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The coronaviruses were frrst recognized and morphologically defmed as a group by 
Tyrrell and co-workers (1968, 1975, 1978). Biochemical studies have recently provided 
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additional information which allows better characterization of these agents. Presently, 
coronaviruses are defmed as being particles which are pleomorphic to rounded with a 
diameter of 60-220 nm, surrounded by a fringe or layer of typical club-shaped spikes. The 
virion is composed of about four to six proteins and possesses a lipid bilayer. The genome 
consists of a single-stranded polyadenylated RNA which is infectious and of positive 
polarity. During maturation these viruses are released by internal budding into vesicles 
derived from the endoplasmatic reticulum. These viruses are widespread in nature and 
are associated with a great variety of diseases with an acute, subacute, or subclinical 
disease process. 

Several reviews have been published describing aspects of the physicochemical and 
biological properties and the clinical significance of coronaviruses (Mdntosh 1974; 

Kapikian 1975; Pensaert and Callebaut 1978, Robb and Bond 1979). During the past years 
new data on the biology of these viruses and on the pathogenesis of diseases, in particular 
murine-induced coronavirus diseases, have also become available. These recentfmdings 
are the basis for this review. 

2 Biology 

2.1 Members of the Coronavirus Group and Their Relationships 

Table 1lists the coronaviruses described to date, their natural hosts, and the predominant 
disease type as caused by these viruses. 

2.1.1 Antigenic Relationships 

Our knowledge of the antigenic relationships between the different coronaviruses is 
incomplete. The relationships shown in Table 2 are based on results obtained by en
zyme-linked immunoassay (Macnaughton 1981; Kraaijeveld et a1. 1980a, b), immuno
fluorescent and immunoelectron microscopic studies (Pedersen et al. 1978, Pensaert et al. 
1981), other serological methods (Reynolds et a1.1980; Gema etal.1981), and the data sum
marized by Robb and Bond (1979). As shown, the avian and the nonavian coronaviruses 
each appear to fall into two distinct and unrelated groups. In the case of infectious 
bronchitis virus (lBV) at least eight different serotypes are at present known (Hopkins 
1974) and these again fall into two groups by cluster analyses based on neutralization 
assays (Darbyshire et al. 1979). Also, comparison of the protein patterns of mv isolates 
suggested that two groups exist which differ in the electrophoretic migration of the virion 
glycoproteins (Nagy and Lomniczi 1979; Collins and Alexander 1980). 

The location of antigenic sites on coronavirion structural proteins has been investi
gated. Coronaviruses basically contain three major antigens, as has been shown by 
immunodiffusion experiments (Hajer and Storz 1978; Yaseen and Johnson-Lussenburg 

1981) and by the analysis of monospecific antisera prepared against purified corona virus 
structural proteins (Schmidt and Kenny 1981). In human, porcine, and murine systems the 
antigenic sites responsible for the induction of neutralizing antibodies are associated with 
the surface glycoproteins (peplomers). Immunological studies with subcomponents pre
pared from purified virions ofTGEV (Garwes et al. 1978), HCV 229E and MIN-3 (Mac

naughton et al. 1981; Hasony and Macnaughton 1981), and HCV -OC43 and 229E (Schmidt 
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Table 2. Antigenic cross-reactions between coronaviruses 

Mammalian 
Group 1 

HCV-229 E and other isolates 
TGEV one serotype 

CCV one serotype 
illV one serotype 

Avian 
Group 3 

mv at least 8 serotyes 

No cross-reactions with other strains 

Unclassified isolates: 

Group 2 

HCV -OC43 and other isolates 
MHV many serotypes, also related to RCV 

andSDAV 
BCV one serotype 
HEV one serotype 

Group 4 

TCV one serotype 
No cross-reactions with other strains 

Several isolates ofHCV (and HECV), porcine coronavirus CV-777 and others, FECV, RTV 

and Kenny 1981) support this conclusion. A similar conclusion was reached by immuno
electron microscopy of bovine coronaviruses (StolZ and Rott 1981). The surface glyco
proteins are also involved in complement fIxation and hemagglutinin inhibition. 

2.1.2 Nucleic Acid Homologies 

Some preliminary data on the nucleic acid sequence homology between a few corona
viruses is available. Hybridization with MHV -specific cDNA, representative of the entire 
genome, shows that a close relationship exists between the murine strains MHV-A59, 
MHV -3 and JHM. Using the same probe no homology between the murine viruses and 
the human coronavirus 229E could be detected (Weiss and Leibowitz 1981). 

Using the technique ofT} oligonucleotide fingerprinting Lai and Stahlman (1981a), 
Weiss and Leibowitz (1981), and Wege et al. (1981a) have shown variation in the genome 
RNA of murine hepatitis viruses of different neurovirulence (Sect 4.2). This variation 
seems to be independent of the serological relationships of these strains. In the avian 
coronavirus group such an analysis also revealed considerable variation within serotypes 
(Clewley et al.1981). Studies such as these might be useful in characterizing the origin, 
evolution and spread of both new isolates and live vaccine strains. 

2.2 Host Range and Organ Tropism 

Most coronaviruses cause clinical diseases only in the species from which they were 
isolated and replicate predominantly in cell lines derived from that host However, trans
mission to other species can be achieved either experimentally or for some virus strains 
by a natural route of infection (Table 3). The natural infection of dogs by the porcine 
strain transmissible gastroenteritis virus (TGEV) and a single case of diarrhea transmit
ted from cattle to man may indicate a possibly wider host range for enteric infections. The 
experimental intracerebral inoculation of several coronaviruses into suckling rats, mice, 
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or hamsters often induces an infection (Table 3). The brain of suckling mice is highly sus
ceptible for viruses of avian, human, and mammaljan origin. However, infection under 
these experimental conditions is not representative for the clinical disease in the natural 
host 

A survey of the organs involved in coronavirus infections is summarized in Table 4. 
Some coronaviruses reveal relatively restricted organ tropism leading to diseases of the 
respiratory system (HCV, mY, RCV) and gastrointestinal tract only (BCV, CCV, TGEV, 
TCV). In other coronavirus infections, for example with feline and murine coronavirus
es, several organs are involved. The murine coronaviruses represent a group containing 
many strains with different organ tropism. In addition, feline, murine, and avian corona
virus strains have a strong tendency to establish persistent and chronic diseases. 

