
Keywords: Bioperl,
BioPython, BioJava,
bioinformatics, comparison,
open source

Software review

The Bio� toolkits – a
brief overview

Abstract
Bioinformatics research is often difficult to do with commercial software. The Open Source

BioPerl, BioPython and BioJava projects provide toolkits with multiple functionality that make

it easier to create customised pipelines or analysis. This review briefly compares the quirks of

the underlying languages and the functionality, documentation, utility and relative advantages of

the Bio counterparts, particularly from the point of view of the beginning biologist

programmer.

This article is directed to the beginning

bioinformaticist or biologist thinking of

learning a programming language to help

with their work. If you are familiar with

Perl, Python or Java, your decision is

probably already made, based on your

current preferred language. However, if

you have not already passed that

developmental checkpoint, this overview

may help you decide which one to

pursue.

Bioinformatics is a young science and

while there are a number of commercial

applications aimed at researchers in

biology, these are often not sufficient for

the level of data analysis required in

bioinformatics research. It was partly the

frustration with commercial suites that

drove the founding of the Bio� groups.

(The Bio� name uses the regular

expression � operator to denote all

characters, shorthand for BioPerl, BioJava,

BioPython, etc.)

The Bio� group (formally the Open

Bioinformatics Foundation1) was formed

by a group of self-described Perl hackers

who got together in 1995 to pool

resources for writing bioinformatics

software. The group saw that there was

much fine-grained functionality that was

extremely useful and if the program

source code could be shared, it could be

easily worked into functional programs.

The same idea gave birth to the

BioPython and BioJava groups in 1999

and the BioCORBA and BioDAS have

been added since. The BioRuby,2

BioLisp3 and Bioinformatics.org4 groups

share a similar vision and are worth

investigating for useful perspective and

resources, but are officially unaffiliated.

Before you dive into a long-term

commitment to a language, and its

Bioderivative, it is useful to see how it is

perceived by the various stakeholders.

Table 1 shows a quick and simple survey

based on scanning the Usenet

newsgroups, Google and Amazon.com as

a crude measure of languages’ popularity

and support.

Over the last 10 month period, the

membership of each group has grown by

about 50 per cent. By far the largest

number of posts is in the BioPerl group;

the BioJava group is gaining steam, and

the BioPython group tends to be quite a

bit lower, reflecting its lower membership

(see Table 2).

All the Bio� projects described here use

the eponymous base language and endow

it with ‘Bio’ features via additional

modules or libraries. A brief overview of

the base languages follows.

Perl, Python and Java are all

interpreted, which means that they are

slower than a compiled language such as

2 9 6 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



C or C++ (typically three-quarters to

one-tenth as fast, depending on the type

of logic being implemented), but they are

hardly slouches. If speed is an issue, all of

them can be made to link to compiled

libraries via the Java Native Interface,

Python’s C interface and Perl’s XS

routines. The latter two can also make use

of SWIG,5 a more portable way of

interfacing polyglot code. Two examples

of how an interpreted language can be

used in high-performance computing are

PyMol,6 a molecular visualisation and

modelling application, and the Perl Data

Language7 which uses libraries of

compiled code and an object oriented

(OO) approach to allow very fast

computation on N-dimensional arrays.

In giving up the speed of compiled

code, all these languages are considerably

easier to program with. Mercifully, none

of them requires that you manually track

and manipulate memory allocation and

none requires (or even permits) use of the

much-hated memory pointer. As well,

many programming features or niceties

that in C you have to program yourself,

are provided for you, such as associative

arrays, numeric interconversions, easy

input/output handling, string

manipulations and large numbers of oft-

used programming expressions.

All have very good support for

network functionality and all support

regular expression (regex) pattern

matching8 although regex support is

integrated throughout Perl’s structure but

must be explicitly requested in Java and

Python. All provide extensive libraries to

connect to many relational databases.

