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Abstract

In this paper, we consider the generalized Fibonacci p-numbers and then we give the generalized
Binet formula, sums, combinatorial representations and generating function of the generalized Fibonacci
p-numbers. Also, using matrix methods, we derive an explicit formula for the sums of the generalized
Fibonacci p-numbers.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction
We consider a generalization of well-known Fibonacci numbers, which are called Fibonacci
p-numbers. The Fibonacci p-numbers F), (n) are defined by the following equation forn > p+1
Fon)=F,n—1)+F,(n—p—1) (1
with initial conditions
Fp() =Fp2)=---=Fp(p)=F,(p+ 1 =1

If we take p = 1, then the sequence of Fibonacci p-numbers, {F,(n)}, is reduced to the
well-known Fibonacci sequence { F},}.

The Fibonacci p-numbers and their properties have been studied by some authors (for more
details see [1,4-6,8,13-26,29]).
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In 1843, Binet gave a formula which is called “Binet formula” for the usual Fibonacci numbers

F,, by using the roots of the characteristic equation x> —x — 1 =0:a = #, B = 1—T\f5
a — gn
F=2 P
a—p

where « is called Golden Proportion, o = 1+2“/§ (for details see [7,30,28]). In [12], Levesque

gave a Binet formula for the Fibonacci sequence by using a generating function. In [2], the
authors considered an n X n companion matrix and its nth power, then gave the combinatorial
representation of the sequence generated by the nth power the matrix. Further in [25], the authors
derived analytical formulas for the Fibonacci p-numbers and then showed these formulas are
similar to the Binet formulas for the classical Fibonacci numbers. Also, in [11], the authors gave
the generalized Binet formulas and the combinatorial representations for the generalized order-
k Fibonacci [3] and Lucas [27] numbers. In [10], the authors defined the generalized order-k
Pell numbers and gave the Binet formula for the generalized Pell sequence. For the common
generalization of the generalized order-k Fibonacci and Pell numbers, and its generating matrix,
sums and combinatorial representation, we refer readers to [9].

In this paper, we consider the generalized Fibonacci p-numbers and give the generalized
Binet formula, combinatorial representations and sums of the generalized Fibonacci p-numbers
by using the matrix method.

The generating matrix for the generalized Fibonacci p-numbers is given by Stakhov [23] as
follows: Let O, be the following (p + 1) x (p + 1) companion matrix :

1 0 0o ... 01
1 0 o ... 00
0 1 0o ... 0O
Qp=. . Do @
0O ... 0 1 0 O
o o ... 0 1 0

and the nth power of the matrix Q, is

Fp(n+1) Fy(n—p+1) ... Fpy(n—1) Fp(n)
Fp(n) Fp(n—p) Fp(n—2) Fp(n—1)
Q) = z ] ; :
Fy(n—p+2) Fpy(n—2p+2) ... Fp(n—p) Fp(n—p+1)
F,n—p+1) F,n—-2p+1) ... Fyn—p-—1) Fp(n—p)

3

The matrix Q) is said to be a generalized Fibonacci p-matrix.
2. The generalized Binet formula

In this section, we give the generalized Binet formula for the generalized Fibonacci p-
numbers. We start with the following results.

_1\7~1!
Lemma 1. Leta, = % (%) .Thena, > apyy for p > 1.
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. 3 N 2 2 pi-1
Proof. Since 2p° —2p —1 > Oand p > 1, (p +2p+ 1) (p 1) > p*. Thus, ) >

(p+1) Therefore, for p > 1, (”;El)p_l > (#)2 and so((”p—‘zl) x (%“))p : >

P p—1 p—1 p p+l1 . .
(p+1) Then we have ( 2 ) > <m> . So the proof is easily seen. O

Lemma 2. The characteristic equation of the Fibonacci p-numbers xP — xP~1 — 1 = 0 does
not have multiple roots for p > 1.

Proof. Let f(z) = z” — zP~! — 1. Suppose that « is a multiple root of f(z) = 0. Note
that « % 0 and @ # 1. Since « is a multiple root, f(a) = a? —a?~! —1 = 0 and
(o) = pa?~' —(p — 1) aP~2 = 0. Then

fl@) =aP2(pa — (p— 1)) = 0.