3 Coronaviroses and Disease Spectrum 

3.1 Murine Coronaviruses 

3.1.1 Murine Hepatitis Virus 

The frrstmurine coronavirus described was MHV -JHM, which was isolated from a spon
taneously paralyzed mouse (Cheever et al. 1949). Subsequently, other strains were 
isolated from different disease conditions and different organs of mice (Table 5). Murine 
coronavirus infections are often subclinical or inapparent, but clinical disease can be 
activated by coinfection with leukemia viruses or protozoal agents. These viruses can be 
transmitted by feces or urine to susceptible strains (Table 5). Vertical transmissio~ by 
intrauterine infection can also occur with MHV-JHM (Katami et al. 1978) and the res
piratory route is important in natural transmission ( Carthew and Sparrow 1981; Taguchi et 
al. 1979c). The prevalent diseases resulting from MHV infection are hepatitis, 
encephalomyelitis, and enteritis. A strict classification, of all MHV s into hepatotropic, 
neurotropic, and enterotropic strains is not possible, however, since under certain con
ditions several organs are affected (Table 4) and the type of disease varies to a great extent 
with the age and genetic background of the host (Sect 4.1). The role of murine 
coronaviruses as pathogens of the respiratory tract must also be taken into con
sideration ( Carthew and Sparrow 1981). Variants which differ in organ tropism are easily 
selected in tissue culture or by animal passages. 

3.1.1.1 Hepatitis 

Several murine coronavirus strains replicate predominantly in liver tissue and induce an 
acute fatal-hepatitis by destruction of parenchymal and Kupffer cells (Table 5; Piazza 

1969; Hirano et al. 1981a). The highly virulent strains MHV-2, MHV-3, and MHV-A 59 
cause hepatitis in adult mice. MHV -1 andMHV -S are less virulent butlead eventually to a 
similar disease. MHV -8 is enteropathogenic for young mice whereas most of the other 
strains (Table 5) cause hepatitis only in newborn mice. MHV-N is virulent only for mice 
which have been immunosuppressed by cortisone treatment Viruses isolated from nude 
mice (MHV -NuU, NuA and Nu66) cause chronic hepatitis in athymic mice (Sect 4.1.2). 
However, tissue-culture-adapted MHV -Nu66 and NuA are also hepatotropic for normal 
mice, indicating an increase in virulence. 



T
ab

le
 5

. 
O

ri
g

in
 a

n
d

 c
h

a
ra

c
te

ri
st

ic
s 

o
f 

m
u

ri
n

e
 c

o
ro

n
a
v

ir
u

s 
st

ra
in

s 

S
tr

a
in

a 

M
H

V
-I

 

M
H

V
-2

(P
R

I)
 

M
H

V
-3

 

M
H

V
-A

5
9

 

M
H

V
-S

 

M
H

V
-N

u
U

, 
N

u
A

, 
N

u
6

6
, 

a
n

d
 o

th
e
r 

is
o

la
te

s 

M
H

V
-N

 
M

H
V

-L
V

 

M
H

V
-J

H
M

 

M
H

V
-S

/C
D

C
b
 

L
IV

IM
 

M
H

V
-D

V
lM

 

M
H

V
-D

 
U

n
c
la

ss
if

ie
d

 i
so

la
te

s 
Is

o
la

te
 S

D
 

Is
o

la
te

 S
K

 

F
ir

st
 i
so

la
ti

o
n

 

G
le

d
h
il
l a

n
d

 A
n
d
re

w
es

 1
95

1 

N
el

so
n
 1

95
2 

D
ic

k 
e
t 

aI
. 

1
9
5
6
 

M
a
n
a
ke

r 
e
t 

aI
. 

19
61

 

R
o
w

e 
e
t 

aI
. 

19
63

 

H
ir

a
n
o
 e

t 
aI

. 
19

75
 

S
eb

es
te

n
y 

a
n

d
 H

il
l 

1
9
7
4
 

T
am

ur
a 

e
t 

aI
. 

1
9
7
6
 

W
ar

d 
e
t 

aI
. 

1
9
7
7
 

H
ir

a
n
o
 e

t 
aI

. 
19

79
 

S
a
b
es

in
 e

t 
aI

. 
19

72
 

C
he

ev
er

 e
t 

aI
. 

1
9
4
9
 

B
ro

d
er

so
n
 e

t 
aI

. 
1
9
7
6
 

K
ra

jt
1
9
6
2
 

S
a
to

 e
t 

aI
. 

1
9
7
6
 

Is
h
id

a
 e

t 
aI

. 
19

78
 

B
u
rk

s 
e
t 

aI
. 

1
9
8
0
 

B
u
rk

s 
e
t 

aI
. 

1
9
8
0
 

C
o

n
d

it
io

n
s 

o
f 

is
o

la
ti

o
n

 

S
p

o
n

ta
n

e
o

u
s 

h
e
p

a
ti

c
 d

is
ea

se
 (

a
lb

in
o

 m
o

u
se

, 
P

a
rk

e
s 

st
ra

in
) 

A
ss

o
c
ia

te
d

 w
it

h
 m

o
u

se
 l

e
u

k
e
m

ia
 (

P
ri

n
c
e
to

n
 s

tr
ai

n
) 

In
o

c
u

la
ti

o
n

 o
f 

h
u

m
a
n

 s
e
ru

m
 i

n
to

 S
w

is
s 

m
ic

e
 

In
o

c
u

la
ti

o
n

 o
f 

o
rg

a
n

 s
u

sp
e
n

si
o

n
s 

fr
o

m
 m

ic
e
 w

it
h

 
M

o
lo

n
e
y

 l
e
u

k
e
m

ia
 i

n
to

 B
a
lb

/c
 

A
c
u

te
 d

ia
rr

h
e
a
 o

f 
n

e
w

b
o

rn
 C

D
-1

 m
ic

e
 h

o
u

se
d

 w
it

h
 

o
th

e
r 

st
ra

in
s 

W
as

ti
n

g
 s

y
n

d
ro

m
e
 i

n
 n

u
d

e
 m

ic
e
 

F
e
c
e
s 

o
f 

h
e
a
lt

h
y

 c
a
rr

ie
r 

m
ic

e
 

L
a
te

n
t 

in
fe

c
ti

o
n

 o
f 

c
u

lt
u

re
d

 m
o

u
se

 l
iv

er
 c

el
ls

 
(N

C
T

C
 1

4
6
9
) 

