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Abstract

In this paper, we consider the generalized Fibonacci p-numbers and then we give the generalized
Binet formula, sums, combinatorial representations and generating function of the generalized Fibonacci
p-numbers. Also, using matrix methods, we derive an explicit formula for the sums of the generalized
Fibonacci p-numbers.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

We consider a generalization of well-known Fibonacci numbers, which are called Fibonacci
p-numbers. The Fibonacci p-numbers Fp(n) are defined by the following equation for n > p+1

Fp(n) = Fp(n − 1) + Fp(n − p − 1) (1)

with initial conditions

Fp(1) = Fp(2) = · · · = Fp(p) = Fp(p + 1) = 1.

If we take p = 1, then the sequence of Fibonacci p-numbers, {Fp(n)}, is reduced to the
well-known Fibonacci sequence {Fn}.

The Fibonacci p-numbers and their properties have been studied by some authors (for more
details see [1,4–6,8,13–26,29]).
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In 1843, Binet gave a formula which is called “Binet formula” for the usual Fibonacci numbers

Fn by using the roots of the characteristic equation x2
− x − 1 = 0 : α =

1+
√

5
2 , β =

1−
√

5
2

Fn =
αn

− βn

α − β

where α is called Golden Proportion, α =
1+

√
5

2 (for details see [7,30,28]). In [12], Levesque
gave a Binet formula for the Fibonacci sequence by using a generating function. In [2], the
authors considered an n × n companion matrix and its nth power, then gave the combinatorial
representation of the sequence generated by the nth power the matrix. Further in [25], the authors
derived analytical formulas for the Fibonacci p-numbers and then showed these formulas are
similar to the Binet formulas for the classical Fibonacci numbers. Also, in [11], the authors gave
the generalized Binet formulas and the combinatorial representations for the generalized order-
k Fibonacci [3] and Lucas [27] numbers. In [10], the authors defined the generalized order-k
Pell numbers and gave the Binet formula for the generalized Pell sequence. For the common
generalization of the generalized order-k Fibonacci and Pell numbers, and its generating matrix,
sums and combinatorial representation, we refer readers to [9].

In this paper, we consider the generalized Fibonacci p-numbers and give the generalized
Binet formula, combinatorial representations and sums of the generalized Fibonacci p-numbers
by using the matrix method.

The generating matrix for the generalized Fibonacci p-numbers is given by Stakhov [23] as
follows: Let Q p be the following (p + 1) × (p + 1) companion matrix :

Q p =



1 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
... . . .

. . . . . .
...

...

0 . . . 0 1 0 0
0 0 . . . 0 1 0

 (2)

and the nth power of the matrix Q p is

Qn
p =


Fp(n + 1) Fp(n − p + 1) . . . Fp(n − 1) Fp(n)

Fp(n) Fp(n − p) . . . Fp(n − 2) Fp(n − 1)
...

...
...

...

Fp(n − p + 2) Fp(n − 2p + 2) . . . Fp(n − p) Fp(n − p + 1)

Fp(n − p + 1) Fp(n − 2p + 1) . . . Fp(n − p − 1) Fp(n − p)

 .

(3)

The matrix Q p is said to be a generalized Fibonacci p-matrix.

2. The generalized Binet formula

In this section, we give the generalized Binet formula for the generalized Fibonacci p-
numbers. We start with the following results.

Lemma 1. Let ap =
1
p

(
p−1

p

)p−1
. Then ap > ap+1 for p > 1.
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Proof. Since 2p3
− 2p − 1 > 0 and p > 1,

(
p2

+ 2p + 1
) (

p2
− 1

)
> p4. Thus,

(
p2

−1
p2

)
>(

p
p+1

)2
. Therefore, for p > 1,

(
p2

−1
p2

)p−1
>

(
p

p+1

)2
and so

((
p−1
p2

)
×

(
p+1

p

))p−1
>(

p
p+1

)2
. Then we have

(
p−1
p2

)p−1
>
(

p
p+1

)p+1
. So the proof is easily seen. �

Lemma 2. The characteristic equation of the Fibonacci p-numbers x p
− x p−1

− 1 = 0 does
not have multiple roots for p > 1.