Perl’s database independent module

allows nearly identical access to most

relational database management systems

(RDBMSs). Python has a similar

approach, using database-specific drivers

that present an identical application

programming interface (API) to the

programmer, and while it is less well

developed than Perl’s, it supports most of

the popular commercial and open source

RDBMSs. The Java DataBase

Connectivity (JDBC) is now a standard

part of the language that provides nearly

identical functionality and database

Table 1: Popularity of base languages and Bioderivatives on 6.29.02 on Amazon (number of
titles found at Amazon.com based on search for ‘[Language] programming’, Usenet news (total
number of posts in all of comp.lang. and subgroups), Google (number of hits based on single
word query for [Language] or Bio derivative)

Language Amazon Usenet Google Google Bio�

Perl 292 13,279 9,440,000 406,000 BioPerl
Java 1,161 33,296 23,300,000 92,000 BioJava
Python 39 11,880 3,590,000 44,600 BioPython
Lisp 126 5,190 1,630,000 190 BioLisp
Vbasic 983 ? 2,370,000 – –
C++ 1,188 17,313 5,730,000 – –

Table 2: Traffic on Bio� lists. The two dates indicate the number of subscribers to each of
the lists on that date. ‘Total Posts’ is the aggregate total number of posts to the lists since the
‘Since’ date. Posters is a crude estimate of the number of people posting to the list

List 28th August 2001 21st June 2002 Total posts Posters Since

BioPerl-l 643 922 5,938 989 August 1996
BioJava-l 365 575 3,037 531 September 1999
BioPython 168 242 1,024 187 September 1999

& HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002 2 9 7

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



support to the ODBC drivers that

Windows uses to provide RDBMS

connectivity.

All three languages are multiplatform –

they run similarly on the most current

versions of Unix, Linux, Windows and

the Mac. In addition, Perl and Python

qualify for the open source definition –

they are freely available in source code

and while hundreds contribute to their

continued development, a single person

wrote the first few implementations and

remains the lead technical Godfather of

the project. Java, while made freely

available, is owned and defined by Sun

Microsystems, whose technical

committees decide what goes into Java

and when.

Java and Python have good support for

creating graphical user interfaces (GUIs).

Java uses its native Swing libraries; Python

uses a variety of multiplatform widgets

sets including Tk9 (bundled with Python),

wxWindows10 and Qt.11 While Perl can

be used to create GUIs (most easily with

Tk), it is a failing that is not nearly as well

supported as it is in Java or Python.

Perl does, however, have a non-trivial

advantage over Python and Java in that it

can be automatically upgraded and

enhanced using the CPAN module (for

Comprehensive Perl Archive Network),

included in the default installation. This

allows a user to request an additional

module to be retrieved, checked for

dependencies, have those dependencies

resolved automatically, and the entire tree

of dependencies automatically

downloaded, tested and installed all in a

single line of code. All this is available

without requiring the user know where

the files are archived. For example, to

install the BioPerl module and all of its

documentation (once the CPAN module

is easily configured), this is all you need to

do:

$ perl -MCPAN -e ‘install ‘‘Bio::Perl’’ ’

The BioPerl installation will prompt you

about additional Perl libraries it needs for

some methods; more detail is available.12

Python and Java use the older ‘go find it,

download it, install it’ approach of most

other software installation and since this

almost always requires dependency

tracking, the CPAN feature is a significant

time and frustration-saver.

One of the deepest divides among the

languages is that while Python and Java

were designed from the ground up as

pure OO languages, Perl has gradually

added this functionality over time. The

result is something of a dancing camel – it

can be quite remarkable when it works,

but it is difficult to describe to others.

Combined with Perl’s ‘There’s More

Than One Way To Do It’

(TMTOWTDI) philosophy and syntax, it

can be fairly challenging to deconstruct

another’s OO Perl code. Both Java and

Python have considerably more

structured syntax and are therefore more

easily understood, although both have

quirks of their own; for example, Python

uses whitespace (not braces) to segment

logic blocks.

Java, like Python, is a pure OO system

and has very wide library coverage.

