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Abstract

In this paper, we evaluate b(Γ(Zn)). Our main result is, we give
maximum value of b(Γ(Zn)) is 0.99999999796427626489236243072661,
where n is any positive integer upto fiftieth million.
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1 Introduction

Let R be a commutative ring and let Z(R) be its set of zero-divisors. We
associate a graph Γ(R) to R with vertices Z(R)∗ = Z(R) − {0}, the set of
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non-zero zero divisors of R and for distinct x, y ∈ Z(R)∗, the vertices x and
y are adjacent if and only if xy = 0. Throughout this paper, consider the
commutative ring R as Zn and zero divisor graph Γ(R) as Γ(Zn). The binding

number of Γ(Zn), denoted by b(Γ(Zn)) is defined by, Γ(Zn) = { |N(S)|
|S| , where

S ⊆ V (Γ(Zn)), S �= φ, N(S) �= V (Γ(Zn))} which satisfies the following condi-
tions; (i) N(S) ∪ S = V (Γ(Zn)) (ii) N(S) ∩ S = φ (iii) d(u) ≤ d(v) for u ∈ S
and v ∈ N(S) (iv) no two vertices in S are adjacent. For notation and graph
theory terminology, we generally follow [1, 2, 3, 5, 6].

2 Binding Number of a Zero Divisor Graph

Lemma 2.1 [4] A graph Γ(Zn) has a domination set iff Γ(Zn) is connected
and n is a composite number.

Theorem 2.2 For any prime p>2, then b(Γ(Z2p)) = 1
p−1

.

Proof: The vertex set of Γ(Z2p) is {2, 4, 6, ....2(p − 1), p}. Using theorem
(4.4) in [4], Γ(Z2p) is a star graph K1,p−1. Let S be a non-empty subset of
the vertex set V (Γ(Z2p)), then for any x ∈ S, such that d(x) < d(y), where
y ∈ V − S. Clearly, all the vertices are of minimum degree except p, then
S = {2, 4, 6, ....2(p − 1)}, that is |S| = p − 1 and the neighbourhood of the set

S = N(S) and |N(S)| = p − (p − 1) = 1. Hence, b(Γ(Z2p)) = |N(S)|
|S| = 1

p−1
.

Theorem 2.3 For any prime p, b(Γ(Zp2)) = 1
p−2

.

Proof: The vertex set of Γ(Z2p) is {p, 2p, 3p, ....p(p−1)}. Any two vertices
in b(Γ(Zp2)) are adjacent. Clearly, b(Γ(Zp2)) is a complete graph namely Kp−1.
Let S be a non-empty maximun subset of b(Γ(Zp2)) then {p, 2p, 3p, ....p(p −
2)} ∈ S implies |S| = p − 2 and the neighbourhood of the set S contains only

one point {p(p − 1)} that is |N(S)| = 1. Clearly, b(Γ(Zp2)) = |N(S)|
|S| = 1

p−2
.

Theorem 2.4 If p and q are distinct prime numbers with p < q, then
b(Γ(Zpq)) = p−1

q−1
.

Proof: The proof is by the method of induction on p and q. The vertex
set of Γ(Zpq) is {p, 2p, 3p, ..., p(q − 1), q, 2q, 3q, ..., (p − 1)q}. Let S and N(S)
be the minimum degree set and the neighbourhood of S respectively.

Case(i): Let p = 2, q is any prime > 2.
Using theorem (2.1), b(Γ(Z2q)) = 1

q−1
= p−1

q−1
.

