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Abstract. Water resources managers and conservation biologists need reliable, quantita-
tive, and directly comparable methods for assessing the biological integrity of the world’s
aquatic ecosystems. Large-scale assessments are constrained by the lack of consistency in the
indicators used to assess biological integrity and our current inability to translate between
indicators. In theory, assessments based on estimates of taxonomic completeness, i.e., the
proportion of expected taxa that were observed (observed/expected, O/E ) are directly
comparable to one another and should therefore allow regionally and globally consistent
summaries of the biological integrity of freshwater ecosystems. However, we know little about
the true comparability of O/E assessments derived from different data sets or how well O/E
assessments perform relative to other indicators in use. I compared the performance
(precision, bias, and sensitivity to stressors) of O/E assessments based on five different data
sets with the performance of the indicators previously applied to these data (three multimetric
indices, a biotic index, and a hybrid method used by the state of Maine). Analyses were based
on data collected from U.S. stream ecosystems in North Carolina, the Mid-Atlantic
Highlands, Maine, and Ohio.
O/E assessments resulted in very similar estimates of mean regional conditions compared

with most other indicators once these indicators’ values were standardized relative to
reference-site means. However, other indicators tended to be biased estimators of O/E, a
consequence of differences in their response to natural environmental gradients and sensitivity
to stressors. These results imply that, in some cases, it may be possible to compare assessments
derived from different indicators by standardizing their values (a statistical approach to data
harmonization). In situations where it is difficult to standardize or otherwise harmonize two or
more indicators, O/E values can easily be derived from existing raw sample data. With some
caveats, O/E should provide more directly comparable assessments of biological integrity
across regions than is possible by harmonizing values of a mix of indicators.

Key words: biological assessment of freshwater ecosystems; biological indices; Clean Water Act;
conservation; harmonization; indicators of biological integrity; modeling; monitoring; multimetrics;
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INTRODUCTION

There is a critical need to assess the biological status

of the world’s freshwater ecosystems and determine

whether conditions are improving or declining (Revenga
and Kura 2003). This need was anticipated in the United

States almost 30 years ago when the modern Clean

Water Act was created (1972, amended in 1977), which
requires that states and tribal nations monitor and assess

the biological integrity of their waters. Biological

integrity was defined by Frey (1977:128) as ‘‘the
capability of supporting and maintaining a balanced,

integrated, adaptive community of organisms having a

species composition, diversity, and functional organiza-

tion comparable to that of the natural habitat of the

region.’’ This is the definition used by the U.S. Environ-

mental Protection Agency (USEPA) when providing

guidance to states and tribes regarding bioassessment

programs (available online).2 There is not consensus,

however, on how it should or can be measured.

Over the last two decades there has been considerable

work devoted to the development of biological indica-

tors for use in assessing the biological integrity of

freshwater ecosystems (USEPA 2002b), and many states

in the United States and several countries have active

biological monitoring and assessment programs. How-
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ever, the independent development of assessment

methods by different political jurisdictions has resulted

in the use of a large mix of indicators about which we

have little knowledge regarding their comparability.

This issue is particularly problematic given the emerging

need in the United States, Europe, and elsewhere to

integrate multiple assessments conducted at small scales

into regional- or national-level assessments. For exam-

ple, assessments made by the states in the United States

are supposed to be summarized by the U.S. Environ-

mental Protection Agency in bi-annual reports that

describe the status and trends of the Nation’s water

quality (e.g., USEPA 2002a). However, meaningful

summaries have been impossible because of insufficient

or incompatible data (U.S. General Accounting Office

2000, Heinz Center 2002, USEPA 2003).

Incompatibility between assessments can occur for

two reasons: (1) biota are sampled in different ways and

(2) we use different indicators to measure biological

condition (e.g., Houston et al. 2002, Davies and Jackson

2006). In the United States three main types of

indicators are commonly used to measure biological

condition: biotic indices, multimetric indices, and

measures of taxonomic completeness. There are at least

two reasons why these different types of indicators may

yield different inferences regarding the biological status

of a water body: (1) they are based on different ideas of

what biological condition is, and (2) they differ in how

expected values are derived.

Biotic indices (BI) measure the average pollution

tolerance of taxa found at a site and are typically

calculated as RTVI 3 ni / N, where TVi ¼ the tolerance

value of taxon i, ni¼ abundance of taxon i, and N¼ the

total number of individuals in the sample. Biotic indices

are based on the idea that unpolluted water bodies

contain many pollution-sensitive taxa (low tolerance

values), whereas polluted water bodies contain mostly

pollution-tolerant taxa (e.g., Chutter 1972, Hilsenhoff

1987). A low BI value implies high biological integrity.

Until recently, most tolerance values used to estimate BI

values were derived by comparing how abundances of

different taxa vary across gradients of known or

presumed stress or water quality (e.g., Lenat 1993).

Biotic indices are used as the main indicator of

biological quality in several countries (see overview by

Johnson et al. [1993]) and in at least one U.S. state. In

the United States, biotic indices are used most often as

one of the component metrics in a multimetric index.

Multimetric indices (MMI) were conceived as a way

to quantify Frey’s (1977) concept of biological integrity,

e.g., Karr’s (1981) index of biological integrity (IBI).

Index values are calculated by summing the stan-

dardized values of several different types of individual

metrics (e.g., richness, tolerance, composition, guild

PLATE 1. Indicators of taxonomic completeness require site-specific estimates of the taxa expected under specific natural
environmental settings. The models used to derive these estimates are calibrated with data collected at a series of reference sites that
represent the range of natural conditions within a region of interest. Sampling methods that adequately characterize the biota at a
site are required to obtain accurate and precise models. The photo shows Scott Rollins, a Ph.D. student from Michigan State
University, completing sampling on the Verde River, Arizona, USA, as part of an effort to derive reference conditions for streams
in the western United States. Photo credit C. P. Hawkins.
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structure) derived from a sample of organisms. The

selection of metrics used in the index can be based on
either a conceptual understanding of what attributes are

biologically important (e.g., Karr’s original IBI) or
identification of that subset of the many possible metrics

that best discriminates between reference and degraded
water bodies (e.g., Barbour et al. 1999). Assessments are

made by comparing observed MMI values to expected
values that are derived from an appropriate set of

reference sites (sensu Stoddard et al. 2006). MMI values
that fall within the range of expected values imply high

biological integrity, whereas values lower than that
observed at reference sites imply biological degradation.

Although the original MMI approach most closely
parallels Frey’s concept of biological integrity, it is not

clear that all MMIs will lead to directly comparable
inferences. Regional differences in the fauna or flora,

which will affect the set of metrics used in MMIs (e.g.,
Fore et al. 1996, Klemm et al. 2002), and differences in
the intensity of stress at non-reference sites used to

calibrate MMIs might affect their comparability.

Measures of taxonomic completeness are based on
estimates of the difference between observed (O) and
expected (E) taxonomic composition. In the most

widespread implementation of this idea (e.g., Moss et
al. 1987, Hawkins et al. 2000, Simpson and Norris 2000,

Wright 2000), the ratio, O/E, represents the proportion
of predicted taxa that were observed in a sample. O/E

values near 1 imply high biological integrity and values
,1 imply biological degradation. O/E quantifies a

fundamental component of ecological capital, one of
the three general indicators that the National Research

Council identified as critical to monitor (NRC 2000).
Given that O is always a subset of E (the predicted taxa),

it is a measure of the integrity of the native biota. Values
near 1 are consistent with descriptions of those bio-

logical attributes characteristic of biological integrity in
the highest quality tier of the biological condition

gradient described by Davies and Jackson (2006). A
unique property of O/E assessments is that, unlike biotic

indices and multimetric indices, values are not derived
from or calibrated against any stressor gradient. Instead,

empirical models that relate taxonomic composition to
naturally occurring environmental gradients are devel-
oped from data collected at a set of reference-quality

sites that differ in their natural environmental setting
(see Plate 1). These models are then used to predict what

the probability of capturing (PC) each taxon in the
regional taxon pool would be at specific sites if those

sites were in reference condition. The expected number
of taxa (E) at a site is then estimated as RPCi for given

PC threshold values (e.g., 0, 0.1, 0.5, etc.), where i¼ each
taxon in the region of interest. O is that set of taxa with

PC greater than the specified threshold value that were
collected in a sample. The performance of O/E-based

assessments is therefore largely dependent on how well
models predict the PC for different taxa under different

environmental settings (Clarke et al. 2003). Models

might differ in their accuracy and precision because of

differences in the predictor variables used, the methods

used to select predictor variables, differences among

models in the taxonomic resolution applied to the biota

being modeled, methods used to sample biota, decisions

regarding the PC threshold to use when calculating E

and O, or decisions regarding what subset of the biota

inhabiting a water body are used in assessments (e.g.,

Hawkins et al. 2000, Ostermiller and Hawkins 2004).

