

This is a repository copy of *The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches*.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/185071/

Version: Accepted Version

Article:

Hua, F., Bruijnzeel, L.A., Meli, P. et al. (11 more authors) (2022) The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science, 376 (6595). eabl4649. pp. 839-844. ISSN 0036-8075

https://doi.org/10.1126/science.abl4649

This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 17th March 2022, https://doi.org/10.1126/science.abl4649

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

The ecosystem service and biodiversity contributions and trade-offs of contrasting forest restoration approaches

Authors: Fangyuan Hua^{1,2}*, L. Adrian Bruijnzeel^{3,4}*, Paula Meli^{5,6}, Phillip A. Martin², Jun Zhang^{4,7}, Shinichi Nakagawa⁸, Xinran Miao¹, Weiyi Wang¹, Christopher McEvoy², Jorge Luis Peña-Arancibia⁹, Pedro H. S. Brancalion⁵, Pete Smith¹⁰, David P. Edwards¹¹, Andrew Balmford²

Affiliations:

5

10

15

20

25

30

35

¹Institute of Ecology, Peking University; Beijing, 100871, P. R. China.

²Conservation Science Group, Department of Zoology, University of Cambridge; Cambridge, CB2 3EJ, United Kingdom.

³Department of Geography, King's College London; Bush House, London WC2B 4B9, United Kingdom.

⁴Institute of International Rivers and Eco-Security, Yunnan University; Kunming, 650091, Yunnan, P. R. China.

⁵Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo; Piracicaba, SP, 13.418-900, Brazil.

⁶Departmento de Ciencias Forestales, Universidad de La Frontera; Av. Francisco Salazar 01145, Temuco, Chile.

⁷Environmental Modelling, Sensing & Analysis, TNO; 1755 LE Petten, The Netherlands.

⁸Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

⁹CSIRO Land and Water; Canberra ACT 2601, Australia.

¹⁰Institute of Biological & Environmental Sciences, University of Aberdeen; Aberdeen, AB24 3UU, United Kingdom.

¹¹Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield; Sheffield, S10 2TN, United Kingdom.

*Corresponding authors. Email: fhua@pku.edu.cn; sampurno.bruijnzeel@kcl.ac.uk

Abstract: Forest restoration is being scaled-up globally to deliver critical ecosystem services and biodiversity benefits, yet we lack rigorous comparison of co-benefit delivery across different restoration approaches. In a global synthesis, we use 25,950 matched data pairs from 264 studies in 53 countries to assess how delivery of climate, soil, water, and wood production services as well as biodiversity compares across a range of tree plantations and native forests. Carbon storage, water provisioning, and especially soil erosion control and biodiversity benefits are all delivered better by native forests, with compositionally simpler, younger plantations in drier regions performing particularly poorly. However, plantations exhibit an advantage in wood production. These results underscore important trade-offs among environmental and production goals that policymakers must navigate in meeting forest restoration commitments.

Submitted Manuscript: Confidential Template revised February 2021

One-Sentence Summary: Critical ecosystem services and biodiversity are typically delivered more effectively by native forests than by plantations.

Main Text: As the UN Decade on Ecosystem Restoration gets underway (I), forest restoration on degraded and deforested land is being scaled-up globally, with far-reaching environmental and social implications (2-4). The Bonn Challenge alone pledges to restore 350 million hectares of land by 2030 (5), and many other initiatives are similarly ambitious (6, 7). Large-scale programs to restore forests are frequently motivated by a desire to recover ecosystem services such as carbon storage (8), soil erosion control (9), water provisioning (10), and wood production (11). Based on an implicit assumption that these services can be effectively delivered by forests regardless of their composition, these programs frequently gravitate toward reforesting with compositionally simple tree plantations rather than restoring native forests (7, 10, 12). However, this premise has yet to be tested rigorously using paired data that limit potential confounding factors (13) (Supplementary Text). This is a critically important omission for reasons beyond the target ecosystem services *per se*, because by having limited (14) and at times negative (9) effects on native biodiversity, a focus on tree plantations risks severely limiting the conservation potential of large-scale forest restoration, in turn hampering progress toward global commitments to halt and reverse biodiversity loss (15-17) and ecosystem degradation (1).

5

10

15

20

25

30

35

40

45

We present a global synthesis of paired data from the world's main forest biomes to assess the merits of forest restoration approaches, in particular reforesting with tree plantations *versus* restoring native forests, on deforested land that would have been naturally forested in recent history (Materials and Methods (18)). We compare the performance of a range of compositionally simple tree plantations spanning a wide spectrum of management regimes ('tree plantations' hereafter (18)) *versus* native forests (including restored and pre-existing native forests) in delivering the key ecosystem services of carbon storage, soil erosion control, water provisioning, and wood production, as well as in supporting biodiversity. We further assess how variation in the relative performance of tree plantations *versus* native forests may be explained by plantation features and biophysical conditions. Our study aims to enable forest restoration to achieve co-benefits in addressing today's multiple environmental challenges (4), including the dual climate and biodiversity crises (8, 17). By simultaneously considering forests' performance in carbon, soil, water, and biodiversity (*i.e.* environmental outcomes), plus in wood production, our study also provides a critical assessment of the trade-offs likely to confront forest restoration decision-makers.

For each environmental outcome, we identified the most informative metric with a reasonable amount of empirical data: aboveground biomass (Mg ha⁻¹), amount of eroded soil (kg m⁻² y⁻¹), catchment- or plot-scale water yield (% of rainfall), and species-specific abundance (individuals ha⁻¹, compiled for each species in a given ecological community; see (*18*) for rationale of metric choices). Searching the peer-reviewed and grey literature and corresponding with authors, we compiled pairs of data that involved a tree plantation (classified into three types) and a matching native forest (classified into four types; Fig. 1A) from the same study system (*18*). For wood production, we compiled pairs of empirical data on wood yield (m³ ha⁻¹) or profit (USD ha⁻¹) that involved a tree plantation and a matching restored native forest (Fig. 1A) over equal time horizons (*18*); we excluded native forests not resulting from restoration because the sustainability of their wood harvest could rarely be confirmed. Given the paucity of paired wood production data, we relaxed the matching requirement to also compile annualized yield data just from restored native forests (m³ ha⁻¹ y⁻¹; (*18*)), which we compared with known annualized yields of some of the world's main monoculture plantations (*19*).

We assessed the rigor of matching for each data pair and weighed it accordingly in subsequent analyses (18). We calculated a log response ratio (RR; ln(tree plantation over native forest)) from each data pair to represent the relative performance of tree plantations *versus* native forests; we reversed the RR signs for eroded soil to represent soil erosion control. In total, our

searches ((18); Fig. S1; Tables S1–S3) yielded 25,535 RRs for species-specific abundance on 13 species groups from 405 plantation-native forest pairs, 146 RRs for aboveground biomass, 82 RRs for eroded soil, 167 RRs for water yield, and 20 RRs for wood production, from 264 studies in 53 countries (Fig. 1; Table S4). In addition, we collated 223 records on the standing wood volume of restored native forests with known age from 10 studies in six countries (Fig. S2; Table S4).

5

10

15

20

25

30

35

40

45

We first asked how well tree plantations performed in environmental outcomes relative to reference native forests not resulting from restoration, namely old-growth forests and 'generic' native forests (i.e. other non-restored native forests not reported as old-growth). Not having undergone deforestation, these native forests represent reference environmental conditions (20) toward which forest restoration can aspire (Fig. 2A; (18)). Consistent with prevailing understanding (14, 21), tree plantations supported on average 30.4% lower species-specific abundance than did reference native forests (95% confidence interval ('CI' hereafter): 17.4-41.4%; Fig. 2B, upper panel; Table S5; for differences among species groups, see Fig. S3). This biodiversity contrast was echoed across the other three environmental metrics, with tree plantations delivering 32.8% lower aboveground biomass (95% CI: 16.5-45.9%), 60.9% lower soil erosion control (17.5–81.5%), and 13.4% lower water yield (4.3–21.7%; Fig. 2B, upper panel; Table S5). These patterns were mainly driven by the poor performance of monoculture plantations, which exhibited the greatest contrasts with reference native forests (Fig. 2B, upper panel; Table S5). Prolonged age (\geq 40 years) or abandonment appeared to somewhat improve the environmental performance of plantations (18), with water yield shortfall no longer significant (mean: 6.3%; 95% CI: -28.9-31.9%; Fig. 2B, lower panel; Table S5). However, differences for the other metrics persisted, albeit less marked: 15.4% (3.6–25.8%) for species-specific abundance, and 24.0% (6.2–38.5%) for aboveground biomass; there were too few data to assess soil erosion control (Fig. 2B, lower panel; Fig. S3; Table S5).

We next asked how well tree plantations performed relative to restored native forests of similar age (*i.e.* with ≤10 years of age difference), represented by secondary forests resulting from natural regeneration, as well as actively restored native forests resulting from the planting of a diverse native tree mix (typically ≥50 species; Figs. 1A and S4, and 2A lower panel; (*18*)). On environmental performance, tree plantations performed significantly more poorly than restored native forests of similar age in species-specific abundance (32.6% poorer; 95% CI: 15.8–46.0%; there were insufficient data to contrast between species groups; Fig. S3) and marginally so for soil erosion control (80.2% poorer; -57.9–97.5%), but not aboveground biomass (4.1% greater; -23.1–40.9% and spanning zero; Fig. 2C, upper panel; Table S5; data paucity precluded analysis for water yield). The similarity in aboveground biomass appeared to be due to the strong performance of abandoned plantations that seemed to outperform both monocultures and mixed plantations (Fig. 2C, upper panel; although data paucity precluded formal analysis on this).

For wood production, the limited paired data showed that tree plantations had a clear advantage over restored native forests, with 222.7% (105.8%–406.0%) higher wood volumes at comparable age (Fig. 2C, lower panel; Table S5; data paucity precluded analysis of profits from wood production). This advantage was apparent for both intensively managed and abandoned plantations, and regardless of whether wood volumes included all woody species or only merchantable species (Fig. S5). The same conclusion was reached using supplementary non-paired data on annualized wood yields of restored native forests and various prominent monocultures: average annual volume increments for restored native forests were 61.3% (Welch two-sample t-test: $t_{28.8} = -6.40$, P < 0.0001) and 86.9% ($t_{26.4} = -9.76$, P < 0.0001) lower than the lower and upper bounds of the monocultures, respectively (Fig. 2D).

For all the above meta-analyses, we found high levels of heterogeneity (18), with I^2 – the metric for heterogeneity – generally ≥80% (Table S5). Findings were robust to publication bias (Supplementary Text; Fig. S6) and various sensitivity analyses related to weighting schemes and model structure ((18); Table S5). They also showed that across the environmental metrics examined, tree plantations performed particularly poorly for soil erosion control (Fig. 2, righthand panels). Because data for different metrics were obtained for different regions (Fig. 2, lefthand panels), the difference among environmental outcomes might reflect inherent biophysical differences among ecosystems. To address this potential geographical confounding effect, we next focused on a subset of our database in which data for different metrics could be geographically matched to a given ecosystem type whose biophysical conditions were largely coherent. Overlaying our data onto the Holdridge Life Zones map (22, 23), we identified 'data bundles' for each forest biome where RRs were available for ≥2 metrics. In total, we identified 11 such data bundles for the comparison between tree plantations and reference native forests (Fig. 3A), and seven for the comparison between tree plantations and restored native forests of similar age (Fig. 3B). The patterns of how RRs for soil erosion control compared with other environmental metrics within each data bundle corroborated our earlier findings: relative to reference native forests, plantation shortfalls were almost always greatest for soil erosion control and the least for water yield (Fig. 3).

5

10

15

20

25

30

35

40

45

We also asked what factors might underlie the variation in environmental performance of tree plantations relative to native forests. For the comparisons of plantations *versus* reference native forests and plantations *versus* restored native forests of similar age, respectively, we assessed the relationship between RRs and a set of variables representing plantation features and site biophysical conditions ((18); analyses of wood production were dropped because of data paucity). We considered plantation type, plantation age (except for the comparison involving restored native forests of similar age), and mean annual temperature (in °C; 'MAT' hereafter; (18)). The rationale for considering MAT was that by supporting higher plant diversity (24), warmer climates may show greater contrasts between plantations *versus* native forests in vegetation complexity, and in turn, in delivery of carbon, soil, and water ecosystem services (25). We also considered mean annual precipitation (in mm y-1; 'MAP' hereafter) for soil erosion due to its likely influence on protective ground cover, as well as MAP and the seasonality of native forests (evergreen or deciduous) for water yield due to their likely influence on the hydrological behaviors of forest ecosystems (18, 26, 27).

The most parsimonious models selected via small-sample corrected Akaike Information Criterion (AICc) scores ((18); Table S6) showed that increasing plantation age improved plantations' performance relative to that of reference native forests in species-specific abundance and aboveground biomass (Table S7), although such improvement was limited (Figs. 4A): particularly for aboveground biomass, even old (\geq 40 years) plantations performed less well than reference native forests. Combined with the environmental shortfalls of old or abandoned plantations (Fig. 2B, lower panel), this finding suggests that old plantations no longer intended for productive use (e.g. (28)) would deliver environmental benefits more effectively if they were restored to native forests or native forest-like conditions. That such areas are common in our database (Figs. 1A and 2A) indicates the sizeable environmental gains that such 'forgotten lands' offer, underscoring the need to assess their global distribution and restoration potential (29).

We also found that increasing MAP (range covered by our data: 490–4210 mm y⁻¹) predicted more positive RRs for water yield when comparing tree plantations against reference native forests (Fig. 4B; Table S7), indicating greater plantation shortfalls in water provisioning in drier climates. Clearly, water-oriented forest restoration initiatives should re-examine the practise of establishing large areas of tree plantations in the world's drier regions (30). We did not find

evidence of other variables explaining variation in RR values, or for any variable explaining plantation performance relative to restored native forests of similar age (Fig. S7; Table S6). These findings were again robust to various sensitivity analyses related to weighting schemes and model structure ((18); Table S7).

5

10

15

20

25

30

35

40

45

Our findings have important implications for forest restoration as it is scaled-up globally (7), providing a knowledge base for exploring how outcomes can be best delivered by alternative restoration approaches. We found that restoring native forests typically delivers greater – and certainly no less – environmental benefits than establishing tree plantations, in terms of biodiversity conservation and the key ecosystem services of aboveground carbon storage, soil erosion control, and water provisioning. However, delivering these outcomes will typically result in a trade-off with wood production because of the yield advantage of plantations over restored native forests (31–33), as measured in wood volumes (distinct from aboveground carbon storage, which in addition to wood volumes also factors in wood densities).

These findings provide evidence that if the goal of forest restoration is to recover environmental services on the land being restored, and if wood production is not a primary concern, native forest restoration should be prioritized, using site-appropriate measures including unassisted and assisted natural regeneration and active planting of diverse native species (34–36). Beyond biodiversity, the stakes are especially high for soil erosion control – given its far poorer delivery by tree plantations relative to native forests. Our synthesis refutes the implicit assumptions of ecosystem service-oriented forest restoration initiatives such as China's Grainfor-Green Program covering >34 million hectares (37, 38), and a large collection of projects targeting carbon storage (39), soil conservation (40), and water provisioning (41) that have focused mostly on establishing (monoculture) tree plantations.

However, where the goals of forest restoration include wood production, decision-making must navigate the trade-off between environmental and production outcomes (42). Beyond weighing competing goals and adopting restoration approaches accordingly (43), larger-scale land-use planning must be invoked to also consider the 'leakage' of forgone production to land parcels elsewhere: such leakage could alter – and even reverse – the overall environmental gains of forest restoration (44). Ensuring environmental gains while meeting production goals under forest restoration hinges on understanding their trade-offs for a range of restored forest covers, making the acquisition of such information an urgent research priority.

Interpretation of our results and associated policy recommendations raises three additional issues. First, while the environmental metrics assessed were our best choices given data availability (18), they each characterize one aspect of a focal outcome. For example, beyond aboveground biomass, an assessment of forest carbon storage must also consider carbon stored belowground (45) as well as in long-lived wood products. Second, because our data came from established tree covers, they represent achievable outcomes of successful forest restoration (13). In reality, restoration approaches and outcomes are often constrained by factors including funding limitations, recurrent disturbances, livelihood needs, and regeneration stochasticity, etc (46, 47). Third, while we used paired data and accounted for the rigor of site matching in our analyses (18), we cannot rule out the potential influence of pre-existing site differences incurred by land-use history (13) and species turnover across space (beta-diversity; (48)), both of which are often difficult to ascertain.

By presenting a global comparison between tree plantations and native forests that simultaneously assesses their impacts on biodiversity, climate, soil, water, and wood production based on rigorously paired data, our study provides insights into the alignment among these environmental goals and the trade-offs between environmental and production goals under forest restoration. Previous research on the co-benefits of forest restoration has focused on 'where to

restore' (29, 49). By addressing 'how to restore', our study will help to improve the realism of future spatial prioritization efforts. Finally, other forest restoration outcomes, such as food and nutrition security, will be important in some contexts (50). Future research should address how these outcomes fare under different restoration approaches, and their co-benefit opportunities and unavoidable trade-offs with other environmental and production goals.

References and Notes

5

10

15

25

30

- 1. UN Decade on Ecosystem Restoration, p. https://www.decadeonrestoration.org.
- 2. R. Chazdon, P. Brancalion, Restoring forests as a means to many ends. *Science*. **364**, 24–25 (2019).
- 3. COP26, Glasgow Leaders' Declaration on Forests and Land Use. https://ukcop26.org/glasgow-leaders-declaration-on (2021).
- 4. D. P. Edwards, et al., Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. *Curr. Biol.* **31**, R1326–R1341 (2021).
- 5. R. Dave, et al., "Second Bonn Challenge progress report. Application of the Barometer in 2018. Gland, Switzerland: IUCN." (2019).
 - 6. 1 Trillion Trees campaign. https://www.1t.org.
 - 7. S. Lewis, C. E. Wheeler, E. T. A. Mitchard, A. Koch, Regenerate natural forests to store carbon. *Nature*. **568**, 25–28 (2019).
- 8. B. W. Griscom, et al., Natural climate solutions. *Proc. Natl. Acad. Sci. U. S. A.* **114**, 11645–11650 (2017).
 - 9. F. Hua, et al., Opportunities for biodiversity gains under the world's largest reforestation programme. *Nat. Commun.* **7**, 12717 (2016).
 - 10. E. Romijn, R. Coppus, V. De Sy, M. Herold, R. M. Roman-Cuesta, L. Verchot, Land restoration in Latin America and the Caribbean: an overview of recent, ongoing and planned restoration initiatives and their potential for climate change mitigation. *Forests*. **10**, 1–17 (2019).
 - 11. Forest and Landscape Restoration. http://www.forestlandscaperestoration.org.
 - 12. G. Wang, J. L. Innes, J. Lei, S. Dai, S. W. Wu, China's forestry reforms. *Science*. **318**, 1556–1557 (2007).
 - 13. J. L. Reid, M. E. Fagan, R. A. Zahawi, Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. *Sci. Adv.* 4, eaas9143 (2018).
 - 14. E. G. Brockerhoff, H. Jactel, J. A. Parrotta, C. P. Quine, J. Sayer, Plantation forests and biodiversity: oxymoron or opportunity? *Biodivers. Conserv.* **17**, 925–951 (2008).
 - 15. IPBES, Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2019).
 - 16. D. Leclère, et al., Bending the curve of terrestrial biodiversity needs an integrated strategy. *Nature*. **585**, 551–556 (2020).
- 40 E. Dinerstein, et al., A Global Deal for Nature: guiding principles, milestones, and targets. *Sci. Adv.* **5**, eaaw2869 (2019).
 - 18. Materials and Methods.
 - 19. FAO, Mean annual volume increment of selected industrial forest plantation species. Forest Plantation Thematic Papers, Working Paper 1. FAO, Rome (2001).
- 45 20. G. D. Gann, et al., International principles and standards for the practice of ecological restoration. Second edition. *Restor. Ecol.* **27**, S1–S46 (2019).
 - 21. L. Gibson, et al., Primary forests are irreplaceable for sustaining tropical biodiversity.

Nature. 478, 378–381 (2011).

5

10

15

20

25

30

- 22. R. Leemans, Global Holdridge Life Zone Classifications. Digital Raster Data on a 0.5-degree Geographic (lat/long) 360x720 Grid (1989).
- 23. L. R. Holdridge, *Life Zone Ecology* (1967).
- 24. J. G. Pausas, M. P. Austin, Patterns of plant species richness in relation to different environments: an appraisal. *J. Veg. Sci.* **12**, 153–166 (2001).
- 25. J. S. Lefcheck, et al., Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. *Nat. Commun.* **6**, 6936 (2015).
- 26. J. M. Bosch, J. D. Hewlett, A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. *J. Hydrol.* **55**, 3–23 (1982).
- 27. J. M. Roberts, "Plants and water in forests and woodlands" in *Eco-Hydrology: Plants and Water in Terrestrial and Aquatic Environments*, A. J. Baird, R. L. Wilby, Eds. (Routledge, London, 1999), pp. 181–236.
- 28. H. C. A. Brown, F. A. Berninger, M. Larjavaara, M. Appiah, Above-ground carbon stocks and timber value of old timber plantations, secondary and primary forests in southern Ghana. *For. Ecol. Manage.* **472**, 118236 (2020).
- 29. P. H. S. Brancalion, et al., Global restoration opportunities in tropical rainforest landscapes. *Sci. Adv.* **5**, eaav3223 (2019).
- 30. X. Feng, et al., Revegetation in China's Loess Plateau is approaching sustainable water resource limits. *Nat. Clim. Chang.* **6**, 1019–1022 (2016).
- 31. A. Paquette, C. Messier, The role of plantations in managing the world's forests in the Anthropocene. *Front. Ecol. Environ.* **8**, 27–34 (2010).
- 32. F. Cubbage, et al., Timber investment returns for selected plantations and native forests in South America and the southern United States. *New For.* **33**, 237–255 (2007).
- 33. A. E. Lugo, Comparison of tropical tree plantations with secondary forests of similar age. *Ecol. Monogr.* **62**, 1–41 (1992).
 - 34. R. L. Chazdon, M. Uriarte, Natural regeneration in the context of large-scale forest and landscape restoration in the tropics. *Biotropica*. **48**, 709–715 (2016).
 - 35. J. Kanowski, C. P. Catterall, Carbon stocks in above-ground biomass of monoculture plantations, mixed species plantations and environmental restoration plantings in northeast Australia. *Ecol. Manag. Restor.* **11**, 119–126 (2010).
 - 36. R. L. Chazdon, et al., The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. *Restor. Ecol.*, 1–13 (2021).
 - 37. C. O. Delang, Z. Yuan, *China's Grain for Green Program* (Springer International Publishing, 2015).
 - 38. NFGA (National Forestry and Grassland Administration), "Twenty years of China's Grain-for-Green Program (1999–2019)" (2020).
 - 39. S. A. Bekessy, B. A. Wintle, Using carbon investment to grow the biodiversity bank. *Conserv. Biol.* **22**, 510–513 (2008).
- 40. C. E. Oyarzun, Land use, hydrological properties, and soil erodibilities in the Bio-Bio river basin, central Chile. *Mt. Res. Dev.* **15**, 331–338 (1995).
 - 41. E. Vadell, S. De-Miguel, J. Pemán, Large-scale reforestation and afforestation policy in Spain: a historical review of its underlying ecological, socioeconomic and political dynamics. *Land Use Policy*. **55**, 37–48 (2016).
- 42. J. Naime, F. Mora, M. Sánchez-Martínez, F. Arreola, P. Balvanera, Economic valuation of ecosystem services from secondary tropical forests: trade-offs and implications for policy making. *For. Ecol. Manage.* **473**, 118294 (2020).
 - 43. P. H. S. Brancalion, et al., Exotic eucalypts: from demonized trees to allies of tropical

- forest restoration? J. Appl. Ecol. 57, 55–66 (2020).
- 44. M. G. Betts, et al., Producing wood at least cost to biodiversity: integrating Triad and sharing–sparing approaches to inform forest landscape management. *Biol. Rev.* **96**, 1301–1317 (2021).
- 45. C. Liao, Y. Luo, C. Fang, B. Li, Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation. *PLoS One.* **5**, e10867 (2010).
 - 46. R. A. Zahawi, J. L. Reid, K. D. Holl, Hidden costs of passive restoration. *Restor. Ecol.* **22**, 284–287 (2014).
- E. A. Coleman, et al., Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. *Nat. Sustain.* **4**, 997–1004 (2021).
 - 48. J. B. Socolar, J. J. Gilroy, W. E. Kunin, D. P. Edwards, How should beta-diversity inform biodiversity conservation? *Trends Ecol. Evol.* **31**, 67–80 (2016).
 - 49. B. B. N. Strassburg, et al., Global priority areas for ecosystem restoration. *Nature*. **586**, 724–729 (2020).
 - 50. F. P. L. Melo, et al., Adding forests to the water–energy–food nexus. *Nat. Sustain.* **4**, 85–92 (2021).
 - 51. FAO, "Global Forest Resources Assessment" (2020), (available at http://www.fao.org/forestry/58864/en/).
- 52. The Bonn Challenge. https://www.bonnchallenge.org.

15

30

- 53. Z. H. Tan, et al., Rubber plantations act as water pumps in tropical China. *Geophys. Res. Lett.* **38** (2011).
- 54. A. Röll, et al., Transpiration on the rebound in lowland Sumatra. *Agric. For. Meteorol.* **274**, 160–171 (2019).
- 55. D. Piotto, D. Craven, F. Montagnini, F. Alice, Silvicultural and economic aspects of pure and mixed native tree species plantations on degraded pasturelands in humid Costa Rica. *New For.* **39**, 369–385 (2010).
 - 56. J. S. Powers, J. P. Haggar, R. F. Fisher, The effect of overstory composition on understory woody regeneration and species richness in 7-year-old plantations in Costa Rica. *For. Ecol. Manage.* **99**, 43–54 (1997).
 - 57. R. Crouzeilles, et al., Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. *Sci. Adv.* **3**, e1701345 (2017).
 - 58. S. T. Buckland, A. C. Studeny, A. E. Magurran, J. B. Illian, S. E. Newson, The geometric mean of relative abundance indices: a biodiversity measure with a difference. *Ecosphere*. **2**, art100 (2011).
 - 59. J. Loh, et al., The Living Planet Index: using species population time series to track trends in biodiversity. *Philos. Trans. R. Soc. B Biol. Sci.* **360**, 289–295 (2005).
 - 60. L. Santini, et al., Assessing the suitability of diversity metrics to detect biodiversity change. *Biol. Conserv.* **213**, 341–350 (2017).
- 40 61. K. J. Anderson-Teixeira, M. M. H. Wang, J. C. Mcgarvey, D. S. Lebauer, Carbon dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-db). *Glob. Chang. Biol.* 22, 1690–1709 (2016).
 - 62. P. Castro-Díez, et al., Global effects of non-native tree species on multiple ecosystem services. *Biol. Rev.* **94**, 1477–1501 (2019).
- 63. C. B. Pandey, S. K. Chaudhari, Soil and nutrient losses from different land uses and vegetative methods for their control on hilly terrain of South Andaman. *Indian J. Agric. Sci.* **80**, 399–404 (2010).

- 64. R. C. Ward, On the response to precipitation of headwater streams in humid areas. *J. Hydrol.* **74**, 171–189 (1984).
- 65. J. D. Hewlett, A. R. Hibbert, "Factors affecting the response of small watersheds to precipitation in humid areas" in *International Symposium on Forest Hydrology*, W. E. Sopper, H. W. Lull, Eds. (Pergamon Press, Oxford, 1967), pp. 275–290.
- 66. D. B. Lindenmayer, et al., Novel bird responses to successive, large-scale, landscape transformations. *Ecol. Monogr.* **89**, e01362 (2019).

10

15

25

30

35

40

- 67. J. Fernández-Moya, A. Alvarado, W. Forsythe, L. Ramírez, N. Algeet-Abarquero, M. Marchamalo-Sacristán, Soil erosion under teak (*Tectona grandis* L.f.) plantations: general patterns, assumptions and controversies. *Catena*. **123**, 236–242 (2014).
- 68. Y. Wakiyama, Y. Onda, S. Mizugaki, H. Asai, S. Hiramatsu, Soil erosion rates on forested mountain hillslopes estimated using ¹³⁷Cs and ²¹⁰Pb_{ex}. *Geoderma*. **159**, 39–52 (2010).
- 69. J. M. Fritsch, "The hydrological effects of clearing tropical rainforest and of the implementation of alternative land uses" in *Hydrology of Warm Humid Regions*, J. S. Gladwell, Ed. (International Association of Hydrological Sciences Publication 216, 1993), pp. 53–66.
- 70. E. Nadal-Romero, E. Cammeraat, M. P. Serrano-Muela, N. Lana-Renault, D. Regüés, Hydrological response of an afforested catchment in a Mediterranean humid mountain area: a comparative study with a natural forest. *Hydrol. Process.* **30**, 2717–2733 (2016).
- 71. A. De Schrijver, L. Nachtergale, J. Staelens, S. Luyssaert, L. De Keersmaeker, Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. *Environ. Pollut.* **131**, 93–105 (2004).
 - 72. A. De Schrijver, et al., Effect of vegetation type on throughfall deposition and seepage flux. *Environ. Pollut.* **153**, 295–303 (2008).
 - 73. A. E. Brown, L. Zhang, T. A. McMahon, A. W. Western, R. A. Vertessy, A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. *J. Hydrol.* **310**, 28–61 (2005).
 - 74. L. E. Muñoz-Villers, et al., Hydrological effects of cloud forest conversion in central Veracruz, Mexico. *Bosque*. **36**, 395–407 (2015).
 - 75. A. C. Oishi, R. Oren, K. A. Novick, S. Palmroth, G. G. Katul, Interannual invariability of forest evapotranspiration and its consequence to water flow downstream. *Ecosystems*. **13**, 421–436 (2010).
 - 76. R. Soubie, B. Heinesch, A. Granier, M. Aubinet, C. Vincke, Evapotranspiration assessment of a mixed temperate forest by four methods: eddy covariance, soil water budget, analytical and model. *Agric. For. Meteorol.* **228**, 191–204 (2016).
 - 77. P. R. Furey, V. K. Gupta, A physically based filter for spearating base flow from streamflow time series. *Water Resour. Res.* **37**, 2709–2722 (2001).
 - 78. B. Bergkvist, L. Folkeson, The influence of tree species on acid deposition, proton budgets and element fluxes in south Swedish forest ecosystems. *Ecol. Bull.* **44**, 90–99 (1995).
 - 79. A. Tiktak, W. Bouten, Soil water dynamics and long-term water balances of a Douglas fir stand in the Netherlands. *J. Hydrol.* **156**, 265–283 (1994).
 - 80. L. Rosenqvist, K. Hansen, L. Vesterdal, C. van der Salm, Water balance in afforestation chronosequences of common oak and Norway spruce on former arable land in Denmark and southern Sweden. *Agric. For. Meteorol.* **150**, 196–207 (2010).
 - 81. G. W. Heil, B. Muys, K. Hansen, *Environmental Effects of Afforestation in Northwestern Europe from Field Observation to Decision Support* (Springer 5 Verlag, Berlin, 2007).

- 82. M. Aguilos, et al., Effects of land-use change and drought on decadal evapotranspiration and water balance of natural and managed forested wetlands along the southeastern US lower coastal plain. *Agric. For. Meteorol.* **303**, 108381 (2021).
- 83. A. Granier, P. Biron, D. Lemoine, Water balance, transpiration and canopy conductance in two beech stands. *Agric. For. Meteorol.* **100**, 291–308 (2000).
- 84. J. A. Jones, D. A. Post, Seasonal and successional streamflow response to forest cutting and regrowth in the northwest and eastern United States. *Water Resour. Res.* **40**, 1–19 (2004).
- 85. I. F. Creed, et al., Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America. *Glob. Chang. Biol.* **20**, 3191–3208 (2014).
- 86. X. Niu, B. Wang, W. J. Wei, Chinese forest ecosystem research network: a platform for observing and studying sustainable forestry. *J. Food, Agric. Environ.* **11**, 1008–1016 (2013).
- 87. H. A. J. Van Lanen, H. F. Gertsen, "Inventory of FRIEND Research Basins" (The Netherlands Committee for UNESCO IHP-OHP, Report 97-1, 1997).
 - 88. A. Herrmann, S. A. Schumann, L. Holko, Eds., *Status and Perspectives of Hydrology in Small Basins* (International Association of Hydrological Science Publication 336, 2010).
 - 89. R. Marques, J. Ranger, S. Villette, A. Granier, Nutrient dynamics in a chronosequence of Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco) stands on the Beaujolais Mounts (France). 2. Qualitative approach. *For. Ecol. Manage.* **92**, 167–197 (1997).
 - 90. A. Legout, G. van der Heijden, J. Jaffrain, J. P. Boudot, J. Ranger, Tree species effects on solution chemistry and major element fluxes: a case study in the Morvan (Breuil, France). *For. Ecol. Manage.* **378**, 244–258 (2016).
- 91. S. E. Lozano-Baez, M. Cooper, S. F. B. Ferraz, R. R. Rodrigues, M. Pirastru, S. di Prima, Previous land use affects the recovery of soil hydraulic properties after forest restoration. *Water.* **10**, 453 (2018).
 - 92. S. E. Fick, R. J. Hijmans, WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. *Int. J. Climatol.* **37**, 4302–4315 (2017).
- 30 93. B. Tummers, Data Thief III (2006), p. https://datathief.org/.

10

15

20

35

40

- 94. S. Nakagawa, E. S. A. Santos, Methodological issues and advances in biological metaanalysis. *Evol. Ecol.* **26**, 1253–1274 (2012).
- 95. J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, nlme: linear and nonlinear mixed effects models. R package version 3.1-152 (2021). pp. 1–338.
- 96. R Core Team, R: A language and environment for statistical computing (2021), R Statistical Computing, Vienna, Austria. https://www.r-project.org
- 97. M. Borenstein, L. V Hedges, J. P. T. Higgins, H. R. Rothstein, "Chapter 30, Publication Bias" in *Introduction to Meta-analysis* (John Wiley & Sons, 2021), pp. 277–292.
- 98. A. M. Senior, et al., Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. *Ecology*. **97**, 3293–3299 (2016).
- 99. L. Bentley, D. A. Coomes, Partial river flow recovery with forest age is rare in the decades following establishment. *Glob. Chang. Biol.* **26**, 1458–1473 (2020).
- 100. B. Martens, et al., GLEAM v3: satellite-based land evaporation and root-zone soil moisture. *Geosci. Model Dev.* **10**, 1903–1925 (2017).
- 101. K. Bartoń, MuMIn: multi-model inference. R package version 1.43.17 (2020), pp. 1–75.
- 102. S. Nakagawa, H. Schielzeth, A general and simple method for obtaining R² from generalized linear mixed-effects models. *Methods Ecol. Evol.* **4**, 133–142 (2013).
- 103. A. M. Aloe, B. J. Becker, T. D. Pigott, An alternative to R² for assessing linear models of

effect size. Res. Synth. Methods. 1, 272–283 (2010).

