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 Introduction 

 To date, the etiological aspects of many autoimmune 
diseases, including multiple sclerosis (MS), has yet to be 
characterized completely  [1] . MS is an in�ammatory dis-
order of the central nervous system (CNS) which is de-
fined by loss of myelin, gliosis and different degrees of 
axonal and oligodendrocyte pathology  [2] . MS usually 
commences in early adulthood, with paralysis, sensory 
disturbances, lack of coordination and visual impairment 
among its most frequent features  [3] . The disease often 
begins with an ‘attack’ or ‘�are’ that lasts from a few days 
to weeks and is followed by remission that most often 
lasts from a few months to years  [4, 5] . The variable 
course of the disease may be reflected in the differences 
seen at the morphological level by magnetic resonance 
imaging and histopathologic evaluations of the CNS, 
which also vary signi�cantly  [6] . Although the main 
causes of MS are yet to be fully understood, the disease 
mechanisms are often inferred from the effector phase of 
an animal model of MS: experimental autoimmune en-
cephalomyelitis (EAE)  [7] . The disease course of relaps-
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ing-remitting MS (RRMS) involves periods of clinical re-
mission and unpredictable relapses or exacerbations, dif-
fering in both severity and duration. Following several 
years of an RR phase, MS patients may enter a secondary 
progressive phase (SPMS) where the onset of symptoms 
and nerve functions gradually worsen either with or 
without relapses  [8] .

  Although the underlying etiological cause and patho-
genesis of MS are unknown, the current suggestions favor 
MS as an autoimmune in�ammatory disorder of the CNS 
in which autoreactive T lymphocytes recognize CNS-
speci�c proteins, leading to in�ammation and demyelin-
ation. According to the cellular in�ltrates detected in the 
brain and cerebrospinal �uid (CSF) from patients along-
side data from rodent models, including EAE, MS is 
largely considered to be a CD4+ T helper 1 (Th1)-medi-
ated in�ammatory disease  [9] ; however, CD4+ Th17 ef-
fector T cells are postulated to have more important roles 
 [10, 11] . In the EAE model, it has been demonstrated that 
the injection of myelin components into susceptible ani-
mals resulted in a CD4+-mediated autoimmune disease 
that shares similarities with MS  [12] . EAE can also be in-
duced by the adoptive transfer of encephalitogenic CD4+ 
T cells into a naive animal  [12, 13] . It appears that white 
blood cells, including lymphocytes, are chemoattracted to 
the MS plaques in response to chemokines. Immunohis-
tochemical studies demonstrated that several chemokine 
ligands, in parallel with their receptors, are present in MS 
lesions. Therefore, it seems that chemokines play crucial 
roles in the pathogenesis of MS. Chemokines are a sub-
family of the larger family of cytokines that serve as re-
cruiter/migratory factors for a wide spectrum of cells, and 
their target cells express appropriate transmembrane G 
protein chemokine receptors. Chemokines are further 
subdivided into C, CC, CX3C and CXC subgroups ac-
cording to the position of conserved cysteine motifs in 
their structure  [14] . CXCL10 (interferon-γ-inducible 
protein 10, previously called IP-10) was initially discov-
ered as a chemokine which is induced by interferon 
(IFN)-γ and is produced by a wide range of cell types in-
cluding monocytes  [15] , neutrophils  [16] , endothelial 
cells  [17] , keratinocytes  [18] , fibroblasts  [19] , mesenchy-
mal cells  [20] , dendritic cells  [21] , hepatocytes  [22]  and 
astrocytes  [23] . CXCL10 binds to CXCR3, which is dis-
cussed in the next section. Recent evidence has indicated 
that serum/tissue expression of CXCL10 is increased in 
MS  [24] . Both CXCL10 and CXCR3 are crucial for leuko-
cyte trafficking and homing to inflamed tissues as well as 
the perpetuation of inflammation which leads to tissue 
damage  [25] .