S
p

o
n

ta
n

e
o

u
s 

p
ar

al
y

se
s 

o
f 

S
w

is
s 

m
ic

e
 

F
a
ta

l 
d

ia
rr

h
e
a
 i

n
 I

C
R

 m
ic

e
 

F
a
ta

l 
d

ia
rr

h
e
a
 

D
ia

rr
h

e
a
 o

f 
in

fa
n

t 
m

ic
e
 

F
a
ta

l 
d

ia
rr

h
e
a
 i

n
 s

u
c
k

li
n

g
 m

ic
e
 

B
a
lb

/c
 m

ic
e
 i

n
o

c
u

la
te

d
 w

it
h

 h
u

m
a
n

 b
ra

in
 (

m
u

lt
ip

le
 

sc
le

ro
si

s)
 2

-6
 m

o
n

th
s 

b
e
fo

re
 i

so
la

ti
o

n
 

S
u

b
c
u

lt
u

re
s 

o
f 

17
 C

I-
1
 c

el
ls

 o
ri

g
in

al
ly

 i
n

o
c
u

la
te

d
 

w
it

h
 h

u
m

a
n

 b
ra

in
 (

m
u

lt
ip

le
 s

cl
er

o
si

s)
 

P
re

d
o

m
in

a
n

t 
e
ff

e
c
t 
o

n
 h

o
st

 

H
e
p

a
ti

ti
s 

H
e
p

a
ti

ti
s 

H
ep

at
it

is
, 

as
ci

te
s 

H
e
p

a
ti

ti
s,

e
n

c
e
p

h
a
li

ti
s 

H
ep

at
it

is
, 

e
n

te
ri

ti
s 

H
ep

at
it

is
, 

e
n

c
e
p

h
a
li

ti
s 

H
e
p

a
ti

ti
s 

in
 m

ic
e
 t

re
a
te

d
 w

it
h

 c
o

rt
is

o
n

e
 

H
e
p

a
ti

ti
s 

E
n

c
e
p

h
a
lo

m
y

e
lt

it
s,

 h
e
p

a
ti

ti
s 

E
n

te
ri

ti
s 

E
n

te
ri

ti
s 

E
n

te
ri

ti
s 

E
n

te
ri

ti
s,

 h
e
p

a
ti

ti
s 

D
e
m

y
e
li

n
a
ti

n
g

 e
n

c
e
p

h
a
lo

m
y

e
li

ti
s 

in
 

m
ic

e
 

a 
T

h
e
 s

tr
ai

n
s 

H
7
4
7
, 
E

H
F

 2
1
0
 a

n
d

 E
H

F
 1

2
0
 m

e
n

ti
o

n
e
d

 i
n

 e
a
rl

ie
r 

re
p

o
rt

s 
(M

cI
n
to

sh
 1

9
7
4
) 

h
av

e 
n

o
t 
b

e
e
n

 d
e
sc

ri
b

e
d

 f
u

rt
h

e
r;

 b
 M

H
V

-S
/C

D
C

 a
n

d
 L

IV
IM

 a
re

 
p

ro
b

a
b

ly
 t

h
e
 s

a
m

e
 s

tr
a
in

 

-;j p::
 ~ S2

. !'1
-



The Biology and Pathogenesis of Coronaviruses 173 

3.1.1.2 Encephalomyelitis 

Mureine coronaviruses can cause encephalitis is suckling and adult mice (Table 5; 

Hirano et al. 1981a). The strain MHV -JHM is especially neurotropic (Cheever et al. 1949; 

Bailey et al. 1949), causing acute and chronic demyelinating diseases. By the natural 

intranasal route of infection the virus invades the central nervous system via the olfactory 

nerve (Goto et al. 1977, 1979), initially replicating in the nasal mucosa and spreading 

within 6 days to the spinal cord. The outcome of experimental intracerebral infection is 

similar and necrotic lesions are localized in the hippocampus, olfactory lobes, and perie

pendymal tissues. Demyelination is prevalently confmed to the brain stem and spinal 

cord. In mice which do not develop an acute disease involvement of grey matter is 

minimal and viral antigen is detectable in white matter up to 28 days post infection (Pj.) 

(Weiner 1973). Electron microscopic studies demonstrated that oligodendrocytes are the 

main target cells for JHM virus (Lampert 1973; Powe1l1975), but especially in young mice 

virus can also be detected in neurons and ependymal and endothelial cells, indicating the 

pantropic nature of this infection (Fleury et al. 1980). Infectious virus can be isolated from 

animals with acute encephalomyelitis at any time during the disease process. 

Mice which do not show clinical signs within the ftrst weeks pj. or which recover 

from disease can develop a chronic infection of the central nervous system. Herndon etal. 

(1975, 1977) observed small foci of active demyelination in Balb/c mice surviving JHM 

infection for 16 months. Their studies on remyelination in these mice indicated that some 

of the oligodendroglia cells active in remyelination might be newly generated cells. No 

information is available about the presence ofviral antigens in the central nervous system 

or the isolation of infectious virus from these animals. In recent experiments Stohlman 

and Weiner(1981) induced a chronic infection by intracerebral inoculation of JHM virus 

into 3-month-old C57 BLl6 mice. No clinical diseases were observed, but during the frrst 

12 days pj. infectious virus was recoverable from liver, brain, and spinal cord. Three 

months pj. small foci of viral antigen were detectable in 70010 of the animals and by elec-. 

tron microscopy demyelinated lesions were found. At this point immunosuppression did 

not lead to clinical disease and no infectious virus could be activated or isolated. These 

results are in contrast to earlier studies by Weiner (1973) who showed that immu

nosuppression shortly after infaction modilled a nonfatal infection to an acute 

encephalomyelitis. This indicates, that the virus-host interactions differ signiftcantly 

between the acute disease and the chronic infection 

Experiments using cloned JHM virus and temperature-sensitive (TS) mutants of this 

strain were reported by Haspel et al. (1978). This collection of genetically stable mutants 

was tested forneurovirulence in Balb/c mice infected at an age of 4 weeks. Whereas wild

type virus was lethal for most animals within 6 days, many TS mutants were found to be 

less neurovirulent Fatal diseases were caused only after the inoculation of about 10 000 

times higher doses of infectious virus than was needed for the wild-type virus. Some of 

the mutants induced demyelination in the spinal cord of survivors, and only very few 

animals died of an acute encephalomyelitis. Further studies revealed that the wild-type 

virus replicates in both neuronal cells and oligodendrocytes, whereas a TS mutant 

selectively replicates in oligodendrocytes of the spinal cord (Knobler et al. 1981a, b). 