5

10

15

20

25

30

35

40

- 104. H. Schielzeth, et al., Robustness of linear mixed-effects models to violations of distributional assumptions. *Methods Ecol. Evol.* **11**, 1141–1152 (2020).
- 105. R. Bivand, et al., rgdal: bindings for the 'Geospatial'data abstractiono library. R package version 1.5-12 (2020), pp. 1–64.
- 106. J. S. Evans, M. A. Murphy, K. Ram, Package "spatialEco" spatial analysis and moodeling utilities. R package version 1.3-5 (2021), pp. 1–181.
- 107. W. Viechtbauer, Conducting meta-analyses in R with the metafor package. *J. Stat. Softw.* **36**, 1–48 (2010).
- 108. S. Nakagawa, et al., Methods for testing publication bias in ecological and evolutionary meta-analyses. *Methods Ecol. Evol.* **13**, 4–21 (2022).
- 109. T. G. O'Brien, J. E. M. Baillie, L. Krueger, M. Cuke, The wildlife picture index: monitoring top trophic levels. *Anim. Conserv.* **13**, 335–343 (2010).
- 110. J. Barlow, L. A. M. Mestre, T. A. Gardner, C. A. Peres, The value of primary, secondary and plantation forests for Amazonian birds. *Biol. Conserv.* **136**, 212–231 (2007).
- 111. R. Crouzeilles, M. Curran, M. S. Ferreira, D. B. Lindenmayer, C. E. V. Grelle, J. M. Rey Benayas, A global meta-analysis on the ecological drivers of forest restoration success. *Nat. Commun.* **7**, 11666 (2016).
- 112. T. A. Gardner, J. Barlow, R. Chazdon, R. M. Ewers, C. A. Harvey, C. A. Peres, N. S. Sodhi, Prospects for tropical forest biodiversity in a human-modified world. *Ecol. Lett.* **12**, 561–582 (2009).
- 113. M. J. Hartley, Rationale and methods for conserving biodiversity in plantation forests. *For. Ecol. Manage.* **155**, 81–95 (2002).
- 114. L. N. Hudson, et al., The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. *Ecol. Evol.* **4**, 4701–4735 (2014).
- 115. D. B. Lindenmayer, R. J. Hobbs, Fauna conservation in Australian plantation forests a review. *Biol. Conserv.* **119**, 151–168 (2004).
- 116. S. L. Mang, J. F. Brodie, Impacts of non-oil tree plantations on biodiversity in Southeast Asia. *Biodivers. Conserv.* **24**, 3431–3447 (2015).
- 117. P. Meli, et al., A global review of past land use, climate, and active vs. passive restoration effects on forest recovery. *PLoS One*. **12**, e0171368 (2017).
- 118. D. Moreno-Mateos, et al., Anthropogenic ecosystem disturbance and the recovery debt. *Nat. Commun.* **8**, 8–13 (2017).
- 119. P. A. Ramírez, J. A. Simonetti, Conservation opportunities in commercial plantations: the case of mammals. *J. Nat. Conserv.* **19**, 351–355 (2011).
- 120. C. J. A. Bradshaw, et al., Brave new green world consequences of a carbon economy for the conservation of Australian biodiversity. *Biol. Conserv.* **161**, 71–90 (2013).
- 121. D. P. Christian, W. Hoffman, J. M. Hanowski, G. J. Niemi, J. Beyea, Bird and mammal diversity on woody biomass plantations in North America. *Biomass and Bioenergy*. **14**, 395–402 (1998).
- 122. L. H. Holbech, The conservation importance of luxuriant tree plantations for lower storey forest birds in south-west Ghana. *Bird Conserv. Int.* **19**, 287–308 (2009).
- 123. J. Kanowski, C. P. Catterall, G. W. Wardell-Johnson, Consequences of broadscale timber plantations for biodiversity in cleared rainforest landscapes of tropical and subtropical Australia. *For. Ecol. Manage.* **208**, 359–372 (2005).
- 124. D. Lamb, Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. *Restor. Ecol.* **6**, 271–279 (1998).
- 125. J. H. Lawton, et al., Biodiversity inventories, indicators taxa and effects of habitat

modification in tropical forest. *Nature*. **39**, 72–76 (1998).

5

10

15

30

35

40

- 126. A. E. Lugo, The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. *For. Ecol. Manage.* **99**, 9–19 (1997).
- 127. B. N. T. Munro, D. B. Lindenmayer, J. Fischer, Faunal response to revegetation in agricultural areas of Australia: a review. *Ecol. Manag. Restor.* **8**, 199–207 (2007).
- 128. E. Nichols, et al., Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. *Biol. Conserv.* **137**, 1–19 (2007).
- 129. D. A. Norton, Indigenous biodiversity conservation and plantation forestry: options for the future. *New Zeal. For.* **43**, 34–39 (1998).
- 130. J. A. Parrotta, J. W. Turnbull, N. Jones, Catalyzing native forest regeneration on degraded tropical lands. *For. Ecol. Manage.* **99**, 1–7 (1997).
- 131. R. Spake, T. H. G. Ezard, P. A. Martin, A. C. Newton, C. P. Doncaster, A meta-analysis of functional group responses to forest recovery outside of the tropics. *Conserv. Biol.* **29**, 1695–1703 (2015).
- 132. S. S. Stephens, M. R. Wagner, Forest plantations and biodiversity: a fresh perspective. *J. For.* **105**, 307–313 (2007).
- 133. M. E. Thompson, M. A. Donnelly, Effects of secondary forest succession on amphibians and reptiles: a review and meta-analysis. *Copeia*. **106**, 10–19 (2018).
- 20 134. S. J. Wilson, J. Schelhas, R. Grau, A. S. Nanni, S. Sloan, Forest ecosystem-service transitions: the ecological dimensions of the forest transition. *Ecol. Soc.* 22, art38 (2017).
 - 135. M. T. L. Bonner, S. Schmidt, L. P. Shoo, A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. *For. Ecol. Manage.* **291**, 73–86 (2013).
- 25 136. B. Bernal, L. T. Murray, T. R. H. Pearson, Global carbon dioxide removal rates from forest landscape restoration activities. *Carbon Balance Manag.* **13**, 22 (2018).
 - 137. J. B. Kauffman, R. F. Hughes, C. Heider, Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the Neotropics. *Ecol. Appl.* **19**, 1211–1222 (2009).
 - 138. R. D. Lasco, Forest carbon budgets in Southeast Asia following harvesting and land cover change. *Sci. China.* **45**, 55–64 (2002).
 - 139. R. D. Lasco, F. B. Pulhin, Carbon budgets of forest ecosystems in the Philippines. *J. Environ. Sci. Manag.* **12**, 1–13 (2009).
 - 140. B. Locatelli, S. Lavorel, S. Sloan, U. Tappeiner, D. Geneletti, Characteristic trajectories of ecosystem services in mountains. *Front. Ecol. Environ.* **15**, 150–159 (2017).
 - 141. J. Mascaro, G. P. Asner, D. H. Dent, S. J. DeWalt, J. S. Denslow, Scale-dependence of aboveground carbon accumulation in secondary forests of Panama: a test of the intermediate peak hypothesis. *For. Ecol. Manage.* **276**, 62–70 (2012).
 - 142. J. A. A. Anache, E. C. Wendland, P. T. S. Oliveira, D. C. Flanagan, M. A. Nearing, Runoff and soil erosion plot-scale studies under natural rainfall: a meta-analysis of the Brazilian experience. *Catena.* **152**, 29–39 (2017).
 - 143. C. J. Anderson, B. G. Lockaby, The effectiveness of forestry best management practices for sediment control in the Southeastern United States: a literature review. *South. J. Appl. For.* **35**, 170–177 (2011).
 - 144. M. Bonell, Progress in the understanding of runoff generation dynamics in forests. *J. Hydrol.* **150**, 217–275 (1993).
 - 145. D. S. Chanasyk, I. R. Whitson, E. Mapfumo, J. M. Burke, E. E. Prepas, The impacts of forest harvest and wildfire on soils and hydrology in temperate forests: a baseline to

- develop hypotheses for the Boreal Plain. J. Environ. Eng. Sci. 2, S51–S62 (2003).
- 146. M. Dotterweich, The history of human-induced soil erosion: geomorphic legacies, early descriptions and research, and the development of soil conservation a global synopsis. *Geomorphology.* **201**, 1–34 (2013).
- 147. I. Douglas, Hydrological investigations of forest disturbance and land cover impacts in South-East Asia: a review. *Philos. Trans. R. Soc. B Biol. Sci.* **354**, 1725–1738 (1999).

10

15

20

25

30

35

40

- 148. J. M. García-Ruiz, et al., From plot to regional scales: interactions of slope and catchment hydrological and geomorphic processes in the Spanish Pyrenees. *Geomorphology.* **120**, 248–257 (2010).
- 149. J. M. García-Ruiz, S. Beguería, E. Nadal-Romero, J. C. González-Hidalgo, A meta-analysis of soil erosion rates across the world. *Geomorphology*. **239**, 160–173 (2015).
- 150. T. Gomi, R. D. Moore, M. A. Hassan, Suspended sediment dynamics in small forest streams of the Pacific Northwest. *J. Am. Water Resour. Assoc.* **41**, 877–898 (2005).
- 151. Q. Guo, Y. Hao, B. Liu, Rates of soil erosion in China: a study based on runoff plot data. *Catena*. **124**, 68–76 (2015).
- 152. A. Gupta, "Erosion and sediment yield in Southeast Asia: a regional perspective" in *Erosion and Sediment Yield: Global and Regional Perspectives*, D. E. Walling, B. W. Webb, Eds. (International Association of 15 Hydrological Sciences Publication 236, 1996), pp. 215–222.
- 153. L. S. Hamilton, P. King, Tropical Forested Watersheds. Hydrological Response to Major Uses or Conversions (Westview Press, Boulder CO, USA, 1983).
 - 154. D. J. Holz, K. W. J. Williard, P. J. Edwards, J. E. Schoonover, Soil erosion in humid regions: a review. *J. Contemp. Water Res. Educ.* **154**, 48–59 (2015).
 - 155. O. Jaafar, S. M. SA, S. Al-Toum, The Tekala Forest Reserve: a study on surface wash and runoff using close system erosion plots. *Geogr. Malaysian J. Soc. Sp.* **7**, 1–13 (2011).
 - 156. N. Labrière, B. Locatelli, Y. Laumonier, V. Freycon, M. Bernoux, Soil erosion in the humid tropics: a systematic quantitative review. *Agric. Ecosyst. Environ.* **203**, 127–139 (2015).
 - 157. H. Laudon, et al., Consequences of more intensive forestry for the sustainable management of forest soils and waters. *Forests.* **2**, 243–260 (2011).
 - 158. Y. Lü, L. Chen, B. Fu, Land-cover effects on red soil rehabilitation in China: a meta-analysis. *Prog. Phys. Geogr.* **32**, 491–502 (2008).
 - 159. W. Maetens, M. Vanmaercke, J. Poesen, B. Jankauskas, G. Jankauskiene, I. Ionita, Effects of land use on annual runoff and soil loss in Europe and the Mediterranean: a meta-analysis of plot data. *Prog. Phys. Geogr.* **36**, 599–653 (2012).
 - 160. K. Scheurer, C. Alewell, D. Bänninger, P. Burkhardt-holm, Climate and land-use changes affecting river sediment and brown trout in alpine countries a review. *Environ. Sci. Pollut. Res.* **16**, 232–242 (2009).
 - 161. R. C. Sidle, A. D. Ziegler, J. N. Negishi, A. R. Nik, R. Siew, F. Turkelboom, Erosion processes in steep terrain truths, myths, and uncertainties related to forest management in Southeast Asia. *For. Ecol. Manage.* **224**, 199–225 (2006).
 - 162. T. Stott, N. Mount, Plantation forestry impacts on sediment yields and downstream channel dynamics in the UK: a review. *Prog. Phys. Geogr.* **28**, 1–44 (2004).
 - 163. C. Valentin, et al., Runoff and sediment losses from 27 upland catchments in Southeast Asia: impact of rapid land use changes and conservation practices. *Agric. Ecosyst. Environ.* **128**, 225–238 (2008).
 - 164. M. Vanmaercke, J. Poesen, G. Verstraeten, J. de Vente, F. Ocakoglu, Sediment yield in Europe: spatial patterns and scale dependency. *Geomorphology*. **130**, 142–161 (2011).

- 165. D. E. Walling, B. W. Webb, Eds. *Erosion and Sediment Yield: A Global Overview. IAHS-AISH Publ.* **236** (1996).
- 166. G. Wallis, S. McMahon, The impacts of forest management on erosion and sedimentation: a New Zealand review. *Logging Ind. Res. Organ. Rep.* **19**, 1–15 (1994).
- 167. K. F. Wiersum, "Surface erosion under various tropical agroforestry systems" in *Symposium on Effect of Forest Land Use on Erosion and Slope Stability*, C. L. O'Loughlin, A. J. Pearce, Eds. (Environment andPolicy Institute, East-West Center, Honolulu, 5 Hawaii, 1984), pp. 231–239.

10

15

20

25

30

35

- 168. S. M. Wondzell, The influence of forest health and protection treatments on erosion and stream sedimentation in forested watersheds of eastern Oregon and Washington. *Northwest Sci.* **75**, 128–140 (2001).
- D. M. Amatya, J. Campbell, P. Wohlgemuth, K. Elder, S. Sebestyen, S. Johnson, E. Keppeler, M. B. Adams, 10 P. Caldwell, D. Misra, "Hydrological processes of reference watersheds in experimental forests, USA" in *Forest Hydrology: Processes, Management and Assessment*, D. M. Amatya, T. M. Williams, L. Bren, C. de Jong, Eds. (CABI, Oxford, UK, 2016), pp. 219–239.
- 170. J. M. Anderson, T. Spencer, *Carbon, Nutrient and Water Balances of Tropical Rain Forest Ecosystems Subject to Disturbance: Management Implications and Research Proposals* (MAB Digest 4, UNESCO Man and 15 Biosphere Programme, Paris, France, 1991).
- 171. V. Andréassian, Waters and forests: from historical controversy to scientific debate. *J. Hydrol.* **291**, 1–27 (2004).
- 172. V. Bonnesoeur, et al., Impacts of forests and forestation on hydrological services in the Andes: a systematic review. *For. Ecol. Manage.* **433**, 569–584 (2019).
- 173. A. E. Brown, A. W. Western, T. A. McMahon, L. Zhang, Impact of forest cover changes on annual streamflow and flow duration curves. *J. Hydrol.* **483**, 39–50 (2013).
 - 174. L. A. Bruijnzeel, *Hydrology of Moist Tropical Forests and Effects of Conversion: A State of Knowledge Review* (Faculty of Earth Sciences, Free University, Amsterdam, The Netherlands, and UNESCO International 25 Hydrology Programme, Paris, France, 1990).
- 175. L. A. Bruijnzeel, "Hydrology of forest plantations in the tropics" in *Management of Soil, Nutrients and Water in Tropical Plantation Forests*, E. K. S. Nambiar, A. G. Brown, Eds. (ACIAR Monogr. 43, Australian Centre for Int. Agric. Res., Canberra, Australia, 1997), pp. 125-167.
 - 176. L. A. Bruijnzeel, Hydrological functions of tropical forests: not seeing the soil for the trees? *Agric. Ecosyst. Environ.* **104**, 185–228 (2004).
 - 177. L. A. Bruijnzeel, M. Mulligan, F. N. Scatena, Hydrometeorology of tropical montane cloud forests: emerging patterns. *Hydrol. Process.* **25**, 465–498 (2011).
 - 178. I. R. Calder, Water use of *Eucalypts* a review with special reference to South India. *Agric. Water Manag.* **11**, 333–342 (1986).
- 40 179. J. D. Cheng, L. L. Lin, H. S. Lu, Influences of forests on water flows from headwater watersheds in Taiwan. *For. Ecol. Manage.* **165**, 11–28 (2002).
 - 180. A. A. Coble, et al., Long-term hydrological response to forest harvest during seasonal low flow: potential implications for current forest practices. *Sci. Total Environ.* **730**, 138926 (2020).
 - 181. P. M. Cornish, "The effects of Radiata pine plantation establishment and management on water yield and water quality a review" (Forestry Commission of New South Wales, Sydney, 1989)
 - 182. C. Cosandey, et al., The hydrological impact of the mediterranean forest: a review of

French research. *J. Hydrol.* **301**, 235–249 (2005).

5

10

15

20

25

30

35

- 183. I. F. Creed, M. van Noordwijk, Eds. "Forests and Water on a Changing Planet Vulnerability, Adaptation and Governance Opportunities" (*IUFRO World Series* **38**, 2018).
- 184. K. A. Farley, E. G. Jobbágy, R. B. Jackson, Effects of afforestation on water yield: a global synthesis with implications for policy. *Glob. Chang. Biol.* **11**, 1565–1576 (2005).
 - 185. P. F. Ffolliott, D. P. Guertin, *Forest Hydrological Resources in China: An Analytical Assessment*. (United States Man and Biosphere Program, Washington D. C., U.S.A., 1987).
- 186. S. Filoso, M. O. Bezerra, K. C. B. Weiss, M. A. Palmer, Impacts of forest restoration on water yield: a systematic review. *PLoS One*. **12**, e0183210 (2017).
 - 187. J. M. García-Ruiz, N. Lana-Renault, Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region a review. *Agric. Ecosyst. Environ.* **140**, 317–338 (2011).
 - 188. M. B. Gush, et al., *Estimation of Streamflow Reductions Resulting from Commercial Afforestation in South Africa* (WRC Report No. TT 173/02, Water Research Commission, Gezina, South Africa, 2002).
 - 189. J. E. Gyenge, M. E. Fernández, V. Rusch, M. M. Sarasola, T. M. Schlichter, Towards a sustainable forestry development in Patagonia: truths and myths of environmental impacts of plantations with fast-growing conifers. *Am. J. Plant Sci. Biotechnol.* **3**, 9–22 (2010).
 - 190. A. R. Hibbert, "Forest treatment effects on water yield" in *International Symposium on Forest Hydrology*, W. E. Sopper, H. W. Lull, Eds. (Pergamon Press, Oxford, 1967), pp. 527–543.
 - 191. J. W. Hornbeck, M. B. Adams, E. S. Corbett, E. S. Verry, J. A. Lynch, Long-term impacts of forest treatments on water yield: a summary for northeastern USA. *J. Hydrol.* **150**, 323–344 (1993).
 - 192. A. Huber, A. Iroumé, Variability of annual rainfall partitioning for different sites and forest covers in Chile. *J. Hydrol.* **248**, 78–92 (2001).
 - 193. R. B. Jackson, et al., Trading water for carbon with biological carbon sequestration. *Science*. **310**, 1944–1947 (2005).
 - 194. J. A. Jones, et al., Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites. *BioScience*. **62**, 390–404 (2012).
 - 195. J. Jones, et al., Forests and water in South America. Hydrol. Process. 31, 972–980 (2017).
 - 196. H. Komatsu, N. Tanaka, T. Kume, Do coniferous forests evaporate more water than broad-leaved forests in Japan? *J. Hydrol.* **336**, 361–375 (2007).
 - 197. H. Komatsu, E. Maita, K. Otsuki, A model to estimate annual forest evapotranspiration in Japan from mean annual temperature. *J. Hydrol.* **348**, 330–340 (2008).
 - 198. P. N. J. Lane, A. E. Best, K. Hickel, L. Zhang, The response of flow duration curves to afforestation. *J. Hydrol.* **310**, 253–265 (2005).
 - 199. Q. Li, et al., Forest cover change and water yield in large forested watersheds: a global synthetic assessment. *Ecohydrology*. **10**, 1–7 (2017).
 - 200. W. de P. Lima, *Reforestation with Eucalyptus and its Environmental Impacts* (ARTPRESS, São Paulo, Brazil, 1987).
- 45 201. W. de P. Lima, *Environmental Effects of Eucalyptus* (IPEF, University of S o Paulo, Brazil,1993).
 - 202. P. Llorens, F. Domingo, Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. *J. Hydrol.* **335**, 37–54 (2007).

- 203. B. Locatelli, R. Vignola, Managing watershed services of tropical forests and plantations: can meta-analyses help? *For. Ecol. Manage.* **258**, 1864–1870 (2009).
- 204. M. Merheb, R. Moussa, C. Abdallah, F. Colin, C. Perrin, N. Baghdadi, Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. *Hydrol. Sci. J.* **61**, 2520–2539 (2016).

10

15

20

25

30

35

40

- 205. A. A. Molchanov, "Cycles of atmospheric precipitation in different types of forests of natural zones of the U.S.S.R." in *Productivity of Forest Ecosystems*. (Proceedings of Brussels Symposium, Ecology & Conservation Series 5 4, UNESCO, 1971), pp. 49–68.
- 206. H. Nakano, "Effects of changes of forest conditions on water yield, peak flow and direct runoff of small watersheds in Japan" in *International Symposium on Forest Hydrology*, W. E. Sopper, H. W. Lull, Eds. (Pergamon Press, Oxford, 1967), pp. 551–564.
- 207. L. Oyebande, "Effects of tropical forest on water yield" in *Forests, Climate, and Hydrology: Regional Impacts*, E. R. C. Reynolds, F. B. Thompson, Eds. (United Nations University, Tokyo, Japan, 1988), pp. 16–50.
- 208. A. K. Peck, "Hydrometeorological and microclimatic characteristics of beech forests" (*Berichte des Meteorologischen Institutes der Universität Freiburg* no. **10**, 2004).
- 209. H. L. Penman, "Vegetation and hydrology" (*Techn. Comm.* **53**, Commonwealth Agricultural Bureaux, 15 Harpenden, U.K., 1963).
- 210. K. Price, Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. *Prog. Phys. Geogr.* **35**, 465–492 (2011).
- 211. M. Robinson, "Methods of hydrological basin comparison" (Report No. 120, Institute of Hydrology, Wallingford, U.K., 1992).
- 212. L. K. Rowe, R. Jackson, B. Fahey, "Land use and water resources: Hydrological effects of different vegetation covers" (SMF 2167 Projet Report no. 5, LandCare Research, Lincoln, New Zealand, 2002).
- 213. L. K. Rowe, "Land use and water resources: A comparison of streamflow from New Zealand catchments with different vegetation covers" (SMF 2167 Project Report no. 6, LandCare Research, Lincoln, New Zealand, 2003).
- 214. V. Sahin, M. J. Hall, The effects of afforestation and deforestation on water yields. *J. Hydrol.* **178**, 293–309 (1996).
- 215. B. Schmalz, U. Looser, U. Schröder, H. Meesenburg, S. Schumann, Small hydrological research basins in German-speaking countries of Central Europe. *Hydrol. und Wasserbewirtschaftung.* **59**, 184–189 (2015).
- 216. D. F. Scott, L. A. Bruijnzeel, J. Mackensen, "The hydrological and soil impacts of forestation in the tropics" in *Forests, Water and People in the Humid Tropics Past, Present and Future Hydrological Research for Integrated Land and Water Management*, M. Bonell, L. A. Bruijnzeel, Eds. (Cambridge University Press, Cambridge, U.K., 2005), pp. 622–651.
- 217. I. A. Shiklomanov, O. I. Krestovsky, "The influence of forests and forest reclamation practice on streamflow and water balance" in *Forests, Climate, and Hydrology: Regional Impacts*, E. R. C. Reynolds, F. B. Thompson, Eds. (United Nations University, Tokyo, Japan, 1988), pp. 78–116.
- 218. W. E. Sopper, H. W. Lull, Eds. *International Symposium on Forest Hydrology* (Pergamon Press, Oxford, 1967).
- 219. S. Soto-Schönherr, A. Iroumé, How much water do Chilean forests use? A review of interception losses in forest plot studies. *Hydrol. Process.* **30**, 4674–4686 (2016).
- 220. J. D. Stednick, Monitoring the effects of timber harvest on annual water yield. *J. Hydrol.* **176**, 79–95 (1996).

- 221. A. I. J. M. van Dijk, R. J. Keenan, Planted forests and water in perspective. *For. Ecol. Manage.* **251**, 1–9 (2007).
- 222. B. Venkatesh, N. Lakshman, B. K. Purandara, Hydrological impacts of afforestation a review of research in India. *J. For. Res.* **25**, 37–42 (2014).
- 223. S. Wang, T. R. McVicar, Z. Zhang, T. Brunner, P. Strauss, Globally partitioning the simultaneous impacts of climate-induced and human-induced changes on catchment streamflow: a review and meta-analysis. *J. Hydrol.* **590** (2020),

10

15

20

25

30

35

- 224. X. Wei, S. Liu, G. Zhou, C. Wang, Hydrological processes in major types of Chinese forest. *Hydrol. Process.* **19**, 63–75 (2005).
- 225. X. Wei, G. Sun, S. Liu, H. Jiang, G. Zhou, L. Dai, The forest-streamflow relationship in China: a 40-year retrospect. *J. Am. Water Resour. Assoc.* **44**, 1076–1085 (2008).
- 226. P. G. Whitehead, M. Robinson, Experimental basin studies an international and historical perspective of forest impacts. *J. Hydrol.* **145**, 217–230 (1993).
- 227. M. Zhang, et al., A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. *J. Hydrol.* **546**, 44–59 (2017).
- 228. G. Zhou, et al., Global pattern for the effect of climate and land cover on water yield. *Nat. Commun.* **6**, 1–9 (2015).
- 229. R. R. Dunn, Recovery of faunal communities during tropical forest regeneration. *Conserv. Biol.* **18**, 302–309 (2004).
- 230. M. C. Ruiz-Jaen, T. M. Aide, Restoration success: how is it being measured? *Restor. Ecol.* **13**, 569–577 (2005).
- 231. M. E. Bowen, C. A. McAlpine, A. P. N. House, G. C. Smith, Regrowth forests on abandoned agricultural land: a review of their habitat values for recovering forest fauna. *Biol. Conserv.* **140**, 273–296 (2007).
- 232. J. M. Rey Benayas, A. C. Newton, A. Diaz, J. M. Bullock, Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. *Science*. **325**, 1121–4 (2009).
- 233. L. Wortley, J. M. Hero, M. Howes, Evaluating ecological restoration success: a review of the literature. *Restor. Ecol.* **21**, 537–543 (2013).
- 234. M. Curran, S. Hellweg, J. Beck, Is there any empirical support for biodiversity offset policy? *Ecol. Appl.* **24**, 617–632 (2014).
- 235. S. Alem, T. Woldemariam, A comparative assessment on regeneration status of indigenous woody plants in *Eucalyptus grandis* plantation and adjacent natural forest. *J. For. Res.* **20**, 31–36 (2009).
- 236. J. Barlow, W. L. Overal, I. S. Araujo, T. A. Gardner, C. A. Peres, The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. *J. Appl. Ecol.* 44, 1001–1012 (2007).
- 237. J. Barlow, et al., Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. *Proc. Natl. Acad. Sci.* **104**, 18555–18560 (2007).
- 238. B. M. Beehler, K. S. R. K. Raju, S. Ali, Avian use of man-disturbed forest habitats in the Eastern Ghats, India. *Ibis.* **129**, 197–211 (1987).
- 239. J. M. Bentley, C. P. Catterall, G. C. Smith, Effects of fragmentation of Araucarian vine forest on small mammal communities. *Conserv. Biol.* **14**, 1075–1087 (2000).
- 45 240. L. A. Berndt, E. G. Brockerhoff, H. Jactel, Relevance of exotic pine plantations as a surrogate habitat for ground beetles (Carabidae) where native forest is rare. *Biodivers. Conserv.* 17, 1171–1185 (2008).

- 241. L. A. Berndt, E. G. Brockerhoff, Effects of land cover type on carabid beetles (Coleoptera: Carabidae) of the Canterbury foothills, New Zealand. *New Zeal. J. For. Sci.* **49**, 12 (2019).
- 242. K. J. Bonham, R. Mesibov, R. Bashford, Diversity and abundance of some ground-dwelling invertebrates in plantation vs. native forests in Tasmania, Australia. *For. Ecol. Manage.* **158**, 237–247 (2002).

10

15

20

25

30

35

- 243. S. Boonrotpong, S. Sotthibandhu, C. Pholpunthin, Species composition of dung beetles in the primary and secondary forests at Ton Nga Chang Wildlife Sanctuary. *Sci. Asia.* **30**, 59–65 (2004).
- 244. A. Caballero-Gini, M. Vera-Jiménez, F. Silla, Composition of terrestrial anurans in areas with different degrees of alteration in San Rafael National Park (Paraguay). *South Am. J. Herpetol.* **14**, 48–57 (2019).
- 245. A. B. Carey, M. L. Johnson, Small mammals in managed, naturally young, and old-growth forests. *Ecol. Appl.* **5**, 336–352 (1995).
- 246. R. Ceia, R. Heleno, J. A. Ramos, Summer abundance and ecological distribution of passerines in native and exotic forests in São Miguel, Azores. *Ardeola*. **56**, 25–39 (2009).
- 247. D. S. Chauhan, C. S. Dhanai, B. Singh, S. Chauhan, N. P. Todaria, M. A. Khalid, Regeneration and tree diversity in natural and planted forests in a Terai Bhabhar forest in Katarniaghat Wildlife Sanctuary, India. *Trop. Ecol.* **49**, 53–67 (2008).
- 248. S. Cheng, J. Ni, M. Gao, J. Li, Responses of ground Coleoptera adults to different disturbance gradients in the forest ecosystem of the Xiaoxing'an Mountains. *Acta Ecol. Sin.* **38**, 3097–3109 (2018).
- 249. D. O. Chiawo, W. N. Kombe, A. J. F. K. Craig, Bird responses to land use change: guild diversity in a Kenyan coastal forest and adjoining habitats. *Emu.* **118**, 281–292 (2018).
- 250. M. N. Clout, P. D. Gaze, Effects of plantation forestry on birds in New Zealand. *J. Appl. Ecol.* 21, 795–815 (1984).
- 251. L. P. da Silva, et al., Natural woodlands hold more diverse, abundant, and unique biota than novel anthropogenic forests: a multi-group assessment. *Eur. J. For. Res.* **138**, 461–472 (2019).
- 252. A. J. Davis, H. Huijbregts, J. Krikken, The role of local and regional processes in shaping dung beetle communities in tropical forest plantations in Borneo. *Glob. Ecol. Biogeogr.* **9**, 281–292 (2000).
- 253. L. Deharveng, Soil Collembola diversity, endemism, and reforestation: a case study in the Pyrenees (France). *Conserv. Biol.* **10**, 74–84 (1996).
- 254. Y. Do, G. J. Joo, The effect of fragmentation and intensive management on carabid beetles in coniferous forest. *Appl. Ecol. Environ. Res.* **11**, 451–461 (2013).
- 255. H. J. R. Einzmann, G. Zotz, How diverse are epiphyte assemblages in plantations and secondary forests in tropical lowlands? *Trop. Conserv. Sci.* **9**, 629–647 (2016).
- 256. O. Fahy, M. Gormally, A comparison of plant and carabid beetle communities in an Irish oak woodland with a nearby conifer plantation and clearfelled site. *For. Ecol. Manage.* **110**, 263–273 (1998).
- 257. N. Farwig, N. Sajita, K. Böhning-Gaese, Conservation value of forest plantations for bird communities in western Kenya. *For. Ecol. Manage.* **255**, 3885–3892 (2008).
- 258. A. Fierro, P. M. Vergara, A native long horned beetle promotes the saproxylic diversity in exotic plantations of Monterrey pine. *Ecol. Indic.* **96**, 532–539 (2019).
- 45 259. A. Fierro, A. A. Grez, P. M. Vergara, A. Ramírez-Hernández, E. Micó, How does the replacement of native forest by exotic forest plantations affect the diversity, abundance and trophic structure of saproxylic beetle assemblages? *For. Ecol. Manage.* **405**, 246–256 (2017).

- 260. F. E. Fontúrbel, A. B. Candia, G. J. Castaño-Villa, Are abandoned *Eucalyptus* plantations avifauna-friendly? A case study in the Valdivian rainforest. *Rev. Mex. Biodivers.* **87**, 1402–1406 (2016).
- 261. R. J. Fuller, T. H. Oliver, S. R. Leather, Forest management effects on carabid beetle communities in coniferous and broadleaved forests: implications for conservation. *Insect Conserv. Divers.* **1**, 242–252 (2008).

10

15

20

25

30

35

- 262. E. Gangenova, G. A. Zurita, F. Marangoni, Changes to anuran diversity following forest replacement by tree plantations in the southern Atlantic forest of Argentina. *For. Ecol. Manage.* **424**, 529–535 (2018).
- 263. T. A. Gardner, M. A. Ribeiro-Júnior, J. Barlow, T. C. S. Ávila-Pires, M. S. Hoogmoed, C. A. Peres, The value of primary, secondary, and plantation forests for a Neotropical herpetofauna. *Conserv. Biol.* **21**, 775–787 (2007).
 - 264. T. A. Gardner, M. I. M. Hernández, J. Barlow, C. A. Peres, Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. *J. Appl. Ecol.* **45**, 883–893 (2008).
 - 265. S. Goded, J. Ekroos, J. Domínguez, J. G. Azcárate, J. A. Guitián, H. G. Smith, Effects of *Eucalyptus* plantations on avian and herb species richness and composition in North-West Spain. *Glob. Ecol. Conserv.* **19**, e00690 (2019).
 - 266. V. C. G. Gómez, J. R. Verdú, A. Gómez-Cifuentes, F. Z. Vaz-de-Mello, G. A. Zurita, Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. *Insect Conserv. Divers.* 11, 554–564 (2018).
 - 267. A. Gómez-Cifuentes, A. Munevar, V. C. Gimenez, M. G. Gatti, G. A. Zurita, Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. *J. Insect Conserv.* **21**, 147–156 (2017).
 - 268. P. González-Vainer, E. Morelli, O. Defeo, Differences in Coprophilous beetle communities structure in Sierra de Minas (Uruguay): a mosaic landscape. *Neotrop. Entomol.* **41**, 366–374 (2012).
 - 269. W. Gu, et al., Diversity of butterflies in Liangshui Nature Reserves of Xiao Xing'an Mountains. *Acta Ecol. Sin.* **35**, 7387–7396 (2015).
 - 270. J. C. Habel, S. Seibold, W. Ulrich, T. Schmitt, Seasonality overrides differences in butterfly species composition between natural and anthropogenic forest habitats. *Anim. Conserv.* 21, 405–413 (2018).
 - 271. J. Hawes, C. Da Silva Motta, W. L. Overal, J. Barlow, T. A. Gardner, C. A. Peres, Diversity and composition of Amazonian moths in primary, secondary and plantation forests. *J. Trop. Ecol.* **25**, 281–300 (2009).
 - 272. R. Hobbs, P. C. Catling, J. C. Wombey, M. Clayton, L. Atkins, A. Reid, Faunal use of bluegum (*Eucalyptus globulus*) plantations in southwestern Australia. *Agrofor. Syst.* **58**, 195–212 (2003).
- 40 273. S. Hodge, S. A. Marshall, H. Oliver, J. Berry, J. Marris, I. Andrew, A preliminary survey of the insects collected using mushroom baits in native and exotic New Zealand woodlands. *New Zeal. Entomol.* 33, 43–54 (2010).
 - 274. M. E. Iezzi, C. De Angelo, M. S. Di Bitetti, Tree plantations replacing natural grasslands in high biodiversity areas: how do they affect the mammal assemblage? *For. Ecol. Manage.* **473**, 118303 (2020).
 - 275. L. I. Jacoboski, A. de Mendonça-Lima, S. M. Hartz, Structure of bird communities in *Eucalyptus* plantations: nestedness as a pattern of species distribution. *Brazilian J. Biol.* **76**, 583–591 (2016).