Thus o = PT_I, and hence

0=fl@)=—a’4+a’ T 4l1=a?11-a)+1
—1\*! —1 1 /p—1\""
=<_" > (1——p )+1=—(—p ) +1
p p p\ p
=ap+ 1.
1

Since, by Lemma 1, a; = 7 < land ap, > apyq for p > 1,a, # 1, which is a contradiction.
Therefore, the equation f(z) = 0 does not have multiple roots. O

We suppose that f (1) is the characteristic polynomial of the generalized Fibonacci p-matrix
Op. Then, f (1) = AP — AP — 1, which is a well-known fact from the companion matrices.

Let Ay, A2, ..., Apy1 be the eigenvalues of the matrix Q,. Then, by Lemma 2, we know that
AL, A2, ..., Apqq are distinct. Let Abe a (p 4+ 1) x (p + 1) Vandermonde matrix as follows:
P A1
i At ,\‘2 1
’\5+1 ,\§+} o g 1

We denote AT by V. Let

)Ln+p+1—i
1
)Ln+p+l—i

] 2
[
dk =

n+[7'+1—i
Ap+1
and V(l) bea (p+1) x (p+ 1) matrix obtained from V by replacing the jth column of V by dk

Then we can give the generalized Binet formula for the generalized Fibonacci p-numbers
with the following theorem.
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Theorem 3. Let F),(n) be the nth generalized Fibonacci p-number; then

det (Vj(i))
U= "ger (v)

where Q’; = [qij] and qij = Fy(n+j—i—p)forj>2andq1 = F,n+2—1i) for
j=1

Proof. Since the eigenvalues of the matrix Q) are distinct, the matrix Q is diagonalizable. It
is easy to show that O,V = VD, where D = diag(A1, A2, ..., Ap+1). Since the Vandermonde
matrix V is invertible, V=1 Q pV = D. Hence, the matrix Q, is similar to the diagonal matrix D.
So we have the matrix equation Q,V = V D". Since Q' = [q,- j], we have the following linear
system of equations:

-1 1—i
Qil)nf + qizkf + G = )LernJr i
-1 1—i
qil)\'g+q52)\g +"'+qi,p+l :)\’g-l-l’l-‘r t

D _ap—l . _ 4y ptntl—i
Githppy T g2k, + o Fdipr1 =2, .

Thus, foreach j = 1,2, ..., p+ 1, we obtain
@
det (Vj )
det (V)

So the proof is complete. O

qij =

Thus, we give the Binet formula for the nth Fibonacci p-number F),(n) by the following
corollary.

Corollary 4. Let F),(n) be the nth Fibonacci p-number. Then

det (Vl(z)) B det (V[gl)

det(V) ~ det(V)

Fp(n) =

Proof. The conclusion is immediate result of Theorem 3 by takingi =2, j=1lori =1,j =
p+1. O

The following lemma can be obtained from [2].

Lemma 5. Let the matrix Q'[’) = [q,-j] be as in (3). Then

mjt+mjti+ - tmper o (mp+my+ o+ mpy
qij = Z J J p X< P+

mi+mry+---+m mi,ma,...,Mpy1
(m],...,m,,_H) 1 2 p+1 14
where the summation is over nonnegative integers satisfying my +2mp +---+ (p+ Dmpy1 =
n—i+ j,anddefinedtobe 1 if n =1 — j.

Then we have the following corollaries.
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Corollary 6. Let Fj(n) be the generalized Fibonacci p-number. Then

mp+1 m m e 4m
Frm= ), mi +m +er +m X( ]mj: n122+ ;:17“)
1 2 o 1 5 g e ey
(mla'~-smp+l) Pt P

where the summation is over nonnegative integers satisfying mi +2ma +---+ (p+ Dmpy =
n+ p.

Proof. In Lemma 5, wheni = 1 and j = p + 1, then the conclusion can be directly seen from
3). 0O

Corollary 7. Let F,(n) be the generalized Fibonacci p-number. Then

mp+my -+t mpiy
F,(n) = P
p(n) Z ( M1, mo, ..., Mpyl )

where the summation is over nonnegative integers satisfying my +2ma +---+ (p+ Dmpy =
n— 1

Proof. In Lemma 5, if we take i = 2 and j = 1, then we have the corollary from (3). O

We consider the generating function of the generalized Fibonacci p-numbers. We give the
following lemma.

Lemma 8. Let Fj,(n) be the nth generalized Fibonacci number, then for n > 1
p .
x"=F,(n—p+ l)x”—i-ZFp(n—p—i- 1—j)x/~"
=1
Proof. We suppose that n = p 4+ 1; then by the definition of the Fibonacci p-numbers
xPH = F,2)xP + Fp(1) = x” + 1.