This selective tropism of mutants within the central nervous system is probably an 

important parameter for the ability to induce demyelination without resulting in fatal 

encephalomyelitis. Similar observations of different neurovirulence between wild-type 
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and mutant viruses, obtained by mutagens or isolated from persistent infections, 

have been reported by Robb et al. (1979) and Hirano et al. (1981b). 

Cheever et al. (1949) described a delayed course of encephalomyelitis with marked 

demyelination in rats after inoculation of wild-type JHM virus. These original 

observations have been recently enlarged upon (Nagashima et al. 1978a, b; 1979). The 

infection of outbred rats (strain Thomae/Chbb) with uncloned JHM virus results in 

acute or subacute to chronic demyelinating encephalomyelitis which is dependent on 

the age of the animals, the time of infection, and the virus preparation used. In suckling 

rats an acute panencephalitis characterized by necrotic lesions in all parts of the central 

nervous system is found. In weanling rats (age 3-4 weeks), however, a subacute 

demyelinating encephalomyelitis can occur after an incubation time of several weeks. 

Demyelinating plaques are sharply demarcated and distributed in the white matter of the 

central nervous system. A similar disease picture is also found in other rat strains (Soren

sen et al. 1980). Preliminary results indicate that the susceptibility of inbred rat strains is 

dependent on genetic traits (Sorensen et al. 1981). 

Kinetic studies during the development of subacute demyelinating encephalomye

litis in weanling rats infected with JHM virus suggest a biphasic course of the disease 

(Wege et al. 1981b). Within 2 weeks p.i. most of the rats develop a clinically silent acute 

encephalomyelitis in parallel to the replication of the virus in the central nervous system. 

After this period virus cannot be recovered from these animals, but histologically 

marked demyelinating lesions are found prior to the development of a subacute ence

phalomyelitis. By the time a clinically recognizable disease appears JHM virus is again 

isolatable. 

Occasionally remissions after acute disease are observed (Sorensen et al. 1980), and 

surviving rats sometimes develop a late demyelinating encephalomyelitis after an incu

bation time of up to 8 months (Nagashima et al. 1979). Brain sections of these animals 

reveal viral antigen and with conventional techniques virus can be isolated. These 

observations indicate a persistent infection of the brain tissue which is reponsible for a 

chronic disease process. 

Whereas wild-type JHM virus varies in its ability to induce subacute and late diseases 

in weanling rats, TS mutants cause high rates of subacute to chronic diseases. Moreover, 

suckling rats from immunized mothers can also develop chronic demyelinating diseases 

if inoculated with TS mutants (Wege et al. 1981b). These observations suggest that the 

development of acute or subacute to chronic demyelinating disease is dependent on the 

virulence of the virus and host factors such as age, immune status, and genetic back

ground. 

3.1.1.3 Enteritis 

Several enteropathogenic strains of murine coronaviruses have been isolated during the 

last few years (Table 5). The fIrst agent of this type was investigated by Kraft (1962) and 

termed lethal intestinal virus for infant mice (LIVIM). This agent is probably identical 

with an enterotropic variant of MHV -S described by Rowe et al. (1963) which was later 

designated MHV-S/CDC by Broderson et al. (1976). These viruses cause an acute intes

tinal disease with a high mortality rate during the fIrst 3 weeks of life. Intestinal contents 

from moribund mice contain typical coronavirus particles and the virus spreads by con

tact infection via the nasal or oral route in newborn mice. Diseased animals are dehy-
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drated by severe diarrhea. Multinucleated giant cells are found especially in the villi of 
the small intestines (Biggers et al. 1964). By electron microscopy large numbers of 
coronavirus particles are detectable in intestinal epithelial cells and in macrophages of 
the lamina propria of the lower intestines (Hierholzeret al. 1979). The mothers of affected 
litters are clinically healthy but necrotic foci are found in the liver. Orally infected adult 
animals do not develop dermed clinical signs and shed virus for about 15 days. Intranasal 
infection by cell-adapted virus leads to a mild diarrhea without mortality. These mice 
show no evidence of liver or brain disease. Litters from immune mothers are protected 
against both natural and experimental infection. 

Strain MIN -S/CDC is serologically related to other MIN prototype strains, especial
ly to MIN-S, and to the human strain OC43 (Hierholzeret al. 1979). Endemics ofLMM 
disease were reported by Carthew (1977) and a similar virus-designated MIN D-was 
isolated during a natural outbreak of diarrhea (Ishida et al. 1978; Ishida and FUjiwara 
1979). MIN -D tends to produce a more systemic infection with the involvement of 
liver, brain, lung, and lymphoid organs. Another isolate, MIN -DVIM, causes diarrhea in 
infant mice and is remarkable for its ability to agglutinate red blood cells from rats and 
mice (Sato et al. 1976; Sugiyama and Amano 1980). 

3.2 Human Coronaviruses 

Human coronaviruses are often responsible for common colds and are associated with 
lower respiratory tract diseases and probably enteric diseases. Essentially two groups of 
isolates can be distinguished. One group grows in tissue cultures of human origin and is 
related to the prototype strain 229E; the other group can only be maintained in organ cul
tures, for example strain OC43. The antigenic relationships are summarized in Table 2. 