  Th1 and Th2 subsets of lymphocytes can be defined by 
their expression of chemokine receptors. CXCR3 is asso-
ciated with the Th1 phenotype and is preferentially ex-
pressed on activated Th1 cells  [26] . MS is considered a 
Th1-dependent disease in which Th1-related cytokines 
and chemokines are increased during the course of the 
disorder  [27] . Interestingly, elevated percentages of 
T cells expressing the CXCR3 chemokine receptor in pe-
ripheral blood and CSF during the active phase of MS 
suggest that CXCR3 plays important roles in the induc-
tion of active demyelinating in MS brain lesions  [28, 29] . 
Based on the clinical and experimental observations dis-
cussed above, this review explores the relationship be-
tween CXCL10 and MS as an autoimmune disorder.

  CXCL10 Biostructure and Functions 

 It is well documented that chemokines – and more 
specifically CXCL10 – are produced by several cell and 
tissue types and exhibit pleiotropic effects on a wide 
range of biological processes including immunity, angio-
genesis and organ-specific metastasis of cancers. The role 
of CXCL10 in these processes makes it a promising ther-
apeutic target for various diseases. However, an identifi-
cation of the structural properties and mechanism of ac-
tion of CXCL10 needs to be made if CXCL10 is to be used 
as a worthwhile therapeutic target for treatment of the 
aforementioned pathological conditions. CXCL10 was 
initially identified in human U937 cells (a histiocytic 
lymphoma cell line with monocytic characterization and 
origin) and from human placenta and spleen as an IFN-
γ-inducible product  [30] ; mob-1 and crg-2 are the rat and 
mouse homologs of human chemokine CXCL10, and 
they share 70 and 78% amino acid homology with these 
proteins, respectively  [31] . Like other members of the 
chemokine subfamily, CXCL10 is a small-molecular-
weight protein (10 kDa) which was functionally de-
scribed as an ‘inflammatory’ chemokine. Furthermore, 
the lack the ELR tripeptide (Arg-Leu-Glu) motif in the 
vicinity of CXC residues characterizes CXCL10 as an in-
hibitor of neovascularization; hence, it acts as an ‘angio-
static’ (antiangiogenic) chemokine  [32] . The CXCL10 
gene is located on chromosome 4, contains 4 exons and 
3 introns and encodes a protein of 98 amino acids  [19, 
33] . CXCL10 is transcriptionally regulated in response to 
external stimuli such as IFN-γ and lipopolysaccharides 
(LPS) by a region of 230 nucleotides upstream from the 
transcriptional start site. This area contains several im-
portant regulatory elements, as follows: (a) 2 sites for nu-
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clear factor-κB (NF-κB); (b) 1 site for activator protein 1; 
(c) 1 site for interferon-stimulated response element 
(ISRE); and (d) 1 site for binding of heat shock (HS) fac-
tors ( fig. 1 )  [34] .

  CXCL9, CXCL10 and CXCL11 all share CXCR3 as a 
common receptor for their activities. CXCR3 has two 
different isoforms: CXCR3-A and CXCR3-B. The most 
recent studies revealed that the CXCR3 isoforms differ-
entially regulate cell function. The CXCL10/CXCR3-A 
axis contributes to the induction of chemotaxis and pro-
liferation in various cell types  [35, 36] , whereas the 
CXCL10/CXCR3-B axis inhibits migration and prolif-
eration but induces apoptosis  [36, 37] . Additionally, 
CXCL10 is reported to act as an antiangiogenic/antitu-
mor protein  [37, 38] . Although the precise biological 
functions of CXCL10 are yet to be completely identified, 
several lines of evidence have demonstrated that this 
chemokine is involved in the following physiological 
and pathological situations: (a) chemoattraction of mac-
rophages, monocytes and activated T and NK cells  [39–
41] ; (b) modulation of T cell development and function 
 [42, 43] ; (c) inhibition of in vitro colony formation by 
early human bone marrow progenitor cells  [44] ; (d) 
stimulation of T cell adhesion to endothelial cells  [45] ; 
(e) induction of NK cell migration along with NK cell-

mediated cytolysis; (f) in antiangiogenesis (including 
antitumor angiogenesis)  [24, 30, 46] , and (g) by mito-
genic and chemotactic effects on vascular smooth mus-
cle cells  [43, 44] .