Proof. Let f (z) = z p
− z p−1

− 1. Suppose that α is a multiple root of f (z) = 0. Note
that α 6= 0 and α 6= 1. Since α is a multiple root, f (α) = α p

− α p−1
− 1 = 0 and

f ′(α) = pα p−1
− (p − 1) α p−2

= 0. Then

f ′(α) = α p−2(pα − (p − 1)) = 0.

Thus α =
p−1

p , and hence

0 = f (α) = −α p
+ α p−1

+ 1 = α p−1 (1 − α) + 1

=

(
p − 1

p

)p−1 (
1 −

p − 1
p

)
+ 1 =

1
p

(
p − 1

p

)p−1

+ 1

= ap + 1.

Since, by Lemma 1, a2 =
1
4 < 1 and ap > ap+1 for p > 1, ap 6= 1, which is a contradiction.

Therefore, the equation f (z) = 0 does not have multiple roots. �

We suppose that f (λ) is the characteristic polynomial of the generalized Fibonacci p-matrix
Q p. Then, f (λ) = λp+1

− λp
− 1, which is a well-known fact from the companion matrices.

Let λ1, λ2, . . . , λp+1 be the eigenvalues of the matrix Q p. Then, by Lemma 2, we know that
λ1, λ2, . . . , λp+1 are distinct. Let Λ be a (p + 1) × (p + 1) Vandermonde matrix as follows:

Λ =


λ

p
1 λ

p−1
1 . . . λ1 1

λ
p
2 λ

p−1
2 . . . λ2 1

...
...

...
...

λ
p
p+1 λ

p−1
p+1 . . . λp+1 1

 .

We denote ΛT by V . Let

d i
k =


λ

n+p+1−i
1

λ
n+p+1−i
2

...

λ
n+p+1−i
p+1


and V (i)

j be a (p + 1)× (p + 1) matrix obtained from V by replacing the j th column of V by d i
k .

Then we can give the generalized Binet formula for the generalized Fibonacci p-numbers
with the following theorem.
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Theorem 3. Let Fp(n) be the nth generalized Fibonacci p-number; then

qi j =

det
(

V (i)
j

)
det (V )

where Qn
p =

[
qi j
]

and qi j = Fp (n + j − i − p) for j ≥ 2 and qi,1 = Fp (n + 2 − i) for
j = 1.

Proof. Since the eigenvalues of the matrix Q p are distinct, the matrix Q p is diagonalizable. It
is easy to show that Q pV = V D, where D = diag(λ1, λ2, . . . , λp+1). Since the Vandermonde
matrix V is invertible, V −1 Q pV = D. Hence, the matrix Q p is similar to the diagonal matrix D.
So we have the matrix equation Qn

pV = V Dn . Since Qn
p =

[
qi j
]
, we have the following linear

system of equations:

qi1λ
p
1 + qi2λ

p−1
1 + · · · + qi,p+1 = λ

p+n+1−i
1

qi1λ
p
2 + qi2λ

p−1
2 + · · · + qi,p+1 = λ

p+n+1−i
2

...

qi1λ
p
p+1 + qi2λ

p−1
p+1 + · · · + qi,p+1 = λ

p+n+1−i
p+1 .

Thus, for each j = 1, 2, . . . , p + 1, we obtain

qi j =

det
(

V (i)
j

)
det (V )

.

So the proof is complete. �

Thus, we give the Binet formula for the nth Fibonacci p-number Fp(n) by the following
corollary.

Corollary 4. Let Fp(n) be the nth Fibonacci p-number. Then

Fp(n) =

det
(

V (2)
1

)
det (V )

=

det
(

V (1)
p+1

)
det (V )

.