These viruses are distributed worldwide and antibodies are present with high 

prevalence (Monto 1974; Kaye et al. 1975; Gerna et al. 1978). The antibody response to 
229E and OC43 appears to have a cycle of several years, with peaks against each strain 
every 2-3 years. About 15% of common colds are attributed to coronaviruses (Mdntosh et 
al. 1970; Larson et al. 1980). In children pneumonia and other respiratory distress can be 
caused by coronaviruses (Mdntosh et al. 1973, 1974). Results of a seroepidemiological 
survey (Riski and Hovi 1980) indicate a possible association of coronaviruses with more 
severe diseases such as pneumonia, pleurodynia, myocarditis, and meningitis. An agent 
termed Tettnang virus has been isolated by inoculation of cerebrospinal fluid from 
patients with various neuropathies and fever into suckling mice (Malkova et al. 1980). 
This virus and similar isolates probably respresent MIN strains which naturally infect 
these mice (Bardos et al. 1980). 

The development of the common cold was studied in human volunteers inoculated 
with HCV (Bradbume et al.1967; Beare and Reed 1976, Mdntosh etal. 1978). Virus inocu
lated by nasal drops causes predominantly coryza, but in contrast to rhinoviruses no 
cough or mucopurulent nasal discharge occurs. Virus shedding decreases sharply within 
3-4 days pj. No evidence for involvement of the lower respiratory tract or intestinal or
gans was found under experimental conditions. The cilial epithelium is selectively infect
ed and shedding of antigen-containing cells coincide withe coryza. Rechallenge of volun
teers with homologous and heterologous virus 8-12 months pj. revealed that no cross
protection occurs against the heterologous strain but immunity against homologous 
virus exists (Larson et al. 1980). 
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The systemic immune response against purified HCV 229E and subcomponents 
have been quantitated by an enzyme-linked immunoassay (Kraaijeveld et al.1980b; Mac

naughton et al. 1981) and the results indicate that most of the antibodies produced during 

infection react with the peplomer protein of the virus. Only small amounts of antibodies 

recognize the matrix and nucleocapsid protein. No data on the role oflocal immunity in 
protection against respiratory disease are available. 

In addition to respiratory diseases some human coronaviruses may be associated 

with enteric infections (Caul et al.1975; Caul and Clarke 1975; Moore et al. 1977; Caul and 

Egglestone 1977; Schnagl et al. 1978; Moscovici et al.1980). However, no information exists 
on the characterization of these agents and their serological relationships to other human 

coronaviruses (reviewed by Macnaughton and Davies 1981). Coronaviruses have also 

been associated with an endemic nephropathy (Apostolov et al. 1975), but there are no 
studies revealing an etiological link between nephropathy and coronaviruses. 

Two coronavirus strains were recently isolated from mice or mouse tissue culture 

cells during attempts to isolate viruses from patients with multiple sclerosis (Burks et al. 
1980). The frrstisolate, designated SD virus, was isolated after intracerebral inoculation of 

human brain material into weanling Balb/c mice. Within 2-6 months p.i., mice 

developed neurological signs and died. From these animals a coronavirus was isolated 
which replicated in the 17 Cl-l mouse cell line. The second isolate, designated SK virus, 

was obtained after 12 subcultures of 17 Cl-l cells which had been incubated with brain 

material from a second patient These isolates are antigenically related to both murine 

and human coronaviruses and reveal related structural polypeptides as shown by immu
noprecipitation (Gerdes et al. 1981a, b). At the present time it cannot be decided whether 

these isolates have been derived from human or mouse tissue, since it is known that 

murine coronaviruses establish latency in mouse colonies as well as in mouse tissue cul
tures (Sabesin 1972). Additionally, serological studies by Leinikki et al. (1981) could not 

demonstrate any correlation between coronavirus antibody titers and patients with mul

tiple sclerosis or other neurological diseases. Further studies are necessary to show if 

there is an association of coronaviruses SD and SK with multiple sclerosis. 

3.3 AvianCoronaviruses 

3.3.1 Infectious Bronchitis Virus 

Avian mv infects young chickens, causing an acute respiratory disease leading to high 

mortality and a decrease in yield and quality of egg production. The disease was fIrst de
scribed by Schalk and Hawn (1931) and is a very common and worldwide infection in 

poultry flocks. The virus spreads by both air and the fecal-oral route. At least eight mv 

serotypes have been described (Dawson and Gough 1971; Hopkins 1974). These serotypes 

fall into two main groups, the Massachusetts and Connecticut types, which differ in their 

antigenic relatedness (Sect 2). The virulence of many different isolates and attenuated 
vaccine strains differs widely. 

The primary target tissue for infection is the trachea (Purcell and McFerran 1972; Dar

byshire et al. 1975). The virus replicates also in bronchial tissue, lung, kidneys, ovaries, and 

oviduct A strong tendency to produce a prolonged infection which results in shedding of 

virus of several months via the feces has been observed (Alexanderand Gough 1977). Per-
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sistent infection in the presence of high antibody titers is often accompanied by severe 
nephritis and infectious virus can be reisolated from cecal lymph nodes up to 8 months 

p.i. (Alexander et al. 1978). Both age and genetic factors influence the outcome of the 
diseases. In addition, infections by bacteria, mycoplasmas, or infectious bursal disease 
virus (Rosenberger and Gelb 1978) increase the susceptibility of chickens to my. 

Resistance to natural infection or experimental challenge after vaccination is 
probably mediated by the local immune response in the trachea, the nasal mucosa, and 
the Harderian gland. Detailed knowledge of the humoral or cellular immune mecha
nisms is not yet available (reviewed by Darbyshire 1981). No correlation between serum
neutralizing antibodies and resistance to reinfection has been shown, but protection 

seems to be correlated to resistance of the tracheal epithelium to challenge virus and the 
presence of high titers of hemagglutinin-inhibiting serum antibodies (Gough and A lexan

der 1979). Secretion of local antibodies can also be demonstrated in organ cultures 
(Gomez and Raggi 1974; Darbyshire 1980). Cross-protection against challenge by homolo
gous and heterologous virus strains can be measured by observation of the ciliary activity 
of tracheal explants from vaccinated chickens. 