  CXCL10 Signal Transduction 

 Synergy was observed between tumor necrosis factor 
(TNF)-α and IFN-γ regarding the induction of CXCL10 
expression by different cell systems such as keratinocytes 
and hepatocytes. This synergistic effect is facilitated by 
NF-κB and ISRE in the promoter of CXCL10  [47, 48] . In 
isolated and cultured pancreatic acinar cells, cholecysto-
kinin (CCK8) was shown to increase CXCL10 via a path-
way regulated by NF-κB activation which was blocked by 
PDTC (pyrrolidine dithiocarbamate, an NF-κB inhibi-
tor) through a mechanism which repressed inhibitor of 
NF-κB-α degradation and in turn caused induced 
CXCL10 expression  [49] . NF-κB activation and subse-
quent CXCL10 expression, in response to CCK8, was re-
ported to be mediated by protein kinase C in parallel with 
increased intracellular Ca 2+   [49, 50] . Evidence also indi-
cates that stimulation of keratinocytes with TNF-α and 
IFN-γ induced CXCL10 in a concentration- and time-

 Fig. 1.  External stimuli which affect 
CXCL10 and the intracellular events lead-
ing to its expression (adopted from Ahma-
di et al.  [30] ). Signals are initiated by recep-
tor-ligand interaction, either involving 
growth factors or cytokines, and stress 
stimuli are illustrated. Process of receptor 
binding. Protein complexes are recruited 
to the receptor. Resulting activation of cor-
responding signaling events and initiation 
of activation of their downstream targets. 
CS = Cytokine stimulation; CRE = cytokine 
response element; HSRE = HS response el-
ement; US = unknown stimulation; ERK = 
extracellular signal-regulated kinase; IκB = 
inhibitor of NF-κB; JNK = c-Jun N-termi-
nal kinase; MEK = mitogen-activated pro-
tein kinase kinase; NIK = NF-κB-inducing 
kinase; PI3K = phosphoinositide 3-kinase; 
UV = ultra violet light.
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dependent manner, mediated by activation of the protein 
kinase C pathway  [47, 51] . In a similar fashion, primary 
human kidney mesangial cells, stimulated by TNF-α and/
or IFN-γ, also produced CXCL10 in an NF-κB-dependent 
pathway, and co-operation between the ISRE and NF-κB 
sites on the CXCL10 promoter were responsible for this 
action  [52] . TNF-α and IFN-γ employ STAT1α (signal 
transducer and activator of transcription 1α) and NF-κB, 
respectively, for CXCL10 expression in human fibroblast 
cell lines  [47, 52, 53]  as well as LPS-stimulated Kupffer 
cells  [54] .

  Role of CXCL10 in MS 

 Currently there is limited information available con-
cerning the role of chemokines in MS, especially at the 
serum level. In MS, chemokines act both as leukocyte-
migratory factors and mediators of proinflammatory 
reactions (both of which promote the process of demy-
elination)  [55] . Chemokines regulate the expression of 
adhesion molecules and therefore aid transendothelial 
migration of autoreactive immune-compatible cells 
through the blood-brain barrier  [56] .

  Serum and CSF Levels of CXCL10 in MS Patients 
 The levels of CXCL10 in circulating blood were previ-

ously found to be elevated in IFN-β-treated MS patients 
when compared with those left untreated  [57] . Altered 
serum levels of other members of the chemokine family 
such as CCL11 indicated that they are not directly associ-
ated with IFN-β treatment and are regulated by Th2 cell-
mediated cytokines  [58] .

  Sørensen et al.  [59]  reported that CXCL10 levels were 
higher in CSF specimens collected from patients suffering 
from active MS as opposed to CSF measurements made 
in neurological subjects with noninflammatory condi-
tions. More than 90% of the T cells present in the CSF of 
MS patients expressed CXCR3, which is significantly 
more than those found in peripheral blood. Present ob-
servations are in accordance with the fundamental role of 
the CXCL10/CXCR3 axis in the pathogenesis of MS  [29, 
59, 60] .