- 276. J. J. Kanowski, T. M. Reis, C. P. Catterall, S. D. Piper, Factors affecting the use of reforested sites by reptiles in cleared rainforest landscapes in tropical and subtropical Australia. *Restor. Ecol.* **14**, 67–76 (2006).
- 277. E. Katovai, A. L. Burley, M. M. Mayfield, Understory plant species and functional diversity in the degraded wet tropical forests of Kolombangara Island, Solomon Islands. *Biol. Conserv.* **145**, 214–224 (2012).

10

15

20

25

30

- 278. G. H. Kattan, C. Murcia, A. Galindo-Cardona, An evaluation of bess beetles (Passalidae) and their resource base in a restored Andean forest. *Trop. Conserv. Sci.* **3**, 334–343 (2010).
- 279. H. K. Kwok, R. T. Corlett, The bird communities of a natural secondary forest and a Lophostemon confertus plantation in Hong Kong, South China. *For. Ecol. Manage.* **130**, 227–234 (2000).
 - 280. M. V. Lantschner, V. Rusch, Impact of different anthropogenic disturbances on bird communities of Nothofagus antarctica forests and shrublands in NW Patagonia. *Ecol. Austral.* **17**, 99–112 (2007).
 - 281. M. V. Lantschner, V. Rusch, C. Peyrou, Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. *Biodivers. Conserv.* 17, 969–989 (2008).
 - 282. Q. Li, B. D. Hoffmann, Z.-X. Lu, Y.-Q. Chen, Ants show that the conservation potential of afforestation efforts in Chinese valley-type savanna is dependent upon the afforestation method. *J. Insect Conserv.* 21, 621–631 (2017).
 - 283. J. B. Longworth, G. B. Williamson, Composition and diversity of woody plants in tree plantations versus secondary forests in Costa Rican lowlands. *Trop. Conserv. Sci.* 11, 1–13 (2018).
 - 284. Z.-X. Lu, K.-L. Li, N.-N. Zhang, Y.-Q. Chen, Diversity and indicator species of leaf-litter ants in *Eucalyptus grandis* plantations and secondary natural forests. *For. Res.* **29**, 576–580 (2016).
 - 285. T.-H. Luo, X.-D. Yu, H.-Z. Zhou, Effects of reforestation practices on Staphylinid beetles (Coleoptera: Staphylinidae) in Southwestern China forests. *Environ. Entomol.* **42**, 7–16 (2013).
 - 286. M. A. Maglianesi, Avifauna associated to native forest and forest plantations of exotic conifers in the Reserva Forestal Grecia, Costa Rica. *Ornitol. Neotrop.* **21**, 339–350 (2010).
 - 287. A. L. Magnano, N. G. Fracassi, A. S. Nanni, R. D. Quintana, Changes in bird assemblages in an afforestation landscape in the Lower Delta of the Paraná River, Argentina. *Emu.* **119**, 346–354 (2019).
- J. Mandal, T. R. S. Raman, Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. *Condor.* **118**, 345–359 (2016).
 - 289. A. Martínez, J. C. Iturrondobeitia, A. Goldarazena, Effects of some ecological variables on carabid communities in native and non native forests in the Ibaizabal basin (Basque Country: Spain). *Ann. For. Sci.* **66**, 304 (2009).
- 290. C. A. Medina, F. Escobar, G. H. Kattan, Diversity and habitat use of dung beetles in a restored Andean landscape. *Biotropica*. **34**, 181–187 (2002).
 - 291. I. Merino-Sáinz, A. Anadón, Land use influences harvestman diversity in northern Spain: a case study involving secondary grasslands and forest plantations (Arachnida: Opiliones). *J. Insect Conserv.* 22, 363–376 (2018).
 - 292. S. G. Milheiras, M. Guedes, F. A. B. Silva, P. Aparício, G. M. Mace, Patterns of biodiversity response along a gradient of forest use in Eastern Amazonia, Brazil. *PeerJ.* **8**, e8486 (2020).
 - 293. M. A. Minor, Protura in native and exotic forests in the North Island of New Zealand. New

Zeal. J. Zool. 35, 271–279 (2008).

5

10

15

20

25

30

35

40

- 294. S. S. Mitra, F. H. Sheldon, Use of an exotic tree plantation by Bornean lowland forest birds. *Auk.* **110**, 529–540 (1993).
- 295. D. Moreira-Arce, P. M. Vergara, S. Boutin, J. A. Simonetti, C. Briceño, G. Acosta-Jamett, Native forest replacement by exotic plantations triggers changes in prey selection of mesocarnivores. *Biol. Conserv.* **192**, 258–267 (2015).
- 296. B. Mott, R. A. Alford, L. Schwarzkopf, Tropical reptiles in pine forests: assemblage responses to plantations and plantation management by burning. *For. Ecol. Manage.* **259**, 916–925 (2010).
- 297. J. K. N'Dri, H. M. Andre, J. LagerlöF, J. E. Tondoh, T. Hance, Response of soil mite abundance and diversity to a monospecific timber *Tectona grandis* plantation in Ivory Coast. *Curr. Zool.* **59**, 633–643 (2013).
 - 298. V. Nicolas, P. Barrière, A. Tapiero, M. Colyn, Shrew species diversity and abundance in ziama biosphere reserve, Guinea: comparison among primary forest, degraded forest and restoration plots. *Biodivers. Conserv.* **18**, 2043–2061 (2009).
 - 299. O. Norfolk, et al., Diversity and composition of tropical butterflies along an Afromontane agricultural gradient in the Jimma Highlands, Ethiopia. *Biotropica*. **49**, 346–354 (2017).
 - 300. M. Nummelin, I. Hanski, Dung beetles of the Kibale Forest, Uganda; comparison between virgin and managed forests. *J. Trop. Ecol.* **5**, 349–352 (1989).
- 301. A. S. Nurinsiyah, H. Fauzia, C. Hennig, B. Hausdorf, Native and introduced land snail species as ecological indicators in different land use types in Java. *Ecol. Indic.* **70**, 557–565 (2016).
 - 302. T. Ogai, T. Kenta, The effects of vegetation types and microhabitats on carabid beetle community composition in cool temperate Japan. *Ecol. Res.* **31**, 177–188 (2016).
- 303. A. Ohwaki, S. Maeda, M. Kitahara, T. Nakano, Associations between canopy openness, butterfly resources, butterfly richness and abundance along forest trails in planted and natural forests. *Eur. J. Entomol.* **114**, 533–545 (2017).
 - 304. J. D. Palladini, M. G. Jones, N. J. Sanders, E. S. Jules, The recovery of ant communities in regenerating temperate conifer forests. *For. Ecol. Manage.* **242**, 619–624 (2007).
 - 305. J. Paritsis, M. A. Aizen, Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. *For. Ecol. Manage.* **255**, 1575–1583 (2008).
 - 306. S. M. Pawson, E. G. Brockerhoff, E. D. Meenken, R. K. Didham, Non-native plantation forests as alternative habitat for native forest beetles in a heavily modified landscape. *Biodivers. Conserv.* **17**, 1127–1148 (2008).
 - 307. C. P. Paz, M. Gallon, J. Putzke, G. Ganade, Changes in macrofungal communities following forest conversion into tree plantations in southern Brazil. *Biotropica*. **47**, 616–625 (2015).
 - 308. S. M. Pedley, R. D. Martin, A. Oxbrough, S. Irwin, T. C. Kelly, J. O'Halloran, Commercial spruce plantations support a limited canopy fauna: evidence from a multi taxa comparison of native and plantation forests. *For. Ecol. Manage.* **314**, 172–182 (2014).
 - 309. M. Penteado, C. Yamashita, T. S. Marques, M. Luciano, Bird diversity in relation to land use in agricultural landscapes of Southeastern Brazil. *Biodivers. Agric. Landscapes Southeast. Brazil*, 243–268 (2016).
- 310. P. Punttila, Y. Haila, T. Pajunen, H. Tukia, Colonisation of clearcut forests by ants in the southern Finnish taiga: a quantitative survey. *Oikos.* **61**, 250–262 (1991).
 - 311. H. Ratsirarson, H. G. Robertson, M. D. Picker, S. Van Noort, Indigenous forests versus exotic eucalypt and pine plantations: a comparison of leaf-litter invertebrate communities.

African Entomol. 10, 93–99 (2002).

5

15

30

35

40

- 312. A. I. A. Rios, B. Moncada, R. Lücking, Epiphyte homogenization and de-diversification on alien *Eucalyptus* versus native *Quercus* forest in the Colombian Andes: a case study using lirellate Graphidaceae lichens. *Biodivers. Conserv.* **24**, 1239–1252 (2015).
- 313. P. E. S. Rodrigues, L. E. Costa-Schmidt, R. Ott, E. N. L. Rodrigues, Influence of forest structure upon the diversity and composition of edaphic diplopods. *J. Insect Conserv.* **21**, 297–306 (2017).
- 314. B. Saavedra, J. A. Simonetti, Small mammals of Maulino forest remnaants, a vanishing ecosystem of south-central Chile. *Mammalia*. **69**, 337–348 (2005).
- 315. W. Sakchoowong, S. Nomura, K. Ogata, J. Chanpaisaeng, Diversity of pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) in eastern Thailand. *Entomol. Sci.* **11**, 301–313 (2008).
 - 316. E. Sarrionandia, et al., Implications of exotic *Pinus radiata* plantations for macrofungal diversity in the Urdaibai Biosphere Reserve (northern Spain). *Can. J. For. Res.* **45**, 667–675 (2015).
 - 317. C. H. Sekercioglu, Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda. *Biol. Conserv.* **107**, 229–240 (2002).
 - 318. F. H. Sheldon, A. R. Styring, Bird diversity differs between industrial tree plantations on Borneo: implications for conservation planning. *Raffles Bull. Zool.* **59**, 295–309 (2011).
- 319. F. H. Sheldon, A. Styring, P. A. Hosner, Bird species richness in a Bornean exotic tree plantation: a long-term perspective. *Biol. Conserv.* **143**, 399–407 (2010).
 - 320. S. de A. Soares, W. F. Antonialli-Junior, S. E. Lima-Junior, Diversity of epigeic ants (Hymenoptera, Formicidae) in two environments in central-western of Brazil. *Rev. Bras. Entomol.* **54**, 76–81 (2010).
- 25 321. R. B. Stuebing, J. Gasis, A survey of small mammals within a Sabah tree plantation in Malaysia. *J. Trop. Ecol.* **5**, 203–214 (1989).
 - 322. A. R. Styring, R. Ragai, J. Unggang, R. Stuebing, P. A. Hosner, F. H. Sheldon, Bird community assembly in Bornean industrial tree plantations: effects of forest age and structure. *For. Ecol. Manage.* **261**, 531–544 (2011).
 - 323. Y. H. Sung, N. E. Karraker, B. C. H. Hau, Terrestrial herpetofaunal assemblages in secondary forests and exotic *Lophostemon confertus* plantations in South China. *For. Ecol. Manage.* **270**, 71–77 (2012).
 - 324. A. Taboada, D. J. Kotze, R. Tárrega, J. M. Salgado, Carabids of differently aged reforested pinewoods and a natural pine forest in a historically modified landscape. *Basic Appl. Ecol.* **9**, 161–171 (2008).
 - 325. S. Tikoca, S. Hodge, M. Tuiwawa, S. Pene, J. Clayton, G. Brodie, A comparison of macro-moth assemblages across three types of lowland forest in Fiji. *J. Res. Lepid.* **49**, 69–79 (2017).
 - 326. J. E. Tondoh, A. M. Guéi, C. Csuzdi, P. Okoth, Effect of land-use on the earthworm assemblages in semi-deciduous forests of Central-West Ivory Coast. *Biodivers. Conserv.* **20**, 169–184 (2011).
 - 327. M. J. Trimble, R. J. van Aarde, Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. *Anim. Conserv.* **17**, 441–453 (2014).
 - 328. R. B. Twedt, D. J., Wilson, R. R., Henne-Kerr, J. L. & Hamilton, Impact of forest type and management strategy on avian densities in the Mississipi Alluvial Valley, USA. *For. Ecol. Manage.* **123**, 261–274 (1999).
 - 329. C. Udayana, H. P. Andreassen, C. Skarpe, Understory diversity and composition after

- planting of teak and mahogany in Yogyakarta, Indonesia. J. Sustain. For. 39, 494–510 (2020).
- 330. A. Ueda, et al., Effect of habitat transformation from grassland to *Acacia mangium* plantation on dung beetle assemblage in East Kalimantan, Indonesia. *J. Insect Conserv.* **19**, 765–780 (2015).

10

15

20

25

30

35

40

- 331. K. Upadhaya, N. Thapa, S. K. Barik, Tree diversity and biomass of tropical forests under two management regimes in Garo hills of north-eastern India. *Trop. Ecol.* **56**, 257–268 (2015).
- 332. R. N. Vasconcelos, E. C. B. Cambui, E. Mariano-Neto, P. L. B. da Rocha, M. Z. Cardoso, The role of *Eucalyptus* planted forests for fruit-feeding butterflies' conservation in fragmented areas of the Brazilian Atlantic forest. *For. Ecol. Manage.* **432**, 115–120 (2019).
- 333. P. M. Vergara, J. A. Simonetti, Avian responses to fragmentation of the Maulino Forest in central Chile. *Oryx.* **38**, 383–388 (2004).
- 334. G. H. Volpato, V. M. Prado, L. dos Anjos, What can tree plantations do for forest birds in fragmented forest landscapes? A case study in southern Brazil. *For. Ecol. Manage.* **260**, 1156–1163 (2010).
- 335. J. R. Vonesh, Patterns of richness and abundance in a tropical African leaf-litter herpetofauna. *Biotropica*. **33**, 502–510 (2001).
- 336. R. C. Waldick, B. Freedman, R. J. Wassersug, The consequences for amphibians of the conversion of natural, mixed-species forests to conifer plantations in southern New Brunswick. *Can. Field-Naturalist.* **113**, 408–418 (1999).
 - 337. J. Wang, Q.-S. Liao, W.-M. Ding, X.-L. Tong, Invertebrate biodiversity in litter layers of natural forest and *Eucalyptus* plantation in eastern Guangdong, China. *Chinese J. Appl. Ecol.* **19**, 25–31 (2008).
 - 338. E. Warren-Thomas, et al., Ground beetle assemblages in Beijing's new mountain forests. *For. Ecol. Manage.* **334**, 369–376 (2014).
 - 339. E. L. Webb, R. N. Sah, Structure and diversity of natural and managed sal (*Shorea robusta* Gaertn.f.) forest in the Terai of Nepal. *For. Ecol. Manage.* **176**, 337–353 (2003).
 - 340. S. Yamamoto, K. Ikeda, S. Kamitani, Species diversity and community structure of rove beetles (Coleoptera: Staphylinidae) attracted to dung of sika deer in coniferous forests of southwest Japan. *Entomol. Sci.* **17**, 52–58 (2014).
 - 341. Y. Yamaura, H. Taki, H. Makihara, M. Isono, Y. Fujita, K. Okabe, Revisitation of sites surveyed 19 years ago reveals impoverishment of longhorned beetles in natural and planted forests. *Entomol. Sci.* **14**, 56–67 (2011).
 - 342. Z. Yang, H. Jin, G. Wang, An assessment of restoration success to forests planted for ecosystem restoration in loess plateau, Northwestern China. *Environ. Monit. Assess.* **164**, 357–368 (2010).
 - 343. S. Yoshikura, S. Yasui, T. Kamijo, Comparative study of forest-dwelling bats' abundances and species richness between old-growth forests and conifer plantations in Nikko National Park, central Japan. *Mammal Study.* **36**, 189–198 (2011).
 - 344. X.-D. Yu, T.-H. Luo, H.-Z. Zhou, Carabus (Coleoptera: Carabidae) assemblages of native forests and non-native plantations in Northern China. *Entomol. Fenn.* **15**, 129–137 (2004).
 - 345. X.-D. Yu, T.-H. Luo, H.-Z. Zhou, Distribution of carabid beetles among regenerating and natural forest types in Southwestern China. *For. Ecol. Manage.* **231**, 169–177 (2006).
 - 346. X.-D. Yu, T.-H. Luo, H.-Z. Zhou, Distribution of carabid beetles among 40-year-old regenerating plantations and 100-year-old naturally regenerated forests in Southwestern China. *For. Ecol. Manage.* **255**, 2617–2625 (2008).

- 347. X.-D. Yu, T.-H. Luo, H.-Z. Zhou, Distribution of ground-dwelling beetle assemblages (Coleoptera) across ecotones between natural oak forests and mature pine plantations in North China. *J. Insect Conserv.* **14**, 617–626 (2010).
- 348. Q. Zhang, R. Han, F. Zou, Effects of artificial afforestation and successional stage on a lowland forest bird community in southern China. *For. Ecol. Manage.* **261**, 1738–1749 (2011).

15

20

25

30

40

- 349. J.-W. Zhao, Z.-X. Lu, Y.-Q. Chen, Diversity of canopy foraging ant communities in secondary natural forest and plantations in Lüchun, Yunnan. *For. Res.* **30**, 823–830 (2017).
- 350. P. I. Araujo, A. T. Austin, Exotic pine forestation shifts carbon accumulation to litter detritus and wood along a broad precipitation gradient in Patagonia, Argentina. *For. Ecol. Manage.* **460** (2020).
 - 351. C. B. M. Arevalo, J. S. Bhatti, S. X. Chang, D. Sidders, Ecosystem carbon stocks and distribution under different land-uses in north central Alberta, Canada. *For. Ecol. Manage.* **257**, 1776–1785 (2009).
 - 352. E. E. Atkinson, E. Marín-Spiotta, Land use legacy effects on structure and composition of subtropical dry forests in St. Croix, U.S. Virgin Islands. *For. Ecol. Manage.* **335**, 270–280 (2015).
 - 353. R. Baishya, S. K. Barik, K. Upadhaya, Distribution pattern of aboveground biomass in natural and plantation forests of humid tropics in northeast India. *Trop. Ecol.* **50**, 295–304 (2009).
 - 354. Z. Baruch, S. Nozawa, E. Johnson, E. Yerena, Ecosystem dynamics and services of a paired Neotropical montane forest and pine plantation. *Rev. Biol. Trop.* **67**, 24–35 (2019).
 - 355. S. K. Behera, N. Sahu, A. K. Mishra, S. S. Bargali, M. D. Behera, R. Tuli, Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship with stand structural attributes. *Ecol. Eng.* **99**, 513–524 (2017).
 - 356. H. Cai, et al., Carbon storage, net primary production, and net ecosystem production in four major temperate forest types in northeastern China. *Can. J. For. Res.* **46**, 143–151 (2016).
 - 357. R. G. César, et al., Early ecological outcomes of natural regeneration and tree plantations for restoring agricultural landscapes. *Ecol. Appl.* **28**, 373–384 (2018).
 - 358. G.-S. Chen, Y.-S. Yang, J.-S. Xie, J.-F. Guo, R. Gao, W. Qian, Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. *Ann. For. Sci.* **62**, 659–668 (2005).
- 359. E. Cuevas, S. Brown, A. E. Lugo, Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. *Plant Soil*. **135**, 257–268 (1991).
 - 360. G. M. Devagiri, A. K. Khaple, H. B. Anithraj, C. G. Kushalappa, A. K. Krishnappa, S. B. Mishra, Assessment of tree diversity and above-ground biomass in coffee agroforest dominated tropical landscape of India's Central Western Ghats. *J. For. Res.* **31**, 1005–1015 (2020).
 - 361. Y. Di, et al., Carbon storage and its allocation pattern of forest ecosystems with different restoration methods in subtropical China. *Chinese Sci. Bull.* **57**, 1553–1561 (2012).
 - 362. S. Fan, F. Guan, X. Xu, D. I. Forrester, W. Ma, X. Tang, Ecosystem carbon stock loss after land use change in subtropical forests in China. *Forests*. **7** (2016).
 - 363. T. L. Fleming, B. Freedman, Conversion of natural, mixed-species forests to conifer plantations: implications for dead organic matter and carbon storage. *Ecoscience*. **5**, 213–221 (1998).

- 364. A. Gahagan, C. P. Giardina, J. S. King, D. Binkley, K. S. Pregitzer, A. J. Burton, Carbon fluxes, storage and harvest removals through 60 years of stand development in red pine plantations and mixed hardwood stands in Northern Michigan, USA. *For. Ecol. Manage.* 337, 88–97 (2015).
- 365. B. S. Guedes, B. A. Olsson, A. A. Sitoe, G. Egnell, Net primary production in plantations of *Pinus taeda* and *Eucalyptus cloeziana* compared with a mountain miombo woodland in Mozambique. *Glob. Ecol. Conserv.* **15** (2018).

10

15

20

25

30

35

- 366. J. Haggar, B. Medina, R. M. Aguilar, C. Munoz, Land use change on coffee farms in southern Guatemala and its environmental consequences. *Environ. Manage.* **51**, 811–823 (2013).
- 367. V. Hagger, K. Wilson, J. R. England, J. M. Dwyer, Water availability drives aboveground biomass and bird richness in forest restoration plantings to achieve carbon and biodiversity cobenefits. *Ecol. Evol.* **9**, 14379–14393 (2019).
- 368. H. Hase, H. Foelster, Impact of plantation forestry with teak (*Tectona grandis*) on the nutrient status of young alluvial soils in West Venezuela. *For. Ecol. Manage.* **6**, 33–57 (1983).
- 369. C. F. Jordan, E. G. Farnworth, Natural vs. plantation forest: a case study of land reclamation strategies for the humid tropics. *Environ. Manage.* **6**, 485–492 (1982).
- 370. T. Kawahara, Y. Kanazawa, S. Sakurai, Biomass and net production of man-made forests in the Philippines. *J. Japanese For. Soc.* **63**, 320–327 (1981).
- 371. J. I. N. Kumar, K. Patel, R. N. Kumar, R. K. Bhoi, An assessment of carbon stock for various land use system in Aravally mountains, Western India. *Mitig. Adapt. Strateg. Glob. Chang.* **15**, 811–824 (2010).
- 372. P. Laclau, Biomass and carbon sequestration of ponderosa pine plantations and native cypress forests in northwest Patagonia. *For. Ecol. Manage.* **180**, 317–333 (2003).
- 373. T. Lewis, et al., Conversion of sub-tropical native vegetation to introduced conifer forest: impacts on below-ground and above-ground carbon pools. *For. Ecol. Manage.* **370**, 65–75 (2016).
- 374. S. Li, et al., Changes in biomass carbon and soil organic carbon stocks following the conversion from a secondary coniferous forest to a pine plantation. *PLoS One.* **10**, 1–14 (2015).
- 375. J. J. Li, Y. M. Zheng, J. X. Yan, H. J. Li, J. Z. He, Succession of plant and soil microbial communities with restoration of abandoned land in the Loess Plateau, China. *J. Soils Sediments.* **13**, 760–769 (2013).
- 376. D. Lin, et al., Forest biomass recovery after different anthropogenic disturbances: relative importance of changes in stand structure and wood density. *Eur. J. For. Res.* **134**, 769–780 (2015).
 - 377. K. Lin, et al., Improved allometric equations for estimating biomass of the three *Castanopsis carlesii* H. forest types in subtropical China. *New For.* **48**, 115–135 (2017).
- 40 378. F. N. G. N'Gbala, A. M. Guéi, J. E. Tondoh, Carbon stocks in selected tree plantations, as compared with semi-deciduous forests in centre-west Côte d'Ivoire. *Agric. Ecosyst. Environ.* **239**, 30–37 (2017).
 - 379. B. Nihlgård, Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. *Oikos*. **23**, 69–81 (1972).
 - 380. L. M. A. Omoro, M. Starr, P. K. E. Pellikka, Tree biomass and soil carbon stocks in indigenous forests in comparison to plantations of exotic species in the Taita Hills of Kenya. *Silva Fenn.* 47 (2013).
 - 381. A. M. Osuri, A. Gopal, T. R. S. Raman, R. Defries, S. C. Cook-Patton, S. Naeem, Greater

- stability of carbon capture in species-rich natural forests compared to species-poor plantations. *Environ. Res. Lett.* **15**, 34011 (2020).
- 382. J. Otuoma, B. Anyango, G. Ouma, D. Okeyo, G. M. Muturi, B. Oindo, Determinants of aboveground carbon offset additionality in plantation forests in a moist tropical forest in western Kenya. *For. Ecol. Manage.* **365**, 61–68 (2016).

10

15

20

25

30

35

40

- 383. L. Pangle, J. M. Vose, R. O. Teskey, Radiation use efficiency in adjacent hardwood and pine forests in the southern Appalachians. *For. Ecol. Manage.* **257**, 1034–1042 (2009).
- 384. P. Pibumrung, N. Gajaseni, A. Popan, Profiles of carbon stocks in forest, reforestation and agricultural land, Northern Thailand. *J. For. Res.* **19**, 11–18 (2008).
- 385. N. D. Preece, G. M. Crowley, M. J. Lawes, P. van Oosterzee, Comparing above-ground biomass among forest types in the Wet Tropics: small stems and plantation types matter in carbon accounting. *For. Ecol. Manage.* **264**, 228–237 (2012).
- 386. J. W. Raich, D. A. Clark, L. Schwendenmann, T. E. Wood, Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment. *PLoS One.* **9**, 1–8 (2014).
- 387. A. K. L. Silva, S. S. Vasconcelos, C. J. R. de Carvalho, I. M. C. C. Cordeiro, Litter dynamics and fine root production in *Schizolobium parahyba* var. *amazonicum* plantations and regrowth forest in Eastern Amazon. *Plant Soil*. **347**, 377–386 (2011).
- 388. R. B. Thapa, M. Watanabe, T. Motohka, T. Shiraishi, M. Shimada, Calibration of aboveground forest carbon stock models for major tropical forests in central Sumatra using airborne LiDAR and field measurement data. *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* **8**, 661–673 (2015).
- 389. A. R. Urbano, W. S. Keeton, Carbon dynamics and structural development in recovering secondary forests of the northeastern U.S. *For. Ecol. Manage.* **392**, 21–35 (2017).
- 390. J. Xie, J. Guo, Z. Yang, Z. Huang, G. Chen, Y. Yang, Rapid accumulation of carbon on severely eroded red soils through afforestation in subtropical China. *For. Ecol. Manage.* **300**, 53–59 (2013).
 - 391. Y. Yang, et al., Carbon and nitrogen pools in Chinese fir and evergreen broadleaved forests and changes associated with felling and burning in mid-subtropical China. *For. Ecol. Manage.* **216**, 216–226 (2005).
 - 392. Y. Yang, G. S. Chen, J. F. Guo, J. S. Xie, X. G. Wang, Soil respiration and carbon balance in a subtropical native forest and two managed plantations. *Plant Ecol.* **193**, 71–84 (2007).
 - 393. Y. Yang, et al., Large ecosystem service benefits of assisted natural regeneration. *J. Geophys. Res. Biogeosciences.* **123**, 676–687 (2018).
 - 394. J. Zhang, J. Zhang, L. Yang, A long-term effect of Larix monocultures on soil physicochemical properties and microbes in northeast China. *Eur. J. Soil Biol.* **96** (2020).
 - 395. H. Zheng, et al., Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. *For. Ecol. Manage.* **255**, 1113–1121 (2008).
 - 396. H. Zhou, S. Meng, Q. Liu, Long-term response of living forest biomass to extensive logging in subtropical China. *J. For. Res.* **30**, 1679–1687 (2019).
 - 397. J.-J. Zhu, E.-F. Dai, D. Zheng, X.-L. Wang, Carbon density and allocation of forest ecosystems of Moshao Forest Farm at Huitong National Research Station of Forest Ecosystem. *J. Nat. Resour.* **31**, 1871–1880 (2016).
 - 398. D. Fu, C. Duan, X. Hou, T. Xia, K. Gao, Patterns and relationships of plant traits, community structural attributes, and eco-hydrological functions during a subtropical secondary succession in Central Yunnan (Southwest China). *Arch. Biol. Sci.* **61**, 741–749 (2009).
 - 399. D. V. Guimar es, 'Erosão hídrica em sistemas florestais no extremo Sul da Bahia", thesis,

Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil (2015).

5

10

15

20

25

30

- 400. X. Hou, C. Duan, C. Q. Tang, D. Fu, Nutrient relocation, hydrological functions, and soil chemistry in plantations as compared to natural forests in central Yunnan, China. *Ecol. Res.* **25**, 139–148 (2010).
- 401. Z. Huang, Z. Ouyang, F. Li, H. Zheng, X. Wang, Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China. *J. Environ. Sci.* 22, 1765–1773 (2010).
- 402. W. Jirasuktaveekul, S. Paramee, C. Sritulanon, S. Rungrojwanich, M. Bhuddawong, P. Ploicharuen, "Soil and water losses in reforestation intercropped with vetiver strips at the Ping, Wang, Yom and Nan sub-river basins of Northern Thailand" (Pacific Rim Vetiver Network, ICV-2 papers, part four, 1998).
- 403. L. Ma, Y. Teng, Z. Shangguan, Ecohydrological responses to secondary natural *Populus davidiana* and plantation *Pinus tabulaeformis* woodlands on the Loess Plateau of China. *Ecohydrology*. **621**, 612–621 (2014).
- 404. S. G. Martins, "Erosão hídrica em povoamento de Eucalipto sobre solos coesos nos tabuleiros costeiros, ES", thesis, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil (2005).
 - 405. A. H. Oliveira, "Erosão hídrica e seus componentes na sub-bacia hidrográfica do horto florestal terra dura, Eldorado do Sul", thesis, Universidade Federal de Lavras, Lavras, Minas Gerais, Brasil (2011).
 - 406. A. H. Oliveira, M. L. N. Silva, N. Curi, J. C. Avanzi, G. K. Neto, E. F. Araújo, Water erosion in soils under *Eucalyptus* forest as affected by development stages and management systems. *Ciência e Agrotecnologia*. **37**, 159–169 (2013).
 - 407. G. Pardini, M. Gispert, G. Dunjo, Runoff erosion and nutrient depletion in five Mediterranean soils of NE Spain under different land use. *Sci. Total Environ.* **309**, 213–224 (2003).
 - 408. L. Qi, X. Zhang, J. Zhou, Z. Wang, Runoff and sediment characteristics of typical vegetation restoration patterns in a watershed, Wuling Mountain Region. *Sources Sci.* **30**, 709–716 (2008).
- 409. B. H. N. Razafindrabe, B. He, S. Inoue, T. Ezaki, R. Shaw, The role of forest stand density in controlling soil erosion: implications to sediment-related disasters in Japan. *Environ. Monit. Assess.* **160**, 337–354 (2010).
 - 410. M. A. da Silva, M. L. N. Silva, N. Curi, J. C. Avanzi, F. P. Leite, Sistemas de manejo em plantios florestais de Eucalipto e perdas de solos e agua na regiao do vale do rio doce, MG. *Cienc. Florestal, St. Maria.* **21**, 765–776 (2011).
 - 411. B. P. C. Silva, M. L. N. Silva, P. V. G. Batista, L. M. Pontes, E. F. Araujo, N. Curi, Soil and water losses in *Eucalyptus* plantation and natural forest and determination of the USLE factors at a pilot sub-basin in Rio Grande do Sul, Brazil. *Cienc. e Agrotecnologia*. **40**, 432–442 (2016).
- 412. C. Q. Tang, X. Hou, K. Gao, T. Xia, C. Duan, D. Fu, Man-made versus natural forests in mid-Yunnan, southwestern China. *Mt. Res. Dev.* **27**, 242–249 (2007).
 - 413. J. Wu, Q. Chen, K. Wang, Y. Zhao, Z. Tong, Soil and water conservation benefits and their impacts on soil organic carbon of different vegetation in Central Yunnan Plateau. *J. Northwest A&F Univ.* **43**, 141–148 (2015).
- 414. Y. Yang, Z. Wang, X. Chen, R. Zhang, Effects of different utilization model on soil and water conservation and ecology in red soil region of south China. *J. Soil Water Conserv.* **18**, 84–87 (2004).
 - 415. H. Zheng, et al., Impacts of reforestation approaches on runoff control in the hilly red soil

region of Southern China. J. Hydrol. 356, 174–184 (2008).

5

10

15

20

25

30

35

40

- 416. J. Zhou, X. Zhang, D. He, J. Zhou, X. Zhou, Z. Wang, Characteristic of runoff and sediment yield and its influencing factors analysis on slope scale of small watershed in northwest Hunan. *J. Soil Water Conserv.* **24**, 18–22 (2010).
- 417. B. Z. Zhou, X. M. Wang, Y. H. Cao, W. J. Kong, Y. L. Tang, Water and soil conservation characteristics for two typical subtropical forests in southeast China. *Adv. Mater. Res.* **518–523**, 4827–4831 (2012).
- 418. M. B. Adams, J. N. Kochenderfer, F. Wood, T. R. Angradi, P. Edwards, "Forty years of hydrometeorological data from the Fernow Experimental Forest, West Virginia" (United States Department of Agriculture, Forest Service, General Technical Report NE-184, 1994).
- 419. M. B. Adams, N. Kochendenfer, "Recovery of central Appalachian forested watersheds: comparison of Fernow and Coweeta" in *Long-Term Response of a Forest Watershed Ecosystem: Clearcutting in the Southern Appalachians*, W. T. Swank, R. Brewster, Eds. (Oxford University 5 Press, 2014), pp. 194–212.
- 420. X. Liu, et al., Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain. *Agric. For. Meteorol.* **262**, 14–23 (2018).
- 421. D. M. Amatya, R. W. Skaggs, Long-term hydrology and water quality of a drained pine plantation in North Carolina. *Trans. Am. Soc. Agric. Biol. Eng.* **54**, 2087–2098 (2011).
- 422. M. Aubinet, C. Vincke, B. Heinesch, Q. Hurdebise, T. Manise, Twenty years of measurements of the exchange of CO₂ and water vapour at the Vielsalm Terrestrial Observatory. *Forêt-Nature*. **139**, 17–28 (2016).
- 423. G. Aussenac, C. Boulangeat, Interception of precipitation and actual evapotranspiration in broad-leaved (*Fagus sylvatica* L.) and resinous (*Pseudotsuga menziesii* (Mirb) Franco) stands. *Ann. des Sci. For.* **37**, 91–107 (1980).
- 424. E. Beaulieu, et al., Hydrological and vegetation response to climate change in a forested mountainous catchment. *Model. Earth Syst. Environ.* **2**, 191 (2016).
- 425. C. Bailly, G. B. de Coignac, C. Malvos, J. M. Ningre, J. M. Sarrailh, "Étude de l'influence du couvert naturel et de ses modifications à Madagascar." *Cahiers Scientifiques* **4**, 1–114 (Centre Scientifique Forestier Tropical, Nogent-sur-Marne, France, 1974).
- 426. P. N. Beets, G. R. Oliver, Water use by managed stands of Pinus radiata, indigenous podocarp/hardwood forest, and improved pasture in the central North Island of New Zealand. *New Zeal. J. For. Sci.* **37**, 306–323 (2007).
- 427. P. Benecke, Water uptake of a beech and a spruce ecosystem in Hoch-Solling. *Schriften aus der Forstl. Fak. der Univ. Göttingen.* 77, 1–150 (1984).
 - 428. W. Bouten, P. E. Jansson, Water balance of the Solling spruce stand as simulated with various forest-soil-atmosphere models. *Ecol. Modell.* **83**, 245–253 (1995).
- 429. J. Sutmöller, H. Meesenburg, Impact of forest stand development and climate change on the water budget of the Lange Bramke basin, Harz Mountains, Germany. *Hydrol. und Wasserbewirtschaftung.* **H.3**, 184–198 (2018).
- 430. T. W. Berger, H. Untersteiner, M. Toplitzer, C. Neubauer, Nutrient fluxes in pure and mixed stands of spruce (*Picea abies*) and beech (*Fagus sylvatica*). *Plant Soil.* **322**, 317–342 (2009).
- 431. S. Bigelow, Evapotranspiration modelled from stands of three broad-leaved tropical trees in Costa Rica. *Hydrol. Process.* **15**, 2779–2796 (2001).
 - 432. H. W. Loescher, H. L. Gholz, J. M. Jacobs, S. F. Oberbauer, Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica. *J. Hydrol.* **315**, 274–

294 (2005).