A hybrid assessment method has also been developed

by the Maine Department of Environmental Protection

(DEP) that uses discriminant-function models to predict

the a priori, legally defined water-quality classes to

which samples belong from the values of 1– 9 biological

metrics and indices measured in samples (Davies et al.

1995). Although this method shares some of the

predictive machinery used by O/E models (discrimi-

nant-function models), it is similar to BI and MMI

methods in that the assessments are calibrated by

training models to discriminate between samples col-

lected from reference-quality and a-priori-defined de-

graded sites.

Given the marked differences between many pro-

grams in assessment methods and indicators, there are

two possible approaches to the synthesis of existing data

for the purpose of creating larger, regional assessments.

In one approach, a system might be developed for

translating among different types of indicators. Davies

and Jackson (2006) provide a conceptual framework, the

biological condition gradient, that provides qualitative

guidance regarding the biological attributes that should

be considered when making such translations. An

alternative approach is to use a single indicator that is

general enough to measure what the other indicators

measure, can be easily applied to all data sets, and thus

avoid the need to develop translation functions. Because

O/E is based on the raw compositional data from which

other indicators are derived, it might serve as such a

universal indicator if project specific effects on estimates

of O/E do not compromise its inter-project compara-

bility.

In this paper I examine the potential use of O/E as a

universal indicator of biological integrity. To do so, I

compare the performance of O/E assessments with that

of three other types of indicators: MMI, BI, and the

Maine DEP methods of assessment. I examine perfor-

mance of both O/E and the other indicators in terms of

indicator bias and precision and sensitivity to stressors.

To further evaluate the robustness and comparability of

O/E-based assessments, I also examine how variable

reference-site O/E values were across years, how

taxonomic resolution used in models affected values,

and if the type of sampling method used to collect

samples of biota affected O/E assessments. I conclude by

discussing both the potential advantages of O/E as a

means of providing standardized assessments across

regions as well as the pitfalls associated with its use.
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MATERIALS AND METHODS

Data sets

I based analyses on five data sets (Table 1). These data

included samples of stream benthic invertebrates and

associated habitat information from four regions: North

Carolina (NCDENR 2003), Maine (Davies and Tso-

mides 2002), the Mid-Atlantic Highlands, a region that

spans several states (Klemm et al. 2002), and Ohio (Ohio

EPA 1989). I also included one fish data set from Ohio

(Ohio EPA 1989). Invertebrates were identified to the

lowest taxon possible in all data sets, including

chironomid midges, which were identified to genus or

species level. Fish were identified to species. Each data

set contained samples collected at reference sites that

were used to derive expected conditions at other sites
(Stoddard et al. 2006) and samples from a series of test

sites that varied in the degree to which they were

exposed to stressors and thus in their potential amount
of biological impairment. I provide only a brief

description of these data sets here. Full descriptions

are available in the original reports cited above.

For each data set, I built RIVPACS-type predictive

models (Moss et al. 1987, Wright 2000) following the
procedures described in Hawkins et al. (2000), Hawkins

and Carlisle (2001), and Van Sickle et al. (2005). O/E

values were calculated based on two probability-of-

capture thresholds: PC . 0 and PC . 0.5. These two

TABLE 1. Comparison, by taxon, of different assessment measures with O/E, the ratio of observed to expected taxonomic
composition.

Taxon, U.S.
source, and habitat�

Assessment
measure�

Data-set samples (mean 6 SD)

C–T 10th% C§ %T , 10th% C§Calibration (C ) Validation (V ) Test

Invertebrates

North Carolina, MH (208) (202) (984)
raw NCBI 3.86 6 0.97 4.14 6 0.90 6.03 5.16 77
SNCBI 1.00 6 0.16 0.96 6 0.15 0.65 0.35 0.79 77
ASNCBI 1.00 6 0.09 1.01 6 0.07 0.72 0.28 0.90 80
O/Esp,0 0.99 6 0.16 1.03 6 0.14 0.70 0.29 0.78 61
O/Esp,0.5 1.01 6 0.14 0.98 6 0.13 0.62 0.39 0.83 78
O/Eg,0 0.99 6 0.15 1.03 6 0.14 0.72 0.27 0.82 64
O/Eg,0.5 1.01 6 0.13 0.98 6 0.11 0.65 0.36 0.83 77
O/Ef,0 1.00 6 0.13 1.03 6 0.13 0.77 0.23 0.85 64
O/Ef,0.5 1.01 6 0.10 1.00 6 0.08 0.73 0.28 0.87 72

Mid-Atlantic Highlands, FW (72) (14) (456)
raw MIBI 77.3 6 14.2 75.3 6 13.0 52.7 24.6 55.1 50
SMIBI 1.00 6 0.18 0.98 6 0.17 0.68 0.32 0.71 50
O/E0 1.00 6 0.19 0.96 6 0.20 0.78 0.22 0.74 38
O/E0.5 1.01 6 0.17 0.98 6 0.16 0.64 0.37 0.77 67

Maine, AS (64) (20) (452)
O/E0 1.01 6 0.26 0.98 6 0.24 0.78 0.23 0.64 33
O/E0.5 1.00 6 0.30 1.08 6 0.23 0.72 0.28 0.60 38

Ohio, AS and MH (58) (34) (322)
raw ICI 42.8 6 8.57 42.1 6 7.69 33.3 9.5 30.0 35
SICI 1.00 6 0.20 0.98 6 0.18 0.78 0.22 0.70 35
O/E0 1.03 6 0.25 1.04 6 0.20 0.90 0.13 0.71 25
O/E0.5 1.04 6 0.16 1.01 6 0.16 0.80 0.24 0.79 44

Fish

Ohio, MH (114) (0) (1438)
raw IBI 46.6 37.0 33.5 40
SIBI 1.00 0.82 0.18 0.75 40
O/E0 0.99 0.82 0.17 0.75 39
O/E0.5 1.02 0.80 0.22 0.77 44

Notes: The numbers in parentheses indicate sample sizes. The proximity of the mean value for calibration (C ) and validation (V )
data sets to 1 is a measure of global accuracy. Precision is reported as the standard deviation of values obtained from reference sites
(calibration and validation data sets). Sensitivity is reported as the difference between mean values obtained from test (T ) and
calibration samples.

� Habitats sampled: MH, multiple habitats; FW, fast-water habitats; AS, artificial substrates.
� Where possible, the different measures were standardized (SNCBI, standardized North Carolina biotic index; SMIBI,

standardized macroinvertebrate index of biotic integrity; SIBI, standardized [Ohio] index of biotic integrity; SICI, standardized
[Ohio] invertebrate-community index) so the mean of calibration samples¼ 1 to allow direct comparison with O/E values. In the
case of the NCBI, values were inverted prior to standardization so that decreasing values implied increasing biological degradation.
SNCBI values were further adjusted (ASNCBI) for the effects of four factors (latitude, longitude, distance from source, and
calendar day). ASNCBI values are the residuals from the regression of SNCBI values on latitude, longitude, log distance from
source, and calendar day. Original residual values had a mean of zero but were incremented by 1 to allow direct comparison with
SNCBI and O/E values. The O/E models based on zero and 0.5 probabilities of capture are denoted as O/E0 and O/E0.5. Models
based on species, genus, and family levels of taxonomic resolution are identified with sp, g, and f subscripts.

§ The percentage of test sites whose assessment values were below the 10th percentile of calibration sample values (%T , 10th% C)
was used to show how model precision and sensitivity jointly influence the power of detection of biological impairment.
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thresholds have been used elsewhere and essentially

represent assessments based on either all taxa including

those that are expected to be extremely rare (i.e., PC .

0) or only those taxa that are expected to be moderately

common at a site (PC . 0.5). Ostermiller and Hawkins

(2004) discuss the statistical and biological reasons why

use of an intermediate PC threshold such as 0.5 may

have advantages over the inclusion of all taxa. I then

compared the performance of these O/E assessments

with those based on the indicators originally used for

each data set.

North Carolina.—These data were collected by the

North Carolina Department of Environment and

Natural Resources and consisted of 208 samples used

to calibrate models, 202 validation samples, and 984

‘‘test’’ samples from potentially impaired sites. Samples

were based on multi-habitat, qualitative collections of

invertebrates. North Carolina bases biological assess-

ments on the North Carolina biotic index (NCBI),

which is calculated from tolerance values assigned to

each of the taxa as described above. Tolerance values

range from 0 to 10 with low values implying less

tolerance to stress.

Because the taxonomic resolution in this data set was

exceptionally good, I used this data set to examine if

taxonomic resolution affected the performance of O/E

assessments by constructing predictive models based on

species-, genus-, and family-levels of taxonomic reso-

lution. Six to eight predictive variables were used in

these three models, which included elevation, stream

width, stream depth, percentage boulder substrate,

percentage rubble substrate, calendar day, latitude,

longitude, and catchment area. Van Sickle et al. (2005)

describe general aspects of the species-level model.