Unlike Python, Java often seems to be

self-consciously OO and much more a

formal programming language than either

Perl or Python. As such, it is being used as

a teaching language at many schools,

much more so than Perl. It has also been

embraced by a variety of companies

seeking to break Microsoft’s stranglehold

on the computing public. In response,

Microsoft has recently indicated that its

forced marriage with Java will end in

2004 and has introduced the .NET and

C# projects as a way of superseding Java,

causing some consternation in the ranks

of developers. However, since the

Javaphilic companies range in size from

Sun to IBM to Borland and others, there

seems to be no immediate worry that Java

will disappear. In the midst of this

feuding, some astonishing programmer

resources have been made freely available

to tempt developers to use Java. These

include integrated development

environments, debuggers, profilers, extra

libraries and just-in-time compilers to

speed Java’s often-sluggish performance.

2 9 8 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



Java has several implementations, from

Sun, IBM, Microsoft and others. This

results in competition to make the Java

compiler and tools better, but it also has

the side effect of programs sometimes

working with only one of the several Java

implementations.

In my opinion, Python is easier than

either Perl or Java for a novice to learn,

encourages a cleaner programming style,

and certainly makes it easier to follow

others’ code. Python also has a large and

growing base of additional software

modules, including some that fall into the

‘Killer app’ category such as Zope,13 a

combination web-server, object database,

content management system and

application server with which BioPython

has started integration efforts. Python also

has the reputation that it is easier to write

more compact code, which itself leads to

fewer editing mistakes and thus more

maintainable code. An additional

advantage of Python is that it shares

considerable API similarity with C++,

allowing code to be prototyped in Python

and then easily replaced with C++ as

performance demands. This clarity of

code, the ability to use multiple cross-

platform GUI toolkits, and the availability

of several Rapid Application

Development tools for Python makes it a

compelling language to wrap command-

line tools with a GUI.

BioPerl comes as a 2.5 MB gzipped file

and inherits the chameleon-like charm of

its parent. BioPerl’s tutorial is certainly

the most complete, with different sections

illustrating almost every feature in the

toolkit. BioPerl is the oldest and most

downloaded of the Bio� distributions and

for some good reasons. It is certainly the

most mature, has the most useful features

and has the largest development

community. The documentation of

BioPerl’s structure (60 levels, �400

modules) is handled in an extremely well-

designed layout that makes it easy to

peruse the functionality of the package.

The documentation for each module is

unusually complete and contains short

descriptions of the module, its

dependencies and inheritance links,

description and code examples for each

method. It includes all the things that you

would expect in a commercial package,

and a few things that you might not – the

source code and the e-mail address of the

maintainer or author. In addition, there is

already one text that introduces Perl and

BioPerl to the novice bioinformaticist14

and a more advanced one by two of

BioPerl’s principal contributors is in

process.

The modules address a very wide array

of functionality, including pure

bioinformatics structures such handling

and indexing most popular bio-specific

database and flatfile formats (including all

the Readseq-supported15 formats, as well

as BSML16 and GAME XML17), auto-

generation of bio-related graphics for web

pages, classes and methods for describing

and manipulating biological sequences,

annotations, trees, alignments and maps. It

has an extensive collection of modules for

initiating several search methods and the

parsing and manipulating the results of

such searches. It also provides a number of

analytical primitives such as pattern

matching and related tools (motif finding,

restriction enzyme mapping), and

wrappers or handler routines for the

results of other popular tools and

techniques (BLAST, FastA, HMMR,

Sim4, GeneID, Genemark and others). It

also has the best module support for 3D

and structural information.

It is hard not to recommend BioPerl. It

certainly has the largest user base and

functionality currently; it is easily

upgraded and maintained and Perl is a

user-driven and robust language. The

documentation is exemplary and BioPerl

is in active use and development at many

of the large genome centres. Additionally,

there is an online course,18 so the

beginner can be brought up to speed on

the basics and get a quick BioPerl

overview. Perl’s greatest fault (and a great

attraction to some) seems to be its

TMTOWTDI philosophy which can lead

to inscrutable syntax and its somewhat

non-standard object system, although the

& HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002 2 9 9

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



BioPerl project and code have reined in

this style diversity.

The BioPython package (�1.7 MB

gzipped) contains about 30 classes with

approximately the same breadth as its

siblings. What it covers is easy and

straightforward to follow, and provides a

good base for further development.