Proof. The conclusion is immediate result of Theorem 3 by taking i = 2, j = 1 or i = 1, j =

p + 1. �

The following lemma can be obtained from [2].

Lemma 5. Let the matrix Qn
p =

[
qi j
]

be as in (3). Then

qi j =

∑
(m1,...,m p+1)

m j + m j+1 + · · · + m p+1

m1 + m2 + · · · + m p+1
×

(
m1 + m2 + · · · + m p+1

m1, m2, . . . , m p+1

)
where the summation is over nonnegative integers satisfying m1 + 2m2 + · · · + (p + 1)m p+1 =

n − i + j , and defined to be 1 if n = i − j .

Then we have the following corollaries.
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Corollary 6. Let Fp(n) be the generalized Fibonacci p-number. Then

Fp(n) =

∑
(m1,...,m p+1)

m p+1

m1 + m2 + · · · + m p+1
×

(
m1 + m2 + · · · + m p+1

m1, m2, . . . , m p+1

)
where the summation is over nonnegative integers satisfying m1 + 2m2 + · · · + (p + 1)m p+1 =

n + p.

Proof. In Lemma 5, when i = 1 and j = p + 1, then the conclusion can be directly seen from
(3). �

Corollary 7. Let Fp(n) be the generalized Fibonacci p-number. Then

Fp(n) =

∑
(m1,...,m p+1)

(
m1 + m2 + · · · + m p+1

m1, m2, . . . , m p+1

)
where the summation is over nonnegative integers satisfying m1 + 2m2 + · · · + (p + 1)m p+1 =

n − 1.

Proof. In Lemma 5, if we take i = 2 and j = 1, then we have the corollary from (3). �

We consider the generating function of the generalized Fibonacci p-numbers. We give the
following lemma.

Lemma 8. Let Fp(n) be the nth generalized Fibonacci number, then for n > 1

xn
= Fp(n − p + 1)x p

+

p∑
j=1

Fp (n − p + 1 − j) x j−1.

Proof. We suppose that n = p + 1; then by the definition of the Fibonacci p-numbers

x p+1
= Fp(2)x p

+ Fp(1) = x p
+ 1.

Now we suppose that the equation holds for any integer n, n > p + 1. Then we show that the
equation holds for n+1. Thus, from our assumption and the characteristic equation the Fibonacci
p-numbers,

xn+1
= xn x =

(
Fp(n − p + 1)x p

+

p∑
j=1

Fp (n − p + 1 − j) x j−1

)
x

= Fp(n − p + 1)
(
x p

+ 1
)
+

p∑
j=1

Fp (n − p + 1 − j) x j

= Fp(n − p + 1)x p
+ Fp(n − p + 1) + Fp (n − 2p + 1) x p

+ Fp(n − 2p + 2)x p−1
+ · · · + Fp(n − 2p + 1)x2

+ Fp(n − p)x

=
[
Fp(n − p + 1) + Fp(n − 2p + 1)

]
x p

+ Fp(n − 2p + 2)x p−1

+ Fp (n − 2p + 3) x p−2
+ · · · + Fp(n − p)x + Fp(n − p + 1). (4)
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Using the definition of the generalized Fibonacci p-numbers, we have

Fp(n − p + 1) + Fp(n − 2p + 1) = Fp (n − p + 2) .

Therefore, we can write the Eq. (4) as follows

xn+1
= Fp(n − p + 2)x p

+ Fp (n − 2p + 2) x p−1

+ Fp (n − 2p + 3) x p−2
+ · · · + Fp(n − p)x + Fp(n − p + 1)

= Fp(n − p + 2)x p
+

p∑
j=1

Fp (n − p + 2 − j) x j−1 (5)

which is what was desired. �

Now we give the generating function of the generalized Fibonacci p-numbers:
Let

G p(x) = Fp(1) + Fp(2)x + Fp(3)x2
+ · · · + Fp(n + 1)xn

+ · · · .