Because of the long period of record covered by this

data set, I also used this data set to determine if

estimates of reference condition were affected by the

year in which data were collected. Such an effect could

bias assessments if O/E values, or other indicators, were

developed from data collected over a restricted period

and then applied to data collected in other years. I also

examined if O/E values and the NCBI were differentially

sensitive to year effects.

Mid-Atlantic Highlands (MAH).—These data were

collected in conjunction with the U.S. Environmental

Protection Agency (EPA)’s EMAP program (Herlihy et

al. 2000). For this study, I used invertebrate data

collected from 542 fast-water (riffle) habitats. The U.S.

EPA has constructed a multimetric index (the macro-

invertebrate index of biological integrity, MIBI) for

both riffle and pool habitats (Klemm et al. 2002). The

MIBI, which I consider here, included seven individual

metrics: mayfly, stonefly, caddis fly, and collector-filterer

richness; a biotic index; percentage non-insect individ-

uals; and percentage individuals in the top five dominant

taxa. Richness values were adjusted for catchment area,

and the overall index was standardized by the authors to

scale from 0 to 100, where 100 ¼ the best biological

condition.
I constructed a predictive model from the same set of

data used to construct the MIBI. Data from 86 reference
sites (72 calibration, 14 validation) were used to build

the model, and it was applied to 456 test sites. Six
variables were used in the predictive model: North

Central Appalachian Mountains ecoregion (1 or 0
[present or not]), Central Appalachian Ridge and Valley

ecoregion (1 or 0), calendar day, elevation, carbonate
concentration, and catchment area. Van Sickle et al.

(2005) describe general statistical aspects of the model.
Stressor data were also available for many of these sites,

which allowed me to compare sensitivities of both O/E
and the MIBI to variation in those factors likely causing

biological impairment.
Maine.—Maine recognizes four aquatic-life use cate-

gories (AA, A, B, and C), of which classes AA and A are
the highest quality waters defined as having ‘‘aquatic life

as naturally occurs’’ (Davies et al. 1995: Table 1), class B
includes waters that receive discharges but experience no

‘‘detrimental’’ biological change, and class C includes
waters in which discharges may alter assemblage
composition but assemblage structure and function are

maintained. Waters that do not meet the minimal
standards for Class C are grouped in a non-attainment

(NA) class. Predictions are derived from a set of
hierarchical discriminant-function models in which bio-

logical metrics are the predictors of class membership.
The Maine Department of Environmental Protection

biological data are based on samples collected from
artificial substrates (rock-filled baskets, bags, or cones),

which are allowed to colonize for about 28 days before
they are collected.

I analyzed data from 84 reference-quality samples (64
calibration, 20 validation) and 452 test sites that were

collected between 1974 and 1997. Model building
resulted in selection of five predictor variables: elevation,

distance from stream source (DFS), latitude, the number
of freeze-free days, and calendar day. Because Maine

uses artificial substrates to collect invertebrate samples, I
was also able to compare model performance derived
from this type of sampling with the performance of

models based on samples collected from natural
habitats.

Ohio.—The Ohio Environmental Protection Agency
assesses their rivers and streams with both an inverte-

brate-community index (ICI) and an index of biological
integrity (IBI) based on fish samples (Ohio EPA 1989).

For this paper I used data from only those samples for
which I could build and apply predictive models. The

number of samples that I could use in model building
was also restricted by the number of sites for which

predictor variables were available. For comparisons
based on invertebrates, I used data from 58 reference

calibration sites, 34 reference validation samples, and
322 test-site samples. Ohio uses two sampling methods

for collecting invertebrates: Hester-Dendy, multiplate
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artificial substrates and qualitative kick-net samples

from multiple natural habitats. Because Ohio combines
these data in their macroinvertebrate ICI, I also used the

combined data. However, I also developed preliminary
O/E models based only on data derived from Hester-

Dendy samplers to assess the performance of models
derived solely from artificial substrates. For compar-

isons based on fish, I used data from 114 reference sites
and 1438 test-site samples. No validation samples were

used when this model was built. Stressor data were
available for a subset of these samples. Six predictor

variables were used in the invertebrate model: river basin
(Maumee River Basin, 0/1), calendar day (calendar day),

ecoregion (Western Allegheny Plateau, 0/1), average
relative humidity, log slope of the sampled reach, and

log drainage area above the sampling location. Four
variables were used in the fish predictive model: latitude,

longitude, log catchment area, and log slope of the
sampled reach (see also de Zwart et al. 2006).

Measures of performance

The performance of any bioassessment method can be

characterized in three ways: precision, bias, and
sensitivity to stressors. Evaluation of such criteria is a

straightforward process when known standards can be
applied under controlled conditions. However, evalua-

tion of the performance of biological indicators is
complicated by the fact that the real degree of biological

degradation (changes in community structure and
function) at a site can never be fully known, i.e., we

cannot know how impaired a site is and in all the ways it
is impaired prior to sampling it (Cao and Hawkins

2005). We therefore have to compare methods against
surrogate measures of biological impairment (e.g.,

presence of stressors) or against one another and then
use indirect means of judging the performance of

different methods relative to one another.
I quantified precision as the standard deviation (SD) or

coefficient of variation (CV) of indicator values derived
from the population of reference sites used to establish

expected conditions at assessed sites (see Stoddard et al.
2006). Ideally, the only variation in reference-site values

would be associated with sampling error, which, if
minimized by adequate sampling, would allow detection
at test sites of small deviations from expected condition.

Because comparisons of precision can be confounded by
use of different units of measurement, I standardized all

reference site NCBI (North Carolina biotic index) and
IBI values to have a mean of 1, the expected mean

reference site O/E value derived from predictive models.
Raw index values for test sites were then divided by the

mean of reference- site values to put NCBI and IBI
assessments in the same units of measure as O/E.

Standard deviations based on such standardized values
are equivalent to the CV calculated from raw values. I

could not conduct a similar standardization with the
Maine assessments because their assessment endpoints

are categorical.

For the NCBI, I also adjusted the standardized NCBI

values (SNCBI) for environmental setting by calculating
the residual values obtained after applying a multiple-

regression equation to all sample data. This equation
described the effect of naturally occurring environ-

mental variables on SNCBI values and was derived from
the calibration samples. Because the residuals for the

calibration samples had a mean of zero, I added 1 to all
residuals to make these adjusted SNCBI values (ASNC-

BI) directly comparable with O/E values.
The effect of precision on inferences regarding

biological impairment was assessed by determining
how many test-site samples fell outside the distribution

of reference-site indicator values. For these tests, I used
the lower 10th percentile of reference sample indicator

values as a standard threshold below which values
would be considered biologically degraded. The 10th-

percentile threshold value was used solely to standardize
comparisons among methods and data sets and should
not necessarily be considered a standard for regulatory

purposes. Although use of the 10th percentile here might
represent an arbitrary choice for regulatory purposes, it

should represent a reasonable threshold for statistical
comparisons among methods in that indicator values

less than this threshold have only a 10% probability of
occurring by chance. Hence values this low should

usually represent a biologically real response to stress.
Use of a more stringent threshold such as the 1st

percentile, although leading to greater confidence that a
sample is degraded, could confound comparisons of

detection frequencies among indicators because such
small percentile values can be easily influenced by

outliers in the different distributions of reference-site
values. Because the percentage of sites declared as

degraded by different methods will not necessarily
change in parallel with differences in the percentile
threshold used, the comparisons based on the 10th

percentile cannot be simply extrapolated to other
thresholds.

Unrecognized or uncontrolled variation associated
with naturally occurring factors can affect the accuracy

of assessments in addition to inflating estimates of error
above that associated with sampling error. An impor-

tant area of current bioassessment research focuses on
how to best classify reference sites so as to minimize

such errors. I examined accuracy of assessments by
determining the extent to which indicator values varied

with naturally occurring environmental gradients. This
analysis can show if methods are locally biased even

though they may be globally accurate, i.e., accurate on
average across all sites that are assessed. For this

analysis, I regressed indicator values derived from
calibration samples against the suite of available

variables describing the natural setting for each sample
location. Those variables typically included measures of
stream size, geographic location, elevation, climate,

calendar day, and channel habitat condition. I also
conducted complementary analyses based on ANOVA
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to test for effects of overall regional setting as indicated

by the ecoregion from which samples were collected. I

also compared the standardized indicator values derived

from different methods with one another to determine to

what extent one method was a biased estimator of the

other. This latter analysis cannot evaluate accuracy per

se, but can provide insight regarding the degree to which

two methods lead to similar inferences.