The local antibody response is quite independent of the kinetics of the serum anti
body development (Holmes 1973; Leslie and Martin 1973; Watanabe et al.1975; Chhabra 
and Goel 1980). Whereas antibodies were frrst detected 3 days p.i. in the 
trachea and the titers fall again several weeks later, serum antibodies maintain a per
sistently high titer. IgG, IgA, and IgM are all detectable in tracheal washings. However, it 

should be noted that the antibody patterns detected by neutralization tests and enzyme
linked immunoassay (Mockett and Darbyshire 1981) are not identical, indicating 

that antibodies with different specificity and avidity might be detected by the two 
techniques. Cell-mediated immunity is demonstrable by specific lymphoblast trans
formation, but the role in pathogenesis is not yet known (Timms et at 1980). Maternal 

antibodies are transferred to chicks during development and may contribute to protec
tion early after hatching (Darbyshire 1981). 

Under experimental conditions respiratory symptoms are observed between 2 and 8 
days p.i, accompanied by complete absence of ciliary activity. Maximum virus titers are 
obtained 3 days p.i. The morphology of epithelial cells changes and thickening of mu
cosa, edema, and lylnphocytic infIltration are observed (Hawkes et at personal com

munication). Using immunofluorescence small groups of fluorescent cells can still be 
demonstrated 6 weeks p.i., but the regenerated tracheal epithelium seems to be restistant 
to destruction by virus infection. 

3.3.2 Turkey Coronavirus 

In the 1950s a virus was suspected to induce a transmissible enteritis of turkeys in Min
nesota. By electron microscopic studies, a coronavirus-like agent was identifIed (Ritchie 
et al. 1973; Panigrahy et al. 1974) and characterized by physiochemical and morphological 
criteria (Deshmukh and Pomeroy 1974; Naqui et al. 1975). By immunoelectron-micro

scopy no cross-reaction of this virus to other coronaviruses was found (Ritchieetal.1973), 

but different isolates ofTCV are probably antigenically identical (Pomeroy et al. 1975). 
No tissue culture system is available for propagation of the virus but the virus grows in 
embryonated eggs (Adams and Hofstad 1971). 
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The onset of the clinical disease caused by this virus is characterized by depression, 

loss of appetite, weightloss, and watery diarrhea. The mortality, especially in older poults, 

is very low. The lesions in experimental and field cases are very similar to the changes 

caused by mammalian enterotropic coronaviruses and consist in a marked shortening of 

the villi, loss of microvilli, epithelial desquamation, and hemorrhage in the jejunum, 

ileum, and cecum. The number of goblet cells decreases, and the appearance of 

epithelial cells changes from columnar to cuboidal form (Adams et al. 1972; Desmukh et 

al. 1976; Gonder et al. 1976). The lesions appear within 1 day pj., and recovery and healing 

begins after about 5 days. No pathological changes are observed in other organs. The 

number of lymphoid cells in the lamina propria increases and the villus to crypt ratio 

remains depressed for 10 days. Despite an early regression of histopathological changes, 

viral antigen can be found by immunofluorescence up to 28 days pj. 

Turkeys that recover are immune throughout their lives (Pomeroy et al. 1975). This 

lifelong immunity is mediated by the secretory IgA antibody barrier (Nagaraja and 

Pomeroy 1978, 1980, 1981). Serum-neutralizing antibody titers are very low, but intestinal 

secretions and bile contain virusspecific IgA antibodies for at least 6 months p.i. By 

immunofluorescence, antibody-secreting cells can be localized in the intestines 4-5 

months after recovery from disease. In addition to local immunity, peripherallympho

cytes are specifically stimulated by virus antigen. These lymphocytes probably migrate 

from the intestinal lamina propria to the peripheral blood. Circulating IgA and IgM anti

bodies appear only during the acute phase of the disease (Carson et al. 1972). 

3.4 Feline Coronaviruses 

3.4.1 Feline Infectious Peritonitis Virus 

Feline infectious peritonitis virus (FIPV) normally causes widespread inapparent infect

ions of wild and domestic cats, but the infection can also lead to a fatal disease. The 

disease syndrome was first described by Holzworth (1963) and experimentally transmit

ted from field cases to other cats by Wolfe and Griesemer (1966). A coronavirus was iden

tified as the cause of this disease by both morphological and physiochemical criteria 

(Ward 1970; Osterhaus et al. 1976; Pedersen 1976a; HOlZinek et al. 1977). Serologically this 

agent reveals an antigenic relationship to the TGEV of pigs (Witte et al. 1977; Reynolds et 

al. 1977; Pedersen et al. 1978) and to CCV (Everman et al. 1981). Recently a tissue culture 

system was found which supports the growth of FIPV, and several isolates from field 

cases are now available (O'Reilly et al. 1979; Black etal.1980; Everman et al. 1981; McKeir

nan et al. 1981). It is unknown, whether these isolates are serologically and biologically 

identical or represent different strains of FIPV. 

In nature the virus infects cats and other feline species. Randomly collected sera 

from wild cats and catteries are often up to 90% positive, indicating a wide distribution of 

the virus (Pedersen 1976b; Osterhaus et al. 1977; Loif.fler et al. 1978). However, the 

incidence of clinical disease is rather low, usually up to 10%. The virus probably causes a 

high rate of inapparent infections as coronavirus-like particles have been demonstrated 

in feces of normal cats. Furthermore, the virus replicates in organ cultures of both small 

intestines and trachea, causing only small ultrastructural changes of absorptive epithelial 

cells (Hoshino and Scott 1978, 1980a, b). 

Under epizootic conditions, the incubation time of clinical disease ranges from 
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several weeks to 4 months (Hardy and Hurvitz 1971; Robison et al. 1971). Experimentally 

transmitted disease occurs after a much shorter incubation time, which may last only 2-3 

days from oral inoculation (Pedersen and Boyle 1980; Everman et al. 1981). 

The clinical onset of disease is rather unspecific and characterized by fever, loss of 

appetite, and general depression. In typical cases swelling of the abdomen is observed as 

a result of peritonitis, but this effusive form is not always clinically detectable. In the 

noneffusive (dry) form localized granulomatous lesions are found. Both the effusive and 

noneffusive forms are caused by the same virus inoculum (Hayashi etal.1980; Everman et 

al. 1981). In addition, both neurological symptoms and pleuritis are observed. 

After onset of disease, several pathophysiological changes indicate damage to the 

reticuloendothelial system, liver, and kidneys (Gouffoux et al. 1975; Weiss et al. 1980). 