  Sørensen et al.  [61]  in another study also revealed that 
CXCL10 levels were elevated in the CSF of MS patients 
and that this was associated with increased leukocyte 
numbers in CSF  [61, 62] . It could be reasonable to assume 
that the induction of CXCL10 (especially in RRMS pa-
tients) is probably related to stimulation of regulatory 
motifs present at the upstream transcriptional start site of 

the CXCL10 promoter. This regulatory region of the 
CXCL10 gene contains motifs for a variety of signal trans-
duction pathways including HS IFN-γ and NF-κB re-
sponse elements  [63, 64]  ( fig. 1 )  [30] .

  Scarpini et al.  [65]  assessed CXCL10 in both CSF and 
serum of RRMS and SPMS patients, but not in primary 
progressive (PP) MS patients, and observed its elevation. 
Similarly, Sprenger et al.  [66]  indicated that CXCL10 was 
significantly enhanced in the CSF and serum of patients 
affected by other inflammatory neurological diseases. 
The results from all these studies are in line with data col-
lected by Franciotta et al.  [67]  as well as our own data  [62] , 
which showed elevated serum levels of CXCL10 in RRMS 
patients. The increased CXCL10 levels and the increase in 
cells expressing its receptor, CXCR3, in the CSF of MS 
patients during the active phase of the disease in the in-
trathecal compartment have also been well documented 
 [59] . Additionally, Comini-Frota et al.  [68]  reported that 
serum CXCL10 levels were higher in MS patients than in 
controls, and this is interesting because they also record-
ed considerable increases in expression following 36 h of 
IFN-β1a or IFN-β1b therapy.

  Again, studies showed that CXCL10 expression was 
elevated in the CSF of MS patients and this was associated 
with demyelination in CNS tissue sections. Furthermore, 
this was tightly correlated with CXCR3 expression  [69] . 
Christophi et al.  [70]  reported that quantities of CXCL10 
and caspase 1 were both elevated in peripheral blood 
mononuclear cells of MS patients. However, treatment 
with either IFN-β1a formulations (Rebif or Avonex) sig-
nificantly upregulated the expression of both CXCL10 
and caspase 1, which was mediated by the activation of 
the STAT1 pathway. Moreover, they observed that 
CXCL10 expression (at the mRNA level) was induced 
more by the use of Rebif than Avonex. Therefore it ap-
pears that in addition to IFN-γ, TNF-α and proinflamma-
tory cytokines CXCL10 is also an IFN-β-inducible gene 
product involved in MS pathogenesis  [61, 71, 72] ; how-
ever, conflicting reports claimed that chemokine expres-
sion was also suppressed by IFN-β  [73] .

  In contrast to the aforementioned studies which docu-
mented the elevation of CXCL10 levels in MS patients, 
Sørensen et al.  [61]  reported that CXCL10 remained sig-
nificantly unchanged within the CSF 1 week following 
fulfillment of a 15-day course of oral high-dose methyl-
prednisolone in MS patients. This does not exclude an 
effect during or immediately after treatment. However, 
other effects of methylprednisolone appear to be related 
to the properties of this compound during the processes 
of disease remission observed after treatment  [74, 75] . 
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Table 1. Summary of the literature reviewed concerning the immune-related diseases reported

Country Sample
size, n

Sex, n Serum levels of CXCL10 CSF levels of CXCL10 Ref. 
No.