Different indicators may be differentially sensitive or

responsive to stressors in general or to individual

stressors. I measured sensitivity in two ways: (1) as the

magnitude of difference between the mean standardized

indicator values for the populations of reference and test

sites examined, and (2) as the magnitude of standardized

regression coefficients derived from regressions of

indicator values on different measures of stress. Data

on stressors were available only for the Mid-Atlantic

Highlands and Ohio data sets. Most stressor data were

measured as concentrations of specific chemical constit-

uents (e.g., pH, sulfate, nitrogen), but habitat condition

was reported as aggregate indices of habitat-quality

measures. EPA measured habitat condition in terms of

the ‘‘Index of in-stream habitat,’’ which includes aspects

of channel sinuosity, amount of various types of

substrates, water depth, and velocity characteristics

(Kaufman et al. 1999). Ohio used the ‘‘qualitative

habitat evaluation index’’ (QHEI) to measure habitat

condition, an index that is based on similar metrics as

used by EPA: substrate, in-stream cover, channel

morphology, riparian and bank cover, and stream

gradient (Rankin 1989).

For my analyses, I first used multiple regression to test

the hypothesis that indicators were sensitive to all

measured stressors. Following that test, I conducted

another regression analysis on just those variables that

were statistically significant to determine how much of

the observed variability in indicator values was asso-

ciated with measured stressors.

RESULTS

Comparisons of O/E with other indicators

North Carolina stream invertebrates.—The standard-

ized North Carolina biotic index (SNCBI) was both

slightly less precise (reference-sample SD) and less

sensitive in detecting departure from reference con-

ditions than was the observed taxonomic composition

as a fraction of the expected taxonomic composition,

O/E, based on species-level data, the level of resolution

used in the NCBI (Table 1). O/E based on the

probability of capturing a taxon, PC, at PC . 0.5

(O/Esp,0.5) was slightly more precise than O/E based on

TABLE 2. Regression statistics derived from calibration data sets describing bias in different assessment measures associated with
site-specific differences in environmental setting.

Data set
Assessment
measure� R2 Factor� Coefficient

Std.
coefficient§ Tolerance|| t P}

North Carolina SNCBI 0.71 Constant �5.332 0.000 �9.888 0.000
longitude �0.068 �0.713 0.875 �17.910 0.000
log DFS �0.096 �0.268 0.876 �6.727 0.000
latitude 0.027 0.089 0.988 2.371 0.019
date �0.0002 �0.090 0.991 �2.392 0.018

O/Esp0 0.05 constant 0.933 0.000 23.205 0.000
log DFS 0.083 0.226 0.995 3.326 0.001

O/Esp0.5 0.01 constant 0.958 0.000 35.186 0.000
log DFS 0.042 0.139 1.000 2.011 0.046

O/Ef0 0.02 constant 0.951 0.000 32.349 0.000
log DFS 0.040 0.140 1.000 2.030 0.044

Mid-Atlantic Highlands SMIBI 0.08 constant 1.200 0.000 10.776 0.000
log carbonate �0.118 �0.286 0.947 �2.451 0.017
log WSA 0.063 0.248 0.947 2.127 0.037

Ohio: invertebrates SICI 0.07 constant 0.685 0.000 4.860 0.000
habitat index 0.0043 0.296 1.000 2.243 0.029

Ohio: fish SIBI 0.46 constant �0.310 0.000 �1.454 0.149
annual precipitation 0.00091 0.289 0.853 3.873 0.000
habitat index 0.0060 0.524 0.853 7.027 0.000

O/E0 0.10 constant 0.67 0.000 7.531 0.000
habitat index 0.0045 0.327 1.000 3.660 0.000

O/E0.5 0.11 constant 0.72 0.000 8.899 0.000
habitat index 0.0043 0.341 1.000 3.844 0.000

� Assessment measure: SNCBI, standardized North Carolina biotic index; O/E, observed taxonomic composition as fraction of
expected taxonomic composition (sp¼ species, f¼ family; 0 and 0.5¼mean probability of capturing a taxon); SMIBI, standardized
macroinvertebrate index of biotic interity; SICI, standardized (Ohio) invertebrate-community index; SIBI, standardized (Ohio)
index of biotic integrity.

� DFS¼ distance to stream source, WSA¼ watershed area, date¼ day of year (i.e., 1–365).
§ Standardized (Std.) coefficients measure the relative strength of associations between indicator values and the different

independent variables.
|| Tolerance is a measure of independence between predictor variables. High values (near 1) imply little colinearity with other

predictors.
} Two-tailed.
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PC . 0 (O/Esp,0). Both the lower precision and

sensitivity of the SNCBI were associated with the

strong dependency (71% of variation) of SNCBI values

on naturally occurring environmental conditions (Table

2). Ecoregion accounted for less (60%) variation in

SNCBI values than the regression did (Table 3). The

adjustment of SNCBI values(ASNCBI) for variation in

longitude, distance from source, latitude, and calendar

day, resulted in ASNCBI being more precise than that

of O/Esp,0.5, and, consequently, the number of test sites

that were detected as being different from reference

increased (Tables 1 and 4). However, the average

difference between test and reference sites decreased

markedly after adjusting for natural setting (Table 1), a

consequence of removing apparent differences between

observed and expected values that were caused by

systematic variation among test sites in natural

features. Adjusting SNCBI values for longitude, dis-

tance from source, latitude, and calendar day also

resulted in the removal of most, although not all, of the

association of SNCBI values with ecoregion (Table 3).

In contrast to the SNCBI, none of the O/E models

exhibited substantial site-specific bias with respect to

geographic location (latitude, longitude), stream size

(log DFS [distance from stream source]), and calendar

day, although most models slightly underpredicted

TABLE 3. Associations (r2) between indicator values and ecoregion setting, together with mean indicator values for each ecoregion.

Data source, ecoregion N O/E05 NCBI SNCBI ASNCBI MIBI SMIBI ICI SICI IBI SIBI

North Carolina�
Blue Ridge Mountains 141 1.02 3.35 1.09 1.01 � � � � � � � � � � � � � � � � � �
Piedmont 38 0.99 4.83 0.84 0.96 � � � � � � � � � � � � � � � � � �
MACP/SP� 29 1.00 5.09 0.91 1.02 � � � � � � � � � � � � � � � � � �
r2 0.01NS 0.60 0.60 0.06

Mid-Atlantic Highlands

North-central Appalachians 18 1.02 � � � � � � � � � 77.7 1.01 � � � � � � � � � � � �
Blue Ridge Mountains 6 1.05 � � � � � � � � � 78.2 1.01 � � � � � � � � � � � �
Central App. Ridge and Valleys 39 1.02 � � � � � � � � � 79.4 1.03 � � � � � � � � � � � �
Central App. Mountains 9 0.93 � � � � � � � � � 66.9 0.87 � � � � � � � � � � � �
r2 0.03NS 0.08NS 0.08NS

Ohio: invertebrates

Eastern Corn Belt Plains 26 1.04 � � � � � � � � � � � � � � � 43.9 1.03 � � � � � �
Erie Drift Plain 13 1.07 � � � � � � � � � � � � � � � 44.2 1.03 � � � � � �
Huron/Erie Lake Plain 3 1.04 � � � � � � � � � � � � � � � 41.3 0.97 � � � � � �
Interior Plateau 3 0.92 � � � � � � � � � � � � � � � 39.0 0.91 � � � � � �
Western Allegheny Plateau 13 1.03 � � � � � � � � � � � � � � � 40.5 0.95 � � � � � �
r2 0.04NS 0.04NS 0.04NS

Ohio: fish

Eastern Corn Belt Plains 55 1.03 � � � � � � � � � � � � � � � � � � � � � 46.6 1.04
Erie Drift Plain 16 0.97 � � � � � � � � � � � � � � � � � � � � � 42.5 0.95
Huron/Erie Lake Plain 11 0.97 � � � � � � � � � � � � � � � � � � � � � 33.1 0.74
Interior Plateau 6 1.02 � � � � � � � � � � � � � � � � � � � � � 45.9 1.02
Western Allegheny Plateau 26 1.05 � � � � � � � � � � � � � � � � � � � � � 47.3 1.05

r2 0.03NS 0.30 0.30

Notes: All r2 values are statistically significant (P , 0.05) unless noted as nonsignificant (NS). For assessment-measure codes, see
Table 2.

� For North Carolina, O/E05 is O/Esp,05.
� Middle Atlantic Coastal Plain and Southeastern Plateau.

TABLE 4. Concurrence between O/E0.5 assessments and the four other biotic indices (ASNCBI, SMIBI, SICI, and SIBI [fish]) in
inferring if test sites are in reference or nonreference condition.

Case

Percentage of samples�

ASNCBI SMIBI SICI SIBI

Both O/E and assessment method concur in reference condition 9 30 46 45
Both O/E and assessment method concur in not reference condition 67 46 27 29
Only O/E implies reference condition 13 4 8 11
Only O/E implies not reference condition 11 20 19 15

Notes: Key to abbreviations: ASNCBI, adjusted standardized North Carolina biotic index; SMIBI, standardized macro-
invertebrate index of biological integrity; SICI, standardized Ohio invertebrate-community index; SIBI, standardized Ohio index of
biotic integrity. O/E for the ASNCBI and SIBI are based on species-level data; other O/E models are based on variable taxonomic
resolution.