Case(ii): Let p = 3, q is any prime > 3.
The vertex set of Γ(Z3q) is {3, 6, 9, ..., 3(q−1), q, 2q}. Let u = q and v = 2q

be two vertices in Γ(Z3q) with maximum degree then there exist any other vertex
w �= q and w �= 2q in Γ(Z3q) such that w is adjacent to both u and v. That is,
uw = vw = 0. But uv �= 0. Therefore u and v are non-adjacent vertices. Then
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the vertex set V (Γ(Z3q)) can be partitioned into two parts S and N(S) such that
S = {3, 6, 9, ...., 3(q−1)} and N(S) = {u, v} = {q, 2q}. Clearly |S| = q−1 and
|N(S)| = 2, then |V (Γ(Z3q))| = |S|+ |N(S)| = q−1+2 = q +1. Note that the
vertices in the set S have the smallest degree compared to the set N(S). Clearly,
any two vertices in S are non-adjacent. Moreover V (Γ(Z3q)) = S ∪N(S) and
S ∩ N(S) = φ and d(u) ≤ d(v) for all u ∈ S and v ∈ N(S).

Then, b(Γ(Z3p)) = |N(S)|
|S| = 2

q−1
= p−1

q−1
, where p = 3 and q > 3.

Case(iii): Let p < q.

The vertex set of Γ(Zpq) is {p, 2p, 3p, ..., p(q−1), q, 2q, 3q, ..., (p−1)q}. Using
the above cases, the vertex set V (Γ(Zpq)) can be partitioned into two parts S and
N(S) which implies that the vertex p, multiples of p are in S and q, multiples
of q are in N(S). Clearly, every vertices in S are non-adjacent which holds for
N(S). Then, |V (Γ(Zpq))| = |S|+ |N(S)| = p − 1 + q − 1 = p + q − 2. That is
S = {p, 2p, .., p(q − 1)} and N(S) = {q, 2q, .., (p − 1)q}. Clearly, d(u) < d(v)
where u ∈ S and v ∈ N(S). We note that, every vertex in S are adjacent to

all the vertices in N(S). Using all the above cases, b(Γ(Zpq)) = |N(S)|
|S| = p−1

q−1
.

Theorem 2.5 For any graph Γ(Z2n), where n > 2 is a positive integer then,

a) If n is even, b(Γ(Z2n)) =
2n−1−2

n
2

∑n−4
2

i=0 2i−2

2
n
2

∑n−4
2

i=0 2i+1

.

b) If n is odd, b(Γ(Z2n)) =
2

n−1
2 (2

n−1
2 −

∑n−3
2

i=0 2i)−1

2
n−1

2
∑n−3

2
i=0 2i

.

Proof: The vertex set of Γ(Z2n) is {2, 4, ., 2(2n−1 − 1)} and |V (Γ(Z2n))|
= 2n−1 − 1. The proof is by the method of induction on n.

Case(a): When n is even.

Subcase(i): Let n = 4. The vertex set of Γ(Z24) is {2, 4, 6, 8, 10, 12, 14}.
Let S be a vertex subset of V such that d(u) ≤ d(v), where u ∈ S and v ∈ N(S).
Let P be a set of all pendant vertices in Γ(Z24). Clearly, P = {2, 6, 10, 14} with
d(u) = 1, for all u ∈ P . It seems that P ⊆ S. Let v = 2n−1 = 24−1 = 8 and
w = 24−2 be any other vertex in Γ(Z24) then vw = 8×(24−2) = 112. Clearly,
24 must divides 112. Thus, the vertex v is adjacent to all vertices in Γ(Z24)
which implies v = 8 ∈ N(S). Let x = 4 and y = 12 be the remaining vertices
in V such that xv = yv = 0. That is, x, y and v are adjacent vertices. Clearly,
either x = 4 ∈ S or y = 12 ∈ S. Suppose, x, y ∈ S, we get a contradiction to
our definition that no two vertices in S are adjacent. Finally we conclude that
S = {2, 4, 6, 10, 14} or S = {2, 6, 10, 12, 14} and N(S) = {8, 12} or N(S) =
{4, 8}, respectively. That is |S| = 5 and |N(S)| = 2. Clearly, V (Γ(Z24)) =
S ∪ N(S) and S ∩ N(S) = φ. Since, degree of any vertex in S is less than or
equal to degree of any vertex in N(S) and |N(S)| = V (Γ(Z24))−|S| = 7−5 = 2.