A depression of several plasma factors and an increase of fibrin-fibrinogen degradation 

products is accompanied by anemia, neutrophilia, and leukopenia. The amount of gam

maglobulins increases significantly and the urine contains elevated levels of proteins, 

bilirubin, and urobilinogen. The level of liver-specific enzymes is very high. In the effu

sive form, fibrin is deposited on abdominal organs. Granulomatous inflammatory react

ions, vasculitis, and plaques of focal necrosis are scattered through the parenchyma of 

the liver, kidneys, lung, spleen, and lymph organs. Central nervous system and ocular 

lesions can also occur, depending on the route of inoculation (Ward etal.1974). Virus can 

be isolated from peritoneal exudate, organ homogenates, and blood. 

Several observations support the concept that FIP might be an immunopathologi

cally mediated disease (HolZinek et al. 1979). High levels of antibodies are often detected 

in field cases, but do not prevent disease (Pederson et al. 1976b; HOlZineket al. 1978). Ex

perimentally infected seronegative kittens survive significantly longer and develop a less 

fulminant disease than seropositive kittens (Weiss et al. 1980; Pedersen and Boyle 1980). 

Moreover, treatment of seronegative kittens with purified anti-FIP IgG results in an 

aggravation of the disease. In addition, lesions in the liver and serosa of seropositive kit

tens contain viral antigen, IgG bound to antigen, and complement. In these animals im

mune complexes can be demonstrated in renal glomeruli tissue (Jacobse-Geels et al. 1980). 

These fmdings indicate that the immune response against FIPV infections does not 

have a protective but maybe a destructive effect. In this context it is of interest that the 

disease often occurs in association with other virus infections such as feline leukemia, 

feline panleukopenia (a parvovirus), and feline syncytial virus (Cotter et al. 1973; Black 

1980; McKeiman et al. 1981). In such cases an enhancement of the FIPV-induced disease 

process is observed. It is possible that a preexisting persistent viral infection either leads 

to a higher susceptibility to FIPV or supports the manifestation of a disease state. 

3.5 Other Coronaviruses 

3.5.1 Bovine Coronavirus 

Rotaviruses, parvoviruses and coronaviruses are the main causes of bovine viral 

diarrhea. Mebus et al. (1973a, b) described a coronavirus-like agent associated with 

diarrhea in young calfs (neonatal calf diarrhea coronavirus), which was identified by 

morphological and physicochemical criteria (Stair et al. 1972; Sharpee et al. 1976; Dea et 

al. 1980a, b). This agent has been adapted to grow in tissue cultures and can easily be 

transmitted by the oral route. 
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Other BCV strains cannot be grown on tissue culture and must be maintained by pas

sage in vivo (Doughri et al. 1976; Doughri and StolZ 1977). Both these and the tissue-cul

ture-adapted strains (Mebus et al. 1975) cause clinical signs of diarrhea within 24-30 h of 

inoculation. These symptoms last for 4-5 days and can be letha1. The most severe lesions 

develop in the small intestines, but the large intestines are also infected. The experimen

tal observation that the addition of trypsin to culture media results in a significant enhan

cement of virus growth in vitro (Dea et al. 1980b; StolZ et al. 1981) suggests that the 

initiation of infection might be promoted by the action of proteolytic enzymes in the 

intestinal tract. Virions derived from such trypsin-treated in vitro cultures show shorter 

surface projections than usual (StolZ et al. 1981). 

The destruction of the intestinal absorptive epithelium leads rapidly to pathophy

siological changes followed by extensive loss of water, sodium, chloride, bicarbonate, 

and potassium. Metabolism of glucose and lactate becomes severely disturbed and hy

poglycemia, lactic acidosis, and an elevated effiux of potassium to the hypovolemic plas

ma consequently lead to acute shock, heart failure, and death (summarized by Lewis and 

Phillips 1978; Phillips and Case 1980). Maternal antibodies (IgA and IgM) are transmitted 

via colostrum to calves and reduce the severeness of disease (Mebus et a1. 1976). 

More than 50% of bovine sera contain antibodies againstthe BCV strain L Y -138 (Ha

jer and StolZ 1978; StolZ and Rott 1980). Furthermore, high percentages of human sera 

from different sources cross-react with BCV antigens in immunodiffusion, neutrali

zation, and electron microscopic tests (StolZ and Rott 1981). The common reactive anti

genes) responsible for neutralization is associated with the virion peplomers, but other 

studies indicate that additionally internal antigens may be responsible for cross-reactivity 

(Gema et a1. 1981). A single case of diarrhea caused in man by infection with a BCV has 

been observed (StolZ and Rott 1981), and could indicate that the high degree of reactive 

antibodies in human sera may result from infection with bovine strains. 

3.5.2 Canine Coronavirus 

Canine coronaviruses usually induce a self-limiting mild gastroenteritis in dogs. CCV has 

been isolated during an epizootic outbreak of diarrheal disease in military dogs in 1971 

(Binn et at. 1975) and during two outbreaks of a highly contagious vomiting and diarrheal 

disease in the USA (Appel et al. 1979). CCV often occurs in association with canine 

parvoviruses, which cause a similar but more severe enteric disease (Appel et a1. 1979; 

Helfer-Baker et al. 1980). Serologically, CCV is more predominant among kennel dogs 

than among family dogs (62%-87% vs 22%) and the incidence of animals seropositive 

against coronavirus in combination with parvovirus is also much higher in kennel dogs 

than in family dogs (55.6% vs 7.4%). Epizootic fatal canine enteritis caused by both 

viruses can also occur among captive coyote populations (Everman et al. 1980). 

Canine coronavirus cross-reacts strongly with the porcine TGEV, although it can be 

serologically differentiated (Reynolds et a1. 1980; Gmwes and Reynolds 1981). It is also 

serologically related to FIPV (Everman et al.1981). CCV cannot infect piglets, but TGEV 

can be transmitted to dogs without causing clinical signs (Larson et al. 1979). 

The oral inoculation of beagle pups leads within 1-7 days to enteritis and diarrhea 

(Keenan et a1. 1976; Takeuchi et a1. 1976; Nelson et al. 1979). The lesions, which consist of 

atrophy and fusion of intestinal villi, are most predominant in the ileum. Virus can be re

covered from duodenum, jejunum, ileum, colon, and mesenteric lymph nodes, but no 
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further spread of virus is detectable. Within 1-2 weeks the diarrhea and histopathological 

changes disappear and antibodies are detectable. The disease has a more severe course in 

very young pups than in older pups. 