Installation of the complete package along

with all the dependencies involves

separately downloading and installing

components, some of which required

manual intervention to convince them to

install correctly. The included BioPython

tutorial is an excellent overview not only

into the BioPython structure but also to

OO programming in general. I

recommend it to anyone planning to use

any of the Bio� languages or even

learning to program.

BioPython includes methods for

biological and regular expression pattern

matching, interacting with local and

remote BLAST resources and local FastA

and ClustalW, interacting with the

BioSQL database schema, searching

PubMed, parsing a large number of

database formats, and provides code

fragments and entire scripts showing how

to do this. Personally, even though I have

more experience with Perl than with

Python, these code examples are

considerably clearer than those from

BioPerl, although the Perl examples are

quite complete. For example, extracting a

FastA query sequence from a file,

preparing it and submitting it to NCBI

BLAST as well as parsing and printing the

returned results takes about 30 lines of

uncommented but easily understood

code. I heartily recommend the

BioPython online course19 prepared by

the same authors as BioPerl one

mentioned above.

One of the areas where BioPython

shines is in the area of being able to parse

the many formats in bioinformatics.

Rather than having to write a completely

new parser for each new format,

BioPython relies on the Scanner/

Consumer methods that are the core of

the Martel regular expression parsing

engine,20 which allows the user to make

use of many current formats and easily

define others using a SAX-like21

approach. In this area, BioPython seems

to outclass even the more regex-oriented

BioPerl.

BioPython also allows easier creation

and manipulation of objects than does

BioPerl, not too surprising as Python was

designed as an OO language and Perl had

Objects grafted on later in life.

However, reflecting its youth and small

subscription base, the depth of coverage

and its documentation are not as well

developed. This is unfortunate, as Python

seems the ideal language to execute a

distributed project such as this. It enforces

a readable and succinct syntax, plays well

with a number of other languages, and

comes with good support for building

GUIs. It almost seems that many

programmers refuse to use it because it

sounds too good to be true.

The BioJava code (5.6 MB gzipped

source; 1.5 MB jar) is described in detail

via the industry-standard JavaDoc API

description format (�40 packages, 720

classes, from AbstractAlignmentStyler to

ZiggyFeatureRenderer). Unlike both

BioP�s, however, while the APIs are

described reasonably well in the JavaDocs,

details and examples about how the classes

are actually used are sparse. This is made

more problematic as I was not able to find

an external online tutorial that described

it in the same detail as for BioPython and

BioPerl, although there are numerous

tutorials for the base language of course.

While the included BioJava tutorial

contains brief descriptions of the way

BioJava handles Symbols, Sequences,

Features, I/O and interprocess

coordination, it is not nearly as beginner-

friendly as the BioP�s. In addition, while

the introductory text provides some

examples to illustrate its points, some of

the sample code is based not on biological

examples, but on a roulette wheel

simulation. Until this lack of introductory

material is addressed, BioJava will

probably remain the toolkit of choice

only of well-established Java

3 0 0 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



programmers, as it is difficult to

determine what methods do what simply

from browsing the JavaDocs.

BioJava, like its parent, uses Unicode

for its basic string character. In Java, this

can be quite useful, but in the strings of

molecular biology, even one byte (which

can code 256 characters) is generally

overkill and BioJava by default extends

the 2 byte Unicode character to 4 bytes

for its object system of referring to

resides, leading to considerable bloat for

handling large sequences. In comparison,

Perl and Python use single byte

representations for residues. BioJava does

provide many more biology-specific GUI

elements than do its Biobrethren,

including methods for rendering features

and annotations onto a canvas, graphics

specifically for multiple sequence

comparisons, and pane decorations such

as length tics and crosshairs so if

designing custom graphical applications is

a consideration, BioJava is certainly

worth evaluating. BioJava also contains

methods supporting some relatively

esoteric numerical approaches such as

support vector machines22 (used in

clustering) and suffix trees23 (used in fast

pattern searching), as well as the more

common hidden Markov models19 and

direct pattern searching.

BioJava also shares its parent’s affection

for XML, including classes for handling

various XML formats such as the

aforementioned GAME XML and a large

number of methods supporting AGAVE

(now in limbo with Doubletwist’s

demise).

