under electric

field and hydrostatic pressure were also studied by this group.

Theoretical research into QDs usually assume the sim-

plification of spherical symmetry for the confinement poten-

tial, a geometric situation far from the experimental works in

semiconductor QDs, but it makes possible the computations

of excitonic contributions for the optical properties; recently

M. De Girgio et al. [16], found a way to produce spheri-

cal QDs using colloidal nanocrystals, thus demonstrating the

possibility of their fabrication.

In this paper we present a study of the hydrostatic pres-

sure effect over the binding energy of the ground-state of

excitons confined in spherical QDs made of GaAs with

Ga1−xAlxAs barriers for different concentrations of Alu-

minum x = 0.15,0.30,0.45. We use the variational method

and the effective mass approach to find the ground-state en-

ergy; we take into account the variations with the external ap-

plied pressure of the parameters such as dot radius, dielectric

constant, confinement potential and effective masses [14,15].

We took a finite confinement potential for the dot. The the-

oretical method is presented in Sec. 2, the results and the

discussion regarding them are shown in Sec. 3; in Sec. 4 we

present our conclusions.

2. The Model

In the effective mass approximation, the Hamiltonian of an

exciton in a spherical quantum dot of GaAs − (Ga,Al)As
under the influence of hydrostatic pressure is given by

Ĥ = −
~

2

2m∗

e(P )
∇2

e −
~

2

2m∗

h(P )
∇2

h

−
e2

ε(P )|re − rh|
+ Ve(r, P ) + Vh(r, P ), (1)

where me(P ), mh(P ) are the effective mass of electron and

hole respectively, Ve(r, P ) and Vh(r, P ) are the confinement

potentials for the electron and hole, and ε(P ) is the dielectric

constant. Note that the above quantities depend explicitly on

the hydrostatic pressure. In the Hamiltonian (1), re, rh are

the distances of the electron and hole with respect to the cen-

ter of the quantum dot. The confinement potentials for the

electron and hole, in the Hamiltonian (1) are given by

Ve(r, P )[Vh(r, P )]=

{

0, 0 ≤ re, rh≤R

Ve(P )[Vh(P )] R≤re, rh≤∞,
(2)

where R = R(P ) is the radii of the quantum dot, which de-

pends on the hydrostatic pressure.

To solve the Hamiltonian (1), we use a variational ap-

proach to approximate the wave functions and eigenvalues

implied by the Hamiltonian. Taking into account the spher-

ical confining geometry, the confinement potentials and the

Coulomb interaction between the electron and hole, we take

the product of 1s-hydrogenic wavefunction as the trial wave

function for the exciton [4]. The ground-state wavefunction

inside the dot is defined as

ψi = A exp[−α(re + rh)](R − αre)(R − αrh), (3)

for 0 ≤ re, rh ≤ R. The wavefunction outside the dot is

defined as

ψ0 =
B

rerh
exp[−β(re + rh)], (4)

with the condition R ≤ re, rh < ∞. The α and β values are

the variational parameters, and the constants A and B are the

normalization constants. The boundary condition is

1

µ∗

i

1

ψi

∂ψi

∂rs

∣

∣

∣

rs=r0

=
1

µ∗

o

1

ψo

∂ψo

∂rs

∣

∣

∣

rs=r0

, (5)

where s depends on the case of electron or hole and µ∗

i , µ∗

o

are the reduced effective mass of the exciton inside and out-

side the dot. Given the boundary condition, we are able to

reduce the two variational parameters to one, having

β =
q[αr0(1 − α) + α] + α − 1

r0(1 − α)
, (6)

with q = µ∗

o/µ∗

i .