Denmark 38 21 female
17 male

Patients: 936±72 pg/ml
Controls: 319±43 pg/ml

– 59

Denmark 48 ND – Patients: 2.6 ng/ml
Controls: 319±43 pg/ml (mean±SEM)

61

Denmark 12 ND – Patients – with monosymptomatic optic neuritis: 2.1 ng/ml
Controls: 1.82 ng/ml

61

Denmark 36 ND – Patients – with clinically definite MS: 3.3 ng/ml
Controls: 1.82 ng/ml

61

Denmark 26 ND – Patients – after 3 weeks in either placebo group: 3.1 ng/ml
Controls: 1.82 ng/ml

61

Denmark 22 ND – Patients – after 3 weeks in methylprednisolone treatment 
group: 3.3 ng/ml
Controls: 1.82 ng/ml

61

Denmark 10 ND – Patients: median of 3.3 ng/ml
Controls: 1.82 ng/ml

61

Denmark 10 ND Patients: median of 0 ng/ml
Controls: 1.82 ng/ml

– 61

Italy 39 34 female
5 male

Patients – active RRMS: 289±96 pg/ml 
(mean±SEM)
Controls: 78±15 pg/ml (mean±SEM)

Patients – active RRMS: 453±6 pg/ml (mean±SEM)
Controls: 79±27 pg/ml (mean±SEM)

65

Italy 14 13 female
1 male

Patients – stable RRMS: 258±129 pg/ml 
(mean±SEM)
Controls: 78±15 pg/ml (mean±SEM)

Patients – stable RRMS: 293±43 pg/ml (mean±SEM)
Controls: 79±27 pg/ml (mean±SEM)

65

Italy 12 8 female
4 male

Patients – SPMS: 221±52 pg/ml (mean±SEM)
Controls: 78±15 pg/ml (mean±SEM)

Patients – SPMS: 424±130 pg/ml (mean±SEM)
Controls: 79±27 pg/ml (mean±SEM)

65

Italy 9 6 female
3 male

Patients – PPMS: 59±29 pg/ml (mean±SEM)
Controls: 78±15 pg/ml (mean±SEM)

Patients – PPMS: 78±15 pg/ml (mean±SEM)
Controls: 79±27 pg/ml (mean±SEM)

65

Iran 100 59 female
41 male

Patients: 392 pg/ml
Controls: 196 pg/ml

– 62

Italy 25 ND Patients – stable MS: 69±7 pg/ml
Controls: 60±8 pg/ml

Patients – stable MS: 25±2 pg/ml
Controls: 22±1 pg/ml

67

Italy 38 ND Patients – acute MS: 331±66 pg/ml
Controls: 60±8 pg/ml

Patients – acute MS: 118±16 pg/ml
Controls: 22±1 pg/ml

67

Italy 18 10 female
8 male

Patients – active phase: pretreatment with 
methylprednisolone 175±95 pg/ml (mean±SEM)
Controls: 60±8 pg/ml

Patients – active phase: pretreatment with methylprednisolone 
126 ±31 pg/ml (mean±SEM)
Controls: 22±1 pg/ml

67

Italy 18 10 female
8 male

Patients – active phase:
undergoing therapy with 6-methylprednisolone 
(1 g daily) after 6 days
102±22 pg/ml (mean±SEM)
Controls: 60±8 pg/ml

Patients – active phase: undergoing therapy with 
6-methylprednisolone (1 g daily) after 6 days 
89±30 pg/ml (mean±SEM)
Controls: 22±1 pg/ml

67

Italy 15 9 female
6 mal

Patients – stable phase:
pretreatment with IFN-β1a 63±10 pg/ml 
(mean±SEM)
Controls: 60±8 pg/ml

– 67

Italy 15 9 female
6 male

Patients – stable phase: undergoing therapy with 
IFN-β1a (6 MU weekly) after 6 months 61±11 
pg/ml (mean±SEM)
Controls: 60±8 pg/ml

– 67
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However, the current observations are in agreement with 
the prominent role of CXCL10 in the maintenance of in-
trathecal inflammation and may partly explain the 
mechanism(s) by which high doses of oral methylpred-
nisolone do not influence the recurrence of disease activ-
ity  [74] . Thus, treatment with IFN-β appears to be the 
preferred regime leading to decreased intrathecal inflam-
mation  [76] .