5

10

15

20

25

30

35

40

- 433. J. R. Blackie, The water balance of the Kimakia catchments. *East African Agric. For. J.* 43, 155–174 (1979).
- 434. L. Bren, P. Hopmans, Paired catchments observations on the water yield of mature eucalypt and immature radiata pine plantations in Victoria, Australia. *J. Hydrol.* **336**, 416–429 (2007).
- 435. L. J. Bren, M. Papworth, Early water yield effects of conversion of slopes of a *Eucalyptus* forest catchment to Radiata pine plantation. *Water Resour. Res.* 27, 2421–2428 (1991).
- 436. J. M. Buttle, A. G. Farnsworth, Measurement and modeling of canopy water partitioning in a reforested landscape: the Ganaraska Forest, southern Ontario, Canada. *J. Hydrol.* **466–467**, 103–114 (2012).
- 437. G. Sun, A. Noormets, J. Chen, S. G. McNulty, Evapotranspiration estimates from eddy covariance towers and hydrologic modeling in managed forests in Northern Wisconsin, USA. *Agric. For. Meteorol.* **148**, 257–267 (2008).
- 438. E. S. Verry, D. R. Timmons, Precipitation nutrients in the open and under two forests in Minnesota. *Can. J. For. Res.* **7**, 112–119 (1977).
- 439. R. Calvo de Anta, M. X. Gómez Rey, Spatial distribution of water cycling in forest soils under *Pinus radiata* in Galicia (NW Spain). *Edafología*. **9**, 49–60 (2002).
- 440. E. Dambrine, et al., Budgets of mineral elements in small forested catchments in Galicia (NW Spain). *Ann. For. Sci.* **57**, 23–38 (2000).
- 441. A. P. González, F. D.-F. Viqueira, Contribution to the knowledge on soil water use. *Ann. Edafol. y Agrobiol.* **44**, 1081–1100 (1985).
- 442. J. A. Rodríguez-Suárez, B. Soto, R. Perez, F. Diaz-Fierros, Influence of *Eucalyptus globulus* plantation growth on water table levels and low flows in a small catchment. *J. Hydrol.* **396**, 321–326 (2011).
- 443. B. A. Carbon, F. J. Roberts, P. Farrington, J. D. Beresford, Deep drainage and water use of forests and pastures grown on deep sands in a Mediterranean environment. *J. Hydrol.* **55**, 53–64 (1982).
- 444. P. M. Cornish, R. A. Vertessy, Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest. *J. Hydrol.* **242**, 43–63 (2001).
- 445. A. A. Webb, A. Kathuria, L. Turner, Longer-term changes in streamflow following logging and mixed species eucalypt forest regeneration: the Karuah experiment. *J. Hydrol.* **464–465**, 412–422 (2012).
- 446. A. C. de Almeida, J. V. Soares, Comparison of water use in *Eucalyptus grandis* plantations and Atlantic rainforest on the East coast of Brazil. *Rev. Árvore*. **27**, 159–170 (2003).
- 447. J. V. Soares, A. C. Almeida, Modeling the water balance and soil water fluxes in a fast growing *Eucalyptus* plantation in Brazil. *J. Hydrol.* **253**, 130–147 (2001).
- 448. W. W. Verstraeten, et al., "Quantitative analysis of the evaporation from forests compared with pasture and cropland" (Flemish Impulse Programme for Nature Development, VLINA Report no. 9906, 2001).
- 449. A. J. Dolman, E. J. Moors, J. A. Elbers, W. Snijder, P. H. Hamaker, "Water use of forests in the 25 Netherlands" (Report, Alterra, Wageningen, The Netherlands, 2000).
- 450. X. Duan, H. Zhang, Hydrological factor characteristics of Bingla mountain small watershed in Liaoning Province. *J. Liaoning For. Sci. Technol.* **1**, 10–26 (2014).
- 451. T. Yan, Z. Xing, W. You, G. Zhao, W. Wei, H. Zhang, Energy balance and evapotranspiration in *Larix olgensis* forest in Bingla Mountain of Liaoning Province. *J. Shenyang Agric. Univ.* **40**, 449–452 (2009).

- 452. T. Yan, W. You, H. Zhang, W. Wei, R. Wang, G. Zhao, Energy balance and evapotranspiration in a natural secondary forest in Eastern Liaoning Province, China. *Acta Ecol. Sin.* **35**, 172–179 (2015).
- 453. C. Echeverría, A. Huber, F. Taberlet, Estudio comparativo de los componentes del balance hídrico en un bosque nativo y una pradera en el sur de Chile. *Bosque (Valdivia)* **28**, 271–280 (2007).

10

15

25

30

35

40

- 454. A. J. Huber, R. Trecaman, Water-use efficiency of *Pinus radiata* stands in Chile. *Bosque*. **25**, 33–43 (2004).
- 455. A. Lara, et al., Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile. *For. Ecol. Manage.* **258**, 415–424 (2009).
- 456. C. Oyarzún, A. Huber, Water balance in young plantations of *Eucalyptus globulus* and Pinus radiata in southern Chile. *Terra*. **17**, 35–44 (1999).
- 457. V. G. Einsele, et al., Water budget, intake and discharge of matter, and biological studies in the Schönbuch Nature Park near Tübingen. *Forstw. Cbl.* **102**, 281–324 (1983).
- 458. J. A. Elliott, B. M. Toth, R. J. Granger, J. W. Pomeroy, Soil moisture storage in mature and replanted sub-humid boreal forest stands. *Can. J. Soil Sci.* **78**, 17–27 (1998).
- 459. J. W. Pomeroy, R. J. Granger, A. Pietroniro, J. E. Elliott, B. Toth, N. Hedstrom, "Hydrological pathways in the Prince Albert Model Forest" (NHRI Contribution Series No. CS-97004. National Hydrology Research Institute, Saskatoon, Canada, 1997).
- 460. B. Fahey, R. Jackson, Hydrological impacts of converting native forests and grasslands to pine plantations, South Island, New Zealand. *Agric. For. Meteorol.* **84**, 69–82 (1997).
 - 461. J. Fan, K. T. Oestergaard, A. Guyot, D. A. Lockington, Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. *J. Hydrol.* **519**, 1120–1129 (2014).
 - 462. C. R. Ford, S. H. Laseter, W. T. Swank, J. M. Vose, Can forest management be used to sustain water-based ecosystem services in the face of climate change? *Ecol. Appl.* 21, 2049–2067 (2011).
 - 463. F. I. Unit, K. B. Station, Statistical report of hydrological obsrvation at Tatsunokuchiyama Experimental Watershed. *Bull. For. For. Prod. Res. Inst.* **308**, 133–195 (1979).
 - 464. I. Hosoda, Y. Kominami, T. Miyama, M. Okano, Y. Goto, Hydrological observation reports in the Tatsunokuchi-yama Experimental Watershed (January 2006-December 2010). *Bull. For. For. Prod. Res. Inst.* **18**, 111–128 (2019).
 - 465. K. Tamai, Y. Goto, Y. Kominami, T. Miyama, I. Hosoda, Hydrological observation reports in Tatsunokuchi-yama Experimental Watershed (January, 2001 December, 2005). *Bull. For. For. Prod. Res. Inst.* 7, 125–138 (2008).
 - 466. H. W. Führer, "Influence of forest and silvicultural treatment on the amount, temporal distribution and quality of streamflow from small catchments: a project study on the beech forest of Krofdorf" (Forstliche Forschungsberichte München no. 106, 1990).
 - 467. C. P. Ghimire, L. A. Bruijnzeel, M. W. Lubczynski, M. Bonell, Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya. *Hydrol. Earth Syst. Sci.* 18, 4933–4949 (2014).
 - 468. H. L. Gholz, K. L. Clark, Energy exchange across a chronosequence of slash pine forests in Florida. *Agric. For. Meteorol.* **112**, 87–102 (2002).
 - 469. H. Riekerk, Influence of silvicultural practices on the hydrology of pine flatwoods in Florida. *Water Resour. Res.* **25**, 713–719 (1989).
 - 470. G. Sun, et al., A comparison of the watershed hydrology of coastal forested wetlands and the mountainous uplands in the Southern US. *J. Hydrol.* **263**, 92–104 (2002).

- 471. J. Gyenge, M. E. Fernández, T. Schlichter, Effects on site water balance of conversion from native mixed forest to Douglas-fir plantation in N.W. Patagonia. *New For.* **38**, 67–80 (2009).
- 472. J. E. Gyenge, M. Elena Fernández, J. Licata, M. Weigandt, B. J. Bond, T. M. Schlichter, Water use and productivity of native and planted forests in NW Patagonia: ecohydrological and ecophysiological approaches. *Ecol. Austral.* 21, 271–284 (2011).

10

15

20

25

30

35

- 473. M. Herbst, P. T. W. Rosier, D. D. McNeil, R. J. Harding, D. J. Gowing, Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. *Agric. For. Meteorol.* **148**, 1655–1667 (2008).
- 474. C. Neal, et al., Relationships between precipitation, stemflow and throughfall for a lowland beech plantation, Black Wood, Hampshire, southern England: findings on interception at a forest edge and the effects of storm damage. *J. Hydrol.* **146**, 221–233 (1993).
- 475. J. Roberts, P. Rosier, The impact of broadleaved woodland on water resources in lowland UK: I. Soil water changes below beech woodland and grass on chalk sites in Hampshire. *Hydrol. Earth Syst. Sci.* **9**, 596–606 (2005).
- 476. M. Herbst, M. Mund, R. Tamrakar, A. Knohl, Differences in carbon uptake and water use between a managed and an unmanaged beech forest in central Germany. *For. Ecol. Manage.* **355**, 101–108 (2015).
- 477. P. Hervé-Fernandez, C. E. Oyarzún, S. Woelfl, Throughfall enrichment and stream nutrient chemistry in small headwater catchments with different land cover in southern Chile. *Hydrol. Process.* **30**, 4944–4955 (2016).
 - 478. C. E. Oyarzún, P. Hervé-Fernandez, C. Frêne, "Effects of land use changes and management practices on water yield in native forests and exotic plantations in Southern Chile" in *Forest Management*, A. Cruz, R. Correa, Eds. (Nova Science Publishers, 2012) pp. 79–101.
 - 479. T. Hirata, "Contributions to the problem of the relation between the forest and water in Japan. Imperial Forest Experiment Station Report, Meguro, Tokyo (1929)" in *Vegetation and Hydrology*, H. L. Penman. (Technical Communication no. 53, Commonwealth Bureau of Soils, Harpenden, U.K., 1963).
 - 480. S. Murakami, Y. Tsuboyama, T. Shimizu, M. Fujieda, S. Noguchi, Variation of evapotranspiration with stand age and climate in a small Japanese forested catchment. *J. Hydrol.* **227**, 114–127 (2000).
 - 481. I. Hosoda, H. Daimaru, W. Murakami, M. Kitada, T. Sato, Statistical reports of hydrological observation at Kamabuchi Experimental Watershed. *Bull. For. For. Prod. Res. Inst.* **376**, 1–52 (1999).
 - 482. I. Hosoda, W. Murakami, Hydrological observation reports of the Kamabuchi experimental (January 1994 to December 2000). *Bull. For. For. Prod. Res. Inst.* **5**, 99–118 (2006).
- 483. I. Hosoda, W. Murakami, S. Noguchi, Hydrological observation reports of the Kamabuchi experimental watershed No. 1, No. 2 and No. 3 experimental watersheds (January 2001 to December 2005). *Bull. For. For. Prod. Res. Inst.* **8**, 51–70 (2009).
 - 484. J.-L. Hwong, S.-C. Liaw, M.-C. Chen, H.-B. King, S.-Y. Lu, Review and analysis of forest hydrological resaerches in the Lien-hua-chi Experimental Forest. *J. Exp. For. Natl. Univ. Taiwan.* **16**, 95–114 (2002).
 - 485. R. S. Jassal, T. A. Black, D. L. Spittlehouse, C. Brümmer, Z. Nesic, Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. *Agric. For. Meteorol.* **149**, 1168–1178 (2009).

- 486. Y. Ji, T. Cai, Canopy interception in original Korean pine forest: measurement and dividual simulation in Xiaoxing'an Mountains, northeastern China. *J. Beijing For. Univ.* **37**, 41–49 (2015).
- 487. H. Sheng, T. Cai, Y. Li, Y. Liu, Rainfall redistribution in *Larix gmelinii* forest on northern of Daxing'an Mountains, North-east of China. *J. Soil Water Conserv.* **28**, 101–105 (2014).
- 488. Y. F. Yao, "Impacts of climate and forest cover changes on streamflow in the Xiaoxing'an Mountains forested watersheds", thesis, Northeast Forestry University, Shenyang, Heilongjiang, China (2011).
- 489. C. Juez, D. Peña-Angulo, M. Khorchani, D. Regüés, E. Nadal-Romero, 20-Years of hindsight into hydrological dynamics of a mountain forest catchment in the Central Spanish Pyrenees. *Sci. Total Environ.* **766**, 142610 (2021).

10

15

20

25

30

35

- 490. J. Krishnaswamy, et al., The rain-runoff response of tropical humid forest ecosystems to use and reforestation in the Western Ghats of India. *J. Hydrol.* **472–473**, 216–237 (2012).
- 491. U. L. Ladekarl, K. R. Rasmussen, S. Christensen, K. H. Jensen, B. Hansen, Groundwater recharge and evapotranspiration for two natural ecosystems covered with oak and heather. *J. Hydrol.* **300**, 76–99 (2005).
- 492. R. Ringgaard, M. Herbst, T. Friborg, Partitioning forest evapotranspiration: Interception evaporation and the impact of canopy structure, local and regional advection. *J. Hydrol.* **517**, 677–690 (2014).
- 493. J. A. Licata, J. E. Gyenge, M. E. Fernández, T. M. Schlichter, B. J. Bond, Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. *For. Ecol. Manage.* **255**, 753–764 (2008).
 - 494. X. Liu, et al., Partitioning evapotranspiration in an intact forested watershed in southern China. *Ecohydrology*. **8**, 1037–1047 (2015).
 - 495. D. Tian, et al., Variation in runoff with age of Chinese fir plantations in Central South China. *Hydrol. Process.* **22**, 4870–4876 (2008).
 - 496. G. Yu, et al., Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. *New Phytol.* **177**, 927–937 (2008).
 - 497. A. Malmer, Water-yield changes after clear-felling tropical rainforest and establishment of forest plantation in Sabah, Malaysia. *J. Hydrol.* **134**, 77–94 (1992).
 - 498. A. Malmer, M. Van Noordwijk, L. A. Bruijnzeel, "Effects of shifting cultivation and forest fire" in *Forests, Water and People in the Humid Tropics Past, Present and Future Hydrological Research for Integrated Land and Water Management*. M. Bonell, L. A. Bruijnzeel, Eds. (Cambridge University Press, Cambridge, 5 U.K., 2005), pp. 533–560.
 - 499. C. Martin, J.-F. Didon-Lescot, C. Cosandey, Hydrological functioning of small catchments on granite on Mount Lozère: influence of vegetation cover on stormflows and low flows. *Études Géographie Phys.* **30**, 3–25 (2003).
 - 500. K. Matsumoto, et al., Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. *Agric. For. Meteorol.* **148**, 1978–1989 (2008).
- 501. M. Gomyo, K. Kuraji, Long-term variation of annual loss and annual evapotranspiration in small watershed with the forest restoration and succession on denuded hills. *Journal Japanese For. Soc.* **95**, 109–116 (2013).
 - 502. K. Kuraji, N. Tanaka, M. Gomyo, "Long-term meteorological and hydrological observation at Ananomiya and Shirasaka Experimental Watersheds, Ecohydrology Research Institute, the University of Tokyo" in *Developing a Network of Long-Term Research Field Stations to Monitor Environmental Changes and Ecosystem Responses in Asian Forests*, N. Kamata, K. Kuraji, T. Owari, B. T. Guan, Eds. (The University of Tokyo Forests Press, Tokyo, 2019), pp. 81–95.

503. N. Nandakumar, R. W. Mein, "Analysis of paired catchment data for some of the hydrologic effects of landuse change" in *Hydrology and Water Resources Symposium, Newcastle* (The Institute of Engineers, Australia National Conference Publication no. 93/14, 1993), pp. 87–92.

5

10

15

20

25

30

35

- 504. E. Tsykin, E. M. Laurenson, A. Y. K. Wu, "Hydrologic effects of replacement of Eucalypt forest by pasture and pines" in *First National Symposium on Forest Hydrology, Melbourne* (The Institute of Engineers, Australia National Conference Publication no. 82/6, 1982), pp. 124–132.
- 505. F. L. Ogden, T. D. Crouch, R. F. Stallard, J. S. Hall, Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. *Water Resour. Res.* **49**, 8443–8462 (2013).
- 506. S. Wolf, W. Eugster, S. Majorek, N. Buchmann, Afforestation of tropical pasture only marginally affects ecosystem-scale evapotranspiration. *Ecosystems*. **14**, 1264–1275 (2011).
- 507. K. V. R. Schäfer, R. Oren, C. T. Lai, G. G. Katul, Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO₂ concentration. *Glob. Chang. Biol.* **8**, 895–911 (2002).
 - 508. Pilgrim DH, Doran DG, Rowbottom IA, Mackay SM, Tjendana J. "Water balance and runoff characteristics of mature and cleared pine and eucalypt catchments at Lidsdale, New South Wales." in *First National Symposium on Forest Hydrology, Melbourne* (The Institute of Engineers, Australia National Conference Publication no. 82/6, 1982), pp. 103–110.
 - 509. W. M. Putuhena, I. Cordery, Some hydrological effects of changing forest cover from eucalypts to *Pinus radiata*. *Agric. For. Meteorol.* **100**, 59–72 (2000).
- 510. J. H. Richardson, Some implications of tropical forest replacement in Jamaica. *Zeitschrift für Geomorphol. Neue Folge Suppl. Band.* **44**, 107–118 (1982).
 - 511. A. Rothe, C. Huber, K. Kreutzer, W. Weis, Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other European case studies. *Plant Soil.* **240**, 33–45 (2002).
 - 512. L. K. Rowe, A. J. Pearce, Hydrology and related changes after harvesting native forest catchments and establishing *Pinus radiata* plantations. Part 2. The native forest water balance and changes in streaflow after harvesting. *Hydrol. Process.* **8**, 281–297 (1994).
 - 513. L. K. Rowe, A. J. Pearce, C. L. O'Loughlin, Hydrology and related changes after harvesting native forest catchments and establishing *Pinus radiata* plantations. Part 1. Introduction to study. *Hydrol. Process.* **8**, 263–279 (1994).
 - 514. L. F. Salemi, et al., Land-use change in the Atlantic rainforest region: consequences for the hydrology of small catchments. *J. Hydrol.* **499**, 100–109 (2013).
 - 515. D. F. Scott, R. Smith, Preliminary empirical models to predict reductions in total and low flows resulting from afforestation. *Water SA*. **23**, 135–150 (1997).
- 516. D. F. Scott, F. W. Prinsloo, Longer-term effects of pine and eucalypt plantations on streamflow. *Water Resour. Res.* **45**, 1–8 (2008).
 - 517. G. L. Vásquez-Velásquez, "Influence of land use in the hydrological response of headwaters in the central Andes of Colombia", thesis, Universidad Nacional de Colombiaa, Sede Medellín, Colombia (2016).
- 518. M. Voigtlaender, "Caracterização hidrológica e biogeoquímica de microbacias: Uma comparação entre Mata Atlântica e *Pinus taeda* L.", thesis, Universidade de São Paulo (2007).

519. X. Wang, "The impact of forest on runoff under different space scale on the Loess Plateau", thesis, Beijing Forestry University, Beijing, China (2015).

5

10

15

20

25

30

35

- 520. J. Zhang, L. Na, H. Dong, P. Wang, Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau. *Acta Ecol. Sin.* **28**, 3597–3605 (2008).
- 521. H. Yang, H. T. Choi, H. Lim, Effects of forest thinning on the long-term runoff changes of coniferous forest plantation. *Water.* **11**, 2301 (2019).
- 522. G. Zhou, Z. Yu, S. Peng, A study on energy balance in three ecosystems at Xiaoliang Experimental Station. *J. Trop. Subtrop. Bot.* 7, 93–101 (1999).
- 523. G. Y. Zhou, J. D. Morris, J. H. Yan, Z. Y. Yu, S. L. Peng, Hydrological impacts of reafforestation with eucalypts and indigenous species: a case study in southern China. *For. Ecol. Manage.* **167**, 209–222 (2002).
- 524. Z. Zou, B. Chen, Hydrological features of rainstorms in two forest types in Maofeng Mountain of Guangzhou. *Ecol. Environ. Sci.* **26**, 770–777 (2017).
- 525. G. Hallsby, et al., Effects of intensity of forest regeneration measures on stand development in a nationwide Swedish field experiment. *Forestry.* **88**, 441–453 (2015).
- 526. M. D. Cain, Growth expectations from alternative thinning regimes and prescribed burning in naturally regenerated loblolly-shortleaf pine stands through age 20. *For. Ecol. Manage.* **81**, 227–241 (1996).
- 527. G. Y. A. Doua-Bi, et al., Taking advantage of natural regeneration potential in secondary forests to recover commercial tree resources in Côte d'Ivoire. *For. Ecol. Manage.* **493**, 119240 (2021).
- 528. A. C. Fantini, C. Schuch, A. Siminski, I. Siddique, Small-scale management of secondary forests in the Brazilian Atlantic forest. *Floresta e Ambient.* **26**, e20170690 (2019).
- 529. K. R. Julin, D. V. D'amore, Tree growth on forested wetlands of southeastern Alaska following clearcutting. *West. J. Appl. For.* **18**, 30–34 (2003).
- 530. D. G. Pitt, L. Lanteigne, M. K. Hoepting, J. Plamondon, Effects of precommercial thinning on the forest value chain in northwestern New Brunswick: part 1 roundwood production and stumpage value. *For. Chron.* **89**, 446–457 (2013).
- 531. L. P. Shoo, K. Freebody, J. Kanowski, C. P. Catterall, Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. *Conserv. Biol.* **30**, 121–132 (2016).
- 532. Z. Wu, C. Zhou, X. Zhou, X. Hu, J. Gan, Variability after 15 years of vegetation recovery in natural secondary forest with timber harvesting at different intensities in southeastern China: community diversity and stability. *Forests.* **9**, 40 (2018).
- 533. D. C. Zambiazi, et al., Timber stock recovery in a chronosequence of secondary forests in southern Brazil: adding value to restored landscapes. *For. Ecol. Manage.* **495**, 119352 (2021).
- 534. S. Y. Zhang, G. Chauret, D. E. Swift, I. Duchesne, Effects of precommercial thinning on tree growth and lumber quality in a jack pine stand in New Brunswick, Canada. *Can. J. For. Res.* **36**, 945–952 (2006).
- 535. X. Zhang, L. Jia, Y. Zhang, C. Zheng, Individual growth simulation for natural secondary forest of Quercus variabilis in Qinling area based on FVS. *J. Beijing For. Univ.* **37**, 19–29 (2015).
- Acknowledgments: The authors thank the many experts listed in Table S3 for insights on data availability about soil erosion, and particularly for providing data and related insights pertaining to water provisioning. The authors further thank D. A. Coomes, M. G. Betts, and G. Shackleton for helpful discussions, J. Dwyer for providing R code assistance on meta-regression plotting, N.

Submitted Manuscript: Confidential Template revised February 2021

Labrière for sharing potential data on soil erosion, J. K. Vanclay for insights on timber production, as well as M. Larjavaara, D. S. Wilcove, R. Heilmayr and two anonymous reviewers for constructive comments that improved the quality of earlier versions of the manuscript.

Funding:

5

10

15

20

Royal Society Newton International Fellowship NF160839 (FH) São Paulo Research Foundation Postdoctoral Grant 2016/00052-9 (PM)

Author contributions:

Conceptualization: FH, DPE, AB

Methodology: FH, LAB, SN, PM, DPE, AB

Investigation: FH, LAB, PM, PAM, JZ, SN, XM, WW, CM, JLPA

Visualization: FH

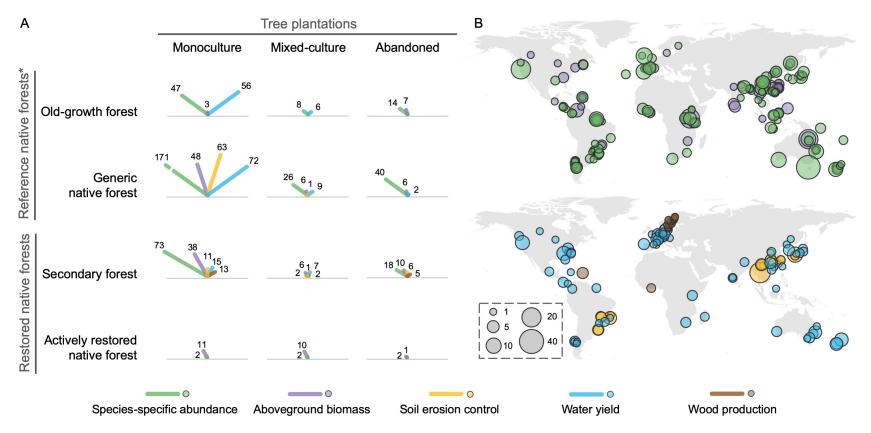
Funding acquisition: FH, AB Project administration: FH Supervision: FH, DPE, AB

Writing – original draft: FH, LAB, DPE, AB

Writing – review & editing: all co-authors

Competing interests: Authors declare that they have no competing interests. **Data and materials availability:** All data and code have been uploaded to a public repository, and can be accessed at: 10.5281/zenodo.5994717. While this data and code access is currently under embargo until September 2022, we will be more than happy to provide them to the Editors and Reviewers for the purpose of review.

Supplementary Materials


Materials and Methods

Supplementary Text

25 Figs. S1 to S11

Tables S1 to S7

References (51–535)

Fig. 1. Database overview. (**A**) The amount of paired data compiled into our database for different combinations of plantations and native forests. For species-specific abundance, the amount of data is represented by the number of plantation-native forest pairs that supplied species-level RRs for entire ecological communities; for all other metrics, it is represented by the number of RRs. (**B**) Geographical distribution of RRs of different metrics, displayed in two maps for better visualization: species-specific abundance and aboveground biomass in the upper panel, and soil erosion control, water yield, and wood production in the lower panel. Bubble size in maps is proportional to the cube root of the amount of data for a given geographical location. *: We did not compile paired wood production data for the comparison between tree plantations and reference native forests.

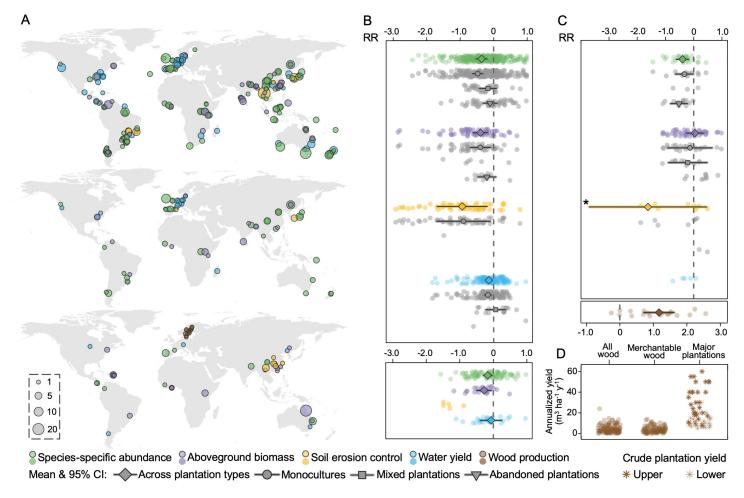
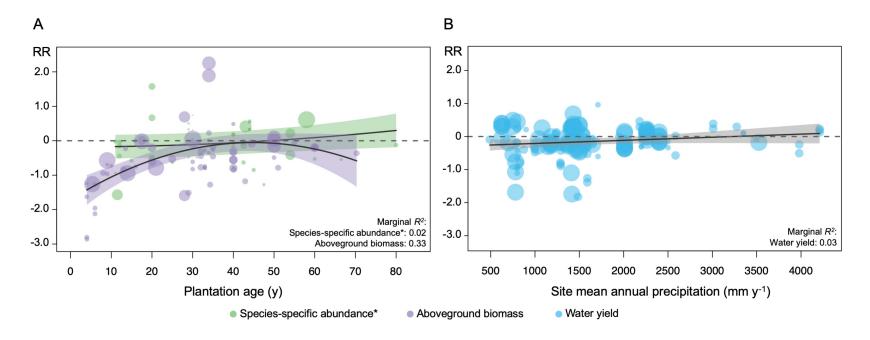



Fig. 2. Relative performance of tree plantations versus native forests across the metrics assessed. (A) Maps displaying the distribution and amount of data analyzed, for three types of comparisons: plantations versus reference native forests (upper panel), old (\geq 40 years of age) or abandoned plantations versus reference native forests (middle panel), and plantations versus restored native forests of similar age (i.e. with \leq 10 years of age difference; lower panel). As with Fig. 1, bubble size is proportional to the cube root of the amount of data for a given geographical location. (B) Relative performance of plantations versus reference native forests (upper panel) and of old or abandoned plantations versus reference native forests (lower panel), in environmental metrics. Scattered dots in color represent RR from primary studies across all types of plantations, and diamonds and associated error bars represent the mean

and 95% confidence intervals (CI) of RR values obtained from meta-analyses where the number of RR \geq 10 (in the case of species-specific abundance, where the number of plantation-native forest pairs \geq 10). For the comparison between plantations and reference native forests (upper panel), we also analyzed RRs separately for different types of plantations where the number of RR \geq 10. For these analyses, we display their RR values from primary studies in grey, distinguishing among plantation types with different symbols for their meta-analysis-derived means and 95% CI. (C) Relative performance of plantations *versus* restored native forests of similar age in environmental (upper panel) and production (lower panel) metrics, with symbol use following that of (B). For soil erosion control, * indicates five highly negative RRs that fell outside the display area. (D) Annualized wood volume increment of restored native forests compared with the lower and upper bounds of the annual wood increment of the world's major monoculture plantations. In our display, we differentiate between records on all woody plants and those on only merchantable species for restored native forests, and between the lower and upper bound for plantations. In panels (B) and (C), scattered dots for species-specific abundance data represent the average RR within the ecological community concerned in each plantation-native forest pair.

Fig. 3. Relative performance of plantations *versus* native forests compared among the metrics assessed, based on geographically matched data bundles for individual forest biomes. (A) Plantations *versus* reference native forests. (B) Plantations *versus* restored native forests of similar age (*i.e.* with ≤ 10 years of age difference). RR values (in the case of species-specific abundance, the average RR within the ecological community concerned in each plantation-native forest pair) are represented by scattered dots, and their quartiles by boxplots where the number of RRs ≥ 5 . For the comparison between plantations and restored native forests of similar age, data bundles were not available for four forest biomes on the top.

Fig. 4. Factors explaining the relative performance of plantations *versus* **reference native forests.** Best models selected based on AICc scores identified the following factors as explaining RRs: (A) plantation age for aboveground biomass and for species-specific abundance (*: the latter concerning the comparison between abandoned plantations and reference native forests only), and (B) MAP for water yield. Scattered dots represent RR values from primary studies (in the case of species-specific abundance, average RR within the ecological community concerned in each plantation-native forest pair), with dot size proportional to the weight of each RR in the meta-regressions, standardized within each metric to the RR with the greatest weight. Fitted curves (black lines) and 95% confidence bands (colored polygons; colored grey for water yield for better visualization) were generated from meta-regressions.

Supplementary Materials for

The ecosystem service and biodiversity contributions and trade-offs of contrasting forest restoration approaches

Fangyuan Hua^{1,2}*, L. Adrian Bruijnzeel^{3,4}*, Paula Meli^{5,6}, Phillip A. Martin², Jun Zhang^{4,7}, Shinichi Nakagawa⁸, Xinran Miao¹, Weiyi Wang¹, Christopher McEvoy², Jorge Luis Peña Arancibia⁹, Pedro H. S. Brancalion⁵, Pete Smith¹⁰, David P. Edwards¹¹, Andrew Balmford²

*Corresponding authors. Email: fhua@pku.edu.cn; sampurno.bruijnzeel@kcl.ac.uk

This PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S11 Tables S1 to S7

Materials and Methods

Terminology and study scope pertaining to forest restoration

Following the terminology used by FAO and the Bonn Challenge, we used broad definitions for forest cover and forest restoration, with the former referring to a wide spectrum of tree cover types from compositionally simple tree plantations to native forests (51), and the latter referring to the action of re-establishing tree cover for a wide range of purposes on degraded or deforested land that would have been naturally forested in recent history (52). We limited our study to the comparison of compositionally simple tree plantations ('tree plantations' hereafter) versus native forests (Fig. 1A; see below for definitions and requirements), given their dominance in discussions about the approaches to and outcomes of forest restoration. Our study therefore did not cover the agroforestry form of forest restoration. For tree plantations, we included those intended for wood but not food production (e.g. fruits and oil palm), because the environmental and production functions addressed in our study did not apply to the latter category. We also did not include rubber plantations because of its high water use, which may penalize its water provisioning performance (53, 54).