Then

G p(x) − xG p(x) − x p+1G p (x) =

(
1 − x − x p+1

)
G p(x).

By the Eq. (5), we have
(
1 − x − x p+1

)
G p (x) = Fp(1) = 1. Thus

G p(x) =

(
1 − x − x p+1

)−1

for 0 ≤ x + x p+1 < 1.
Let f p(x) = x + x p+1. Then, for 0 ≤ f p(x) < 1, we have the following lemma.

Lemma 9. For positive integers t and n, the coefficient of xn in
(

f p(x)
)t is

t∑
j=0

(
t

j

)
,

n

p + 1
≤ t ≤ n

where the integers j satisfy pj + t = n.

Proof. From the above results, we write(
f p(x)

)t
=

(
x + x p+1

)t
= x t (1 + x p)t

= x t
t∑

j=0

(
t

j

)
x pj .

In the above equation, we consider the coefficient of xn . For positive integers t and j such that
pj + t = n and j ≤ t , the coefficients of xn are

t∑
j=0

(
t

j

)
,

n

p + 1
≤ t ≤ n.

So we have the required conclusion. �

Now we can give a representation for the generalized Fibonacci p-numbers by the following
theorem.
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Theorem 10. Let Fp(n) be the nth generalized Fibonacci p-number. Then, for positive integers
t and n,

Fp(n + 1) =

∑
n

p+1 ≤t≤n

t∑
j=0

(
t

j

)

where the integers j satisfy pj + t = n.

Proof. Since

G p(x) = Fp(1) + Fp (2) x + Fp(3)x2
+ · · · + Fp (n + 1) xn

+ · · ·

=
1

1 − x − x p+1

and f p(x) = x + x p+1, the coefficient of xn is the (n + 1)th generalized Fibonacci p-number,
Fp(n + 1) in G p(x). Thus

G p(x) =
1

1 − x − x p+1

=
1

1 − f p(x)

= 1 + f p(x) +
(

f p(x)
)2

+ · · · +
(

f p(x)
)n

+ · · ·

= 1 + x
(
1 + x p)

+ x2
2∑

j=0

(
2
j

)
x pj

+ · · · + xn
n∑

j=0

(
n

j

)
x pj

+ · · · .

As we need the coefficient of xn , we only consider the first n + 1 terms on the right-side. Thus
by Lemma 9, the proof is complete. �

Now we give an exponential representation for the generalized Fibonacci p-numbers.

ln G p(x) = ln
[
1 −

(
x + x p+1

)]−1

= −ln
[
1 −

(
x + x p+1

)]
= −

[
−

(
x + x p+1

)
−

1
2

(
x + x p+1

)2
− · · · −

1
n

(
x + x p+1

)n
− · · ·

]
= x

[(
1 + x p)

+
1
2

(
1 + x p)2

+ · · · +
1
n

(
1 + x p)n

+ · · ·

]
= x

∞∑
n=0

1
n

(
1 + x p)n .

Thus,

G p(x) = exp

(
x

∞∑
n=0

1
n

(
1 + x p)n) .
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3. Sums of the generalized Fibonacci p-numbers by matrix methods

In this section, we define a (p + 2) × (p + 2) matrix T , and then we show that the sums of
the generalized Fibonacci p-numbers can be obtained from the nth power of the matrix T .

Definition 11. For p ≥ 1, let T =
(
ti j
)

denote the (p + 2) × (p + 2) matrix byt11 = t21 =

t22 = t2,p+2 = 1, ti+1,i = 1 for 2 ≤ i ≤ p + 1 and 0 otherwise.

Clearly, by the definition of the matrix Q p,

T =



1 0 0 . . . 0 0
1 1 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
. . .

...
...

0 0 0 1 0

 or T =


1 0 . . . 0
1
0 Q p
...