Summary
So the upshot is this: for small programs

(,500 lines) that will be used only by

yourself, it is hard to beat Perl and

BioPerl. These constraints probably cover

the needs of 90 per cent of personal

bioinformatics programming

requirements. For beginners, and for

writing larger programs in the Bio

domain, especially those to be shared and

supported by others, Python’s clarity and

brevity make it very attractive. For those

who might be leaning towards a career in

bioinformatics and who want to learn

only one language, Java has the widest

general programming support, very good

support in the Bio domain with BioJava,

and is now the de facto language of

business (the new COBOL, for better or

worse). Note that a well-rounded

bioinformaticist would be expected to

know all of these languages and be able to

choose the best for a particular effort.

Acknowledgments

Many thanks go to Jason Stewart for his Perl

advice, Andrew Dalke for his Python advocacy and

Don Gilbert for his comments on this manuscript.

Harry Mangalam

tacg Informatics,

1Whistler Ct,

Irvine, CA 92612,

USA

Tel: +1 949 856 2847

E-mail: hjm@tacgi.com

References

1. URL: http://open-bio.org (links to the
BioPerl, BioPython, BioJava, BioCORBA,
and BioDAS pages).

2. URL: http://www.bioruby.org

3. URL: http://www.biolisp.org

4. URL: http://www.bioinformatics.org

5. URL: http://www.swig.org

6. Delano, W. (2000), PyMol URL: http://
pymol.sourceforge.net. This open source
application uses Python to provide the GUI
and glue code with compiled C and OpenGL
libraries to provide astonishing real-time
graphics performance.

7. URL: http://pdl.perl.org

8. Friedl, J. E. F. (1997), ‘Mastering Regular
Expressions’, O’Reilly and Associates,
Sebastopol, CA. See also URL: http://
etext.lib.virginia.edu/helpsheets/regex.html

9. URL: http://www.pythonware.com/library/
an-introduction-to-tkinter.htm

10. URL: http://www.wxwindows.org

11. URL: http://www.trolltech.com

12. URL: http://bioperl.org/Core/external.shtml

13. URL: http://www.zope.org

14. Tisdall, J. D. (2001), ‘Beginning Perl for
Bioinformatics’, O’Reilly & Associates,
Sebastopol, CA.

& HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002 3 0 1

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022



15. Gilbert, D. G. (1990), ‘ReadSeq program’.
URL: http://iubio.bio.indiana.edu/soft/
molbio/readseq/

16. Bioinformatic Sequence Markup Language,
Labbook, Inc., URL: http://
www.labbook.com/products/xmlbsml.asp

17. Genome Annotation Markup Elements, URL:
http://www.bioxml.org/Projects/game/
game0.1.html4

18. Letondal, C. and Schuerer, K. (2002), ‘BioPerl
Course’, Pasteur Institute, Paris. URL: http://
www.pasteur.fr/recherche/unites/sis/
formation/bioperl/

19. Schuerer, K. and Letondal, C. (2002), ‘Python
Course in Bioinformatics’, Pasteur Institute,
Paris. URL: http://www.pasteur.fr/
recherche/unites/sis/formation/python/

20. Dalke, A. P. (2001), Dalke Scientific. URL:
http://www.dalkescientific.com/Martel/

21. SAX stands for Simple API for XML and
follows the event-based model for parsing
XML (as opposed to the tree-based model,
which creates an in-memory hierarchy of
XML objects). Like SAX, Martel follows an
event-based approach to allow completed
stanzas to be ‘consumed’ immediately. SAX is
described at the URL: http://
www.saxproject.org

22. Sturn, A., Quackenbush, J. and Trajanoski, Z.
(2002), ‘Genesis: cluster analysis of microarray
data’, Bioinformatics, Vol. 18(1), pp. 207–208.
See also URL: http://www.support-
vector.net

23. Gusfield, D. (1997), ‘Algorithms on Strings,
Trees, and Sequences’, Cambridge University
Press, Cambridge.

3 0 2 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 3. NO 3. 296–302. SEPTEMBER 2002

Software review

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/3/3/296/239771 by guest on 21 August 2022