� Values are the percentages of samples that were in each of four possible categories of agreement.
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richness with increasing stream size (Table 2). None of
the variation in O/E values was associated with

ecoregion setting (Table 3) showing that the models
accounted for the effects of those stream-habitat factors

that vary with ecoregion in North Carolina.
Although both O/E and the ASNCBI led to generally

similar inferences regarding the percentage of sites that
were not in reference condition (Table 1), O/E and the
ASNCBI often resulted in markedly different site-

specific assessments (Fig. 1). These differences occurred
because the ASNCBI was a biased predictor of O/E as

revealed by the .0 intercept and ,1 slope of this
relationship (P , 0.05). This relationship showed that

the relative degree of impairment estimated by these two
indicators was a function of the overall degree of

impairment at a site. In particular, the ASNCBI implied
that biological condition was better than that implied by

O/E at the most degraded sites, and this difference

declined as sites approached reference condition. The
overall outcome of these differences was that use of the

two assessment methods led to dissimilar inferences
regarding the biological status (reference or not) of a

test-site sample in 24% of the cases examined based on
use of a 10th–percentile-of-reference-values threshold
(Table 4).

Mid-Atlantic Highlands stream invertebrates.—The
standardized macroinvertebrate index of biological

integrity for the Mid-Atlantic Highlands (MAH),
SMIBI, was marginally less precise than O/E0.5 assess-

ments, and O/E0 was less precise than either O/E0.5 or
the SMIBI (Table 1). In all cases, precision was less than

observed for the North Carolina data set. Regressions of
reference-sample indicator values on naturally occurring

factors showed that the MIBI produced slightly (R2 ¼
0.08) biased assessments depending on setting (Table 2).

Reference-sample SMIBI values decreased with increas-

FIG. 1. Relationships between the adjusted standardized NCBI (ASNCBI), the standardized MIBI (SMIBI), the standardized
ICI (SICI), and the standardized IBI (SIBI) with O/E0.5 values derived from test site samples from each data set. Models for the
North Carolina invertebrates and Ohio fish are based on species or near-species taxonomic resolution. The other models are based
on highest possible resolution, generally genus. Differences between the solid regression lines and the dashed 1:1 lines show the
extent to which the other indicators and O/E are biased predictors of one another. The histograms show the distribution of sample
values as measured by each method. Vertical and horizontal dashed lines indicate the lower 10th percentile values derived from the
reference calibration sample values for each indicator and are equivalent to the 10th% C values in Table 1, which were used to
estimate the percentage of samples in nonreference condition (%T , 10th% C).

August 2006 1285FRESHWATER BIOASSESSMENT



ing concentrations of carbonate in stream water and

increased with watershed area. None of the variation in

reference-site SMIBI values was significantly associated

with ecoregion setting (Table 3). O/E0 and O/E0.5 values

were not related to any naturally occurring individual

factor that I was able to examine, nor were these

measures associated with ecoregion (Table 3).

Both indicators showed that test sites were substan-

tially degraded relative to reference conditions (Table 1).

O/E0.5 and the SMIBI had nearly identical mean values

for test sites. Although mean test-site values were similar,

the slightly greater precision of theO/E0.5 model resulted

in ;30% more test sites being inferred as in nonreference

condition than the MIBI. In contrast, the lower precision

of the O/E0 model resulted in it assessing ;35% fewer

sites than the MIBI as being in nonreference condition.

As observed in the comparison between the ASNCBI and

O/E, the intercept was .0 and the slope ,1 (P , 0.05),

which caused degraded sites to appear more degraded by

O/E assessments than by SMIBI assessments. Although

the association betweenO/E0.5 and SMIBI values for test

sites was stronger than for any other comparison (Fig. 1),

the combination of differences in precision and bias

resulted in the MIBI and O/E0.5 leading to different

conclusions regarding impairment in 24% of samples

(Table 4). These disagreements were not symmetric with

respect to the percentage of samples inferred to be in

reference or nonreference condition. Of the 109 samples

for which the two assessments disagreed, O/E0.5 was five

TABLE 5. Regression statistics describing the response of O/E and standardized multimetric indices to variation among test sites in
potential stressors measured at sites in the Mid-Atlantic Highlands (MAH) and Ohio, USA.

Data set�
Assessment
measure� R2 Factor Coefficient

Standardized
coefficient Tolerance§ t Pjj

MAH SMIBI 0.35 Constant 0.763 0.000 9.667 0.000
SO4 �0.220 �0.361 0.987 �10.303 0.000
TSS} �0.084 �0.145 0.917 �4.001 0.000
habitat index 0.039 0.376 0.918 10.350 0.000

O/E0 0.25 constant 0.449 0.000 3.465 0.001
pH 0.081 0.245 0.949 6.387 0.000
SO4 �0.219 �0.387 0.989 �10.308 0.000
habitat index 0.021 0.226 0.942 5.861 0.020

O/E0.5 0.35 constant 0.061 0.000 0.471 0.000
pH 0.085 0.238 0.949 6.673 0.000
SO4 �0.234 �0.384 0.989 �10.973 0.000
habitat index 0.041 0.401 0.942 11.177 0.000

Ohio invertebrates SICI 0.19 constant 0.159 0.000 0.067 0.067
habitat index 0.0093 0.390 0.996 7.100 0.000
log NH3 �0.475 �0.191 0.996 �3.472 0.001

O/E0 0.06 constant 0.884 0.000 43.911 0.000
Pb �0.027 �0.257 1.000 �4.306 0.000

O/E0.5 0.14 constant 0.509 0.000 6.833 0.000
Pb �0.029 �0.296 0.998 3.456 0.000
habitat index 0.0045 0.227 0.998 �5.158 0.000

Ohio fish SIBI 0.25 constant 0.341 0.000 9.700 0.000
habitat index 0.0069 0.444 0.990 16.284 0.000
NH3 �0.064 �0.128 0.988 �4.685 0.000
Zn �0.0011 �0.088 0.889 �3.047 0.002
Pb �0.0100 �0.091 0.882 �3.145 0.002
hardness 0.00017 0.069 0.986 2.538 0.011

O/E0 0.09 constant 0.542 0.000 14.682 0.000
habitat index 0.0044 0.244 0.977 8.138 0.000
NH3 �0.0485 �0.081 0.996 �2.724 0.007
Zn �0.00064 �0.071 0.911 �2.295 0.022
Pb �0.0081 �0.065 0.913 �2.082 0.038
Cd �0.061 �0.067 0.983 �2.232 0.026

O/E0.5 0.15 constant 0.390 0.000 8.590 0.000
habitat index 0.0059 0.317 0.990 10.858 0.000
NH3 �0.049 �0.081 0.988 �2.788 0.005
Zn �0.0019 �0.126 0.889 �4.098 0.000
Pb �0.0100 �0.075 0.882 �2.431 0.015
hardness 0.00018 0.061 0.986 2.081 0.038

Notes: No stressor data were available for North Carolina or Maine. Habitat condition was measured with indices in which
increasing values imply better quality habitat.

� Number of samples for which stressor values were available: MAH, 456; Ohio invertebrates, 264; Ohio fish, 1013.
� Key to abbreviations: SMIBI, standardized macroinvertebrate index of biological integrity; O/E, observed taxonomic

composition as a fraction of expected taxonomic composition (subscripts 0 and 0.5 denote mean probability of capturing a taxon);
SICI, standardized Ohio invertebrate-community index; SIBI, standardized Ohio index of biotic integrity.

§ A measure of independence between predictor variables; high values near 1 imply little collinearity with other predictors.
jj Two-tailed.
} Total suspended solids.
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times more likely than the MIBI to imply a sample was

degraded.
Both the MIBI and O/E varied in response to stressor

gradients, but the two measures differed in their
responsiveness to the suite of stressors present in the

MAH region (Table 5). Variation in both O/E indicators
was most strongly associated with the same three

stressors (pH, SO4, and habitat modification), but more
of the variation in O/E0.5 was associated with these

stressors than that for O/E0, primarily because O/E0.5

was more strongly associated with the measure of

habitat quality than was O/E0. The SMIBI was similar
to O/E0.5 in how it declined with decreasing measures of

habitat quality and increasing values of SO4, but in
contrast to O/E0.5, it was not sensitive to pH but was

sensitive to total suspended solids (TSS). Variation
among sites in levels of stressors accounted for similar

amounts of variation in the two types of indicators.
Classifying sites by their dominant types of stressors
provided somewhat different insights regarding the

relative sensitivities of the different indicators (acid
mine drainage ¼ metals and pH, pH ¼ acid deposition,

nutrients ¼ phosphorus and nitrogen, mixed ¼ general
habitat degradation plus other stressors). Although

values of both SMIBI and O/E0.5 varied similarly
among stressor categories (Fig. 2: top panel), ANOVA

based on the sample-wise differences between O/E0.5

and the S-MIBI showed that the two measures were

differentially sensitive to these broad categories of stress
(Fig. 2: bottom panel, F¼ 5.96, df¼ 4537, P , 0.0005).