Then, b(Γ(Z24)) = |N(S)|
|S| = 2

5
=

24−1−1−2
4
2

∑ 4−4
2

i=0 2i−1

=22+20 =
24−1−2

4
2

∑ 4−4
2

i=0 2i−2

=24/2(20)+20
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=
2n−1−2

n
2

∑n−4
2

i=0 2i−2

2
n
2

∑n−4
2

i=0 2i+1

,where n = 4.

Subcase(ii): Let n = 6.

The vertex set of Γ(Z26) is {2, 4, 6, ...., 62}. That is |V (Γ(Z26))| = 31. Let S
be a vertex subset of V such that d(u) ≤ d(v), where u ∈ S and v ∈ N(S). Let
P be the set of all pendant vertices in Γ(Z26). Clearly, P = {2, 6, ..., (26 − 2)}
with d(u) = 1, for all u ∈ P . It seems that P ⊆ S. Using subcase (i), let
v = 2n−1 = 26−1 = 32 and w = 26 − 2 be any other vertex in Γ(Z26) such that
26 must divides vw = 32×(26−2) = 1984. Thus, the vertex v is adjacent to all
the vertices in Γ(Z26) which implies v = 32 ∈ N(S). Similarly, 24 and 3 × 24

are adjacent to all the vertices in Γ(Z26) except P , then {16, 48} ∈ N(S).

Let U be a vertex subset of V with U = {4, 12, 20, ..., (26 − 4)}. Clearly, no
two vertices in U is adjacent and every vertex in U are adjacent to {16, 32, 48}.
It seems that d(U) < d(N(S)) which implies that U ⊆ S.

Let W = V − (P ∪ U ∪ N(S)) = {8, 24, 40, 56} be a vertex subset of V .
Finally, the vertices in W make a complete subgraph, namely K4 and all the
vertices in W are adjacents to N(S). Using theorem (2.4), any one of the vertex
in W is in S. Otherwise, if any two vertices in W belongs to S, then we get a
contradiction that no two vertices are adjacent in S. Hence, |S| = |P |+ |U |+
any one vertex in W = 25 and |N(S)| = V (Γ(Z26))−|S| = 31−25 = 6. Then,

b(Γ(Z26)) = |N(S)|
|S| = 6

25
=

26−1−1−2
6
2

∑ 6−4
2

i=0 2i−1

24+23+20 =
26−1−2

6
2

∑ 6−4
2

i=0 2i−2

2
6
2 23(21+20)+1

=
2n−1−2

n
2

∑n−4
2

i=0 2i−2

2
n
2

∑n−4
2

i=0 2i+1

, where n=6.

Subcase(iii): Let n > 6 is even.

The vertex set of Γ(Z2n) is {2, 4, ...., 2(2n−1 − 1)} and |V (Γ(Z2n))| = 2n−1−
1. Since P is a pendant vertex set with |P | = 2n−2. Using above cases, |S| =

2
n
2 (20 + ................ + 2

n
2
−1) + 20 = 2

n
2

∑n−4
2

i=0 2i + 1, and |N(S)| = V (Γ(Z2n)) −
|S| = 2n−1 − 1 − 2

n
2

∑n−4
2

i=0 2i − 1 = 2n−1 − 2
n
2

∑n−4
2

i=0 2i − 2. Then,

b(Γ(Z2n)) = |N(S)|
|S| =

2n−1−2
n
2

∑n−4
2

i=0 2i−2

2
n
2

∑n−4
2

i=0 2i+1

, where n is even.

Case(b): When n is odd.