Hereafter we show the main steps of the variational

method so that we can obtain the ground-state energy of the

exciton. From the normalization condition of the trial wave

function we have
∫

Ωi

|ψi|
2dτedτh +

∫

Ωo

|ψo|
2dτedτh = 1, (7)

with Ωi and Ωo the volume regions inside and outside the dot,

and dτn is the volume element either for the electron (e) or

the hole (h). So the normalization constants are given by,

A = [I2
Ni

+ I2
No

f ]−1/2 (8)

and

B = Ae(−2α−2β)RR4(1 − α)2, (9)

where

INi
= 2π

R
∫

0

e−2αu(R − αu)2u2du, (10)

INo
=

2π

β
exp(−2βR), (11)

and the constant f is,

f = R8(1 − α)4e−4(α−β)R. (12)
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The expectation value of the kinetic energy is,

K(P ) = − 〈ψi|
~

2

2m∗
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e +
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2

2m∗
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2
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= −
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−

B2
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where

IKi
=4π

R
∫

0

(R − αu)e−αu

×

{(

2

u

d

du
+

d2

du2

)

(R − αu)e−αu

}

u2du, (14)

and

IKo
= 4π

∞
∫

R

e−βu

u

{(

2

u

d

du
+

d2

du2

)

e−βu

u

}
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The expectation value for the confinement potential en-

ergy, taking Vc(P ) = Ve(R,P ) + Vh(R, P ), is

V c(P ) = 〈ψo|V̂c|ψo〉 = {Ve(P ) + Vh(P )}A2fI2
No

. (16)

For the Coulomb interaction term we make a spherical

harmonic expansion,

1

|re − rh|
= 4π

∞
∑

l=0

l
∑

m=−l

1

2l + 1

rl
<

rl+1
>

Y m∗

l (θe, Φe)

×Y m
l (θh,Φh), (17)

and using this we obtain the expectation value of the

Coulomb term, given by

V eh(P ) = −(4π)2A2J(α,R), (18)

with

J(α,R) =

R
∫

0

e−2αre(R − αre)
2

× [F (α, R) + G(α, re, R)]r2
edre, (19)

and

F (α,R) =
1

re

re
∫

0

e−2αrh(R − αrh)2r2
hdrh (20)

G(α, re, R) =

R
∫

re

e−2αrh(R − αrh)2rhdrh. (21)

FIGURE 1. Binding energy of an exciton in a GaAs− (Ga, Al)As

quantum dot as a function of the dot radius for different pressures.

The ground-state energy for the exciton is now

E(α, R, P ) = K(P ) + V eh(P ) + V c(P ), (22)

which only depends on the variational parameter, the radius

of the quantum dot, and the hydrostatic pressure. We simply

need to find the value of α for the ground-state energy to be

a minimum, so we set,

∂E(α, R, P )

∂α
= 0. (23)

The binding energy for the exciton is defined as the free elec-

tron energy Eelec plus the free hole energy Ehole minus the

minimized energy for the exciton:

EEx(R,P ) = Eelec(P )+Ehole(P )−E(αmin, R, P ). (24)

The application of hydrostatic pressure modifies the lat-

tice constants, dot size, barrier height, effective masses and

dielectric constants. We present the explicit expressions for

these quantities as a function of the pressure below, where the

pressure is in kbar [14, 15]. The variation of the well width

with pressure is given by

R(P ) = R0(1 − 1.5082 × 10−4P ), (25)

where R0 is the zero pressure width of the quantum dot, taken

into account by using (da/dP ) = −2.6694 × 10−4a0 where

a0 is the lattice constant of GaAs. The variation of the di-

electric constant with the pressure is given as

ε(P ) = 13.13 − 0.0088P. (26)
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FIGURE 2. Binding energy for the light hole exciton, varying the

concentration of Aluminum, for a pressure of 20Kbar.

The effective electron mass in the well and barrier region

change as

m∗

e(P ) = m∗

e(0) exp(0.0078P ); (27)

here m∗

e(0) = 0.067me0 is the effective mass without pres-

sure, and me0 is the bare electron mass. We have also chosen

the light-hole effective mass as m∗

h(P ) = 0.0951me0, inde-

pendent of the pressure. For simplicity, the dielectric con-

stant, the electron and hole masses were taken to be constant

throughout the heterostructure, and equal to the GaAs-bulk

values.

We assume that the band-gap discontinuity [17, 18] in a

GaAs − Ga1−xAlxAs quantum dot heterostructure is dis-

tributed about 40% on the valence band and 60 % on the con-

duction band with the total band-gap difference ∆Eg(x, P )
(in eV) between GaAs and Ga1−xAlxAs given as a function

of the Al concentration and the hydrostatic pressure P as

∆Eg(x, P ) = ∆Eg(x) + PD(x), (28)

where

∆Eg(x) = 1.155x + 0.37x2, (29)

is the variation of the energy gap difference without pressure,

and D(x) (in eV/kbar) is the pressure coefficient of the band

gap given by

D(x) = −(1.3 × 10−3)x. (30)

Then the height of the potential barrier for electron and

holes as a function of Al concentration x and the hydrostatic

pressure are given by

Ve(P ) = 0.6∆Eg(x, P ), (31)

and

Vh(P ) = 0.4∆Eg(x, P ). (32)

Using these variations the exciton binding energy is obtained

for different pressures and dot sizes using the variational

method within the effective mass approximation.