Now we suppose that the equation holds for any integer n,n > p + 1. Then we show that the
equation holds for n+ 1. Thus, from our assumption and the characteristic equation the Fibonacci
p-numbers,

P
X =yt = (Fp(n—P-i- Dx? +ZFp n—p+1 —j)x]])x
j=1

p
Fyn—p+D(xP+1)+Y Fyn—p+1—j)x/
j=1

Fon—p+Dx?P+F,(n—p+ 1D+ F,(n—2p+1)x?
+Fyn—=2p+2xP 4 4 Fy(n = 2p 4+ Dx? 4+ Fy(n — p)x
=[Fy(n—p+ 1)+ Fpy(n—2p+D]xP + Fy(n —2p +2)x"~!

+F,(n—2p+3)xP 24 L Fy(n—p)x + Fp(n—p+1). 4)
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Using the definition of the generalized Fibonacci p-numbers, we have

Fomn—p+D)+F,n—2p+1)=F,(n—p+2).
Therefore, we can write the Eq. (4) as follows

x"tl = Fy(n—p+2)xP +F,(n—2p+ 2) xP~!

+Fp(n—2p+3)xP 24+ Fpyn— p)x + Fp(n — p+ 1)
p
=Fy(n—p+2DxP +Y Fy(n—p+2—j)x/! )
j=1

which is what was desired. [

Now we give the generating function of the generalized Fibonacci p-numbers:
Let

Gp(x) = Fy(1) + FyQ)x + Fp(3)x> + -+ Fy(n + Dx" 4 - - .
Then
Gp(x) —xGp(x) — xPH G, (x) = (1 —x —xl’“) Gp(x).

By the Eq. (5), we have (1 —x — x”*1) G, (x) = F,(1) = 1. Thus
-1
Gp(x) = (1 —x —x”“)

for0 < x +xP*! < 1.
Let f,(x) =x + xP+1 Then, for 0 < fp(x) < 1, we have the following lemma.

e . ; ',
Lemma 9. For positive integers t and n, the coefficient of x" in (fp (x)) is

L[t n
) <t<n
= \J p+1

where the integers j satisfy pj +t = n.

Proof. From the above results, we write
t 1 ! t ! t .
(fr0) = (x +xPt ) =x"(1+xP) =x' Z( .)x”f.
—o \J
j=0

In the above equation, we consider the coefficient of x”. For positive integers ¢t and j such that
pj +t =nand j <t,the coefficients of x" are

L[t n
> ( ) L g stsn
=\i/ P+
So we have the required conclusion. O

Now we can give a representation for the generalized Fibonacci p-numbers by the following
theorem.
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Theorem 10. Let F),(n) be the nth generalized Fibonacci p-number. Then, for positive integers
t and n,

Fy(n+1) = Z Z( )

’1 [<t<n j=0
where the integers j satisfy pj +t = n.

Proof. Since

Fy()+ Fp Q) x + Fp3)x> + -+ Fy (n 4+ Dx" + - -
1
1 —x —xpPtl

Gpx)

and f,(x) = x + xPT1 the coefficient of x" is the (n + 1)th generalized Fibonacci p-number,
Fp(n+1)in Gp(x). Thus

1
1 —x—xptl
1

1- fp(x)
L+ £, + (fo )+ + (fr0)" +

2 n
1+x(1+xf’)+x22<2,)x1’f+-~-+x”2<n.>xl’f+~-
=0 \J j=0 \J

As we need the coefficient of x”, we only consider the first n + 1 terms on the right-side. Thus
by Lemma 9, the proof is complete. [

Gp(x) =

Now we give an exponential representation for the generalized Fibonacci p-numbers.
-1
InG,x) = In [1 - (x +x1’+1)]
= —In [1 — (x +x”+1>]
_ _ _<x+xp+1) _l<x+xp+1)2_m_l<x+xp+1>n o
2 n
1 1
=x[(1+x1’)+§(1+x1’)2+-~-+;(1+x1’)”+--~}
21
— Z P\"*
=x Z . (1 +x ) .
n=0
Thus,

1 n
Gp(x) =exp (xZ;(l—i—x”) )
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3. Sums of the generalized Fibonacci p-numbers by matrix methods

In this section, we define a (p + 2) x (p + 2) matrix 7, and then we show that the sums of
the generalized Fibonacci p-numbers can be obtained from the nth power of the matrix 7.