In general, O/E0.5 appeared to be more sensitive to pH
and acid mine drainage than was the MIBI, but there

was little difference in sensitivity between the two
measures at sites dominated by nutrients or mixed

stressors.
Maine stream invertebrates.—The Maine O/E indica-

tors were among the least precise of the models examined
(Table 1). Although the models showed no systematic

bias with respect to any natural environmental gradient
examined (ecoregion, Maine biophysical region, latitude,
basin size, elevation, channel gradient, temperature,

calendar day), the models were less precise than the
other O/E indicators examined. The large reference-site

O/E standard deviation for these models implies that
little of the variation in assemblage composition across

reference sites was associated with variation in the
predictor variables used (elevation, distance from stream

source, latitude, number of freeze-free days, and calendar
day). This low precision resulted in a small percentage of

test-site samples falling below the 10th percentile of
reference-sample values even though mean O/E values

estimated for test-site samples were not substantially
different from that observed in other data sets.

Mean O/E values declined with decreasing water-
quality class as generally expected given how classes

were defined by the Maine Department of Environ-
mental Protection. Classes AA and A were combined

because they both imply excellent biological integrity

(Davies et al. 1995, Davies and Jackson 2006). However,
there was substantial variation in O/E values among

samples assigned to any of the water quality classes (Fig.
3). Only 31% (O/E0) and 38% (O/E0.5) of the variation in

O/E values for test-site samples was associated with the
water-quality class to which samples were assigned by

the Maine method.
Ohio stream invertebrates.—Assessments based on the

invertebrate-community index (ICI) and O/E0.5 model
resulted in similar estimates regarding the average

biological condition of test site samples, but the O/E0

model resulted in substantially higher estimates of mean

condition for test site samples than either the ICI or

FIG. 2. Box plots of the O/E0.5 (left member of pair) and
SMIBI (right member of pair) values (top panel) and sample-
wise differences between the two indicators showing the
differential sensitivity of the two indicators with respect to four
classes of dominant stress occurring at each site: acid deposition
(pH), acid mine drainage (AMD), nutrients (N), and mixed
stressors (M). Reference sites (R) are included for comparison.
Box plots show the medians, first and third quartiles (top and
bottom of boxes), and lower and upper inner fence values (61.5
3 inner quartile range). Outliers are shown by stars.
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O/E0.5 (Table 1). The O/E0.5 model produced the most

precise assessments followed by the standardized ICI

(SICI) and then the O/E0 model. These differences in

precision resulted in corresponding differences in the

number of test-site samples that would be inferred as

being in nonreference condition (Table 1). The perfor-

mance of O/E assessments based on Ohio invertebrates

was similar to that of the MAH predictive models in

terms of bias and precision, but the average condition of

test samples was higher and the number of test samples

that would be considered to be in non-reference

condition was lower for the Ohio data than the MAH

data (Tables 1 and 4).

Neither type of assessment method was strongly

biased by environmental setting. None of the variation

in reference-sample indicator values was associated with

ecoregion (Table 3), but ICI values did vary slightly with

differences among reference sites in qualitative habitat-

evaluation index (QHEI) values (Table 5). Neither of the

O/Emeasures derived from reference-site samples varied

with either ecoregion (Table 3) or QHEI (Table 5). ICI

and O/E0.5 assessment values for individual test site

samples were only weakly associated with one another

(Fig. 1), and as in the other comparisons, the intercept

was .0 and the slope ,1 (P , 0.05).

For these data the ICI and O/E values were only

weakly associated with estimates of stressors (Table 5).

For the 264 samples for which stressor values were

available, SICI values were most strongly associated

with the index of habitat quality (increased as habitat

scores increased) and were less strongly associated with

NH3 concentrations (decreased with increasing concen-

trations). O/E0 values were associated with only Pb

concentrations (decreased with increasing concentra-

tions), but O/E0.5 values were associated with both

habitat quality and Pb. The association of O/E0.5 with

Pb was stronger than that with habitat. Because Pb and

log NH3 concentrations were correlated (r ¼ 0.51, P ,

0.001), both stressor variables may be indicators of the

same overall suite of stressors affecting biota at these

sites.

Ohio stream fish.—The general performance of the

index of biological integrity (IBI) and both O/E

measures were very similar (Table 1). The precision of

the standardized IBI (SIBI) was slightly better than that

for O/E0.5, which was more precise than O/E0 assess-

ments. The mean condition of test-site samples was also

very similar among indicators (Table 1) as was the

percentage of test-site samples that were assessed as

being in nonreference condition (Table 4). Even though

the O/E0.5 model was slightly less precise than the SIBI,

it assessed a slightly higher percentage of test site

samples as being in nonreference condition than the

SIBI did because O/E0.5 assessed test sites as slightly

more degraded on average than did the SIBI. As in other

data sets, values of the SIBI and O/E0.5 were correlated,

and the SIBI was a biased predictor of O/E (intercept .

0, slope , 1, P , 0.05, Fig. 1). This bias, together with

differences in precision, resulted in 26% of test-site

samples being assessed differently in terms of whether

they were in reference condition or not. O/E0.5 had a

slightly higher tendency to imply samples were in

nonreference condition than the IBI did (Table 4).

Both methods were subject to bias associated with

differences between reference sites in environmental

setting, the IBI substantially so (Table 2). Thirty percent

of the variation in SIBI values was associated with

ecoregion (Table 3). Regression analysis showed that

even more of the variation among reference sites (46%)

in the SIBI was associated with differences among sites

in habitat quality and annual precipitation (Table 2).

This result implies that an ecoregion classification was

only partly successful in accounting for natural variation

in fish assemblages among reference, sites and that

variation in aspects of climate and channel features

affect assemblage structure within ecoregions. In con-

trast, relatively little of the variation in reference-site

O/E values was associated with environmental setting.

About 10% of the variation in both O/E0 and O/E0.5 was

related to variation among reference sites in habitat-

quality scores (Table 2), but no variation in either O/E

measure was associated with any other channel or

regional (e.g., climate, ecoregion) variable (Tables 2 and

3). The O/E models were therefore successful in

FIG. 3. Variation in test-site O/E0.5 values within and
among the four different water-quality classes to which samples
were assigned by the Maine water-quality class predictive
model. Classes AA and A have been combined (since both
imply excellent biological integrity). NA represents non-attain-
ment according to Maine water-quality criteria. The horizontal
dashed line represents the 10th percentile of reference-site
O/E0.5 values. Box plots show the medians, first and third
quartiles (top and bottom of boxes), and lower and upper inner
fence values (61.5 3 inner quartile range). Outliers are shown
by stars.
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accounting for natural variation in biotic structure that

occurred both among and within ecoregions.
Both types of indicators were generally similar in their

response to stressors (Table 5). The statistical tests of
response to seven stressors showed that the IBI and both

O/E measures varied with differences among test-site
samples in measures of habitat condition, NH3, Zn, and

Pb. The IBI and O/E0.5 were sensitive to the same five
stressors, including hardness, to which O/E0 was not

sensitive. O/E0 showed sensitivity to one stressor (Cd) to
which the IBI and O/E0.5 did not. Variation in stressors

accounted for between 9% and 25% of the variation in
indicator values. More of the variation in the IBI was

associated with stressors than were the O/E measures,
although most of the variability in the IBI was

associated with habitat condition (r2 ¼ 0.20), a factor
that also varied substantially among reference sites.

Both O/E measures were also more strongly associated
with variation in habitat condition than variation in
other potential stressors.

Summary of comparisons of O/E with other indica-

tors.—For each comparison, Fig. 1 shows graphically the
lower 10th-percentile value for each indicator. Points that
fall within the upper right and lower left quadrants as

defined by these lines would be assessed similarly as either
in reference condition or not in reference condition by the

two methods as summarized in Table 4. Points that fall
within the other two quadrants would be assessed

differently by the twomethods, which is also summarized
in Table 4. Relationships between the different indicators

and O/E were: ASNCBI¼ 0.395þ 0.5273O/Esp,0.5, r
2¼

0.46; S-MIBI¼0.145þ0.839O/E0.5, r
2¼0.66; SICI¼0.226

þ0.6863O/E0.5, r
2¼0.34; SIBI¼0.368þ0.5693O/E0.5,

r2 ¼ 0.46. In all cases, intercepts and slopes were

statistically different (P, 0.05) from0 and 1, respectively.