FIGURE 3. Binding energy for the light hole exciton, varying the

pressure, for a radius of 50Å.

3. Results and discussion

In our calculations we consider quantum dots with a ra-

dius in a range of 10-100Å and Al concentrations equal to

x = 0.15,0.30 and 0.45. Although the heavy excitons are

more common in experimental results, in this first study we

decided to study light-hole excitons because this mass does

not depend on the pressure.

The binding energy for a light-hole exciton as a function

of the quantum dot radius is shown in Fig. 1 for three differ-

ent hydrostatic pressure values P = 0, P = 20 and P = 40
kbar, respectively. The behavior of the binding energies with-

out pressure (P = 0 kbar) is similar to the previous results

found in Refs. 3 and 15. As the pressure is increased, the

quantum dot radius and the dielectric constant are reduced.

The increasing behavior of the electron effective mass is also

well-known. For all pressures we observe that the binding en-

ergy increases from its bulk value in GaAs as the dot radius

is reduced, reaches a maximum value, and then drops to the

bulk value characteristic of the barrier material as the dot ra-

dius goes to zero. Note that the binding energy increases with

the hydrostatic pressure for any dot radius, reflecting the ad-

ditional confinement due to the pressure; i.e. when the hydro-

static pressure is increased, the exciton becomes more con-

fined and the binding energy increases. Also we observe that

the pressure effect is more appreciable for narrow dots, and

the maximum position goes to small radius when the pressure

increases.

In Fig. 2, we present the binding energy in a spherical

GaAs − Ga1−xAlx quantum dot as a function of the dot ra-

dius for different Al concentrations, with hydrostatic pressure

fixed and equal to P = 20kbar. The Aluminum concentration

determines the height of the confinement potential; i.e., low
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(high) Aluminum concentration implies a small (high) bar-

rier, therefore the behavior of the binding energy with the Al
concentration is important. For all Aluminum concentrations

considered in the present work, we observe that the binding

energy increases as the radius decreases, reaches a maximum,

and then diminishes to a limiting value corresponding to a

particular radius of the well for which it is possible to find the

free electron and hole energy level. Note that the binding en-

ergy increases with the Al concentration reflecting the higher

confinement potential, and the maximum binding energy po-

sition goes to a small radius when the Aluminum concentra-

tion increases. In addition, this plot shows that, for a given Al
concentration, the binding energy is very great as compared

with the one- and two-dimensional cases, i.e. quantum wells

and quantum well-wires, respectively.

The dependence of the binding energy on the hydro-

static pressure appears in Fig. 3 for a quantum dot of radii

R = 50Å. The binding energy shows an approximately lin-

ear increase with the pressure; this is in agreement with

the results obtained previously in quantum wells [19]. This

curve tells us that a system operating under hydrostatic pres-

sure may be used to tune the output of optoelectronic de-

vices without modifying the physical size of the quantum

dot. We have not considered pressures beyond 40kbar, be-

cause of a direct to indirect bandgap transition for GaAs at

about 40kbar [20].

4. Conclusions

We have determinated the ground-state binding energy of ex-

citons inside a GaAs/Ga1−xAlxAs QD, using the variational

method, the effective mass approximation, and considering

a hydrogenic-like wavefunction for both electron and holes.

We take into account the presence of external hydrostatic

pressure and finite confinement potential dependent of the Al
concentration. Our results may be resumed thus:

(i) the hydrostatic pressure increases the binding energy

for all dot radii,

(ii) the binding energy is an increasing function of the Al
concentration for fixed radius and pressure,

(iii) the binding energy approximately follows a linear de-

pendence on the pressure, for a given radius and Al
concentration.

We hope that these results will motivate future experimental

work in this direction that will confirm our predictions.
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