For both tree plantations and native forests, we required them to have reasonably extensive cover such that the environmental and production functions assessed reflected their performance rather than that of the wider landscape (see 'Data inclusion criteria' below). Tree plantations resulted from the active planting of a small number of tree species (≤5 species) on formerly deforested land, regardless of whether the trees were native or exotic (e.g. (55, 56)). For inclusion into our databases, they had to have been labelled by primary studies explicitly as 'plantations', and they had to have a tree canopy; we therefore required that they were ≥4 years old and stated or implied by the primary studies to have a tree canopy. We included and differentiated among three types of tree plantations: 'monoculture' for when the plantations involved a single species, 'mixed-culture' for 2–5 species, and 'abandoned' for when the primary studies noted or implied that the maintenance of a plantation had been suspended and the plantation allowed to naturally develop for ≥5 years. This last criterion meant that we tended toward being strict with classifying a plantation as abandoned, and that some monoculture or mixed-culture plantations that were in fact abandoned were not labelled as such because their primary studies did not indicate so.

The native forests considered in our study included four types that fell into two categories: reference native forests and restored native forests. For reference native forests, 'old-growth forests' were native forests that had not been degraded or otherwise disturbed by humans; only when the primary studies explicitly labelled a forest as 'primary', 'old-growth', 'pristine', or otherwise undisturbed by humans and when we had no reason to doubt such labelling did we consider it as old-growth forest. 'Generic native forests' were native forests that were neither old-growth nor resulting from restoration starting from a deforested state. They typically had an unclear history of anthropogenic disturbance or condition, or were noted by the primary studies to have been anthropogenically disturbed (e.g. by logging or grazing) or naturally regenerating (although the disturbance from which the forests were regenerating was not clear). Therefore, the reference environmental conditions that generic native forests provided in our study were likely to be poorer than what truly undisturbed reference systems should be, rendering any contrasts between tree plantations and reference native forests quantified by our study more conservative.

For restored native forests, in keeping with the criteria used for tree plantations, we considered only those that started from complete deforestation. Specifically, 'secondary forests' resulted from natural regeneration on formerly deforested land, and 'actively restored native

forests' from the active planting of a diverse (required to be ≥ 6 , but in reality, most studies included had much higher numbers) native species mix on formerly deforested land with the goal of restoring native forests. As with tree plantations, we required these two types of restored native forests to be ≥ 6 years old and stated or implied by primary studies to have a tree canopy; the higher age threshold than that used for tree plantations was considering the potentially slower development of restored native forests. We did not consider the managed mixed forest system as used in Scandinavia (the dominant boreal forest ecosystem in Europe) because of its mixed use of planting a small number of trees and natural regeneration. Given that these mixed forests represent a dominant form of forest management regime within the boreal zone, our database thus contained little data from the boreal ecosystem.

Biodiversity and ecosystem service metrics

We used one metric for each of the four environmental outcomes to ensure comparability across primary studies and the interpretability of findings. In addition to meaningfully representing the corresponding outcome, metrics must have good empirical data availability. For biodiversity, we used the metric of species-specific abundance, i.e. the number of individuals for a given species, collected by the same sampling method and adjusted for equal sampling effort between the tree covers being compared (because of varied sampling designs and methods, data compiled from primary studies did not allow accounting for imperfect detection). We chose this metric over species richness, the most obvious alternative metric that has been used in other syntheses (21, 57), because the former provides much fuller information on the profile of ecological communities. Whereas species richness reduces the profile of ecological communities to the presence/absence of each species, species-specific abundance reflects the population size of each species, which is a more sensitive and ecologically meaningful representation of species' responses to habitat change. Moreover, the RR we derived from species-specific abundance data, expressed in Equation 1 below, was conceptually linked to the geometric mean of species abundance (58) – a widely adopted metric in assessing biodiversity change (59, 60). A notable advantage of this metric is its sensitivity to abundance changes of rare species, which is a desirable property in the context of our study; this is in contrast to the species richness metric, which does not distinguish between rare and abundant species (58, 60). Finally, a synthesis of biodiversity contrasts between tree plantations and native forests based on this metric would also make a much-needed contribution to existing syntheses, which have predominantly relied on species richness. Nonetheless, species-specific abundance has the disadvantage of not accommodating zeros; we addressed this issue by adding a small quantity to zero values following previous (see 'Data analysis' below).

$$RR = ln \frac{m}{m_f^p}$$
 (Equation 1)

(Here, m_p and m_f represent the metric values (*i.e.* species-specific abundance in the case of biodiversity) for tree plantations and native forests, respectively.)

Aboveground biomass is the most widely studied component of carbon storage for forest ecosystems (61), especially given the paucity of data on full ecosystem carbon storage (45). The amount of eroded soil is obviously the most direct, non-proxy-based (e.g. litter standing crop (62) or soil erodibility (63)) measure of the lack of soil conservation benefit. For water provisioning, we used water yield, i.e. the amount of water draining annually from forested catchments (as streamflow) or plots, expressed as % of rainfall, as a direct measure of the ability

of forest ecosystems to provide water. A small number of studies also separated streamflow into baseflow (*i.e.* the part of streamflow sustained between rainfall events and fed to streamflow by delayed pathways (64)) and stormflow (*i.e.* the extra streamflow generated during and shortly after rainfall events (65)). While the former is unambiguously useful to humans, the latter is often sediment-laden and presents a flood risk, constituting mostly a disbenefit. For these studies, we therefore used the separated baseflow and stormflow (with RR signs of the latter reversed to represent the flood control benefit) data as better representations of the water yield benefit. We referred to all water yield, baseflow, and stormflow (RR sign reversed) measures collectively as 'water yield'.

We used both wood yield and wood profit for the production function because we foresaw paired data to be limited based on our preliminary searches, and because the two metrics provide complementary information on a forest's production function. Whereas the former gauges the physical amount of wood produced, the latter also incorporates price information, which not only matters in land-use decision-making but also converts wood intended for different uses into the same currency.

Data inclusion criteria

Data used to calculate RR had to be empirically measured and reported by primary studies as matched data pairs. The rigor of matching concerned all biophysical (*e.g.* elevation, slope, landscape context, land-use history) and study conditions (notably sampling methods) that may affect the metric performance of the tree covers in question. Based on information reported in the primary studies, we discarded data pairs that were obviously incomparable for the metric concerned (*i.e.* major differences in biophysical or study conditions). For each retained data pair, we assigned a 'match rigor score' on a 1–3 scale based on the extent to which the primary study made explicit efforts to ensure the matching of biophysical and methodological conditions between data pairs: 1 for 'highly matched', if the above efforts concerned most, if not all, biophysical and methodological conditions; 2 for 'likely matched', if the above efforts concerned at least some biophysical and methodological conditions; and 3 for 'matching extent unclear' if little information was provided on the efforts to ensure the matching, despite data being presented by the primary study as matched. We incorporated the match rigor score into subsequent analyses (see 'Data analysis' below).

We applied additional sets of criteria on paired data depending on the metric. For species-specific abundance, in addition to the requirement-by-definition that data must be on the resolution of species or morpho-species (rather than on coarser resolutions such as genera), paired data must meet four additional criteria. First, the ecological communities studied in each primary study must not be defined by functional traits that may influence species' abundance response to habitat change (e.g. cavity-nesting birds, whose requirement for cavities may predispose the species susceptible to forest degradation; we considered 'small mammals' – i.e. mice, rats, shrews – a special case where the small body size did not necessarily mean higher or lower sensitivity to habitat change). Second, the ecological communities studied in each primary study must cover ≥ 6 species, and $\geq 10\%$ of the species must have been recorded as present. Third, sampling efforts for the tree covers being compared must be equivalent or known, such that species raw counts could be adjusted for equal sampling effort, or the quality and comparability of density estimates could be confirmed (Supplementary Text). Finally, the size of the tree cover expanses sampled must be large enough for the study taxa such that the species-specific abundance data reflected the habitat value of the tree covers, rather than the influence of the

wider landscape (66). We used the following criteria to decide whether a tree cover expanse was 'large enough' for the study taxa: ≥ 1 ha regardless of taxa, or ≥ 5 ha for more mobile taxa including birds or mammals (other than small mammals, *i.e.*, mice, rats, shrews). Provided that the above criteria were met, we allowed primary studies to be on any taxa, and to report species-specific abundance in a range of data formats: raw counts, estimated density, or abundance indices (indices based on occurrence frequencies were not admitted because they are fundamentally about presence/absence rather than abundance).

Paired data on aboveground biomass must be reported in the form of aboveground biomass or carbon per unit area directly by the primary studies, and they must cover at least the tree component of the plant community. In addition, tree cover expanses from which data were obtained must be $\geq 20 \text{ m} \times 20 \text{ m}$ in size. Provided that these requirements were met, we allowed primary studies to address a range of aboveground vegetation components (*e.g.* woody vegetation only or all vegetation), impose different size thresholds for vegetation measured (*e.g.* 10 cm or 1 cm in diameter-at-breast-height), use different methods to calculate biomass (*e.g.* direct harvesting or measurement-based calculation using allometric equations), and express biomass values in different units (*e.g.* kg biomass m⁻² or ton carbon ha⁻¹).

Paired data on the amount of eroded soil must have been measured on small scales to avoid geological effects on sediment production (*e.g.* bank erosion along perennial stream channels, or mass wasting); the scales we considered included those of a plot, hill slope, or zero-order catchment with ephemeral surface runoff only during and/or shortly after rainfall. Data also must not have been obtained by erosion pin- (e.g. (67)) or isotope-based (e.g. (68)) methods, because data from the former may be confounded by re-deposition of material eroded further upslope, while the validity of the latter method relies on the assumption that the tree covers being compared had equivalent land-use histories, which we could rarely verify from the primary studies. Accepted primary studies that measured soil mass lost per unit area over a certain time span involved a range of plot sizes (*e.g.* several m² to several ha) and temporal scales of measurement (*e.g.* a full rainy season to multiple years), with erosion values expressed in a range of units (*e.g.* kg m²² y¹¹ or ton ha¹¹ y¹¹).

For paired data on water yield, while additional requirements varied depending on the rigor of the matching between tree covers (see later in this paragraph), we required catchments to have perennial streamflow and observations spanning at least one full seasonal cycle. For plot-scale studies, we required them to have measured the total amount of water leaving the experimental plots as surface runoff and drainage for at least one full seasonal cycle. We admitted a small number of studies that provided paired data based on longitudinal comparisons between different periods for the same site, provided that those periods had similar rainfall totals (usually <10% difference) to minimize possible confounding effects of differences in climatic conditions. Unlike with the other metrics, multiple primary studies were often needed to derive the water yield RR for a given pair of tree plantation and native forest. In tallying the number of and gauging the rigor of matching for primary studies, we therefore approached studies as 'sets' that contributed data for a given study system.

For sets of primary studies on water yield that were assigned a match rigor score of 3, we allowed rainfall conditions to deviate from the prevailing conditions during the original calibration period; we also allowed sites to have different geology and hence possibly different deep-leakage losses (69, 70) for catchment studies, or drainage to have been estimated using chloride or sodium mass balances for plot-scale studies (71, 72). For sets of primary studies assigned a match rigor score of 2, rainfall for the tree covers being compared must be similar and

geological conditions identical and not susceptible to deep leakage. Finally and most strictly, for studies assigned a match rigor score of 1, they must either: (i) have used the paired-catchment design to eliminate confounding effects resulting from possible differences in rainfall and/or geologically-controlled deep-leakage losses between catchments or time periods (73), or (ii) catchment leakage losses must be known from a full water budget analysis (74), or (iii) at the plot scale, the main water budget components (including vegetation water use) must be measured separately, or modelled drainage validated against measured soil water dynamics (75, 76). Methods employed at paired sites were normally the same, but occasionally we paired a catchment to a plot-scale study and assigned a match rigor score of 2–3 depending on the comprehensiveness of the plot-scale measurements (75, 76). Finally, for the small subset of primary studies that separated streamflow into baseflow and stormflow, we required the studies to have used either the straight-line or recursive filter flow separation methods (65, 77).

For paired data on wood yield or profit, we required primary studies to report empirically measured data on the volume, income, or profit (income minus cost) of wood from equal-aged (age difference ≤5 years) pairs of tree plantations and restored native forests, regardless of whether the measurements were from standing woody vegetation or actual harvest. Given the paucity of data, we did not impose further requirements on the age of tree covers, nor did we require the woody vegetation to be of merchantable species only. Barring the paired-data requirement, we applied the same criteria above to non-paired data on the wood yield of restored native forests, but we additionally required that the age of the forests must have been reported.

Search strategy for suitable primary studies

We used a combination of keyword searches, indexing from published syntheses or databases, snowballing, and expert inquiries to identify as many relevant primary studies in as many languages as possible up until November 12th, 2020 for the environmental metrics and October 1st, 2021 for the wood production metrics (Supplementary Text; Fig. S1; Tables S1–S3). The full lists of primary studies included are provided in Table S4. We considered a wide range of publications including peer-reviewed literature, technical reports, conference or symposium proceedings, books, book chapters, and theses/dissertations.

For species-specific abundance, we conducted two complementary primary searches on Web of Science on October 4th 2020 to identify relevant primary studies (Table S1), the collection of which we further supplemented by (i) screening a series of published 'tier-1' reviews, meta-analyses, or databases, (ii) gleaning from these 'tier-1' syntheses relevant primary studies and 'tier-2' syntheses, (iii) gleaning from these 'tier-2' syntheses additional primary studies. The list of 'tier-1' and 'tier-2' syntheses is provided in Table S2. For aboveground biomass, we conducted two complementary primary searches on Web of Science on October 4th, 2020 to identify relevant primary studies (Table S1), the collection of which we further supplemented by screening a series of published 'tier-1' and 'tier-2' reviews, meta-analyses, or databases (with 'tier-1' and 'tier-2' in similar senses as above; Table S2). For the amount of eroded soil, we similarly conducted two complementary primary searches on Web of Science on May 8th, 2018 and on November 12th, 2020 to identify relevant primary studies (Table S1), and we supplemented this collection by screening a series of published reviews, meta-analyses, or databases (Table S2) located via a separate Web of Science search (Table S1) on November 17th, 2017 and via 'snowballing' (i.e. locating other relevant studies referred to in the studied being checked). We additionally reached out to soil experts with knowledge on regions that had apparent data gaps to inquire about possible additional paired sites for the Americas, Eurasia, and Africa (Table S3). For both aboveground biomass and eroded soil, we identified further relevant primary studies via snowballing during the above processes of search and screening.

For water yield, we systematically consulted: (i) reviews of the early (mostly pre-1990) literature as well as more recent reviews and meta-analyses on forest and hydrology (both general and on specific regions, countries or tree species; Table S2); (ii) site water budget studies conducted in the context of research networks on soil acidification (e.g. (78, 79)) or eutrophication (e.g. nitrogen deposition (80, 81)), atmospheric carbon and moisture exchange (e.g. FLUXNET and ICOS (75, 76, 82, 83)), and general ecosystem research (e.g. US-LTERs and CFERN (84–86)); (iii) catchment studies participating in UNESCO-IHP's FRIEND program (Flow Regimes from International Experimental and Network Data (87, 88)); (iv) solute budget studies conducted in the context of biogeochemical cycling and rock weathering (89, 90); and (v) nearly 70 experts in 22 countries and regions (Table S3) with whom we inquired about possible additional data. The above efforts supplemented and considerably added to a primary search we had conducted earlier on Web of Science on June 1st, 2018 that targeted relevant primary studies on water yield, as well as an earlier screening of a series of published reviews/metaanalyses/databases (Table S2) that we had located via a separate Web of Science search (Table S1) on November 17th, 2017 and via snowballing. Given this highly extensive effort, and the fact that our water yield database includes far more records than those of existing meta-analyses (e.g. (91)), we are confident that our search has located the vast majority of existing hydrological datasets and publications that compare plantations *versus* native forests.

Finally, for wood yield and wood profit, we conducted a series of primary searches on Web of Science on October 1st 2021 to identify relevant primary studies (Table S1), the collection of which we further supplemented by screening all studies that cited the seminal study published in 1992 by Lugo (*33*) on comparing the wood production function of tree plantations and secondary forests, as of October 1st 2021 on Google Scholar (Table S1). In all, our process of primary data search is depicted in the flowchart in Fig. S1.

Data compilation

For all metrics, we screened abstract hits in any language that they came in, but for water yield in particular, we systematically covered the following languages: English, Bahasa Malaysia, Danish, Dutch, French, German, Japanese, Mandarin, Portuguese, and Spanish. We extracted metric values and meta-data (Supplementary Text) directly from primary studies wherever possible, following the data resolution (*i.e.* whether each set of paired data corresponded to a replicate sampling unit, or the mean or sum of multiple sampling units) reported in the primary studies. Where primary studies did not report study site mean annual temperature (*i.e.* MAT), we extracted it from the WorldClim database (92) based on site coordinates. Where necessary, we used DataThief III (93) to extract data presented in figures for aboveground biomass, soil erosion control, wood yield, and wood profit; for water yield, we approached authors for original data (these studies are marked with an asterisk in Table S4). We double-checked all extracted data to minimize transcriptional error.

For species-specific abundance data in formats other than density (*e.g.* individuals ha⁻¹), we adjusted their values by sampling effort to ensure that data for tree plantations and native forests corresponded to equal sampling effort. For example, if a plantation was sampled with 1.5 times the amount of effort as the native forest against which it was compared, for each species, the abundance or relative abundance associated with the plantation would be divided by 1.5 before comparison with the abundance or relative abundance associated with the native forest.

We measured sampling effort by the unit used in the primary studies. Our requirement that each primary study used the same sampling method for the plantation and native forest ensured that sampling units were directly comparable between the tree covers. We assumed that density data had already corrected for sampling effort.

For species-specific abundance, aboveground biomass, soil erosion control, wood yield, and wood profit, we scored the sampling effort for each RR to incorporate into analyses (see 'Data analysis' below), considering it an important determinant of data quality. For water yield, we used the rigor of matching to represent data quality. We scored the sampling effort for each RR as follows. For species-specific abundance, we tallied the number of the finest sampling-unit hierarchy that could be considered independent, based on their spacing in comparison with our knowledge of the presumed accepted study design for the study taxa (Supplementary Text). For aboveground biomass, because primary studies rarely reported the spatial distance between sampling units, making it impossible to gauge the number of independent sampling units, we calculated the total area sampled (*i.e.* plot areas summed between the tree-cover pair, in m²) as a surrogate for sampling effort. For soil erosion studies, we used the duration of the observations (in months) as a surrogate for sampling effort. For wood yield and wood profit, we also used the total area sampled (*i.e.* plot areas summed between the tree-cover pair, in m²) as a measure of sampling effort.

For species-specific abundance, we additionally assigned a 'habitat certainty score' to each RR to represent the extent to which it reflected the influence of tree covers *per se* as habitat for the species, rather than the influence of the wider landscape, and we incorporated this score into subsequent analyses (see 'Data analysis' below): 1 for 'certain or almost certain reflection of habitat influence', and 2 for 'unclear or uncertain reflection of habitat influence' (Supplementary Text).

Data analysis

We conducted multi-level meta-analyses and meta-regressions of RR (94) using the 'lme()' function, which implements a linear mixed-effects model, in package 'nlme' (version 3.1-152; (95)) in the R programming language (version 4.0.4; (96)). For meta-analyses assessing the performance of tree plantations relative to native forests, we used an intercept-only fixed effect, and we fitted a group of random intercept variables specific to each metric to account for (and model) potential shared variation and data non-independence. For data on aboveground biomass, soil erosion, and water yield, we used the following random intercept variables in descending order of nestedness (*i.e.* later variables were nested within earlier variables and they are referred to as 'of lower tier'):

- (i) Level 1: the combination of tree cover types (*i.e.* as shown in Fig. 1A);
- (ii) Level 2: the identity of the primary study;
- (iii) Level 3: the site identity of the native forest, used to account for possible data correlations resulting from multiple plantation sites being compared against the same native forest site within a given study.

For data on species-specific abundance, we added two more variables to the above list, resulting in five nested random intercept variables (in descending order of hierarchy):

- (i) Level 1: species' taxonomic group identity (Supplementary Text; our database on species-specific covered 13 taxonomic groups), used to account for the possible inter-group differences in their RR;
- (ii) Level 2: the combination of tree cover types;

- (iii) Level 3: the identity of the primary study;
- (iv) Level 4: the site identity of the native forest;
- (v) Level 5: the identity of the ecological community to which each RR belonged. This list for species-specific abundance should ideally also account for phylogenetic correlation among species, but the large number of taxa included in our database and the lack of reliable phylogenetic trees for many of them precluded this. For wood production, because of data paucity, we only retained the identity of primary studies as a random intercept variable. Finally, for all metrics, we added one more, lowest-tier random intercept variable to the above lists to enable the estimation of I^2 , the measure of the heterogeneity of meta-analytic data or, in other words, variation not due to sampling variance arising from differences in sampling efforts among effect sizes (97). We note that I^2 ranges from 0 to 100%; an earlier meta-analysis (98) found that in ecological studies, I^2 is often over 90% (see below on how we calculated I^2 and associated statistics from our models).

For species-specific abundance, considering that different taxonomic groups may exhibit considerably different contrasts between plantations and native forests, we additionally conducted separate meta-analyses for individual taxonomic groups with adequate amount of data ($i.e. \ge 10$ plantation-native forest pairs). For these analyses, we similarly used an intercept-only fixed effect, and we used the same random effect structure as above, except that we removed taxonomic group identity as a random intercept variable.

For each comparison, the above models provided estimated mean and 95% confidence intervals – calculated based on model-estimated mean and standard error, based on *t* distributions with adjusted degrees of freedom from the lme() models – of RR (expressed as RR' below). Based on the way RR was calculated (Equation 1 above), we back-transformed these estimates using Equation 2 below to estimate, in percentage terms, the shortfalls of plantations relative to the native forests against which they were compared:

% shortfall =
$$(1 - e^{RR'}) \times 100$$
 (Equation 2)

For meta-regressions assessing the factors that may affect the performance of tree plantations relative to native forests, we adopted the same random effect structures as used in meta-analyses except for species-specific abundance (see below in this paragraph), and we conducted model selection based on global models of fixed effects that we constructed separately for each metric (see below). For species-specific abundance, considering that in addition to the focal variables of interest (see below), species with different habitat preferences would have vastly different RRs – an effect that we were unable to account for because of the large range of species concerned that lack reliable habitat preference information – we first derived the community-level RR by calculating the mean of all RRs within an ecological community. Conceptually, this mean is akin to the geometric mean of species abundance, albeit without being exponentiated (58). We used this community-level RR to represent the biodiversity contrast between tree plantations and native forests in subsequent meta-regressions. Because of this community-level aggregation, for data on species-specific abundance, we removed the identity of the ecological community to which each RR belonged from the random effect structure.

For the comparison between tree plantations and reference native forests, our global models for each environmental metric are described in Equations 3–7 below. Specifically, our predictor variables included plantation type, plantation age and its quadratic term, mean annual temperature (MAT; in °C) and its interaction with plantation age; we used the quadratic term to accommodate potential nonlinear relationships between RR and plantation age. For species-

specific abundance, because AICc-based model selection identified the model containing only plantation type as the best model (Table S6), we in turn assessed, for each plantation type, the factors that may affect its performance relative to reference native forests, using the same global model structure noted above except that we removed the predictor variable of plantation type. For soil erosion control, we additionally included mean annual precipitation (MAP; in mm y⁻¹), as well as its interaction with plantation age and with MAT; the latter interaction was considering the possibility that more humid climates may facilitate forest understory growth and in turn, buffer soil erosion. For water yield, we additionally included native forest seasonality (evergreen or deciduous), as well as MAP and its interaction with plantation age. We used MAP instead of the potentially more relevant aridity index (99) because data on the latter were not available from primary studies, while globally available data derived from remote sensing and modelling (100) may be too coarse to reflect site-level conditions.

We checked for collinearity among predictor variables before running all global models. Collinearity was not an issue ($|r_{Pearson}| < 0.7$) for species-specific abundance or aboveground biomass, but there was a correlation between plantation age and MAT for soil erosion control, and native forest seasonality was correlated with MAP and MAT for water yield. We therefore constructed two versions of global model for soil erosion control, one retaining plantation age (Equation 4) and the other MAT (Equation 5). Similarly, we constructed two versions of global model for water yield, one retaining MAT and MAP (Equation 6) and the other native forest seasonality (Equation 7).

```
RR \sim Plantation type + Plantation age + Plantation age^2 + MAT + Plantation age \times MAT (Equation 3, for species-specific abundance and aboveground biomass)
```

$$RR \sim Plantation type + Plantation age + Plantation age^2 + MAP + Plantation age \times MAP$$
(Equation 4, for soil erosion control)

$$RR \sim Plantation type + MAT + MAP + MAT \times MAP$$
 (Equation 5, for soil erosion control)

RR ~ Plantation type + Plantation age + Plantation age² + Seasonality of reference native forest (Equation 7, for water yield)

For the comparison between tree plantations and restored native forests of similar age, our global models for species-specific abundance and aboveground biomass followed Equation 3 above except that they dropped plantation age and its quadratic term, and they were run after confirming the absence of collinearity ($|r_{Pearson}| < 0.7$) among predictor variables. For soil erosion control, due to the small size of the dataset (n=14), we dropped MAP from the global model (given that ($|r_{Pearson}| = 0.65$ between MAT and MAP, much of the variation associated with MAP should have been represented by MAT). In all, the above procedures led to the same global model structure for species-specific abundance, aboveground biomass, and soil erosion control, expressed in Equation 8 below; we did not conduct meta-regressions on water yield because of insufficient data.

 $RR \sim Plantation type + MAT$

(Equation 8, for species-specific abundance, aboveground biomass, and soil erosion control)

We then used model selection based on the small-sample-corrected Akaike Information Criterion (AICc) from these global models to identify the best model for each metric, *i.e.* the fixed effect configuration that produced the lowest AICc scores, using package 'MuMIn' (version 1.43.17; (101)) in the R programming language. We in turn re-ran these best models to make inferences about the effects of the variables retained based on model estimates of mean and standard error, according to t distributions with adjusted degrees of freedom from the lme() models.

In all meta-analyses and meta-regressions above, we applied a weighting scheme that reflected the data quality of RR that may result from: (i) data comparability between tree plantations and matched native forests (gauged by the match rigor score; see the first paragraph in the section 'Data inclusion criteria' above); (ii) the sampling effort that went into producing the RRs, for all metrics except for water yield; and (iii) for data on species-specific abundance, the degree to which species' abundance counts reflected the influence of tree covers *per se* as habitat for the species rather than the influence of the wider landscape (gauged by the habitat certainty score; see the last paragraph in the section 'Data compilation' above). We did not follow the conventional weighting scheme based on the sampling variance of RR because this information was available for only a small subset of primary studies, particularly considering the species-specific abundance format of our biodiversity data. Our view was that it would be far more preferable to apply a defensible, albeit alternative, weighting scheme than discarding the majority of available data. We used the following equations to calculate weight for RR for the different metrics:

$$w_i = \frac{\ln{(n_i)}}{\sqrt{c_i \times h_i}}$$
 (Equation 9, for species-specific abundance)
 $w_i = \frac{\ln{(n_i)}}{c_i}$ (Equation 10, for above ground biomass and soil erosion control)
 $w_i = \frac{1}{c_i}$ (Equation 11, for water yield)

For RR i, w_i represented its weight in the linear mixed-effect models (RRs with higher w_i would be given more weight in the analyses), c_i its match rigor score, and n_i the sampling effort (applicable to all metrics except for water yield; see the second paragraph in the section titled 'Additional note on data entry' below). For data on species-specific abundance, h_i additionally represented the larger habitat certainty score for the two tree covers being compared (i.e. the habitat certainty score of the tree cover more susceptible to the influence of landscape context). Because of the way the function 'lme()' in package 'nlme' works, we supplied the above w_i values in the form of 'weights = $\sim I(1/w_i)$ ' in running the function 'lme()'.

To calculate I^2 , we adopted the following procedures. Due to the above unconventional weighting scheme and the lack of sampling variance information for RR, we assumed that the inverse of weight for each RR was proportional to its sampling variance. We could then extend a traditional weighted regression to use the multilevel meta-analytic framework following the equations below:

$$\begin{aligned} \text{RR}_{[i]} &= \beta_0 + \sum_{h=1}^p \beta_h \, x_h + \sum_{l=1}^q u_l + e_{[i]} + m_{[i]}, \, \text{with} \, u_l \sim \text{N} \big(0, \sigma_{u_l}^2 \big), e_{[i]} \sim \text{N} \big(0, \sigma_e^2 \big), \, m_{[i]} \sim \text{N} \left(0, \frac{\phi}{w_i} \right) \\ v_i &= \frac{\phi}{w_i} \end{aligned} \tag{Equation 12}$$

For RR i, β_0 represented the overall mean (i.e. when other moderators did not exist), $\sum_{h=1}^{p} \beta_h x_h$ the sum of fixed effects for all p fixed effect variables, $\sum_{l=1}^{q} u_l$ the sum of random effects for all q random intercept variables (assuming these random intercept variables were normally distributed with the variance components of $\sigma_{u_l}^2$), $e_{[i]}$ the effect-size-level effect (equivalent to residuals) with the variance of σ_e^2 , and finally, $m_{[i]}$ the sampling variance effect with the effect-size-specific variance of $v_i = \frac{\phi}{w_i}$. We estimated v_i from the lme() models and, in turn, calculated I^2 (94) using the following equations:

$$I_{total}^{2} = \frac{\sum_{l=1}^{q} \sigma_{u_{l}}^{2} + \sigma_{e}^{2}}{\sum_{l=1}^{q} \sigma_{u_{l}}^{2} + \sigma_{e}^{2} + \sigma_{m}^{2}}$$
 (Equation 14)

$$\sigma_m^2 = \frac{(k-1)\sum_{i=1}^k \frac{1}{\nu_i}}{\left(\sum_{j=1}^k \frac{1}{\nu_i}\right)^2 - \sum_{i=1}^k \frac{1}{\nu_i}^2}$$
(Equation 15)

where σ_m^2 represented the typical sampling variance. We note that I_{total}^2 represented the heterogeneity I^2 for meta-analyses, but that one can obtain I^2 for each level of random effect including the residual (i.e. effect size) level. Similarly, we calculated marginal R^2 using the following equations:

$$R_{marginal}^{2} = \frac{\sigma_{f}^{2}}{\sigma_{f}^{2} + \sum_{l=1}^{q} \sigma_{u_{l}}^{2} + \sigma_{e}^{2}}$$
(Equation 16)
$$\sigma_{f}^{2} = \text{Variance}(\sum_{h=1}^{p} \beta_{h} x_{h})$$
(Equation 17)

$$\sigma_f^2 = \text{Variance}(\sum_{h=1}^p \beta_h x_h)$$
 (Equation 17)

where σ_f^2 represented the variance of fixed effects and $R_{marginal}^2$ the marginal R^2 , which quantifies how much total variance is explained by fixed effects apart from sampling variance, which is assumed to be known in a meta-analytic model (102, 103).

For all linear mixed-effect models (i.e. multi-level meta-analysis and meta-regression models), we visually assessed residual and OO plots, which indicated general satisfaction of the assumption of residual normality (Figs. S8–S11). Concerns about any potential violation of this assumption should be alleviated by the fact that mixed-effect models are known to be generally robust to violations of model assumptions (104). We also confirmed findings to be generally free from publication bias (Supplementary Text). For geographical matching of a subset of RRs, we overlaid the geographical locations of all RRs with the Holdridge Life Zones map (22, 23), using packages 'rgdal' (version 1.5-12; (105)) and 'spatialEco' (version 1.3-5; (106)) in the R programming language. Finally, we conducted Welch two-sample t-tests to compare the nonpaired wood yield data on restored native forests with the crude yield estimates (low and high bounds) for the world's main monoculture plantations.

Sensitivity analyses

For all metrics, we conducted two sets of sensitivity analyses for our meta-analyses and meta-regressions, one concerning the weighting schemes, and the other the random effect structures. The former was in light of the potential subjectivity and varying standards of reporting from primary studies (especially for the habitat certainty score and sampling effort) involved in the calculation of the weighting scores. We first repeated all analyses using a consistent weight score calculated based on Equation 11 for all metrics (*i.e.* the inverse of the match rigor score, assuming it alone represented the quality of a given RR), and we additionally repeated all analyses without a weight score. For the random effect structure of meta-analyses and meta-regressions, considering that the sharing of a same reference native forest site among multiple RRs did not apply to many primary studies, we additionally repeated all analyses without using the site identity of the native forest as a random intercept variable.

Supplementary Text

Assumptions about plantations' effectiveness in delivering key ecosystem services

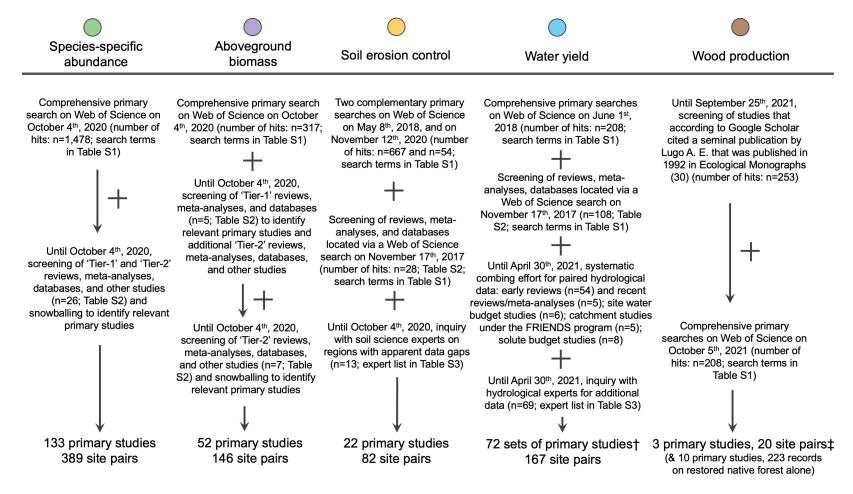
Widespread forest restoration via tree plantations to meet climate, soil, water, and wood production goals (7, 10–12) rests on the implicit assumption that tree plantations are as effective as native forests in delivering these goals. Despite numerous global-scale databases and metaanalyses addressing the carbon storage, soil erosion control, and water provisioning functions of forests (including tree plantations; Table S2), direct comparison of tree plantations versus native forests founded on paired empirical data that are needed to rigorously test the above assumption (13) is lacking, with the vast majority of existing databases and meta-analyses not involving paired plantation and native forest sites (Table S2). The handful of analyses that do involve paired data tend to have regional or generally poor data coverage (e.g. because the study was not designed to target the comparison of paired plantations and native forests, or because the study was older and thus did not cover the larger amount of more recent data; Table S2). The lack of a global-scale evidence synthesis is particularly acute for soil erosion and water provisioning (Table S2). In sum, the assumption that tree plantations are as effective as native forests in delivering the ecosystem services of carbon storage, soil erosion control, and water provisioning is vet to be rigorously tested through a global-scale synthesis of paired empirical data. Similarly, despite the widely held belief that tree plantations outperform native forests in sustainably producing wood (31, 32), rigorous comparisons of their production function relative to restored native forests based on paired data – crucial for understanding the relative merits of the two alternative restoration approaches – have been lacking.