Subcase(i): Let n = 3. The vertex set of Γ(Z23) is {2, 4, 6}. Let S be
a vertex subset of V and let P be the set of all pendant vertices in Γ(Z23).
Clearly, P = {2, 6} with d(u) = 1, for all u ∈ P . It seems that P ⊆ S. Let
v = 6 and w = 2 be any other vertex in Γ(Z23) then vw = 0. Thus, the
vertex v is adjacent to all the vertices in Γ(Z23) which implies v = 4 ∈ N(S).
Let x = 2 and y = 6 be the remaining vertices in V such that xv = yv = 0
and xy �= 0. Finally we conclude that S = {2, 6} and N(S) = {4}. Hence,

b(Γ(Z23)) = |N(S)|
|S| = 1

2
=

23−1−1−2
3−1
2

∑ 3−3
2

i=0 2i

2(3−1)/2(20)
=

2
n−1

2 (2
n−1

2 −
∑n−3

2
i=0 2i)−1

2
n−1

2
∑n−3

2
i=0 2i

.
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Subcase(ii): Let n = 5.
The vertex set of Γ(Z25) is {2, 4, ..., 30}. Let P be the set of all pendant

vertices in Γ(Z25). Clearly, P = {2, 6, ..., 30} with d(u) = 1. It seems that
P ⊆ S. Let v = 16 and w = 2 be any other vertex in Γ(Z25) then vw =
32 = 0. Clearly, 25 must divides 32. Thus, the vertex v is adjacent to all
vertices in Γ(Z25) which implies v = 16 ∈ N(S). Let U be a vertex subset
of V with U = {4, 8, 12, 20, 24, 28}. Since, U has a induced subgraph K2,4.
Clearly, d(4) = d(12) = d(20) = d(28) < d(8) = d(24) implies that the vertices
8, 24 ∈ N(S) and the remaining vertices belongs to S. Therefore the set S =
{2, 4, 6, 10, 12, 14, 18, 20, 22, 26, 28, 30} with |S| = 12 and |N(S)| = 3. Then,

b(Γ(Z25)) = |N(S)|
|S| = 3

12
=

25−1−1−2
5−1
2

∑ 5−3
2

i=0 2i

22(21+20)
=

2
5−1
2 (2

5−1
2 −

∑ 5−3
2

i=0 2i)−1

2(5−1)/2(21+20)

=
2

n−1
2 (2

n−1
2 −

∑n−3
2

i=0 2i)−1

2
n−1

2
∑n−3

2
i=0 2i

, where n = 5.

Subcase(iii): Let n > 5 is any odd number
The vertex set of Γ(Z2n) is {2, 4, ...., 2n−1, 2(2n−1 − 1)} and |V (Γ(Z2n))| =

2n−1 − 1. Using the above subcases, |S| = 2
n−1

2 (20 + 21 + ................ + 2
n−3

2 ) =

2
n−1

2
∑n−3

2
i=0 2i and |N(S)| = V (Γ(Z2n)) − |S| = 2n−1 − 1 − 2

n−1
2

∑n−3
2

i=0 2i =

2
n−1

2 (2
n−1

2 − ∑n−3
2

i=0 2i) − 1. Then, b(Γ(Z2n)) = |N(S)|
|S| =

2
n−1

2 (2
n−1

2 −
∑n−3

2
i=0 2i)−1

2
n−1

2
∑n−3

2
i=0 2i

.

Theorem 2.6 If p > 4 is any prime, then (Γ(Z4p)) = 3
2(p−1)

.

Proof: The proof is by the method of induction on p. Let P, S, N(S) be
the pendant set, minimum degree set, neighbourhood of S, respectivily.

Case(i): Let p = 5.
The vertex set of Γ(Z20) is {2, 4, .., 2(10 − 1), 5, 10, 15} with |V (Γ(Z20))|=

11. Clearly, the vertex v = 2p = 10 is adjacent to all the vertices in V (Γ(Z20))
except 5 and 15, then 10 ∈ N(S). Let x = 4 and y = 24, then 96 is not divisible
by 20 which implies x and y are non adjacent vertices. Then, the pendant set
P = {2, 6, 14, 18} with degree of any vertex in P is 1 and P ⊆ S.