  More recent reports by Mellergård et al.  [77]  verified 
that following a period of 1 year of treatment with the 
newly introduced anti-MS reagent natalizumab, a panel 
of cytokines and chemokines were decreased. They dem-
onstrated that, in addition to declined levels of proinflam-
matory cytokines such as interleukin (IL)-1β, IL-2, IL-4, 
IL-5, IL-6, IL-8, IL-10, TNF-α, IFN-δ and granulocyte/
macrophage colony-stimulating factor, several chemo-
kines including CXCL9, CXCL10, CXCL11, CCL17 and 
CCL22 were also decreased in the blood and CSF of RRMS 
patients following 1 year of treatment with natalizumab.

  Expression of CXCL10 in EAE Animal Models and MS 
Lesions 
 Astrocytes are also the source of CXCL10 in both hu-

man and mouse EAE models  [29, 59, 78] , and evidence 
from these models demonstrates that both TNF-α and 
IFN-γ (as members of the proinflammatory cytokines) 
regulate CXCL10 expression in cell lines  [79]  as well as a 
rat model  [48] .

  Immunocytochemical studies confirmed the presence 
of CXCL10 in postmortem CNS tissues from MS patients. 
In lesions where demyelination was active and ongoing, 
CXCL10 was predominantly expressed by both macro-
phages (present inside the plaque) and reactive astrocytes 

in the surrounding parenchyma. Correspondingly, 
CXCR3 was also expressed by T cells and astrocytes with-
in the plaques, which may strongly suggest an autocrine 
fashion of CXCL10 expression by these cells  [29, 60] .

  Salmaggi et al.  [80]  demonstrated that human brain 
microvascular endothelial cells and astrocytes express 
IFN-γ-inducible chemokines CXCL10 and CXCL11 in 
response to inflammatory stimuli. Moreover, in autoim-
mune pathologies including MS, both δ T cells (Vδ1 and 
Vδ2 cells) exhibit differential expression of cell adhesion 
molecules as well as chemokine receptors. Vδ1 cells ex-
press CXCR4, while Vδ2-type cells express CXCR3, and 
these cell populations transmigrate across endothelial 
cells in response to CXCL12 and CXCL10  [81] . Buttmann 
et al.  [82]  investigated a panel of IFN-inducible chemo-
kines including CXCL10 and, using in situ hybridization 
analysis, corroborated a strong expression of CXCL10 
mRNA by infiltrating immune cells and basal keratino-
cytes into patients in the IFN-β-injected areas.  Table  1  
shows a summary of the literature reviewed concerning 
the immune-related diseases reported.

  Conclusions 

 Overall, based on the latest information available in 
the literature regarding the role of CXCL10 in the patho-
genesis of MS, the authors of the present article propose 
that CXCL10 plays a critical role during symptomatic in-
flammatory demyelination events that occur in the patho-
genesis of MS. However, this is inconsistent with the evi-
dence that exists regarding the CSF and serum levels of 
CXCL10 in the PP form of MS, in which less inflamma-

Table 1. (Continued)

Country Sample
size, n

Sex, n Serum levels of CXCL10 CSF levels of CXCL10 Ref. 
No.

Denmark 21 17 female
4 male

– Patients: 1.64 ng/ml 
Controls: 0.59 ng/ml

69

USA 32 22 female
10 male

Patients – untreated MS: 3.2±1.3 ng/ml
Controls: 1±0.2 ng/ml

– 70

USA 10 7 female
3 male

Patients – Rebif MS patients: 12.4±3.3 ng/ml
Controls: 1±0.2 ng/ml

– 70

USA 10 7 female
3 male

Patients – Avonex MS patients: 6.3±2.4 ng/ml
Controls: 1±0.2 ng/ml

– 70

ND = Not determined.
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tion is observed  [83] . Indeed this is more similar to what 
is observed in noninflammatory neurological diseases.

  Finally, due to the complex manifestations of MS, 
more characterization – with particular attention to ac-
curacy – is required with regard to surveying several oth-
er aspects of the disease. To achieve this, the authors of 
the present article believe that it is worthwhile to more 
accurately examine the role of CXCL10 and its corre-
sponding receptor (e.g. CXCR3) during the pathogenesis 
of MS using animal-based EAE models.
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