Note on reducing and testing publication bias

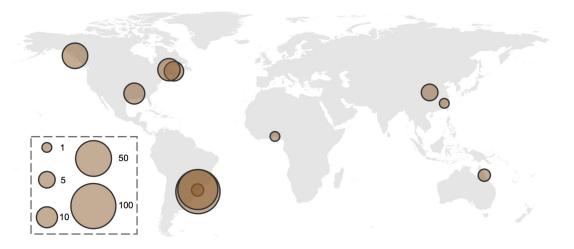
Our data compilation covered a wide range of publication types, including peer-reviewed literature, technical reports, conference/symposium proceedings, books, book chapters, and theses/dissertations (Table S4). This wide coverage of publication type should aid in reducing potential publication bias of our database (97). Funnel plots produced using package 'metafor' (version 2.4-0; (107)) in the R programming language additionally indicated that publication bias (the small-study effect where studies with small sample sizes can have effect sizes with large magnitudes) was most likely not a problem for our database (Fig. S2): any asymmetry in the funnel plots for individual analyses on species-specific abundance, aboveground biomass, and soil erosion control did not appear to be linked to smaller studies (*i.e.* those with lower sampling efforts). For water yield studies, we considered lower sampling effort – if present – unlikely to render lower publication rates and therefore publication bias, given the large amount of effort

involved in typical water yield studies. This method of using sampling efforts is consistent with the current recommendation for examining the publication bias (the small-study effect) in multilevel meta-analytic models (108).

Additional note on data entry


For species-specific abundance, metric values entered comprised either estimated density, or the abundance of individual species within the ecological community studied, measured by (i) tallying up raw counts across multiple sampling units for the tree cover in question and (ii) adjusting for sampling effort (see below). Whenever both estimated density and raw counts were available, we used the former, assuming that they had accounted for factors that may affect the comparability of raw counts (e.g. capture/detection probability). For primary studies that reported abundance information for the same ecological community that was obtained using multiple sampling methods, we used only data from the method that we considered most capable of describing the community (e.g. between data on bird communities collected by point counts versus by mist-netting, we used those from the former). Importantly, we retained species that were not detected in either of the tree covers being compared but that were part of the ecological community studied, given that shared absence also informs the contrast between tree covers. This situation arose if the primary study involved additional land cover types than the plantation and native forest we considered here. We excluded non-native species whenever possible, noting however that the vast majority of primary studies did not differentiate between native versus non-native species. Similarly, we were unable to distinguish between forest-versus non-forestdwelling species or exclude the latter because the vast majority of primary species did not provide such information. For subsequent analyses, we streamlined the identity of study taxa into the following main groups to facilitate the use of taxonomic group identity as a random intercept variable: macrofungi, epiphyte plants, climber plants, herbs, standing woody plants, understory plants (where it was not possible to classify the study plant species into the previous groups), arthropods, other invertebrates, amphibians, reptiles, birds, bats, and terrestrial mammals (totaling 13 taxonomic groups). For water yield, catchment data were averaged over a period of 5–7 years where possible, often using original basic rainfall and streamflow data obtained from the primary study authors themselves or from institutional websites.

To score sampling effort for species-specific abundance, we delineated and tallied the number of the finest sampling-unit hierarchy that we considered eligible to be considered as independent, based on the spatial distance between sampling units and what we considered as acceptable minimum spacing for the study taxa. Where spatial distance among sampling units was unclear, we defaulted to the coarsest sampling unit hierarchy as independent sampling units. For example, for a primary study on ground beetles, if traps laid within sampling plots were too close to be considered as independent (*e.g.* 5 m) while the sampling plots were spaced far enough (*e.g.* 500 m), we would consider the plots, rather than traps, as independent sampling units. We used a 500 m distance as the minimum spacing among independent sampling units for large-bodied organisms (mammals other than 'small mammals' – *i.e.* mice, rats, shrews) and flying organisms sampled using active attraction (*e.g.* moths sampled using light traps), 200 m for small mammals, birds, herpetofauna, and flying insects sampled passively, and 100 m for small-bodied or immobile organisms (*e.g.* ants, plants).


To assign 'habitat certainty score' to RR on species-specific abundance, we used the following criteria: 1 for certain or almost certain absence of landscape effects (*i.e.* tree cover expanses were known to be \geq 50 ha or otherwise extensive, regardless of study taxa), and 2 for

unclear (*i.e.* the area of tree cover expanses was unknown) or uncertain (*i.e.* tree cover expanses were known to be <50 ha, regardless of study taxa) absence of landscape effects. In calculating RR for species-specific abundance, for data pairs involving zero abundance values (which would make it impossible to calculate RR), we handled these zero values separately for each community dataset (*i.e.* for each pair of tree cover). For each community dataset that had zero values, we first identified the smallest non-zero abundance value for any species in the community, and we added half of this value to each zero value following O'Brien and colleagues (*109*). The need to handle zero values applied to species-specific abundance data only.

In addition to metric values, we extracted the following meta-data from all primary studies whenever they were reported: (i) on study sites: their geographical coordinates, MAT, MAP; (ii) on both tree plantations and native forests: their type, age, and patch size; (iii) on tree plantations only: vertical vegetation structure (presence/absence of the shrub and herbaceous layers), presence/absence of groundcover, land-use history (length of deforested period and intensity of degradation), and landscape context (whether the study site was ≤2 km from extensive native forests); (4) on sampling method: sampling unit area, number of sampling units, length of study period, unit of metric, standard deviation/error of the metric values. For age information expressed in a range, we took the middle value of the range. We extracted metric values and meta-data directly from primary studies wherever possible, and we only used secondary sources for data extraction for a small number of studies that did not provide data.

Fig. S1. Process of primary data compilation. †: For water yield, multiple primary studies were often needed to derive the RR for a given pair of plantation and native forest. In tallying the number of primary studies for water yield, we therefore counted the number of such 'sets' of, instead of individual, primary studies. ‡ For wood production, our search targeted paired data on wood yield or profit, as well as non-paired data on the wood yield of restored native forests with known age.

Fig. S2. Geographic distribution of wood yield records compiled for restored native forests. Bubble size in maps is proportional to the cube root of the amount of data for a given geographic location.

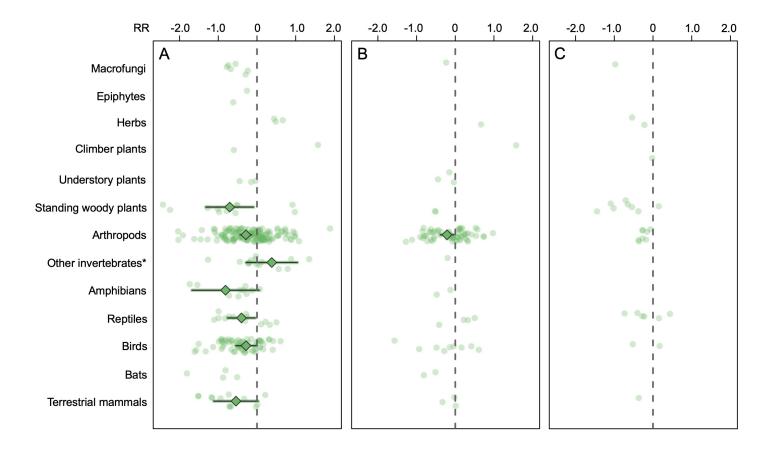


Fig. S3. Relative performance of species-specific abundance for different taxonomic groups. Results are displayed separately for the comparison between (A) plantations *versus* reference native forests, (B) old or abandoned plantations *versus* reference native forests, and (C) plantations *versus* restored native forests of similar age. Scattered dots represent the average RR within the ecological community concerned in each plantation-native forest pair, from primary studies across all types of plantations, and diamonds and associated error bars represent the mean and 95% confidence intervals (CI) of RR values obtained from meta-analyses for taxonomic groups for which the number of plantation-native forest pairs was ≥ 10 . *: Data on 'other invertebrates' were from three primary studies that concerned two taxa: land snails and earthworms.

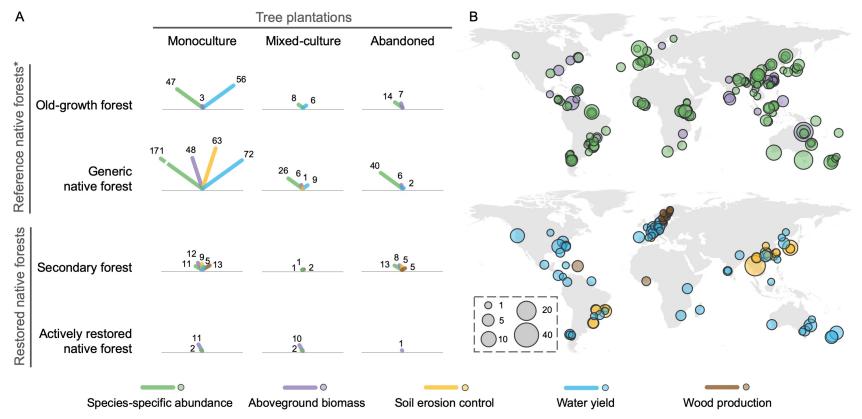


Fig. S4. Overview of the part of database that went into our analyses. Figure contents are equivalent to those in Fig. 1, except that for the comparison between tree plantations and restored native forests, only data for the tree cover pairs of similar age (i.e. with ≤ 10 years of age difference) are displayed. (A) The amount of paired data compiled into our database for different combinations of plantations and native forests. For species-specific abundance, the amount of data is represented by the number of plantation-native forest pairs that supplied species-level RRs for entire ecological communities; for all other metrics, it is represented by the number of RRs. (B) Geographical distribution of RRs of different metrics, displayed in two maps for better visualization: species-specific abundance and aboveground biomass in the upper panel, and soil erosion control, water yield, and wood production in the lower panel. Bubble size in maps is proportional to the cube root of the amount of data for a given geographical location.

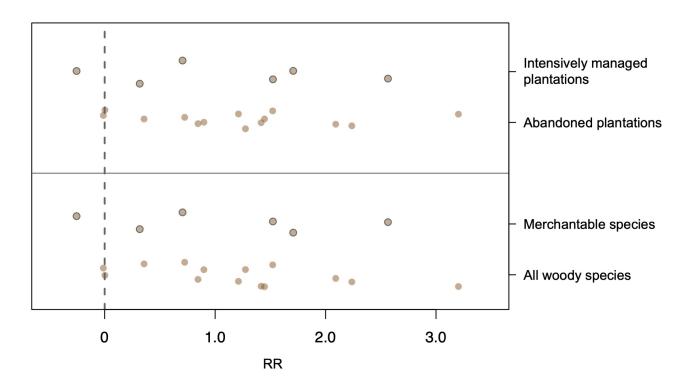


Fig. S5. Paired data on wood production plotted separately based on the type of plantations or species measured.

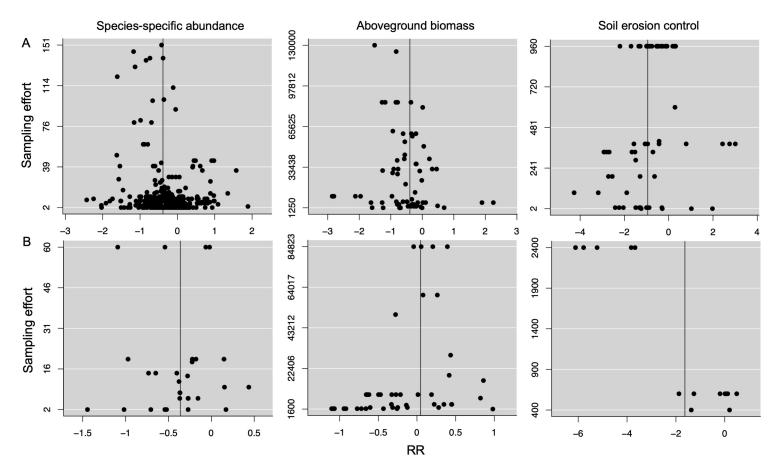


Fig. S6. Funnel plots for data going into meta-analyses based on effect size (RR) and study size (sampling effort). (A) Data on the comparison between plantations and reference native forests. (B) Data on the comparison between plantations and restored native forests of similar age (i.e. with ≤ 10 years of age difference). For each RR data point, sample effort is measured based on the total number of independent sampling units between the two tree covers for species-specific abundance, the total area of sampling plots between the two tree covers for aboveground biomass, and the number of months over which the study was carried out for soil erosion control. The solid vertical line represents the mean effect size as produced by the corresponding meta-analysis.

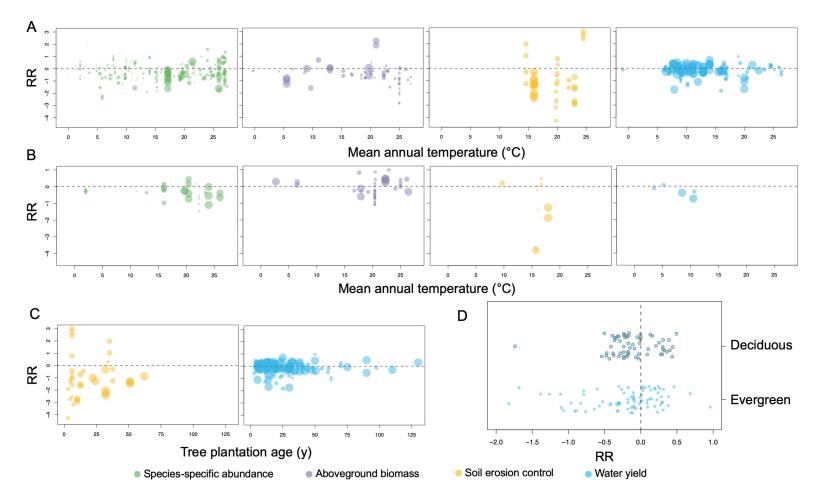
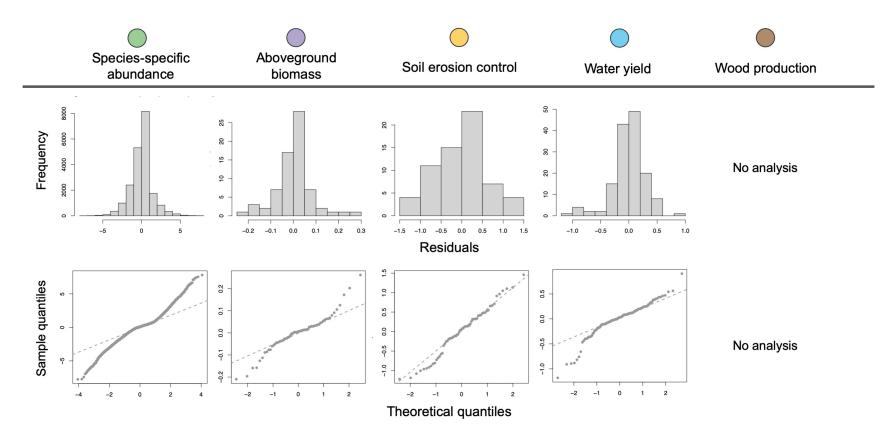



Fig. S7. Scatterplot displaying the lack of relationship between RR and predictor variables. (A) RR for the comparison between tree plantations and reference native forests, plotted against mean annual temperature. (B) RR for the comparison between tree plantations and restored native forests, plotted against mean annual temperature. (C) RR for the comparison between tree plantations and reference native forests, plotted against plantation age. (D) RR for the comparison between tree plantations and reference native forests in water yield, plotted separately for data pairs whose reference native forests were deciduous or evergreen.

Fig. S8. Model diagnostic plots for the comparison between tree plantations and reference native forests. For each metric, residual plots (upper) and QQ plots (lower) are displayed for each of the linear mixed-effect models used to produce the results displayed in Fig. 2B, upper panel.

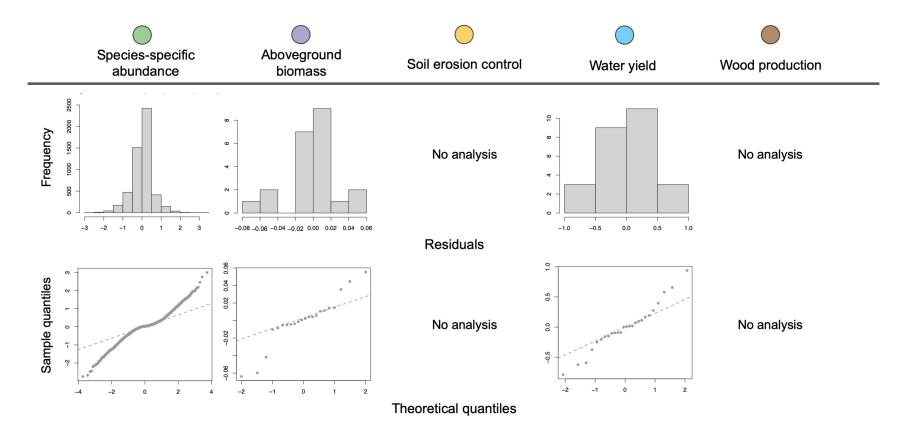


Fig. S9. Model diagnostic plots for the comparison between old or abandoned tree plantations and reference native forests. For each metric, residual plots (upper) and QQ plots (lower) are displayed for each of the linear mixed-effect models used to produce the results displayed in Fig. 2B, lower panel.

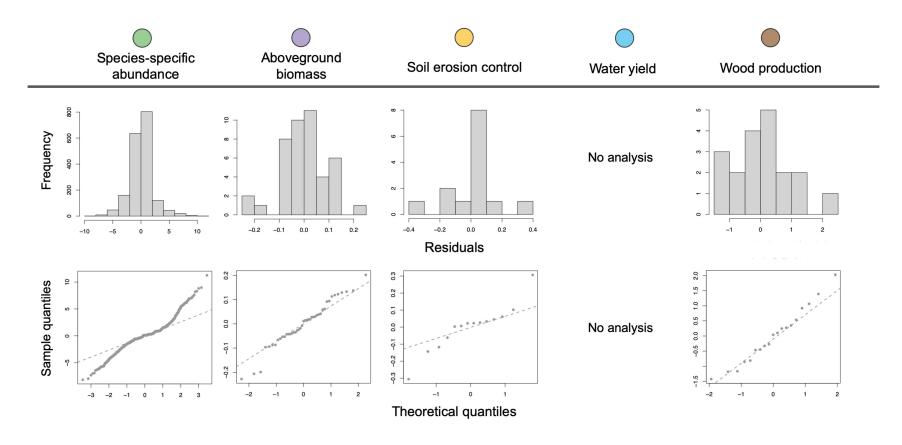
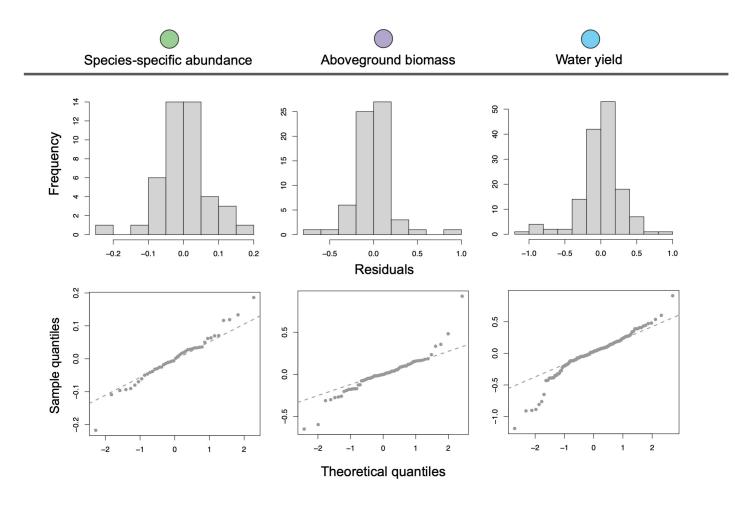



Fig. S10. Model diagnostic plots for the comparison tree plantations and restored native forests of similar age (i.e. with \leq 10 years of age difference). For each metric, residual plots (upper) and QQ plots (lower) are displayed for each of the linear mixed-effect models used to produce the results displayed in Fig. 2C.

Fig. S11. Model diagnostic plots for analyzing the relationship between RR and predictor variables. For each metric, residual plots (upper) and QQ plots (lower) are displayed for each of the linear mixed-effect models used to produce the results displayed in Fig. 4.

Table S1. List of search terms used in Web of Science searches.

Target of search	Search date	Number of studies retrieved	
Primary studies that reported on species-specific abundance and that involved old-growth forests as the reference native forest (published since October 1st, 2010) OR Primary studies that reported on species-specific abundance and that involved any kind of native forest that was not old-growth forest	("old-growth forest*" OR "old growth forest*" OR "primary forest*" OR "undisturbed forest*" OR "virgin forest*") AND plantation* AND (abundanc* OR densit*) AND (anima* OR bird* OR mammal* OR reptil* OR amphibia* OR insect* OR arthropod* OR butterfl* OR bee OR bees OR spider* OR earthworm* OR plant* OR tree* OR epiphyt*) AND (biodiversity OR communit*) OR ("secondary forest*" OR "secondary growth*" OR "naturally regenerat*" OR "natural regeneration" OR "natural regrowth" OR "natural forest*" OR "native forest*" OR "logged forest*" OR "environmental planting* OR "native planting*) AND plantation* AND (abundanc* OR densit*) AND (animal* OR bird* OR mammal* OR reptil* OR amphibia* OR insect* OR arthropod* OR butterfl* OR bee OR bees OR spider* OR earthworm* OR plant* OR tree* OR epiphyt*) AND (biodiversity OR communit*)	October 4 th , 2020	1,478
Primary studies reporting on aboveground biomass that involved old- growth forests as the reference native forest	porting on OR "primary forest*" OR "undisturbed forest*" OR "virgin forest*" OR "undisturbed forest*" OR "virgin forest*" OR "lattion* OR plantation* OR "recondary forest*" OR "naturally regenerat*" OR "natural		130
Primary studies reporting on aboveground biomass that involved plantations	porting on growth*" OR "naturally regenerat*" OR "natural regrowth" OR "natural at involved growth*" OR "natural forest*" OR "natural regrowth" OR "natural forest*"		317
Primary studies reporting on the amount of eroded soil that involved plantations	eporting on the AND mount of eroded soil (plantation* AND forest) nat involved AND (in title)		667
Primary studies reporting on the amount of eroded soil	November 12 th , 2020	54	

that involved plantations (between 2018-2020)	(plantation* AND ("old-growth forest*" OR "old growth forest*" OR "primary forest*" OR "undisturbed forest*" OR "virgin forest*" OR "secondary forest*" OR "secondary growth*" OR "naturally regenerat*" OR "natural regeneration" OR "natural regrowth" OR "natural forest*" OR "native forest*" OR "logged forest*" OR "native planting*" OR "environmental planting*"))		
"Tier-1" syntheses and databases on the amount of eroded soil	(((forest* OR forests) AND (primary OR old-growth OR "old growth" OR oldgrowth OR secondary OR logg* OR degrad* OR disturb* OR manage* OR regenerat* OR restor*)) OR refores* OR plantation* OR monocultur* OR polycultur* OR agrofores*) AND (review* OR meta-analys* OR metaanalys* OR "meta analys*") AND (((soil OR soils) AND (erosion OR fertility OR quality OR nutrien* OR degrad* OR retention OR loss OR losses OR carbon)) OR sedimen*) AND (in title) (soil OR soils OR erosion OR sedimen*)	November 17 th , 2017	507
Primary studies reporting on water yield	(plantatio* AND forest AND tree) AND (streamflow OR baseflow OR stormflow OR "peak flow" OR quickflow)	June 1 st , 2018	208
Syntheses and databases on water yield	(((forest* OR forests) AND (primary OR old-growth OR "old growth" OR oldgrowth OR secondary OR logg* OR degrad* OR disturb* OR manage* OR regenerat* OR restor*)) OR refores* OR plantation* OR monocultur* OR polycultur* OR agrofores*) AND (review* OR meta-analys* OR metaanalys* OR "meta analys*") AND ((water OR hydrolog*) AND (quality OR qualities OR yield OR yields OR streamflow OR streamflows OR stream flow" OR "stream flow" OR "stream flow" OR "stream flow" OR "base flows OR base-flow OR base-flow OR base-flow OR lowflow OR lowflows OR low-flow OR low-flows OR "low flow" OR "low flows")) AND (in title) (water OR hydrolog* OR streamflow OR streamflows OR stream-flow OR stream-flow OR stream-flow OR stream-flows OR "stream flow" OR "stream flow" OR "stream flow" OR "base-flow OR stream-flow OR stream-flow OR stream-flow OR low-flows OR "stream flow" OR "stream flow" OR "stream flow" OR "base-flow OR base-flow OR base-flow OR base-flow OR low-flow OR low-flows OR low-flow OR low-flows OR "low flows" OR low-flow OR low-flows OR "low flow" OR "low flows" OR "low flows")	November 17 th , 2017	108

Preliminary search on wood yield	(plantation AND forest AND (native OR natural OR primary OR old-growth OR secondary OR log* OR managed)) AND (yield AND (timber OR wood OR roundlog OR sawlog))	March 8 th , 2018	250
Primary studies reporting paired data on wood yield	plantation* AND ("secondary forest*" OR "natural regeneration" OR "naturally regenerat*" OR "regenerat* naturally" OR "natural regrowth" OR "secondary growth" OR "native planting*" OR "environmental planting*" OR "biodiversity planting*") AND (timber OR wood OR roundlog* OR sawlog* OR fuelwood OR firewood OR pulpwood) AND (yield OR producti* OR volume)	October 5 th , 2021	423
Primary studies reporting paired data on wood profit	plantation* AND ("secondary forest*" OR "natural regeneration" OR "naturally regenerat*" OR "regenerat* naturally" OR "natural regrowth" OR "secondary growth" OR "mative planting*" OR "environmental planting*" OR "biodiversity planting*") AND (timber OR wood OR roundlog* OR sawlog* OR fuelwood OR firewood OR pulpwood) AND (profit* OR NPV OR "net present value*" OR "land rent" OR "land expectation value*" OR EAV OR "equivalent annual value*" OR annuity OR "internal rate of return*")	October 5 th , 2021	28
Studies that cited Lugo 1992 (33)		September 25 th , 2021	253
Primary studies reporting non-paired data for restored native forests on wood yield	(timber OR wood OR roundlog* OR sawlog* OR fuelwood OR firewood) AND (yield OR producti* OR volume) AND (in title) ("secondary forest*" OR "natural regeneration" OR "naturally regenerat*" OR "regenerat* naturally" OR "natural regrowth" OR "secondary growth" OR "natural regrowth" OR "lanting*" OR "environmental planting*" OR "biodiversity planting*")	October 1 st , 2021	200

Table S2. List of databases, reviews, meta-analyses, and other studies consulted for data compilation.

Metric	Tier	No.	Study	Type†	Geographical scope	Nature of database/meta-analysis††
Species-	1	1	Barlow et al. 2007 (110)	Other	Not applicable	
specific		2	Brockerhoff et al. 2008 (14)	Review	Global	
abundance		3	Crouzeilles et al. 2016‡ (111)	Meta-analysis	Global	Plantation and native forest not paired
		4	Gardner et al. 2009 (112)	Review	Pan-tropics	
		5	Hartley 2002 (113)	Review	Global	
		6	Hudson et al. 2014* (114)	Database	Global	Plantation and native forest not paired
		7	Lindenmayer and Hobbs 2004 (115)	Review	Australia	
		8	Mang and Brodie 2015 (116)	Meta-analysis	South-east Asia	Regional
		9	Meli et al. 2017 (117)	Meta-analysis	Global	Plantation and native forest not paired
		10	Moreno-Mateos et al. 2017 (118)	Meta-analysis	Global	Plantation and native forest not paired
		11	Ramírez and Simonetti 2011 (119)	Meta-analysis	Global	Taxa limited to mammals
	2	12	Bradshaw et al. 2013 (120)	Review	Australia	
		13	Christian et al. 1998 (121)	Review	North America	
		14	Holbech 2009 (122)	Other	Not applicable	
		15	Kanowski et al. 2005 (123)	Review	Australia	
		16	Lamb 1998 (124)	Review	Pan-tropics	
		17	Lawton et al. 1998 (125)	Other	Not applicable	
		18	Lugo 1997 (126)	Review	Pan-tropics	
		19	Munro et al. 2007 (127)	Review	Australia	
		20	Nichols et al. 2007 (128)	Meta-analysis	Pan-tropics	Focus not on plantation vs native forest; taxa limited to dung beetles
		21	Norton 1998 (129)	Review	New Zealand	
		22	Parrotta et al. 1997 (130)	Other	Not applicable	
		23	Spake et al. 2015 (131)	Meta-analysis	Outside tropics	Focus not on plantation vs native forest; taxa limited to fungi, lichen, and beetles
		24	Stephens and Wagner 2007 (132)	Review	Global	
		25	Thompson and Donnelly 2018 (133)	Meta-analysis	Global	Focus not on plantation <i>vs</i> native forest; taxa limited to amphibians
		26	Wilson et al. 2017 (134)	Review	Global	
Aboveground	1	1	Anderson-Teixeira et al. 2016 (61)	Database	Pan-tropics	Plantation and native forest not paired
biomass		2	Bonner et al. 2013 (135)	Meta-analysis	Pan-tropics	Plantation and native forest not paired
		3	Crouzeilles et al. 2016‡ (111)	Meta-analysis	Global	Plantation and native forest not paired
		4	Liao et al. 2010 (45)	Meta-analysis	Global	Older publication, missing recent data
		5	Moreno-Mateos et al. 2017 (118)	Meta-analysis	Global	Plantation and native forest not paired

	2	6	Bernal et al. 2018 (136)	Database	Global	Plantation and native forest not paired
		7	Kauffman et al. 2009 (137)	Review	Neotropics	
		8	Lasco 2002 (138)	Review	South-east Asia	
		9	Lasco and Pulhin 2009 (139)	Review	Philippines	
		10	Locatelli et al. 2017 (140)	Review	Global mountains	
		11	Mascaro et al. 2012 (141)	Other	Not applicable	
		12	Wilson et al. 2017 (134)	Review	Global	
Soil erosion	NA	1	Anache et al. 2017 (142)	Meta-analysis	Brazil	Regional
		2	Anderson and Lockaby 2011 (143)	Review	United States	
		3	Bonell 1993 (144)	Review	Global	
		4	Chanasyk et al. 2003 (145)	Review	Temperate regions	
		5	Dotterweich 2013 (146)	Review	Global	
		6	Douglas 1999 (147)	Review	Southeast Asia	
		7	Fernández-Moya et al. 2014 (67)	Review	Global	
		8	García-Ruiz et al. 2010 (148)	Review	Spain	
		9	García-Ruiz et al. 2015 (149)	Meta-analysis	Global	Plantation and native forest not paired
		10	Gomi et al. 2005 (150)	Review	Pacific Northwest	
		11	Guo et al. 2015 (151)	Database	China	Plantation and native forest not paired
		12	Gupta 1996 (152)	Review	Southeast Asia	
		13	Hamilton and King 1983 (153)	Review	Pan-tropics	
		14	Holz 2015 (154)	Review	Humid regions	
		15	Jaafar et al. 2011 (155)	Other	Not applicable	
		16	Labrière et al. 2015 (156)	Meta-analysis	Pan-tropics	Plantation and native forest not paired
		17	Laudon et al. 2011 (157)	Review	Sweden	
		18	Lü et al. 2008 (158)	Meta-analysis	China	Focus not on plantation <i>vs</i> native forest; regional
		19	Maetens et al. 2012 (159)	Database	Europe/Mediterranean	Plantation and native forest not paired
		20	Scheurer et al. 2009 (160)	Review	Alpine countries	
		21	Sidle et al. 2006 (161)	Review	Southeast Asia	
		22	Stott and Mount 2004 (162)	Review	United Kingdom	
		23	Valentin et al. 2008 (163)	Other	Southeast Asia	
		24	Vanmaercke et al. 2011 (164)	Database	Europe	Plantation and native forest not paired
		25	Walling and Webb 1996 (165)	Review	Global	
		26	Wallis 1994 (166)	Review	New Zealand	
		27	Wiersum 1984 (167)	Review	Global	
		28	Wondzell 2001 (168)	Other	United States (Oregon & Washington states)	
Water yield	NA	1	Amatya et al. 2016 (169)	Other	North America	

2	Anderson and Spencer 1991 (170)	Review	Pan-tropics	
3	Andréassian 2004 (171)	Review	Global	
4	Bentley and Coomes 2020 (99)	Meta-analysis	Global	Focus on comparing tree cover with
				non-tree cover
5	Bonnesoeur et al. 2019 (172)	Meta-analysis	Andean Mountains	Plantation and native forest not paired; focus not on plantation vs native forest
6	Bosch and Hewlett 1982 (26)	Review	Global	
7	Brown et al. 2005 (73)	Review	Global	
8	Brown et al. 2013 (173)	Review	Africa, Australia, New Zealand	
9	Bruijnzeel 1990 (174)	Review	Pan-tropics	
10	Bruijnzeel 1997 (175)	Review	Pan-tropics	
11	Bruijnzeel 2004 (176)	Review	Pan-tropics	
12	Bruijnzeel et al. 2011 (177)	Review	Pan-tropics	
13	Calder 1986 (178)	Review	Australia, India, South Africa	
14	Chanasyk et al. 2003 (145)	Review	Temperate regions	
15	Cheng et al. 2002 (179)	Review	Taiwan	
16	Coble et al. 2020 (180)	Review	North America	
17	Cornish 1989 (181)	Review	Australia, New Zealand, South Africa	
18	Cosandey et al. 2005 (182)	Review	Mediterranean France	
19	Creed et al. 2014 (85)	Other	North America	
20	Creed and Van Noordwijk 2018 (183)	Review	Global	
21	Farley et al. 2005 (184)	Mete-analysis	Global	Focus not on plantation vs native forest
22	Ffolliott and Guertin 1987 (185)	Other	China	
23	Filoso et al. 2017 (186)	Review	Global	
24	García-Ruiz et al. 2011 (187)	Review	Mediterranean region	
25	Gush et al. 2002 (188)	Review	South Africa	
26	Gyenge et al. 2010 (189)	Review	Argentina	
27	Hamilton and King 1983 (153)	Review	Pan-tropics	
28	Heil et al. 2007 (81)	Other	North-western Europe	
29	Hermann and Schumann 2010 (88)	Other	Europe	
30	Hibbert 1967 (190)	Review	Global	
31	Hornbeck et al. 1993 (191)	Review	North-eastern United States	
32	Huber and Iroumé 2001 (192)	Review	Chile	
33	Jackson et al. 2005 (193)	Meta-analysis	Global	Focus not on plantation vs native forest

	34	Jones and Post 2004 (84)	Review	United States	
	35	Jones et al. 2012 (194)	Other	North America	
3	36	Jones et al. 2017 (195)	Review	South America	
3	37	Komatsu et al. 2007 (196)	Review	Japan	
	38	Komatsu et al. 2008 (197)	Review	Japan	
3	39	Lane et al. 2005 (198)	Review	Australia, New	
				Zealand, South Africa	
4	40	Laudon et al. 2011 (157)	Review	Sweden	
	41	Li et al. 2017 (199)	Meta-analysis	Global	Focus not on plantation vs native forest
2	42	Lima 1987 (200)	Review	Global	
4	43	Lima 1993 (201)	Review	Global	
2	44	Llorens and Domingo 2007 (202)	Review	Mediterranean	
4	45	Locatelli and Vignola 2009 (203)	Meta-analysis	Pan-tropical	Focus not on plantation vs native forest
2	46	Merheb et al. 2016 (204)	Meta-analysis	Mediterranean	Focus not on plantation vs native forest
4	47	Molchanov 1971 (205)	Review	Russia	
4	48	Nakano 1967 (206)	Review	Japan	
4	49	Niu et al. 2013 (86)	Other	China	
5	50	Oyebande 1988 (207)	Review	Pan-tropics	
5	51	Peck 2004 (208)	Review	Germany	
5	52	Penman 1963 (209)	Review	Global	
5	53	Price 2011 (210)	Review	Humid regions	
5	54	Robinson 1992 (211)	Other	Europe	
5	55	Rowe et al. 2002 (212)	Review	Australia, New	
		` ,		Zealand	
5	56	Rowe 2003 (213)	Review	Australia, New	
		,		Zealand	
5	57	Sahin and Hall 1996 (214)	Review	Global	
	58	Schmalz et al. 2015 (215)	Other	Austria, Germany,	
		,		Switzerland	
5	59	Scott et al. 2005 (216)	Review	Pan-tropics	
ϵ	60	Shiklomanov and Krestovsky 1988 (217)	Review	Russia	
6	61	Sopper and Lull 1967 (218)	Other	Global	
	62	Soto-Schönherr and Iroumé 2016 (219)	Review	Chile	
	63	Stednick 1996 (220)	Review	United States	
	64	Van Dijk and Keenan 2007 (221)	Review	Global	
	65	Van Lanen and Gertsen 1997 (87)	Other	Global	
	66	Venkatesh et al. 2014 (222)	Review	India	

67	Wang et al. 2020 (223)	Meta-analysis	Global	Focus not on plantation <i>vs</i> native forest; large river basins mostly
68	Wei et al. 2005 (224)	Review	China	
69	Wei et al. 2008 (225)	Review	China	
70	Whitehead and Robinson 1993 (226)	Review	Kenya, South Africa, Switzerland, United Kingdom, United States	
71	Zhang et al. 2017 (227)	Review	Global	
72	Zhou et al. 2015 (228)	Review	Global	

Note: † Some entries are not reviews/meta-analyses/ databases, but they index to useful primary studies; these entries are denoted as 'Other'. †† For databases/meta-analyses that are relevant to the quantitative comparison of plantations and native forests, this column notes how they may have fallen short of enabling a rigorous comparison. '--' indicates that the database/meta-analysis concerned is not relevant to the quantitative comparison of plantations and native forests. ‡: This meta-analysis combined data from seven previous reviews/meta-analyses ((21, 229–234). *: The PREDICTS database was consulted in November 2017.