Let U = {4, 8, 12, 16} be the vertex subset of V (Γ(Z20)). Clearly no two
vertices in U are adjacent. That is 20 does not divide 32(= 4 × 8). But, the
vertices in U are adjacent to the vertices 5, 10, and 15 with d(4) = d(8) =
d(12) = d(16) < d(5) = d(15). Clearly, U ⊆ S and the vertices 5, 15 ∈ N(S)
then N(S) = {5, 10, 15}. Clearly, |S| = |P | + |U | = 4 + 4 = 8 . Hence,

b(Γ(Z20)) = |N(S)|
|S| = 3

8
= 3

2×5−2
= 3

2(p−1)
, where p = 5.

Case(ii): Let p = 7
The vertex set of Γ(Z28) is {2, 4, .., 2(14 − 1), 7, 14, 21}.Clearly, the vertex

v = 2p = 14 is adjacent to all the vertices in V (Γ(Z28)) except 7 and 21, then
14 ∈ N(S). Let x = 6 and y = 18 then 108 is not divisible by 28 which implies x
and y are non adjacent vertices. Then, the pendant set P = {2, 6, 10, 18, 22, 26}
with degree of any vertex in P is 1 and P ⊆ S.
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Let U = {4, 8, 12, 16, 20, 24} be a vertex subset of V (Γ(Z20)). Clearly no two
vertices in U is adjacent. But, the vertices in U are adjacent to the vertices
7, 14, and 21. Clearly, U ⊆ S and the vertices 7, 21 ∈ N(S) then N(S) =
{7, 14, 21}. Then, |S| = |P | + |U | = 6 + 6 = 12. Hence,

b(Γ(Z42)) = |N(S)|
|S| = 3

12
= 3

2×7−2
= 3

2(p−1)
, where p = 7.

Case(iii): Let p > 7
The vertex set of Γ(Z4p) is {2, 4, ......., 2(2p − 1), p, 2p, 3p} with |V (Γ(Z4p))|

= 2p + 1. Since,the vertex v = 2p is adjacent to all the vertices in V (Γ(Z4p))
except p and 3p, then v = 2p ∈ N(S). Let P be the pendant vertex set and
using above cases, P = {2, 6, ..., 2(p − 2), 2(p + 2), ..., 2(2p − 1)}. Similarly,
Let U = {4, ..., 4(p − 1)}. Since, no two vertices in U are adjacent. But, the
vertices in U are adjacent to the vertices p, 2p and 3p. Clearly, U ⊆ S and the
vertices p, 3p ∈ N(S) then |N(S)| = 3. Hence, |S| = |V (Γ(Z4p))| − |N(S)| =
2p + 1 − 3 = 2(p − 1). Thus,

b(Γ(Z4p)) = |N(S)|
|S| = 3

2×p−2
= 3

2(p−1)
, where p is any prime > 4.

Theorem 2.7 In Γ(Z8p) , b(Γ(Z8p)) = 7
4(p−1)

where p is any prime > 8.

Proof: Since, the vertex set of Γ(Z8p) is {2, ..., 2(4p− 1), p, 2p, .., 7p} with
|V (Γ(Z8p))| = 4p + 3. Using theorem (2.6), N(S) = {p, 2p, 3p, .., 7p} and
|N(S)| = 7. Hence, |S| = |V (Γ(Z8p))|− |N(S)| = 4p+3− 7 = 4(p− 1). Then,

b(Γ(Z8p)) = |N(S)|
|S| = 7

4(p−1)
, where p is any prime > 8.

Theorem 2.8 In Γ(Z2np) where p is any prime > 2n and n is any positive
integer, then b(Γ(Z2np)) = 2n−1

2n−1(p−1)
.

Proof: The vertex set of Γ(Z2np) is {2, .., 2(2n−1p − 1), p, 2p, ...., (2n − 1)p}
with |V (Γ(Z2np))| = 2n−1p+2n−1−1. Using theorems (2.6) and (2.7), N(S) =
{p, 2p, ......., (2n − 1)p} then |N(S)| = (2n − 1). Then, |S| = |V (Γ(Z2np))| −
|N(S)| = 2n−1p + 2n−1 − 1 − (2n − 1) = 2n−1(p − 1).