0

 (6)

where the (p + 1) × (p + 1) matrix Q p given by (2).
Let Sn denote the sums of the generalized Fibonacci p-numbers from 1 to n, that is:

Sn =

n∑
i=1

Fp (i) . (7)

Now we define a (p + 2) × (p + 2) matrix Cn as follows

Cn =


1 0 . . . 0
Sn

Sn−1 Qn
p

...

Sn−p

 (8)

where Qn
p given by (3).

Then we have the following theorem.

Theorem 12. Let the (p + 2) × (p + 2) matrices T and Cn be as in (6) and (8), respectively.
Then, for n ≥ 1:

Cn = T n .

Proof. We will use the induction method to prove that Cn = T n . If n = 1, then, by the definition
of the matrix Cn and generalized Fibonacci p-numbers, we have

C1 = T .

Now we suppose that the equation holds for n. Then we show that the equation holds for n + 1.
Thus,

T n+1
= T n .T

and by our assumption,

T n+1
= CnT .
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Since Sn+1 = Sn + Fp(n + 1) and using the definition of the generalized Fibonacci numbers, we
can derive the following matrix recurrence relation

CnT = Cn+1.

So the proof is complete. �

We define two (p + 2) × (p + 2) matrices. First, we define the matrix R as follows:

R =



1 0 0 . . . 0
−1 λ

p
1 λ

p
2 . . . λ

p
p+1

−1 λ
p−1
1 λ

p−1
2 . . . λ

p−1
p+1

...
...

...
...

−1 λ1 λ2 . . . λp+1
−1 1 1 . . . 1


(9)

and the diagonal matrix D1 as follows:

D1 =


1

λ1
. . .

λp+1

 (10)

where the λi ’s are the eigenvalues of the matrix Q p for 1 ≤ i ≤ p + 1.
We give the following theorem for the computing the sums of the generalized Fibonacci p-

numbers 1 from to n by using a matrix method.

Theorem 13. Let the sums of the generalized Fibonacci numbers Sn be as in (7). Then

Sn = Fp (n + p + 1) − 1.

Proof. If we compute the det R by the Laplace expansion of determinant with respect to the first
row, then we obtain that det R = det V, where the Vandermonde matrix V is as in Theorem 3.
Therefore, we can easily find the eigenvalues of the matrix R. Since the characteristic equation
of the matrix R is

(
x p

− x p−1
− 1

)
× (x − 1) and by Lemma 2, the eigenvalues of the matrix

R are 1, λ1, . . . , λp+1 and distinct. So the matrix R is diagonalizable. We can easily prove that
T R = RD1, where the matrices T, R and D1 are as in (6), (9) and (10), respectively. Then we
have

T n R = RDn
1 . (11)

Since T n
= Cn , we write that Cn R = RDn

1 . We know that Sn = (Cn)2,1. By a matrix
multiplication,

Sn −

(
p∑

i=0

Fp (n + 1 − i)

)
= −1. (12)

By the definition of the generalized Fibonacci p-numbers, we know that
∑p

i=0 Fp(n + 1 − i) =

Fp(n + p + 1). Then we write the Eq. (12) as follows:

Sn − Fp (n + p + 1) = −1.
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Fig. 1.

Thus,

Sn =

n∑
i=1

Fp (i) = Fp (n + p + 1) − 1.

So the proof is complete. �

In [30], the author presents an enumeration problem for the paths from A to cn , and then
shows that the number of paths from A to cn are equal to the nth usual Fibonacci number. Now,
we are interested in a problem of paths. The problem is as in Fig. 1.

It is seen that the number of path from A to c1, c2, . . . cp+1 is 1. Also, we know that the initial
conditions of the generalized Fibonacci p-numbers, that is, Fp(1), Fp(2), . . . , Fp(p + 1), are
1. Now we consider the case n > p + 1. The number of the path from A to cp+2 is 2. By the
induction method, one can see that the number of the path from A to cn is the nth generalized
Fibonacci p-number.
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