Table S3. List of experts consulted for data on eroded soil and water yield. We consulted these experts for (i) additional data on eroded soil, and (ii) background information, literature references, unpublished theses and reports, and access to original data pertaining to water yield.

Metric	Geographical region	Expert name	Expert affiliation
Soil erosion	Belgium	Jean Poesen	KU Leuven
	-	Matthias Vanmaercke	KU Leuven
	Canada	Werner Kurz	Canadian Forest Service
	Finland	Jari Liski	Finnish Meteorological Institute
		Liisa Kulmala	Finnish Meteorological Institute
	The Netherlands	Gert-Jan Nabuurs	Wageningen University and Research
	Russia	Vladimir Korotkov	Moscow State University
	Senegal	Idrissa Guiro	Cheikh Anta Diop University, Dakar
	United Kingdom	Elena Vanguelova	Forest Research, United Kingdom
	-	Russel Anderson	Forest Research, United Kingdom
		Mike Perks	Forest Research, United Kingdom
		Robert Matthews	Forest Research, United Kingdom
	United States	Cheikh Mbow	START, Washington DC
Water yield	Argentina	Javier Gyenge	National Scientific & Technical Research
•	· ·	, C	Council, Buenos Aires
	Australia	Auro Almeida	CSIRO, Hobart
		Richard Benyon	University of Melbourne
		Leon Bren	University of Melbourne
		Shane Haydon	Melbourne Water Authority, Melbourne
		Patrick Lane	University of Melbourne, Melbourne
		Mike Sutton	Forestry Corporation NSW, Sydney
		Lisa Turner	Forestry Corporation NSW, Sydney
		Rob Vertessy	University of Melbourne, Melbourne
		Ashley Webb	WaterNSW, Sydney
	Belgium	Bart Muys	KU Leuven, Leuven
	C	Willem Verstraeten	Royal Meteorological Institute, Uckel
		Caroline Vincke	Catholic University of Louvain, Louvain
	Brazil	Felipe Salemi	Universidade de Brasilia, Brasilia
	Canada	Brian Amiro	University of Manitoba
		Jane Elliott	Environment Canada, Saskatoon
		David Scott	University of British Columbia, Kelowna
		Adam Wei	University of British Columbia, Kelowna
	Chile	Carlos Fuentes	Universidad de Chile, Santiago
		Pedro Hervé-Fernández	Universidad de Magallanes, Puntarenas
		Andrés Iroumé	Universidad Austral, Valdivia
		Carlos Oyarzún	Universidad Austral, Valdivia
	China	Wenjie Liu	CAS Key Laboratory of Tropical Forest
		3	Ecology, Menglun, Yunnan
		Yanghui Wang	Chinese Academy of Forestry, Beijing
		Yuefen Yao	(Formerly) Northeastern Forestry
			University, Harbin
		JianJun Zhang	Beijing Forestry University, Beijing
	(Taiwan)	Yue-Joe Hsia	Taiwan National Dong-Hwa University,
	· · · · · · · · · · · · · · · · · · ·		Hualien
		Shiang Yue Lu	Taiwan National University, Taipei
	Colombia	Conrado Tobón	Universidad Nacional de Colombia,
			Medellin
		Juan Camilo Villegas	Universidad de Antioquia, Medellin

Denmark	Per Gundersen	University of Copenhagen, Copenhagen
	Lars Vesterdal	University of Copenhagen, Copenhagen
France	Arnaud Legout	National Institute for Agricultural
		Research, Champenoux
	Jacques Ranger	National Institute for Agricultural
		Research, Champenoux
Germany	Sonja Germer	Leibnitz Institute for Agricultural
,	3	Engineering and Bioeconomy, Potsdam
	Mathias Herbst	Deutscher Wetterdienst, Offenbach
	Dirk Hölscher	University of Göttingen, Göttingen
	Henning Meesenburg	NW German Forest Research Institute,
		Göttingen
	Birte Scheler	NW German Forest Research Institute,
	2 20	Göttingen
India	Basappa Venkatesh	National Institute of Hydrology,
manu	Busuppu veintutesii	Belgaum
Japan	Mie Gomyo	Tokyo University, Tokyo
вирин	Shin'ichi Iida	Forestry & Forest Products Research
	Simi fem maa	Institute, Tsukuba
	Hikaru Komatsu	(Formerly) University of Kyoto
	Koichiro Kuraji	University of Tokyo, Tokyo
	Kazuho Matsumoto	University of the Ryukyus, Okinawa,
	Razano matsamoto	Japan
	Shoji Noguchi	Forestry & Forest Products Research
	Shoji rvogucin	Institute, Tsukuba
	Shimizu Takanori	Forestry & Forest Products Research
	Similar Takanom	Institute, Kyoto
Malaysia	Aishah Shamsuddin	Forest Research Institute, Malaysia,
Maiaysia	Aishan Shamsudun	Kepong
Mexico	Friso Holwerda	Universidad Autonoma de México,
WICKIEG	THSO HOIWEIGA	México City
The Netherlands	Eddy Moors	UNESCO-IHE, Delft
The remenands	Carolina van der Salm	Wageningen University & Research,
	Caronna van der Sann	Wageningen Oniversity & Research, Wageningen
New Zealand	Peter Beets	(Formerly) Scion, Rotorua
New Zearanu	Chandra Prasad Ghimire	AgResearch, Lincoln
	Lindsay Rowe	(Formerly) Landcare, Lincoln
Cnain	5	
Spain	Cristina Fernández Filgueira Noemí Lana-Renault	Centre for Forestry Research, Galicia
		Universidad de la Rioja, Logroño
	Estela Nadal-Romero	Instituto Pirenaico de Ecología, Zaragoza
	Rafael Poyatos	Universitat Autonoma de Barcelona,
Complem	Andona Malmon	Cerdanyola del Vallès, Catalonia
Sweden	Anders Malmer	Swedish University of Agricultural
11 '4 117' 1	M 1 C 1	Sciences, Úmeå
United Kingdom	Mark Gush	Kew Botanical Garden, London
II:4-1 C/-4	Mike Morecroft	Natural England, York
United States	Mary Beth Adams	US Forest Service, West Virginia
	Devendra Amatya	US Forest Service, South Carolina
	John Campbell	US Forest Service, New Hampshire
	Julia Jones	Oregon State University, Corvallis
	Chelcy Ford Miniat	US Forest Service, North Carolina
	Benjamin Rau	US Forest Service, West Virginia

Ge Sun	US Forest Service, Research Triangle
	Park, North Carolina
James Vose	US Forest Service, North Carolina

Table S4. List of primary studies included in our database.

Metric	No.	Primary study	Country	Native forest type	Plantation type
Species-specific	1	Alem and Woldemariam 2009 (235)	Ethiopia	Generic native forest	Monoculture
abundance	2	Barlow et al. 2007a (110)	Brazil	Old-growth forest;	Monoculture
				Secondary forest	
	3	Barlow et al. 2007b (236)	Brazil	Old-growth forest;	Monoculture
				Secondary forest	
	4	Barlow et al. 2007c (237)	Brazil	Old-growth forest;	Monoculture
				Secondary forest	
	5	Beehler et al. 1987 (238)	India	Generic native forest	Monoculture
	6	Bentley et al. 2000 (239)	Australia	Generic native forest	Monoculture
	7	Berndt et al. 2008 (240)	New Zealand	Generic native forest	Monoculture
	8	Berndt et al. 2019 (241)	New Zealand	Generic native forest	Monoculture
	9	Bonham et al. 2002 (242)	Australia	Old-growth forest;	Monoculture
				Secondary forest	
	10	Boonrotpong et al. 2004 (243)	Thailand	Old-growth forest	Abandoned plantation
	11	Caballero-Gini et al. 2020 (244)	Paraguay	Generic native forest	Monoculture
	12	Carey and Johnson 1995 (245)	United States	Old-growth forest	Mixed-culture plantation
	13	Ceia et al. 2009 (246)	Azores	Generic native forest	Monoculture
	14	Chauhan et al. 2006 (247)	India	Generic native forest	Mixed-culture plantation
	15	Cheng et al. 2018 (248)	China	Old-growth forest;	Monoculture
				Generic native forest	
	16	Chiawo et al. 2018 (249)	Kenya	Generic native forest	Mixed-culture plantation
	17	Clout and Gaze 1984 (250)	New Zealand	Generic native forest	Monoculture;
					Abandoned plantation
	18	da Silva et al. 2019‡ (251)	Portugal	Secondary forest	Monoculture
	19	Davis et al. 2000 (252)	Malaysia	Old-growth forest	Mixed-culture plantation
	20	Deharveng 1996 (253)	France	Generic native forest;	Monoculture
				Secondary forest	
	21	Do and Joo 2013‡ (254)	Korea	Generic native forest	Monoculture
	22	Einzmann and Zotz 2016 (255)	Panama	Generic native forest	Monoculture
	23	Fahy and Gormally 1998 (256)	Ireland	Generic native forest	Monoculture
	24	Farwig et al. 2008 (257)	Kenya	Generic native forest	Monoculture
					Mixed-culture plantation
	25	Fierro and Vergara 2019 (258)	Chile	Generic native forest	Monoculture
	26	Fierro et al. 2017‡ (259)	Chile	Secondary forest	Monoculture
	27	Fontúrbel et al. 2016 (260)	Chile	Old-growth forest	Abandoned plantation

28	Fuller et al. 2008 (261)	United Kingdom	Generic native forest	Monoculture; Mixed-culture plantation
29	Gangenova et al. 2018 (262)	Argentina	Generic native forest	Monoculture
30	Gardner et al. 2007 (263)	Brazil	Old-growth forest;	Monoculture
30	Gardner et al. 2007 (203)	Diazii	Secondary forest	Wonoculture
31	Gardner et al. 2008 (264)	Brazil	Old-growth forest;	Monoculture
31	Gardiici et al. 2008 (204)	Diazii	Secondary forest	Monoculture
32	Goded et al. 2019 (265)	Spain	Generic native forest	Abandoned plantation
33	Gómez et al. 2018 (266)	Argentina	Generic native forest	Monoculture
34	Gómez-Cifuentes et al. 2017 (267)	Argentina	Generic native forest	Monoculture
35	González-Vainer et al. 2012 (268)	Uruguay	Generic native forest	Monoculture
36	Gu et al. 2015 (269)	China	Old-growth forest;	Abandoned plantation
30	Gu et al. 2013 (209)	Cimia	Generic native forest	Abandoned plantation
37	Habel et al. 2018 (270)	Kenya	Generic native forest	Mixed-culture plantation
38	Hawes et al. 2009 (271)	Brazil	Old-growth forest;	Monoculture
30	11awes et al. 2005 (271)	Diuzii	Secondary forest	Monoculture
39	Hobbs et al. 2003 (272)	Australia	Generic native forest	Monoculture
40	Hodge et al. 2010 (273)	New Zealand	Generic native forest	Monoculture
41	Holbech 2009 (122)	Ghana	Generic native forest	Mixed plantation
42	Hua et al. 2016 (9)	China	Generic native forest	Monoculture;
.2	1144 61 41. 2010 ())	Cimia	Generie native forest	Mixed-culture plantation
43	Iezzi et al. 2020 (274)	Argentina	Generic native forest	Monoculture
44	Jacoboski et al. 2016 (275)	Brazil	Generic native forest	Monoculture
45	Kanowski et al. 2006 (276)	Australia	Old-growth forest;	Monoculture;
	12mie (170)	THOUGH	Secondary forest;	Mixed-culture plantation;
			Actively restored native forest	Abandoned plantation
46	Katovai et al. 2012 (277)	Solomon Islands	Old-growth forest	Abandoned plantation
47	Kattan et al. 2010 (278)	Colombia	Old-growth forest;	Abandoned plantation
			Secondary forest	
48	Kwok and Corlett 2000 (279)	China	Secondary forest	Monoculture
49	Lantschner and Rusch 2007 (280)	Argentina	Generic native forest	Monoculture
50	Lantschner et al. 2008 (281)	Argentina	Generic native forest	Monoculture
51	Li et al. 2017 (282)	China	Generic native forest	Monoculture
	,			Mixed-culture plantation
52	Longworth and Williamson 2018 (283)	Costa Rica	Secondary forest	Monoculture
53	Lu et al. 2016 (284)	China	Generic native forest	Monoculture
54	Lugo 1992 (33)	Puerto Rico	Secondary forest	Monoculture;
			-	Abandoned plantation

55	Luo et al. 2013 (285)	China	Generic native forest; Secondary forest	Abandoned plantation
56	Maglianesi 2010 (286)	Costa Rica	Secondary forest	Abandoned plantation
57	Magnano et al. 2019‡ (287)	Argentina	Secondary forest	Monoculture
58	Mandal and Raman 2016 (288)	India	Generic native forest	Monoculture
59	Martínez et al. 2009 (289)	Spain	Generic native forest	Monoculture; Abandoned plantation
60	Medina et al. 2002‡ (290)	Colombia	Secondary forest	Abandoned plantation
61	Merino-Sáinz and Anadón 2018 (291)	Spain	Generic native forest	Monoculture; Mixed-culture plantation
62	Milheiras et al. 2020 (292)	Brazil	Old-growth forest Generic native forest	Monoculture
63	Minor 2008 (293)	New Zealand	Generic native forest	Monoculture
64	Mitra and Sheldon 1993 (294)	Malaysia	Old-growth forest	Monoculture
65	Moreira-Arce et al. 2015 (295)	Chile	Generic native forest	Monoculture
66	Mott et al. 2010 (296)	Australia	Generic native forest	Monoculture
67	N'Dri et al. 2013 (297)	Ivory Coast	Old-growth forest	Monoculture
68	Nicolas et al. 2009 (298)	Guinea	Old-growth forest; Secondary forest	Abandoned plantation
69	Norfolk et al. 2017 (299)	Ethiopia	Generic native forest	Monoculture
70	Nummelin and Hanski 1989 (300)	Uganda	Old-growth forest; Generic native forest	Monoculture
71	Nurinsiyah et al. 2016 (301)	Indonesia	Old-growth forest	Monoculture
72	Ogai and Kenta 2016 (302)	Japan	Generic native forest	Monoculture
73	Ohwaki et al. 2017 (303)	Japan	Generic native forest	Monoculture
74	Palladini et al. 2007‡ (304)	United States	Secondary forest	Monoculture
75	Paritsis and Aizen 2008 (305)	Chile	Generic native forest	Mixed-culture plantation
76	Pawson et al. 2008 (306)	New Zealand	Generic native forest	Monoculture
77	Paz et al. 2015 (307)	Brazil	Generic native forest	Monoculture
78	Pedley et al. 2014 (308)	Ireland	Generic native forest	Monoculture
79	Penteado et al. 2016 (309)	Brazil	Generic native forest	Monoculture
80	Punttila et al. 1991 (310)	Finland	Generic native forest	Mixed-culture plantation
81	Ratsirarson et al. 2002 (311)	South Africa	Generic native forest	Monoculture
82	Rios et al. 2015 (312)	Colombia	Generic native forest	Monoculture
83	Rodrigues et al. 2017 (313)	Brazil	Generic native forest	Monoculture
84	Saavedra and Simonetti 2005 (314)	Chile	Generic native forest	Monoculture
85	Sakchoowong et al. 2008 (315)	Thailand	Generic native forest	Monoculture
86	Sarrionandia et al. 2015 (316)	Spain	Generic native forest	Monoculture

87	Sekercioglu 2002 (317)	Uganda	Old-growth forest	Mixed-culture plantation
88	Sheldon and Styring 2011 (318)	Malaysia	Generic native forest	Monoculture
89	Sheldon et al. 2010 (319)	Malaysia	Generic native forest	Monoculture
90	Soares et al. 2010 (320)	Brazil	Generic native forest	Abandoned plantation
91	Stuebing and Gasis 1989 (321)	Malaysia	Generic native forest	Monoculture
92	Styring et al. 2011 (322)	Malaysia	Generic native forest	Monoculture
93	Sung et al. 2012‡ (323)	China	Secondary forest	Monoculture
94	Taboada et al. 2008 (324)	Spain	Generic native forest	Monoculture;
				Abandoned plantation
95	Tikoca et al. 2017 (325)	Fiji	Generic native forest	Monoculture
96	Tondoh et al. 2011 (326)	Ivory Coast	Old-growth forest;	Monoculture;
			Generic native forest	Mixed-culture plantation
97	Trimble and van Aarde 2014 (327)	South Africa	Generic native forest	Monoculture
98	Twedt et al. 1999 (328)	United States	Generic native forest	Monoculture
99	Udayana et al. 2020 (329)	Indonesia	Generic native forest	Monoculture
100	Ueda et al. 2015 (330)	Indonesia	Generic native forest	Monoculture
101	Upadhaya et al. 2015 (331)	India	Old-growth forest	Abandoned plantation
102	Vasconcelos et al. 2019 (332)	Brazil	Old-growth forest;	Monoculture
			Generic native forest	
103	Vergara and Simonetti 2004 (333)	Chile	Generic native forest	Monoculture
104	Volpato et al. 2010 (334)	Brazil	Generic native forest	Abandoned plantation
105	Vonesh 2006 (335)	Uganda	Generic native forest	Abandoned plantation
106	Waldick et al. 1999 (336)	Canada	Generic native forest	Monoculture
107	Wang et al. 2008 (337)	China	Generic native forest	Monoculture
108	Warren-Thomas et al. 2014 (338)	China	Generic native forest	Abandoned plantation
109	Webb and Sah 2003 (339)	Nepal	Generic native forest;	Abandoned plantation
			Secondary forest	
110	Yamamoto et al. 2014 (340)	Japan	Generic native forest	Monoculture
111	Yamaura et al. 2011 (341)	Japan	Generic native forest	Monoculture
		_		Abandoned plantation
112	Yang et al. 2010 (342)	China	Generic native forest	Monoculture
113	Yoshikura et al. 2011 (343)	Japan	Old-growth forest	Monoculture
114	Yu et al. 2004 (344)	China	Generic native forest	Abandoned plantation
115	Yu et al. 2006 (345)	China	Generic native forest	Abandoned plantation
116	Yu et al. 2008 (346)	China	Generic native forest	Abandoned plantation
	•		Secondary forest	•
117	Yu et al. 2010 (347)	China	Generic native forest	Abandoned plantation
118	Zhang et al. 2011 (348)	China	Old-growth forest	Abandoned plantation

	119	Zhao et al. 2017 (349)	China	Generic native forest	Monoculture
Aboveground	1	Araujo and Austin 2020 (350)	Argentina	Generic native forest	Monoculture
biomass	2	Arevalo et al. 2009‡ (351)	Canada	Secondary forest	Monoculture
	3	Atkinson and Marín-Spiotta 2015 (352)	United States Virgin Islands	Secondary forest	Abandoned plantation
	4	Baishya et al. 2009 (353)	India	Generic native forest	Monoculture
	5	Baruch et al. 2019 (354)	Venezuela	Generic native forest	Abandoned plantation
	6	Behera et al. 2017 (355)	India	Generic native forest	Abandoned plantation
	7	Brown et al. 2020 (28)	Ghana	Old-growth forest; Secondary forest	Abandoned plantation
	8	Cai et al. 2016 (356)	Canada	Old-growth forest	Abandoned plantation
	9	Cesar et al. 2018 (357)	Brazil	Old-growth forest;	Abandoned plantation
		2010 (357)	Biuzii	Secondary forest;	rioundoned plantation
				Actively restored native forest	
	10	Chen et al. 2005 (358)	China	Generic native forest	Monoculture
	11	Cuevas et al. 1991 (359)	Puerto Rico	Secondary forest	Monoculture
	12	Devagiri et al. 2020 (360)	India	Generic native forest	Monoculture;
		20 (000)	111414		Mixed-culture plantation
	13	Di et al. 2012 (361)	China	Old-growth forest;	Abandoned plantation
		()		Secondary forest	T I
	14	Fan et al. 2016‡ (362)	China	Secondary forest	Monoculture
	15	Fleming and Freedman 1998 (363)	Canada	Generic native forest	Monoculture
	16	Gahagan et al. 2015‡ (364)	United States	Secondary forest	Monoculture
	17	Guedes et al. 2018 (365)	Mozambique	Generic native forest	Monoculture
	18	Haggar et al. 2013 (366)	Guatemala	Generic native forest	Monoculture
	19	Hagger et al. 2019 (367)	Australia	Actively restored native forest	Monoculture
	20	Hase and Foelster 1983 (368)	Venezuela	Generic native forest	Monoculture
	21	Jordan and Farnworth 1982 (369)	Puerto Rico	Secondary forest	Monoculture
	22	Kanowski and Catterall 2010 (35)	Australia	Actively restored native forest	Monoculture;
				•	Mixed-culture plantation
	23	Kawahara et al. 1981 (370)	Philippines	Generic native forest	Monoculture;
					Mixed-culture plantation
	24	Kumar et al. 2010 (371)	India	Generic native forest	Mixed-culture plantation
	25	Laclau 2003 (372)	Argentina	Generic native forest	Monoculture
	26	Lewis et al. 2016 (373)	Australia	Generic native forest	Monoculture
	27	Li et al. 2015 (374)	China	Secondary forest	Monoculture
	28	Li et al. 2013 (375)	China	Generic native forest	Monoculture
	29	Lin et al. 2015 (376)	China	Old-growth forest;	Monoculture
				Generic native forest;	

	20	1: 4 1 2017 (277)	CI.	Secondary forest	3.6
	30	Lin et al. 2017 (377)	China	Old-growth forest;	Monoculture
	31	Luca 1002 (22)	Puerto Rico	Generic native forest	Managaltuna
	31	Lugo 1992 (33)	Fuelto Rico	Secondary forest	Monoculture;
	22	NICL-1 1 20174 (270)	C-4- 111	C 1 C t	Abandoned plantation
	32	N'Gbala et al. 2017‡ (378)	Cote d'Ivoire	Secondary forest	Monoculture
	33	Nihlgård 1972 (379)	Sweden	Generic native forest	Monoculture
	34	Omoro et al. 2013 (380)	Kenya	Generic native forest	Monoculture
	35	Osuri et al. 2020 (381)	India	Generic native forest	Abandoned plantation
	36	Otuoma et al. 2016 (382)	Kenya	Generic native forest;	Monoculture;
				Secondary forest	Mixed-culture plantation
	37	Pangle et al. 2009 (383)	United States	Generic native forest	Monoculture
	38	Pibumrung et al. 2008 (384)	Thailand	Generic native forest	Mixed-culture plantation
	39	Preece et al. 2012 (385)	Australia	Generic native forest	Monoculture
	40	Raich et al. 2014 (386)	Costa Rica	Old-growth forest	Monoculture
	41	Silva et al. 2011‡ (387)	Brazil	Secondary forest	Monoculture
	42	Thapa et al. 2015 (388)	Indonesia	Generic native forest	Monoculture
	43	Upadhaya et al. 2015 (331)	India	Old-growth forest	Abandoned plantation
	44	Urbano and Keeton 2017 (389)	United States	Secondary forest	Monoculture
	45	Xie et al. 2013‡ (390)	China	Secondary forest	Abandoned plantation
	46	Yang et al. $2005(391)$	China	Secondary forest	Monoculture
	47	Yang et al. 2007 (392)	China	Generic native forest	Monoculture
	48	Yang et al. 2018 (393)	China	Generic native forest	Monoculture
	49	Zhang et al. 2020 (394)	China	Secondary forest	Abandoned plantation
	50	Zheng et al. 2008 (395)	China	Secondary forest	Monoculture
	51	Zhou et al. 2019 (396)	China	Generic native forest	Monoculture
	52	Zhu et al. 2016‡ (397)	China	Secondary forest	Monoculture;
	32	2114 61 41. 2010 4 (577)	Cimiu	Secondary forest	Mixed-culture plantation
Soil erosion	1	Fu et al. 2009 (398)	China	Secondary forest	Abandoned plantation
Son Crosion	2	Guimarães 2015 (399)	Brazil	Generic native forest	Monoculture
	3	Hou et al. 2010 (400)	China	Secondary forest	Monoculture;
	3	110d et al. 2010 (400)	Cililia	Secondary forest	Abandoned plantation
	4	Huang et al. 2010 (401)	China	Secondary forest	Monoculture;
	4	Huang et al. 2010 (401)	Cillia	Secondary forest	
	5	Limewitter calculated 2000 (402)	Thailand	Generic native forest	Abandoned plantation Monoculture
	5	Jirasuktaveekul et al. 2000 (402)			
	6	Ma et al. 2014 (403)	China	Secondary forest	Abandoned plantation
	7	Martins 2005 (404)	Brazil	Generic native forest	Monoculture
	8	Oliveira 2011 (405)	Brazil	Generic native forest	Monoculture

	10	Oliveira et al. 2013 (406)	Brazil	Generic native forest	Monoculture
	11	Pardini et al. 2003 (407)	Spain	Generic native forest	Mixed-culture plantation
	12	Qi et al. 2008 (408)	China	Secondary forest	Monoculture
	13	Razafindrabe et al. 2010 (409)	Japan	Generic native forest	Monoculture
	14	Silva et al. 2011 (<i>410</i>)	Brazil	Generic native forest	Monoculture
	15	Silva et al. 2016 (411)	Brazil	Generic native forest	Monoculture
	16	Tang et al. 2007 (412)	China	Secondary forest	Monoculture;
					Abandoned plantation
	17	Wakiyama et al. 2010 (68)	Japan	Generic native forest	Monoculture
	18	Wu et al. 2015‡ (413)	China	Secondary forest	Mixed-culture plantation
	19	Yang et al. 2004 (414)	China	Generic native forest	Monoculture
	20	Yang et al. 2018 (393)	China	Generic native forest	Monoculture
	21	Zheng et al. 2008 (415)	China	Secondary forest	Monoculture
	22	Zhou et al. 2010 (416)	China	Generic native forest;	Monoculture
				Secondary forest	
	23	Zhou et al. 2012 (417)	China	Secondary forest	Monoculture
Water yield†	1	Adams et al. 1994* (418);	United States	Generic native forest	Monoculture
		Adams and Kochenderfer 2014* (419)			
	2	Aguilos et al. 2021* (82);	United States	Generic native forest	Monoculture
		Liu et al. 2018* (420)			
	3	Amatya and Skaggs 2011 (421);	United States	Generic native forest	Monoculture
		Chescheir et al. 2008			
	4	Aubinet et al. 2016 (422);	Belgium	Generic native forest	Monoculture
		Soubie et al. 2016 (76)			
	5	Aussenac and Boulangeat 1980 (423);	France	Generic native forest	Monoculture
		Beaulieu et al. 2016 (424);			
		Granier et al. 2000 (83)			
	6	Bailly et al. 1974 (425)	Madagascar	Generic native forest	Abandoned plantation
	7	Beets and Oliver 2007* (426);	New Zealand	Old-growth forest	Monoculture
		Rowe 2003 (213)			
	8	Benecke 1984 (427);	Germany	Generic native forest	Monoculture
		Bouten and Jansson 1995 (428)			
	9	Benecke 1984 (427);	Germany	Generic native forest	Monoculture
		Sutmöller and Meesenburg 2018* (429)			
	10	Berger et al. 2009‡ (430)	Austria	Secondary forest	Monoculture
	11	Bergkvist and Folkeson 1995 (78)	Sweden	Generic native forest	Monoculture
	12	Bigelow 2001 (431);	Costa Rica	Old-growth forest	Monoculture

	Loescher et al. 2005 (432)			
13	Blackie 1979 (433)	Kenya	Old-growth forest	Monoculture
14	Bren and Hopmans 2007 (434);	Australia	Old-growth forest	Monoculture
	Bren and Papworth 1991 (435)		•	
15	Buttle and Farnsworth 2012 (436);	United States	Secondary forest	Monoculture
	Sun et al. 2008* (437);			
	Verry and Timmons 1977 (438)			
16	Calvo de Anta and Gómez Rey 2002	Spain	Generic native forest	Monoculture
	(439);			
	Dambrine et al. 2000* (440);			
	González and Viqueira 1985 (441);			
	Rodríguez-Suárez et al. 2011 (442)			
17	Carbon et al. 1982 (443)	Australia	Old-growth forest	Monoculture
18	Cornish and Vertessy 2001* (444);	Australia	Old-growth forest	Mixed-culture plantation
	Webb et al. 2012* (445)			
19	de Almeida and Soares 2003 (446);	Brazil	Generic native forest	Monoculture
	Soares and de Almeida 2001 (447)			
20	De Schrijver et al. 2004 (71);	Belgium	Generic native forest	Monoculture
	De Schrijver et al. 2008 (72);			
	Verstraeten et al. 2001 (448)			
21	Dolman et al. 2000* (449);	The Netherlands	Generic native forest	Monoculture
	Tiktak and Bouten 1994 (79)			
22	Dolman et al. 2000* (449);	The Netherlands	Generic native forest	Monoculture
	Verstraeten et al. 2001 (448)			
23	Duan and Zhang 2014 (450);	China	Secondary forest	Monoculture
	Yan et al. 2009 (451);			
	Yan et al. 2015 (452)			
24	Echeverria et al. 2007 (453);	Chile	Old-growth forest;	Monoculture
	Huber and Trecaman 2004 (454);		Generic native forest	
	Lara et al. 2009 (455);			
	Oyarzún and Huber 1999 (456)			
25	Einsele et al. 1983 (457)	Germany	Generic native forest	Monoculture
26	Elliott et al. 1998*‡ (458);	Canada	Secondary forest	Monoculture
	Pomeroy et al. 1997*‡ (459)			
27	Fahey and Jackson (460)	New Zealand	Old-growth forest	Monoculture
28	Fan et al. 2014 (461)	Australia	Generic native forest	Monoculture
29	Ford et al. 2011* (462)	United States	Generic native forest	Monoculture

	30	Forest Influences Unit and Kansai Branch	Japan	Secondary forest	Monoculture
		Station 1979*‡ (463);			
		Hosoda et al. 2019*‡ (464);			
	2.1	Tamai et al. 2008*‡ (465)	F 1.0	011 4.6	3.6
	31	Fritsch 1993 (69)	French Guyana	Old-growth forest	Monoculture
	32	Führer 1990* (466)	Germany	Generic native forest	Monoculture
	33	Ghimire et al. 2014 (467)	Nepal	Old-growth forest	Monoculture
	34	Gholz and Clark 2002 (468);	United States	Generic native forest	Monoculture
		Riekerk 1989 (469);			
		Sun et al. 2002 (470)			
	35	Gyenge et al. 2009* (471);	Argentina	Generic native forest	Monoculture
		Gyenge et al. 2011* (472)			
	36	Herbst et al. 2008 (473);	United Kingdom	Generic native forest	Monoculture
		Neal et al. 1993 (474);	•		
		Roberts et al. 2005 (475)			
	37	Herbst et al. 2015 (476)	Germany	Old-growth forest	Monoculture
	38	Hervé-Fernandez et al. 2016 (477);	Chile	Generic native forest	Monoculture
		Oyarzún et al. 2012 (478)			
	39	Hirata 1929‡ (479);	Japan	Secondary forest	Mixed-culture plantation
		Murakami et al. 2000‡ (480)	1	,	1
	40	Hosoda et al. 1999*‡ (481);	Japan	Secondary forest	Monoculture
		Hosoda and Murakami 2006*‡ (482);	1	,	
		Hosoda et al. 2009*‡ (483)			
	41	Hwong et al. 2002* (484)	China (Taiwan)	Old-growth forest	Monoculture
	42	Jassal et al. 2009‡ (485)	Canada	Secondary forest	Mixed-culture plantation
	43	Ji and Cai 2015 (486);	China	Old-growth forest	Monoculture
		Sheng et al. 2014 (487);		3 3	
		Yao 2011 (488)			
	44	Jones and Post 2004* (84)	United States	Old-growth forest;	Monoculture
		venes unu 1 est 200 . (e /)		Generic native forest	
	45	Juez et al. 2020* (489);	Spain	Old-growth forest	Monoculture
		Nadal-Romero et al. 2016* (70)	~pum	growth for our	
	46/47	Krishnaswamy et al. 2012 (490)	India	Generic native forest	Mixed-culture plantation
	48	Ladekarl et al. 2005 (491);	Denmark	Old-growth forest	Monoculture
	10	Ringgaard et al. 2014 (492)	Deminute	ord grown rotest	1,101100aitai0
	49	Legout et al. 2016* (90)	France	Generic native forest	Monoculture
	50	Legout et al. 2016* (90); Legout et al. 2016* (90);	France	Generic native forest	Monoculture
,	50	1050at of al. 2010 (30),	1 Tance	Ocheric native forest	ivionocuituic

	Marques et al. 1997 (89)			
51	Licata et al. 2008‡ (493)	Argentina	Secondary forest	Monoculture
52	Liu et al. 2015 (494);	China	Old-growth forest	Monoculture
	Tian et al. 2008 (495);			
	Yu et al. 2008 (496)			
53	Malmer 1992* (497);	Malaysia	Generic native forest	Monoculture
	Malmer et al. 2005* (498)			
54	Martin et al. 2003 (499)	France	Generic native forest	Monoculture
55	Matsumoto et al. 2008*; (500);	Japan	Secondary forest	Monoculture
	Gomyo and Kuraji 2013*‡ (501);			
	Kuraji et al. 2019*‡ (502)			
56	Muñoz-Villers et al. 2015 (74)	Mexico	Old-growth forest	Monoculture
57	Nandakumar and Mein 1993 (503);	Australia	Generic native forest	Monoculture
	Tsykin et al. 1982 (504)			
58	Ogden et al. 2013 (505);	Panama	Generic native forest	Mixed-culture plantation
	Wolf et al. 2011 (506)			
59	Oishi et al. 2010 (75);	United States	Generic native forest	Monoculture
	Schäfer et al. 2002 (507)			
60	Pilgrim et al. 1982‡ (508);	Australia	Secondary forest	Monoculture
	Putuhena and Cordery 2000‡ (509)			
61	Richardson 1982 (510)	Jamaica	Generic native forest	Monoculture
62	Rosenqvist et al. 2010* (80)	Denmark	Generic native forest	Monoculture
63	Rothe et al. 2002 (511)	Germany	Secondary forest	Monoculture
64	Rowe and Pearce 1994 (512);	New Zealand	Old-growth forest	Monoculture
	Rowe et al. 1994 (513)			
65	Salemi et al. 2013 (514)	Brazil	Old-growth forest	Monoculture
66	Scott and Smith 1997 (515);	South Africa	Generic native forest	Monoculture
	Scott and Prinsloo 2008 (516)			
67	Vásquez-Velásquez 2016 (517)	Colombia	Old-growth forest	Monoculture
68	Voigtlaender 2007 (518)	Brazil	Generic native forest	Mixed-culture plantation
69	Wang 2015‡ (519);	China	Secondary forest	Mixed-culture plantation
	Zhang et al. 2008‡ (520)			
70	Yang et al. 2019 (521)	South Korea	Generic native forest	Mixed-culture plantation
71	Zhou et al. 1999‡ (522);	China	Secondary forest	Monoculture;
	Zhou et al. 2002‡ (523);			mixed-culture plantation
	Zou and Chen 2017‡ (524)			
72	Zou and Chen 2017‡ (524)	China	Secondary forest	Monoculture

wood	1	Brown et al. 2020 (28)	Ghana	Secondary forest	Abandoned plantation
production	2	Hallsby et al. 2015 (525)	Sweden	Secondary forest	Monoculture
(paired data)	3	Lugo 1992 (33)	Puerto Rico	Secondary forest	Monoculture;
					Mixed-culture plantation;
					Abandoned plantation
Wood	1	Cain 1996 (526)	United States	Secondary forest	
production	2	Doua-Bi et al. 2021 (527)	Ivory Coast	Secondary forest	
(data on only	3	Fantini et al. 2019 (528)	Brazil	Secondary forest	
restored native	4	Julin and D'Amore 2003 (529)	United States	Secondary forest	
forest)	5	Pitt et al. 2013 (530)	Canada	Secondary forest	
	6	Shoo et al. 2016 (531)	Australia	Secondary forest	
				Actively restored native forest	
	7	Wu et al. 2018 (532)	China	Secondary forest	
	8	Zambiazi et al. 2021 (533)	Brazil	Secondary forest	
	9	Zhang et al 2006 (534)	Canada	Secondary forest	
	10	Zhang et al. 2015 (535)	China	Secondary forest	

Note: †: For compilation of data on water yield, frequently multiple studies were needed to derive the RR for a given plantation and native forest pair. In listing primary studies for water yield, we therefore place such groups of primary studies together, in the column 'No.', organizing them in alphabetical order (within groups and among groups). *: For these water yield studies, we relied on original data provided by the primary study authors to derive water yield. ‡: Studies marked with this sign were not included in the analyses because they involved comparisons between tree plantations and restored native forests that differed by >10 years in age.