Factors potentially affecting comparability

of different O/E assessments

Effects of taxonomic resolution on O/E assessments.—
Taxonomic resolution influenced both the precision and
sensitivity of O/E indicators (Table 1). In general, model

precision improved with decreasing taxonomic resolu-
tion (i.e., species to family), and as a consequence the

magnitude of biological change that could be detected
decreased. Furthermore, models based on PC thresholds

of .0.5 were more precise than those based on PC . 0.
However, differences in taxonomic resolution affected

sensitivity as well as precision, both of which in
combination affected assessments. For example, the

difference in mean O/E values between test and reference
sites increased with increasing taxonomic resolution,

and as a consequence so did the percentage of test-site
samples with O/E values below the 10th percentile of

reference site values even though precision decreased.
Exclusion of locally rare taxa (PC . 0.5 models) also
resulted in both increasing differences between mean

reference- and test-site samples and the number of test
sites with O/E values below the 10th percentile of

reference-sample values. In general, the species-level

model based on PC . 0.5 most strongly discriminated

between reference and test sites.

Effect of sampling method on O/E assessments.—The

two O/E models that were developed with invertebrate

data collected from artificial substrates were distinctly

less precise than the O/E models developed from

samples collected from natural substrates. The precision

of the Ohio model that I developed from invertebrates

collected from Hester-Dendy samples was the lowest

observed for any model (O/E0.5: SD¼ 0.35, not reported

in Table 1). The Maine O/E model based on inverte-

brates collected from artificial rock baskets was also

imprecise (SD¼ 0.26) relative to the models derived from

invertebrate samples collected from natural habitats

(Table 1). The precision of both of these models is

similar to that observed for null models (Van Sickle et

al. 2005), which implies taxonomic composition in these

samples varied in a nearly random way between sites.

Variation in reference-site indicator values with year of

sampling.—In general, indicator values for both the

ASNCBI and O/E showed little obvious systematic

variation across the ;5500-day period of record in the

North Carolina data (Fig. 4) even though this period of

time included both droughts as well as regional flooding

FIG. 4. Variation in adjusted standardized North Carolina
biotic index (ASNCBI) and O/E values for the 208 North
Carolina reference sites used for model calibration over a 15-yr
period of record. No two of these samples were collected from
the same site. The linear best-fit line is shown for each indicator.
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associated with hurricanes. None of the variation in

O/Esp,0.5 was associated with time since sampling
started, and only 6% of the variation in ASNCBI values

was associated with time. These results imply that, on a
regional scale, invertebrate assemblages at reference sites

were generally stable from year to year.

DISCUSSION

In this paper, I compared the performance of O/E, the

observed taxonomic condition of a site as a fraction of
the site’s expected (i.e., natural) composition, with the

other main types of biological indicators used in the
United States and elsewhere. My general aims were to

determine (1) how O/E performed relative to other
indicators and (2) if O/E could serve as a standard

means of quantifying biological condition and thus
comparing biological conditions across either politically
or ecologically defined regions. This evaluation required

that I examine performance measures for both O/E and
other indicators as well as factors that potentially affect

their performance.

Comparability among indicators

For different biological indicators to be comparable,

they must, in general, measure the same properties and
respond to stress in parallel. Despite the fact that O/E

and the other biological indicators are based on some-
what different biological attributes, on average, O/E

assessments were generally similar to assessments based
on other indicators. This result might imply that all of

these indicators measure to a large extent the same
fundamental underlying property of biological assem-

blages from which different measures of assemblage
structure are derived. Because tolerance values, biotic
indices, and other types of metrics are derived from the

same raw information on composition that O/E
measures, these indicators should be correlated with

O/E.
Differences in indicator performance that were

apparent were associated with (1) differences between
indicators in the precision with which we estimate

expected values (Table 1) and hence the effect size
(departure from reference condition) that could be

detected; (2) differences in sensitivity among indicators
to natural environmental variability among sites (Table

2) that affected bias of assessments; and (3) differences
in sensitivity among indicators to different stressors

(Table 5, Fig. 2). These factors in combination resulted
in both the North Carolina biotic ineex (NCBI) and all

three multimetric indices (MMIs) being biased predic-
tors of O/E in such a way that the agreement with O/E

for a given sample decreased with increasing biological
degradation. This bias in turn resulted in disagreement
between indicators in the estimated proportion of sites

that we would infer to be in nonreference condition
(Table 4).

The tendency for different indicators to frequently
(;25% of comparisons, Table 4) disagree in whether an

individual sample was in reference condition or not must

arise from differences between indicators in either their
biological or statistical properties. Both types of effects

are likely contributing to imperfect agreement between
indicators in their sample-specific assessments. Indica-

tors that combine raw information on taxonomic
composition into aggregate metrics, such as stonefly

richness or percentage tolerant individuals, could con-
ceivably be either more or less responsive to stressors

affecting a site than changes in raw taxonomic
composition. Whether such an aggregate metric is more

or less sensitive to stress than O/E could easily be depen-
dent on the philosophy used when selecting metrics, i.e.,

a priori selection based on ecological principles or a
posteriori selection based on empirical discrimination

between reference and stressed sites. Many of these
differences in biological properties among indicators are
not transparent to typical users, and to my knowledge

we have seldom delved very deeply into how we should
interpret these metrics. In the future, we may want to

scrutinize how well the indicators we use both measure
overall biological integrity and are reflective of the

values society actually places on freshwater ecosystems.
The consequences of differences between indicators in

their statistical properties are more easily understood. In
this analysis, O/E0.5 assessments were more likely to

detect departures from reference condition than MMI
assessments because of their greater precision as well as

their slightly greater sensitivity to whatever stressors
existed at test sites (Table 1, Figs. 1 and 2). In many

cases differences in precision appeared small (e.g., 0.01–
0.02 SD units) and therefore potentially not meaningful.

Although such differences may not be significant in
some specific instances, the general tendency for O/E0.5

assessments to consistently have lower SD than other
indicators is evidence that such differences are likely
real. In general, the precision of O/E0.5 models vary

from ;0.10 to .0.20 SD, thus differences of 0.01 SD units
may therefore represent a 10% difference in precision.

Models with SD , 0.15 are relatively good, account for a
substantial portion of the variation in assemblage

structure between sites, and can approach pure sampling
error among replicate samples within a site (e.g.,

Ostermiller and Hawkins 2004, Van Sickle et al. 2005).
Models with SD . 0.20 are relatively imprecise, are

similar in precision to null models, and often account for
little of the biotic variation among sites.

In practice, the greater precision gained from model-
ing may at least partly disappear if expected ranges of

indicator values are adjusted by geographic or other
strata, as is done for both the NCBI and the Ohio ICI

(invertebrate-community index) and IBI (index of bio-
logical integrity) (Lenat 1993, Ohio EPA 1989). I

demonstrated such an effect when the precision of the
NCBI was greatly improved by adjusting for environ-
mental setting by modeling (71% of variation in SNCBI)

and to a lessor extent by adjusting for ecoregion (60%).
In this case, however, the adjustments had mixed effects
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on assessment outcomes. The increase in precision only

had a marginal effect on the number of samples that
were detected as being in nonreference condition, mainly

because adjusting for local environmental setting re-
sulted in estimates of the average condition of reference-

and test-site samples becoming more similar to one
another (Table 1).

Although apparent at the site level, the effects of
biological and statistical differences between indicators

appeared to largely disappear when individual site
assessments were aggregated across samples, a process

that would be applied when conducting regional-scale
comparisons of biological condition. Mean standardized

IBI values for test-site samples from Ohio were
remarkably similar to mean O/E0.5 values (within 0.04

units, Table 1). These differences were similar to
previously observed differences between O/E assess-

ments derived from models that were based on samples
taken either from different habitat types (fixed-area riffle
vs. timed multi-habitat) or with different organism

counts (50–450) (Ostermiller and Hawkins 2004).
Variation in mean O/E0.5 values across the Maine water

quality classes (Fig. 3) also points to some basic
consistency between how O/E and the Maine method

assess biological condition. From a statistical perspec-
tive, these results imply that regional and national

syntheses may be achievable by either harmonizing
indicators via standardizing indicator values to common

nondimensional units or by reanalysis of raw data to
estimate O/E values. The only substantial inconsistency

between assessments of mean condition were for the
NCBI and O/E. The mean of the adjusted, standardized

NCBI, which is more comparable to how North
Carolina applies the NCBI in practice by adjusting for

ecoregion, differed from O/E0.5 by 0.10 units for the
species model and 0.07 units for the genus model. In this
type of situation, it will be more difficult to harmonize

indicators by a simple standardization or re-scaling of
indicator values.