Definition 11. For p > 1,let T = (t,-j) denote the (p +2) x (p + 2) matrix byt;; = fh; =
tn =t pi2=1,tiy1; =1for2 <i < p+1and 0 otherwise.

Clearly, by the definition of the matrix O,

1 0 0 0 0
1 1 0 0 1 } 0 ... 0
01 0 0 0 0
T=|0 o0 1 0 0 or T = Op (6)
0 0 0O 1 0 0

where the (p + 1) x (p + 1) matrix O, given by (2).
Let S,, denote the sums of the generalized Fibonacci p-numbers from 1 to n, that is:

n
Sp=Y Fp(0). )
i=1
Now we define a (p + 2) x (p + 2) matrix C, as follows
1 0o ... 0
Sn
C, = | Sn-1 o), 8)
Sn—p

where Q7 given by (3).
Then we have the following theorem.

Theorem 12. Let the (p +2) X (p + 2) matrices T and C,, be as in (6) and (8), respectively.
Then, forn > 1:

Cy=T"

Proof. We will use the induction method to prove that C,, = T". If n = 1, then, by the definition
of the matrix C, and generalized Fibonacci p-numbers, we have

C=T.

Now we suppose that the equation holds for n. Then we show that the equation holds for n + 1.
Thus,

" =TT
and by our assumption,

"t =C,T.



E. Kilic / European Journal of Combinatorics 29 (2008) 701-711 709

Since S, 41 = Sy + F)(n + 1) and using the definition of the generalized Fibonacci numbers, we
can derive the following matrix recurrence relation

CnT = Cpy1.
So the proof is complete. [

We define two (p + 2) x (p + 2) matrices. First, we define the matrix R as follows:

-1 0 0 ... 0 7
p 4 p
-1 xll )\21 AH}
—1 AP0 AT T
R — 1 2 p.+1 9)
—1 )\1 )»2 )\.p+]
S | 1 ... 1

and the diagonal matrix D as follows:

1
Al
Dy = ) (10)

Ap+1

where the A;’s are the eigenvalues of the matrix @, for1 <i < p + 1.
We give the following theorem for the computing the sums of the generalized Fibonacci p-
numbers 1 from to n by using a matrix method.

Theorem 13. Let the sums of the generalized Fibonacci numbers S, be as in (7). Then
Sh=F,(n+p+1)—1

Proof. If we compute the det R by the Laplace expansion of determinant with respect to the first
row, then we obtain that det R = det V, where the Vandermonde matrix V is as in Theorem 3.
Therefore, we can easily find the eigenvalues of the matrix R. Since the characteristic equation
of the matrix R is (x” —xP~! —1) x (x — 1) and by Lemma 2, the eigenvalues of the matrix
Rare 1, A, ..., Apy1 and distinct. So the matrix R is diagonalizable. We can easily prove that
TR = RD;, where the matrices T, R and D; are as in (6), (9) and (10), respectively. Then we
have

T"R = RD". (11)

Since 7" = C,, we write that C,R = RD!. We know that S, = (Cy),,;. By a matrix
multiplication,

P
Sn—<ZFp(n+1—i)>=—1. (12)

i=0

By the definition of the generalized Fibonacci p-numbers, we know that Zf:o Fy(n+1-i)=
Fp(n + p + 1). Then we write the Eq. (12) as follows:

Sh—Fy(n+p+1)=—L1L
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A ¢ C3 Cs Cp Cp+4 Cn—p 1 n-p+1 Cn—p+. Cn Cn+2
L] LJ o . ] ® o . LJ e . e ® [ ]
€ Cy Co Cp+] Cp+3 Cp+5 Cn—p a2 Ch-1 Chel Cha3
Fig. 1.

Thus,

Su=) Fp)=Fy(n+p+1)—1.

i=1
So the proof is complete. O

In [30], the author presents an enumeration problem for the paths from A to ¢,, and then
shows that the number of paths from A to ¢, are equal to the nth usual Fibonacci number. Now,
we are interested in a problem of paths. The problem is as in Fig. 1.

It is seen that the number of path from A to ¢y, ¢2, ... cp41 is 1. Also, we know that the initial
conditions of the generalized Fibonacci p-numbers, that is, F,(1), Fp(2), ..., Fp(p + 1), are
1. Now we consider the case n > p + 1. The number of the path from A to ¢4 is 2. By the
induction method, one can see that the number of the path from A to ¢, is the nth generalized
Fibonacci p-number.
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