Hence, b(Γ(Z2np)) = |N(S)|
|S| = 2n−1

2n−1(p−1)
.

Theorem 2.9 For any prime p > 3, b(Γ(Z3n)) = 7
3n−1−8

.
Proof: The vertex set of Γ(Z3n) is {3, 6...., 3(3n−1 − 1)} and |V (Γ(Z3n))| =

3n−1 − 1.The proof is by the method of induction.
Case(i): Let n = 4.
The vertex set of Γ(Z81) is {3, 6, ..78} and |V (Γ(Z81))| = 26. Let S be

the vertex subset of V and N(S) be the neibourhood of S such that d(u) <
d(v) where u ∈ S and v ∈ N(S). Let x = 27 ,y = 54 and u = 3 then
ux = uy = 0. This implies that the vertices 27 and 54 are adjacent to all the
remaining vertices of Γ(Z81). Clearly. 27, 54 ∈ N(S). Consider another vertex
set X = {9, 18, 36, 45, 63, 72} which is the next maximum degree compared to
the vertices 27, 54. Let u = 18 and v = 72 then uv is divided by 81 that
is u and v are adjacent. Since, X has a subgraph K6 implies that any five
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vertices ∈ N(S). Thus, N(S) = {9, 18, 27, 36, 45, 54, 63, 72}. Then, |S| =

|V (Γ(Z81))| − |N(S)| = 19. Hence, b(Γ(Z81)) = |N(S)|
|S| = 7

19
= 7

34−1−8
= 7

3n−1−8
.

Case(ii): Let n = 5.

The vertex set of Γ(Z243) is {3, 6, ..240} and |V (Γ(Z243))| = 80. Using
case(i), the vertex set X = {81, 162}. Since, the vertices in X has highest
degree then X ∈ N(S). The vertex set Y = {27, 54, 108, 135, 189, 216} is the
next maximum degree compared to the vertex set X. Let u = 27 and v = 216 in
Y then uv is divided by 243 that is u and v are adjacent. Using case(i), any five
vertices in Y belongs to N(S). Thus, N(S) = {27, 54, 81, 108, 135, 162, 189}.
Then |S| = |V (Γ(Z243))| − |N(S)| = 80 − 7 = 73.

Hence, b(Γ(Z243)) = |N(S)|
|S| = 7

73
= 7

35−1−8
= 7

3n−1−8
.

Case(iii): Let n > 5.

In general, V (Γ(Z3n)) is {3, 6, .., 3(3n−1 − 1)} and |V (Γ(Z3n))| = 3n−1 − 1.
Clearly, N(S) = {1.3n−2, 2.3n−2, .., 7.3n−2} then |S| = |V (Γ(Z3n))| − |N(S)| =

3n−1 − 1 − 7 = 3n−1 − 8. Hence, b(Γ(Z243)) = |N(S)|
|S| = 7

3n−1−8
.

3 Main Result

The value of the binding number of Γ(Zn) for some positive integer n forms an
inequalities that Γ(Z2p) ≤ Γ(Z4p) ≤ Γ(Z8p) ≤ Γ(Zpq) where p and q are any
distinct primes with p < q and Γ(Z3n) ≤ Γ(Z2n) ≤ Γ(Z2np) ≤ Γ(Zpq) where n
is any positive integer ≥ 2. Using the above two inequalities, we conclude that
the maximum value of the binding number is Γ(Zpq). Since b(Γ(Zpq)) = p−1

q−1
.

That is the numerator is greater when compared to the other prime number
with respect to the denominator. The last two twin prime numbers of fiftieth
million are p = 982451579 and q = 982451581. The maximum value of the
(Γ(Zn)) is 0.99999999796427626489236243072661 for some positive integer n
upto fiftieth million.
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