Table S5. Meta-analysis results for RR (*i.e.* on the transformed ln() scale), as corresponding to those shown in Fig. 2 (including sensitivity analyses).

Comparison	Metric	Mean	Lower 95% CI	Upper 95% CI	I^2
Main analysis				2. 2.	
Plantations versus	Species-specific abundance	-0.363	-0.534	-0.192	88.4%
reference native forests	Aboveground biomass	-0.398	-0.615	-0.180	84.1%
	Soil erosion control	-0.939	-1.686	-0.192	100%
	Water yield	-0.144	-0.244	-0.043	100%
Monoculture plantations	Species-specific abundance	-0.477	-0.634	-0.319	86.3%
versus reference native	Aboveground biomass	-0.398	-0.702	-0.095	85.7%
forests	Soil erosion control	-0.900	-1.696	-0.104	100%
	Water yield	-0.173	-0.281	-0.065	100%
Mixed-culture plantations	Species-specific abundance	-0.171	-0.422	0.081	100%
versus reference native	Aboveground biomass	NA	NA	NA	NA
forests	Soil erosion control	NA	NA	NA	NA
	Water yield	0.059	-0.231	0.350	42.6%
Abandoned plantations	Species-specific abundance	-0.105	-0.315	0.105	49.1%
versus reference native	Aboveground biomass	-0.205	-0.472	0.063	100%
forests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Old or abandoned	Species-specific abundance	-0.168	-0.298	-0.037	43.0%
plantations <i>versus</i>	Aboveground biomass	-0.275	-0.486	-0.064	81.4%
reference native forests	Soil erosion control	NA	NA	NA	NA
	Water yield	-0.065	-0.384	0.254	100%
Plantations <i>versus</i> restored	Species-specific abundance	-0.395	-0.617	-0.172	100%
native forests (similar age)	Aboveground biomass	0.040	-0.263	0.343	91.0%
	Soil erosion control	-1.621	-3.698	0.457	100%
	Water yield	NA	NA	NA	NA
	Wood yield	1.172	0.722	1.621	100%
Monoculture plantations	Species-specific abundance	-0.330	-0.645	-0.015	100%
versus restored native	Aboveground biomass	-0.132	-0.915	0.651	100%
forests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Mixed plantations versus	Species-specific abundance	NA	NA	NA	NA
restored native forests	Aboveground biomass	-0.211	-0.894	0.472	92.6%
(similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA

Abandoned plantations	Species-specific abundance	-0.522	-0.817	-0.227	87.3%
versus restored native	Aboveground biomass	NA	NA	NA	NA
forests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Sensitivity analysis 1: weig	ghting scores all based on Equa	ation 11†			
Plantations <i>versus</i>	Species-specific abundance	-0.361	-0.538	-0.184	88.7%
eference native forests	Aboveground biomass	-0.397	-0.614	-0.179	84.7%
	Soil erosion control	-0.939	-1.686	-0.192	100%
	Water yield	NA	NA	NA	NA
Monoculture plantations	Species-specific abundance	-0.477	-0.636	-0.318	86.1%
ersus reference native	Aboveground biomass	-0.398	-0.702	-0.095	85.2%
orests	Soil erosion control	-0.900	-1.696	-0.104	100%
	Water yield	NA	NA	NA	NA
Aixed-culture plantations	Species-specific abundance	-0.171	-0.422	0.081	100%
ersus reference native	Aboveground biomass	NA	NA	NA	NA
orests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Abandoned plantations	Species-specific abundance	-0.051	-0.304	0.203	100%
ersus reference native	Aboveground biomass	-0.205	-0.472	0.063	100%
orests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
old or abandoned	Species-specific abundance	-0.147	-0.297	0.004	74.7%
lantations <i>versus</i>	Aboveground biomass	-0.270	-0.482	-0.058	83.9%
eference native forests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
lantations versus restored	Species-specific abundance	-0.394	-0.597	-0.190	9.8%
ative forests (similar age)	Aboveground biomass	0.036	-0.271	0.344	94.4%
	Soil erosion control	-1.621	-3.698	0.457	100%
	Water yield	NA	NA	NA	NA
	Wood yield	1.172	0.727	1.616	49.3%
Monoculture plantations	Species-specific abundance	-0.326	-0.631	-0.022	61.8%
ersus restored native	Aboveground biomass	-0.132	-0.915	0.651	100%
orests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA

Mixed plantations versus	Species-specific abundance	NA	NA	NA	NA
restored native forests	Aboveground biomass	-0.216	-0.896	0.465	81.5%
(similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Abandoned plantations	Species-specific abundance	-0.518	-0.806	-0.229	1.3%
versus restored native	Aboveground biomass	NA	NA	NA	NA
orests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
ensitivity analysis 2: no	weighting scheme used‡				
lantations <i>versus</i>	Species-specific abundance	-0.364	-0.540	-0.188	NA
eference native forests	Aboveground biomass	-0.405	-0.621	-0.190	NA
	Soil erosion control	-0.939	-1.686	-0.192	NA
	Water yield	-0.144	-0.244	-0.043	NA
Monoculture plantations	Species-specific abundance	-0.479	-0.639	-0.318	NA
ersus reference native	Aboveground biomass	-0.410	-0.711	-0.109	NA
orests	Soil erosion control	-0.900	-1.725	-0.075	NA
	Water yield	-0.173	-0.281	-0.065	NA
fixed-culture plantations	Species-specific abundance	-0.171	-0.422	0.081	NA
ersus reference native	Aboveground biomass	NA	NA	NA	NA
orests	Soil erosion control	NA	NA	NA	NA
	Water yield	0.105	-0.293	0.502	NA
bandoned plantations	Species-specific abundance	-0.051	-0.304	0.203	NA
ersus reference native	Aboveground biomass	-0.205	-0.472	0.063	NA
prests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
old or abandoned	Species-specific abundance	-0.149	-0.294	-0.004	NA
lantations versus	Aboveground biomass	-0.270	-0.484	-0.055	NA
eference native forests	Soil erosion control	NA	NA	NA	NA
	Water yield	-0.065	-0.384	0.254	NA
lantations versus restored	Species-specific abundance	-0.395	-0.617	-0.172	NA
ative forests (similar age)	Aboveground biomass	0.032	-0.281	0.346	NA
	Soil erosion control	-1.621	-3.698	0.457	NA
	Water yield	NA	NA	NA	NA
	Wood yield	1.172	0.722	1.621	NA

Monoculture plantations	Species-specific abundance	-0.330	-0.645	-0.015	NA
versus restored native	Aboveground biomass	-0.132	-0.915	0.651	NA
forests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Mixed plantations versus	Species-specific abundance	NA	NA	NA	NA
restored native forests	Aboveground biomass	-0.216	-0.896	0.465	NA
(similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Abandoned plantations	Species-specific abundance	-0.525	-0.827	-0.223	NA
versus restored native	Aboveground biomass	NA	NA	NA	NA
forests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Sensitivity analysis 3: rand	lom effect structure not includ	ing the site identit	y of the native for	ests*	
Plantations versus	Species-specific abundance	-0.363	-0.534	-0.191	88.4%
reference native forests	Aboveground biomass	-0.407	-0.627	-0.187	100%
	Soil erosion control	-0.931	-1.660	-0.202	100%
	Water yield	-0.144	-0.244	-0.044	100%
Monoculture plantations	Species-specific abundance	-0.477	-0.634	-0.319	86.3%
versus reference native	Aboveground biomass	-0.412	-0.717	-0.107	100%
forests	Soil erosion control	-0.892	-1.668	-0.116	100%
	Water yield	-0.173	-0.280	-0.065	100%
Mixed-culture plantations	Species-specific abundance	-0.171	-0.422	0.081	100%
versus reference native	Aboveground biomass	NA	NA	NA	NA
forests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Abandoned plantations	Species-specific abundance	-0.095	-0.316	0.127	49.1%
versus reference native	Aboveground biomass	-0.205	-0.472	0.063	100%
forests	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Old or abandoned	Species-specific abundance	-0.168	-0.298	-0.037	43.0%
plantations versus	Aboveground biomass	-0.275	-0.486	-0.064	81.4%
reference native forests	Soil erosion control	NA	NA	NA	NA
	Water yield	-0.065	-0.384	0.254	100%
Plantations versus restored	Species-specific abundance	-0.395	-0.617	-0.172	100%
native forests (similar age)	Aboveground biomass	0.089	-0.134	0.312	71.5%
` '	Soil erosion control	-1.573	-3.600	0.454	100%
	Water yield	NA	NA	NA	NA
	Wood yield	NA	NA	NA	NA

Monoculture plantations	Species-specific abundance	-0.330	-0.645	-0.015	100%
versus restored native	Aboveground biomass	-0.130	-0.885	0.624	96.9%
forests (similar age)	Soil erosion control	NA	NA	NA	NA
	Water yield	NA	NA	NA	NA
Mixed plantations versus	Species-specific abundance	NA	NA	NA	NA
restored native forests	Aboveground biomass	-0.176	-0.838	0.487	45.9%
(similar age)	Soil erosion control	NA	NA	NA	NA
· · · · · · · · · · · · · · · · · · ·	Water yield	NA	NA	NA	NA
Abandoned plantations	Species-specific abundance	-0.522	-0.817	-0.227	87.3%
versus restored native	Aboveground biomass	NA	NA	NA	NA
forests (similar age)	Soil erosion control	NA	NA	NA	NA
· • • • • • • • • • • • • • • • • • • •	Water yield	NA	NA	NA	NA

Note: †: This sensitivity analysis did not concern water yield, because Equation 11 (in 'Data analysis' under Materials and Methods) was used to calculate weight scores for water yield RR in the main analyses. \ddagger : The lack of model weight from this set of sensitivity analyses meant that I^2 was not calculated because its calculation depended on model weight (see 'Data analysis' under Materials and Methods). *: This sensitivity analysis did not concern wood yield, because the main models did not include the site identity of the native forest as a random variable (due to data paucity)

Table S6. AICc-based model selection results. ' \checkmark ' and '--' indicate that the variable concerned was included and not included, respectively, in the top-ranking models as selected by AICc scores (*i.e.* \triangle AICc \le 2); 'NA' indicates that the variable concerned was not relevant to the corresponding analysis.

Marian M
Main analysis
1 376.5 0
1 376.5 0
3 377.7 1.21
4
5 378.2 1.63 √ NA NA NA NA 6 378.5 1.93 NA NA NA NA 1 280.2 0 NA NA NA NA NA 2 281.2 0.96 NA √ NA NA NA NA 3 281.5 1.24 NA √ NA NA NA NA 4 282.2 1.96 NA √ NA NA NA NA Species-species abundance, mixed plantations versus reference native forests 1 47.3 0 NA NA NA NA NA Species-species abundance, mixed plantations versus reference native forests 1 72.8 0 NA NA NA NA </td
6
Species-species abundance, monoculture plantations \(\text{versus} \) reference native forests 1
1
2 281.2 0.96 NA
3
4
Species-species abundance, mixed plantations <i>versus</i> reference native forests 1
1
Species - species abundance, abandoned plantations versus reference native forests
1 72.8 0 NA
2 73.1 0.37 NA
3 74.7 1.99 NA
Species-species abundance, plantations <i>versus</i> restored native forest of similar age 1
1
Aboveground biomass, plantations <i>versus</i> reference native forests 1
1 121.4 0
Aboveground biomass, plantations <i>versus</i> restored native forest of similar age 1 53.9 0 NA NA NA NA NA NA NA Soil erosion control, plantations <i>versus</i> reference native forests (not including MAT) 1 140.6 0 NA NA NA NA NA Soil erosion control, plantations <i>versus</i> reference native forests (not including plantation age) 1 198.9 0 NA NA NA NA NA 2 200.1 1.17 NA NA NA NA \sqrt{NA} NA NA 3 200.1 1.20 NA NA \sqrt{NA} NA \sqrt{NA} NA NA NA 4 200.4 1.52 NA NA NA \sqrt{NA} NA \sqrt{NA} NA \sqrt{NA} NA \sqrt{NA} NA NA NA NA NA NA NA NA Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 NA NA NA
1 53.9 0 NA Soil erosion control, plantations $versus$ reference native forests (not including MAT) 1 140.6 0 NA Soil erosion control, plantations $versus$ reference native forests (not including plantation age) 1 198.9 0 NA NA NA NA NA NA NA 3 200.1 1.17 NA
Soil erosion control, plantations <i>versus</i> reference native forests (not including MAT) 1 140.6 0 NA NA NA NA NA Soil erosion control, plantations <i>versus</i> reference native forests (not including plantation age) 1 198.9 0 NA NA NA NA NA 2 200.1 1.17 NA NA NA NA \checkmark NA NA 3 200.1 1.20 NA NA \checkmark NA NA NA 4 200.4 1.52 NA NA \checkmark NA \checkmark NA NA Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 NA NA NA
1 140.6 0 NA
Soil erosion control, plantations <i>versus</i> reference native forests (not including plantation age) 1 198.9 0 NA NA NA NA NA NA 2 200.1 1.17 NA NA NA NA \checkmark NA NA 3 200.1 1.20 NA NA \checkmark NA NA NA 4 200.4 1.52 NA NA \checkmark NA \checkmark NA NA Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA NA NA NA NA NA NA NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 NA NA NA
1 198.9 0 NA NA NA NA NA NA 2 200.1 1.17 NA NA NA NA √ NA NA 3 200.1 1.20 NA NA √ NA NA NA 4 200.4 1.52 NA NA √ NA ✓ NA ✓ NA NA NA Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA NA NA NA NA NA NA NA NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 ✓ NA NA NA
3 200.1 1.20 NA NA \ NA \ NA \ NA \ NA \ NA \ NA
4 200.4 1.52 NA NA ✓ NA ✓ NA NA Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA NA NA NA NA NA NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 ✓ NA NA
Soil erosion control, plantations <i>versus</i> restored native forest of similar age 1 70.9 0 NA NA NA NA NA NA NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 NA NA
1 70.9 0 NA Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 NA NA NA
Water yield, plantations <i>versus</i> reference native forests (not including seasonality) 1 164.3 0 √ NA NA
1 164.3 0 √ NA NA
·
2 164.8 0.45 NA NA
3 165.5 1.14 √ NA NA
4 165.5 1.17 \(\) NA NA
5 166.0 1.65 ✓ NA NA
5 166.0 1.65 \(\) \(\) NA NA 6 166.1 1.75 \(\) \(\) \(\) NA NA
5 166.0 1.65 ✓ NA NA

```
164.8
                                                      NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
2
          165.5
                  0.72
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
                            --
                                                      NA
                                               \checkmark
                                                                                                 --
3
          166.3
                  1.56
                                                                       NA
                                                                               NA
                                                      NA
                                                              NA
                                                                                       NA
4
          166.6
                  1.78
                                                      NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
5
          166.6
                  1.82
                                                      NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
                            \checkmark
                                               \sqrt{}
6
          166.7
                  1.91
                                                                               NA
                                                      NA
                                                              NA
                                                                       NA
                                                                                       NA
Sensitivity analysis 1: weighting scores all based on Equation 11*
Species-species abundance, plantations (all types combined) versus reference native forests
         380.6
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                  0
                            \checkmark
2
         381.7
                  1.12
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                            √
                                               √
3
         381.7
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                  1.16
                                                              --
4
         381.8
                  1.17
                                                                       NA
                                                                               NA
                                                                                                 NA
                                                                                       NA
5
         382.1
                  1.54
                                                                       NA
                                                                               NA
                                                                                                 NA
                                                                                       NA
                                               \checkmark
Species-species abundance, monoculture plantations versus reference native forests
         283.8
                  0
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
2
          284.7
                  0.95
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
3
         285.0
                  1.21
                            NA
                                                                       NA
                                                                               NA
                                                                                                 NA
                                                                                       NA
                                                              --
         285.7
                  1.92
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                                       \checkmark
                                                              --
Species-species abundance, mixed plantations versus reference native forests (null model did not converge and
therefore did not enter model selection)
1
          52.7
                  0
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                                       \checkmark
2
          52.8
                  0.18
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                               √
                                                       √
3
         53.4
                  0.70
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                                       \checkmark
4
         53.8
                  1.17
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
5
         54.5
                  1.85
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
Species-species abundance, abandoned plantations versus reference native forests
          72.8
                            NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                               \checkmark
                                                                       NA
2
         73.1
                  0.37
                            NA
                                                                       NA
                                                                               NA
                                                                                                 NA
                                                                                       NA
                                               \sqrt{}
3
         73.5
                  0.78
                            NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
         74.7
                  1.99
                            NA
                                         √
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
Species-species abundance, plantations versus restored native forest of similar age
                                                                                                 NA
         42.7
                                        NA
                                               NA
                                                                               NA
                                                                                       NA
Aboveground biomass, plantations versus reference native forests
          121.4
                                                                       NA
                                                                               NA
                  0
                                                                                       NA
                                                                                                 NA
                                         \checkmark
Aboveground biomass, plantations versus restored native forest of similar age
          53.9
                                        NA NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
Soil erosion control, plantations versus reference native forests (not including MAT)
          140.6
                                                      NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
Soil erosion control, plantations versus reference native forests (not including plantation age) (the variable MAT ×
MAP dropped from global model because of non-convergence)
          198.9
                                                                                                 NA
                                        NA
                                                              NA
                                                                               NA
                                                                                       NA
                                               NA
2
          200.1
                                                                               NA
                  1.17
                                        NA
                                                              NA
                                                                                       NA
                                                                                                 NA
                                               NA
                                                                       \sqrt{\phantom{a}}
3
         200.1
                  1.20
                                        NA
                                               NA
                                                              NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
                                                      \checkmark
         200.4
                  1.52
                                        NA
                                                                               NA
                                                                                                 NA
                                               NA
                                                              NA
                                                                                       NA
                                                      /
Soil erosion control, plantations versus restored native forest of similar age
         71.0
                                        NA NA
                                                              NA
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
Sensitivity analysis 2: no weighting scheme used
Species-species abundance, plantations (all types combined) versus reference native forests
         380.6
                                                                       NA
                                                                               NA
                                                                                       NA
                                                                                                 NA
```

```
2
          381.7
                   1.12
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                             \checkmark
3
          381.7
                  1.16
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                                          √
4
          381.8
                  1.16
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                             \checkmark
5
          382.1
                   1.54
                                                √
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
Species-species abundance, monoculture plantations versus reference native forests
          283.8
                                                                                                   NA
                  0
                             NA
                                                                        NA
                                                                                NA
                                                                                         NA
2
          284.7
                  0.95
                             NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                                          √
3
          285.0
                  1.21
                             NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
4
          285.7
                   1.92
                             NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                                                       \checkmark
Species-species abundance, mixed plantations versus reference native forests
          49.4
                                                                                NA
                                                                                                   NA
                  0
                            NA
                                                                        NA
                                                                                         NA
Species-species abundance, abandoned plantations versus reference native forests
                                                                                NA
                                                                                                   NA
          72.8
                             NA
                                                                        NA
                                                                                         NA
                                                \checkmark
2
          73.5
                  0.78
                             NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
          74.7
                   1.99
                             NA
                                                                        NA
                                                                                NA
                                                                                                   NA
                                         \sqrt{}
                                                                                         NA
Species-species abundance, plantations versus restored native forest of similar age
          43.5
                                         NA
                                                NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
Aboveground biomass, plantations versus reference native forests
          121.4
                                                                        NA
                                                                                NA
                                                                                                   NA
                  0
                                         \checkmark
                                                                                         NA
Aboveground biomass, plantations versus restored native forest of similar age
          53.9
                                         NA
                                                NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
Soil erosion control, plantations versus reference native forests (not including MAT)
          140.6
                                                                                NA
                                                       NA
                                                               NA
                                                                        NA
                                                                                         NA
                                                                                                   NA
Soil erosion control, plantations versus reference native forests (not including plantation age)
          198.9
                                                               NA
                                                                                                   NA
                  0
                                         NA
                                                NA
                                                                                NA
2
          200.1
                  1.17
                                                               NA
                                                                                NA
                                                                                                   NA
                                         NA
                                                NA
                                                                        \checkmark
3
          200.1
                   1.20
                                         NA
                                                NA
                                                               NA
                                                                                NA
                                                                                                   NA
                                                       /
                                                                        --
4
          200.4
                  1.52
                                                                                NA
                                         NA
                                                NA
                                                       \checkmark
                                                               NA
                                                                                                   NA
Soil erosion control, plantations versus restored native forest of similar age
                                                                                NA
                                                                                                   NA
          72.4
                                         NA
                                                NA
                                                               NA
                                                                        NA
                                                                                         NA
Water yield, plantations versus reference native forests (not including seasonality)
          164.3
                                                                                         NA
                                                                                                   NA
                  0
                                                               --
                                                                        \checkmark
2
          164.8
                  0.45
                                                                                         NA
                                                                                                   NA
3
          165.5
                  1.14
                                                                                                   NA
                                                                        \checkmark
                                                                                         NA
4
          165.5
                                                                                                   NA
                  1.17
                                                                                         NA
5
          166.0
                                                                                                   NA
                   1.65
                                                                                         NA
6
                   1.75
          166.1
                                                                                         NA
                                                                                                   NA
7
          166.3
                   1.95
                                                                                         NA
                                                                                                   NA
Water yield, plantations versus reference native forests (not including MAT or MAP)†
          164.8
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
2
          165.5
                  0.72
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                \sqrt{}
                                          \checkmark
3
          166.3
                  1.56
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
                             √
4
          166.6
                   1.78
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   ✓
5
          166.6
                   1.82
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
                                                \checkmark
          166.7
                  1.91
                                                       NA
                                                               NA
                                                                        NA
                                                                                NA
                                                                                         NA
Sensitivity analysis 3: random effect structure not including the site identity of the native forests
Species-species abundance, plantations (all types combined) versus reference native forests
          374.4
                                                                        NA
                                                                                NA
                                                                                         NA
                                                                                                   NA
                             \checkmark
          375.5
                                                                                NA
2
                   1.13
                                                                        NA
                                                                                         NA
                                                                                                   NA
```

```
3
           375.6
                    1.19
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                               √
4
          375.7
                    1.33
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                                                    --
5
          376.0
                    1.65
                                                                              NA
                                                                                      NA
                                                                                                           NA
                                                                                                NA
6
          376.3
                    1.97
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
Species-species abundance, monoculture plantations versus reference native forests
          278.0
                    0
                               NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
2
          279.0
                    0.94
                               NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
3
          279.3
                    1.21
                               NA
                                                                              NA
                                                                                      NA
                                                                                                           NA
                                                                                                NA
                                                    √
                                                            --
                                                                    --
4
          280.0
                    1.93
                               NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                                            \checkmark
                                                                    --
Species-species abundance, mixed plantations versus reference native forests
          42.4
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                    0
                               NA
                                                                              NA
2
          43.1
                    0.72
                               NA
                                                    √
                                                            ✓
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
          43.6
                    1.20
                               NA
                                                                              NA
                                                                                                           NA
                                             √
                                                                                      NA
                                                                                                NA
                                                            \checkmark
Species-species abundance, abandoned plantations versus reference native forests
                                                                                      NA
                                                                                                NA
                                                                                                           NA
           74.1
                               NA
                                                                              NA
                    0
2
           75.0
                    0.92
                               NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                                    /
3
          75.4
                    1.31
                               NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                             √
4
          76.0
                               NA
                    1.85
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                                            \checkmark
Species-species abundance, plantations versus restored native forest of similar age
          41.6
                                            NA
                                                   NA
                                                                    NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
Aboveground biomass, plantations versus reference native forests
           127.9
                                                    ✓
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                                            \checkmark
Aboveground biomass, plantations versus restored native forest of similar age
          56.9
                                                                                      NA
                                                                                                           NA
                                            NA
                                                  NA
                                                                                                NA
Soil erosion control, plantations versus reference native forests (not including MAT)
                                                                                                           NA
                                                            NA
                                                                    NA
                                                                              NA
                                                                                      NA
                                                                                                NA
Soil erosion control, plantations versus reference native forests (not including plantation age)
           199.3
                                            NA
                                                   NA
                                                            \checkmark
                                                                    NA
                                                                              \checkmark
                                                                                      NA
                                                                                                           NA
           199.7
                    0.34
                                            NA
                                                    NA
                                                                    NA
                                                                                      NA
                                                                                                           NA
                                                            \checkmark
          201.1
                    1.73
                               \checkmark
                                            NA
                                                   NA
                                                            \checkmark
                                                                    NA
                                                                              \checkmark
                                                                                      NA
                                                                                                --
                                                                                                           NA
          201.1
                    1.74
                                            NA
                                                    NA
                                                                    NA
                                                                                      NA
                                                                                                           NA
                                                            \checkmark
                                                                              \checkmark
                                                                                                \checkmark
                               \checkmark
          201.1
                    1.79
                                            NA
                                                   NA
                                                                    NA
                                                                                      NA
                                                                                                           NA
                                                            \checkmark
                                                                              \checkmark
                                                                                                \checkmark
Soil erosion control, plantations versus restored native forest of similar age (null model did not converge and
therefore did not enter model selection)
          74.8
                                            NA
                                                   NA
                                                                    NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                                                                           NA
                    0
                                                            ✓
2
          75.2
                    0.37
                                                                                                           NA
                               ✓
                                            NA
                                                   NA
                                                                    NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                                            --
Water yield, plantations versus reference native forests (not including seasonality)
           162.1
                                                                                                NA
                                                                                                           NA
                                                                              \checkmark
2
           162.6
                    0.48
                                                                                                           NA
                                                                                                NA
3
           163.2
                    1.10
                                                                                                NA
                                                                                                           NA
                                                            \checkmark
                                                                              \checkmark
4
           163.3
                    1.14
                                                                                                NA
                                                                                                           NA
                                             \checkmark
                                                    \sqrt{}
5
           163.7
                                                                                                           NA
                    1.62
                                                                                                NA
                                                    \checkmark
                                                                              /
6
           163.8
                    1.68
                                                                                                NA
                                                                                                           NA
                                                            --
                                                                    __
                                             \checkmark
                                                    \checkmark
                                                                              \checkmark
7
           164.0
                    1.85
                                                                                                           NA
                                                                                                NA
                               \checkmark
                                                            \checkmark
                                                                              \checkmark
           164.1
                    1.98
                                                                                                NA
                                                                                                           NA
                               \
Water yield, plantations versus reference native forests (only including seasonality)†
           162.6
                                                                                                NA
1
                    0
                                                            NA
                                                                    NA
                                                                              NA
                                                                                      NA
2
           163.3
                    0.65
                               --
                                                            NA
                                                                    NA
                                                                              NA
                                                                                      NA
                                                                                                NA
                                             \checkmark
                                                    \checkmark
                                                                                                           --
3
           164.1
                                                            NA
                                                                    NA
                                                                              NA
                                                                                      NA
                    1.49
                               \checkmark
                                                    --
                                                                                                NA
                                                                                                           --
```

4	164.3	1.69	√	✓	√	NA	NA	NA	NA	NA	
5	164.4	1.75				NA	NA	NA	NA	NA	✓
6	164.5	1.88		✓		NA	NA	NA	NA	NA	

Note: †: The number of water yield RR for the comparison between plantations *versus* restored native forests of similar age was exceptionally small (n=5); we therefore did not conduct formal analysis on it. * This sensitivity analysis did not concern water yield, because Equation 11 (in 'Data analysis' under Materials and Methods) was used to calculate weight scores for water yield RR in the main analyses.

Table S7. Meta-regression results, as corresponding to those shown in Fig. 4 (including sensitivity analyses).

Metric	Variable	Mean	Lower 95% CI	Upper 95% CI	R^2
Main analysis					
Species-specific abundance*	Intercept	-0.18	-0.56	0.20	0.018
	Age^2	7.48×10^{-5}	-0.65×10^{-5}	15.62×10^{-5}	
Aboveground biomass	Intercept	-1.71	-2.27	-1.15	0.332
	Age	0.07	0.04	0.11	
	Age^2	-82.32×10^{-5}	-134.54×10^{-5}	-30.10×10^{-5}	
Water yield	intercept	-0.30	-0.52	-0.09	0.028
•	MAP	9.38×10^{-5}	-2.16×10^{-5}	20.92×10^{-5}	
Sensitivity analysis 1: weight	ing scores all based	l on Equation 11*			
Species-specific abundance*	Intercept	-0.18	-0.56	0.20	0.018
	Age^2	7.48×10^{-5}	-0.65×10^{-5}	15.62×10^{-5}	
Aboveground biomass	Intercept	-1.71	-2.27	-1.15	0.332
-	Age	0.07	0.04	0.11	
	Age^2	-82.32×10^{-5}	-134.54×10^{-5}	-30.10×10^{-5}	
Sensitivity analysis 2: no weight	ghting scheme used	1			
Species-specific abundance*	Intercept	-0.18	-0.56	0.20	0.018
	Age^2	7.48×10^{-5}	-0.65×10^{-5}	15.62×10^{-5}	
Aboveground biomass	Intercept	-1.71	-2.27	-1.15	0.332
_	Age	0.07	0.04	0.11	
	Age^2	-82.32×10^{-5}	-134.54×10^{-5}	-30.10×10^{-5}	
Water yield	intercept	-0.30	-0.52	-0.09	0.028
•	MAP	9.38×10^{-5}	-2.16×10^{-5}	20.92×10^{-5}	
Sensitivity analysis 3: randor	n effect structure 1	ot including the site ide	entity of the native for	ests	
Species-specific abundance*	Intercept	-0.08	-0.43	0.26	NA‡
Aboveground biomass	Intercept	-1.67	-2.28	-1.05	0.508
_	Age	0.07	0.03	0.11	
	Age^2	-77.53×10^{-5}	-133.12×10^{-5}	-21.95×10^{-5}	
Water yield	intercept	-0.30	-0.52	-0.09	0.028
-	MAP	9.38×10^{-5}	-2.16×10^{-5}	20.92×10^{-5}	

Note: †: This sensitivity analysis did not concern water yield, because Equation 11 was used to calculate weight scores for water yield RR in the main analyses. * This analysis was for the subset of data comparing abandoned plantations *versus* reference native forests. \ddagger : No R^2 was calculated because the best model was an intercept-only model.