In general, because all O/E-based assessments are
designed to measure the same biological property, O/E

assessments conducted in different regions should be
more comparable to one another than comparisons

based on either another type of indicator or on a mix of
standardized indicators. Even if we can show empirically

that assessments based on different indicators are
statistically equivalent, biological inferences could re-

main problematic. For example, comparing across
MMIs will require either that we assume their compo-

nent metrics are ecologically equivalent or that we
develop ways to map different MMIs to a common

biological condition scale, i.e., the harmonization
approach described by Davies and Jackson (2006). This

is an especially problematic issue when comparing
assessments across landscapes the size of the entire
United States, where assemblage composition and

structure, and hence the ecological relevance of any
individual metric, will vary markedly across sites and

regions. In theory, O/E avoids these problems by basing

assessments on the degree to which the observed taxa list
matches the expected one. Unfortunately, even compar-

isons between different O/E assessments are not without
problems.

Three factors affecting direct comparability
between O/E indicators

O/E assessments are potentially sensitive to at least

three of the factors that can also influence other
assessment methods: equivalence of reference sites, the

taxonomic resolution used, and the sampling method
used to collect biota. Stoddard et al. (2006) treat the first

issue in detail, but the data examined here also illustrate
the problem well. The magnitude of an O/E value is

dependent not only on what biota are observed but on
the estimate of what biota should occur. If reference

sites are of high quality, as many were in the Maine data
set, estimates of E may represent something close to the
historical potential of a water body. On the other hand,

if a region has experienced severe landscape alteration,
the least-disturbed sites will likely represent something

considerably below historical condition. Such a situation
is certainly the case for Ohio and probably North

Carolina and the Mid-Atlantic Highlands as well. For
example, direct comparison of the mean O/E0.5 value for

test-site samples from Maine (0.72) with that for Ohio
(0.80) implies that biological conditions at Ohio test sites

are less impaired than those from Maine. It is unlikely
that Ohio streams and rivers are less impaired than those

in Maine given the history of landscape alteration in
each state. Direct comparison of O/E requires either

‘‘equivalent’’ reference-site quality, something that may
be difficult to determine, or societal acceptance that E

represents not the historical biological potential of
aquatic ecosystems but regionally specific desired or

best attainable condition. Although the latter case may
greatly complicate comparisons of biodiversity loss or

the degree to which systems meet the biointegrity
objective of the Clean Water Act (see Stoddard et al.
2006), use of least-impaired reference sites can at least

establish a fixed benchmark to which future assessments
within a region can be compared. To some extent then,

‘‘equivalence’’ is in the eye of the beholder and depen-
dent on the criteria used to define ‘‘expected.’’ Defining

expected condition will often have both scientific and
social components.

Differences between data sets in taxonomic resolution
and sampling method can also confound comparisons

between O/E assessments, but can potentially be
controlled by standardization of methods (e.g., Oster-

miller and Hawkins 2004). The trends observed among
the North Carolina models based on different levels of

taxonomic resolution (Table 1) are largely consistent
with patterns emerging from the literature (Lenat and

Resh 2001, Waite et al. 2004). In general, there appears
to be a trade-off between precision and sensitivity to

stress that varies with the taxonomic resolution used.
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Use of coarse taxonomy results in more precise expec-

tations, probably because there are fewer rare taxa that
are difficult to model and hence add error to predictions.

However, lumping of more highly resolved taxa
obscures the signal shown by sensitive taxa within a

given group. This trade-off was clear in the North
Carolina data, where the mean test site O/E0.5 value

changed from 0.62 for species to 0.65 for genera and
0.73 for families (Table 1). In contrast, the SD of

reference site O/E values changed from 0.14 (species) to
0.13 (genera) to 0.10 (families). In this case, detecting

departure from reference condition was more sensitive
to responsiveness to stress than precision given that the

percentage of sites that were assessed as impaired
relative to the 10th reference-sample percentile de-

creased as taxonomic resolution decreased (Table 1).
In practice, decisions regarding the level of taxonomic

resolution to use are made by balancing the sensitivity
needed against the costs of identifications. These issues
are not as problematic for assessments based on fish, for

which species-level identifications can often be con-
ducted in the field and are the norm.

Finally, this analysis provided evidence that the
performance of O/E models is affected by use of

artificial substrates to sample biota (Table 1). The most
precise models were those based on the North Carolina

data in which all natural habitats at a site were
exhaustively sampled (SD for genus-based O/E0 and

O/E0.5 models ¼ 0.15 and 0.13, respectively). The least
precise models were those based on the Maine (SD¼ 0.26

and 0.30) and Ohio (SD ¼ 0.30) invertebrate data that
were collected from artificial substrates and which had

been allowed to colonize for 28 to 42 days. Models for
the Mid-Atlantic Highlands (MAH) and for Ohio

invertebrates were intermediate in precision and were
either based on less exhaustive sampling (MAH) or were

based on a combination of data collected from artificial
and natural substrates (Ohio). These results do not

appear to be consistent with analyses that show variance
among replicate artificial substrates to be lower than

that among samples taken from natural habitats
(Rosenberg and Resh 1982, Morin 1985). However they

are interpretable in terms of how well (or poorly) the
fauna that initially colonize a new, standard habitat
patch characterizes the fauna occurring either in the

variety of natural habitats that occur within reaches or
among reaches that can vary substantially in the types of

habitats present. Furthermore, it is not clear how
between-sample variance within an individual site would

be related to predictive-model precision because the
error in these models is based on entire sites as sampling

units, not individual subsamples within a site. Although
this issue needs to be addressed more rigorously, it seems

likely that, at a minimum, detectability of impairment
will be affected by sampling technique, and, as a

consequence, so will the percentage of test samples that
are inferred as impaired (Table 1). It is less clear that

sampling method will affect estimates of the average

condition of test-site samples (Table 1; also Ostermiller

and Hawkins 2004). In one sense, it is unlikely that
artificial substrates adequately characterize the natural

biotic structure at a site and hence their use would likely
be unsuitable for assessments of conservation status or

potential. On the other hand, the biota that colonize
artificial substrates may provide sufficient signal to

detect biological changes relevant to Clean Water Act
mandates.

A fundamental assumption affecting
interpretation of all indicators

Most bioassessment methods in use today compare

the observed biota at a site to that estimated from
samples collected at several appropriate reference sites

(Bailey et al. 1998, Reynoldson and Wright 2000,
Stoddard et al. 2006). Most of the information for these

reference sites is usually collected over a short time
period, and application of these data to future time
periods requires an assumption that the distribution of

conditions across reference sites does not change
significantly over time (Stoddard et al. 2006). In general,

we often assume that the spatial variance in conditions
observed across environmentally similar reference sites

sampled over a short period of time is equivalent to the
temporal (year-to-year) variance we would observe at a

single site. Such a space-for-time substitution can greatly
reduce the cost of assessments by alleviating the need to

constantly monitor individual reference sites and adjust
yearly assessments accordingly. However, this assump-

tion has not been well tested.
The stability of the distributions of both O/E and

ASNCBI values observed across a 15-year period (Fig.
4) implies that the space-for-time assumption may often

be reasonable and that conditions estimated at one time
apply to other times. However, other studies have noted

significant variation in assemblage structure over time
periods as long as 20 years, some of which were

associated with climatic conditions (Bradley and Ormer-
od 2001, Metzeling et al. 2002, Daufresne et al. 2004).

Although the results reported here were encouraging,
more documentation is clearly needed describing long-

term variation in reference-site conditions, especially
within different climatic settings, and how well the
overall distribution of reference-site indicator values

mimics the long-term variation at individual sites.

Concluding comments

In recent years there has been vigorous, and some-

times passionate, debate among researchers and practi-
tioners regarding how to measure the biological integrity

of freshwater ecosystems (Gerritsen 1995, Norris 1995,
Karr and Chu 1999, 2000, Downes 2000, Norris and

Hawkins 2000). The debate has both conceptual and
empirical origins (NRC 1994, Boulton 1999, Karr and

Chu 2000, Norris and Hawkins 2000). Some view the
general concept of biological integrity as heuristically

useful but essentially unmeasureable (e.g., NRC 1994).
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Some have expressed different views regarding the

specific biological attributes that should be measured
(Karr and Chu 2000, Norris and Hawkins 2000). Others
have questioned the adequacy of different indicators or

analytical methods when measuring biological condition
(Gerritsen 1995, Norris 1995, Fore et al. 1996). These
differences in opinions have usually been fueled by both

a scarcity of data and a failure by participants to clearly
distinguish between the technical merits of different
indicators and the ecological and social values that users

attach to those indicators. The analyses presented here
show that choice of an indicator, or indicators, for use in
regional-scale assessments should depend, in part, on

both the biological properties society wishes to measure
and the statistical properties of each indicator. There are
clearly no perfect indicators that will satisfy all users or

uses; however, the numerical simplicity of O/E, its ease
of biological interpretation, and its inherent standard-
ization to site-specific conditions make it an excellent

candidate as a general measure of biological integrity for
both local and regional/global assessments.
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