3.5.3 Hemagglutinating Encephalomyelitis Virus 

Hemagglutinating encephalomyelitis virus (HEV) selectively infects neuronal tissue of 

pigs and causes a vomiting and wasting disease. The disease was fIrst described as an epi

zootic outbreak in Canadian swine herds leading to high morbidity in suckling pigs (Roe 

and Alexander1958). Clinical symptoms consist of vomiting and depression which can 

lead to death after emaciation and starvation. Additionally, neurological signs of 

encephalomyelitis appear (Werdin et al.1976). The mortality in young pigs is very high: 

older litters often survive but remain permanently stunted. Clinical outbreaks are now 

not so predominant but high percentages of sera contain antibodies, indicating a wide dis

tribution of the virus. The virus exists as a subclinical infection in the presence of mater

nal antibodies. After the weaning period an active immunity develops (Andries and Pen

saert 1981). 

Greig et al. (1962) were the fIrst to isolate HEV. Mengeling and Cutlip (1976) demon

strated that both the vomiting disease and encephalomyelitis are caused by the same 

virus. Pathogenetic studies reveal that after oronasal infection of newborn colostrum-de

prived pigs the virus replicates in the respiratory tract, the tonsils, and small intestines and 

spreads via nerve tracts to the peripheral ganglia nearest to the sites of primary infection 

(Andries and Pensaert 1980a, b; Andries et al. 1978). Vomiting starts 4 days pj. at the time 

when the virus is detected in neurons of peripheral ganglia. In the central nervous system 

the viral antigen is fIrst detected in the sensory nuclei of the trigeminal and vagal nerve lo

cated in the medulla oblongata, and then spreads to the brain stem and occasionally to 

the cerebrum, cerebellum, and spinal cord. The infection of other organs or viremia does

not play a signiftcant role in the pathogenesis of the disease. 

The local inoculation of the virus intragastrically, intraintestinally, intramuscularly, 

or into the cerebrosllinal fluid always leads to the same clinical signs. However, the distri

bution of viral antigens is very different depending on the route of inoculation. Thus it 

seems probable that infection of neurons in different locations could lead to vomiting 

due to a disturbance of regulatory mechanisms. A further consequence of the infection 

of neuronal cells is paralysis of the ileum, which leads to emaciation and death by 

starvation. 

3.5.4 Transmissible Gastroenteritis Virus 

Transmissible gastroenteritis (TGE) is an acute disease affecting pigs of all ages. Espe

cially in pigs under 2 weeks of age, the infection leads after a short incubation period to 

diarrhea and vomiting, resulting frequently in death within 3-6 days. Older pigs are less 

severely affected. 

The targets for virus replication after oral transmission are absorptive cells of the 

small intestine (Pensaert et al. 1970). However, respiratory infection can also occur, and 

viruses can persist for prolonged times in lung tissue of older pigs (Underthal et al. 1974, 

1975; Watt 1978). In the infected intestinal cells necrotic lesions develop and lead to pro-
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gressive shortening of the villi. Replacement of the villous epithelial cells begins 18-72 h 
pj. by migration of undifferentiated cells from the crypts. These crypt cells are resistant 

against infection. The epithelial cells of microvilli are important for the digestion of 
disaccharides and the absorption of monosaccharides and contribute to osmoregulation. 
Their destruction leads consequently to diarrhea, acidosis, and dehydration (Moon et al. 

1978; Shepherd et al. 1979a, b). 
A key role in the defence against TGE is played by the local immune response of sec

retory IgA and IgM production (Stone et at. 1977; Kodama et al. 1980). Recovery from 
infection might also be enhanced by a strong cell-mediated local immune response 
(Frederickand BohI1976; Shimizu and Shimizu 1979). Interferon (type 1) also appears early 
in the disease process and is probably secreted by local enterocytes. However, intestinal 
and serum interferon appear to have little protective effect, since up to 100% of newborn 
pigs die after infection (La Bonnardiere and Laude 1981). 

The transfer of antibodies via colostrum and milk is of practical importance for pro
tection of suckling pigs. Several attenuated virus strains with low virulence are now 
available for vaccination of pregnant sows (Hess et al. 1977; Saifand BohI1979). IgA -sec
reting lymphocytes are locally stimulated in the lamina propria and invade the mam
mary glands. The pathological changes after oral infection are strongly dependent on the 
virulence of the TGEV inoculated, since attenuated strains infect only short parts of the 
intestines and cause only little atrophy of microvilli (Hess et al. 1977). However, the 
advantage of restricted growth of attenuated virus is counterbalanced by only a weak 
stimulation ofIgA-secreting cells. 

Recently, a coronavirus designated CV-777 was isolated in epizootic diarrhea out
breaks (Pensaert and Debouck 1978). No antigenic relationships to other coronaviruses 
were detected (Pensaert etal. 1981). The disease course is slower than in TGE andaccom
panied by less cell destruction (Debouck and Pensaert 1980). CV -777 also replicates to a 
certain extent in the duodenum and colon and infects crypt cells without destroying their 
regenerative potential. Another porcine virus unrelated to TGEV was recently described 
by Horvath and Mocsori (1981). . 

3.5.5 Rat Coronavims 

Two different coronavirus strains have been isolated from rats. Parker's rat coronavirus 
(RCV) is pathogenic for the respiratory system of rats, whereas the sialodacryoadenitis 
virus (SDA V) has a pronounced tropism for salivary and lacrimal glands. These viruses 
replicate on primary rat kidney cells but not on cells susceptible to MHV infection. 

Isolation ofRCV was achieved by inoculation oflung tissue homogenates of rats into 
specific pathogen-free animals (Parker et al. 1970). Newborn rats infected intranasally 
with RCV develop respiratory disease and die within 6-U days pj. Rats older than 21 days 
remain clinically healthy. Histopathological lesions are typical for an interstitial pneu
monitis. Virus replication is confmed to the mucosal epithelium and lungs. Virus was 
only exceptionally recovered from salivary and submaxillary glands (Bhatt and Jacoby 
1977). 

Initially was SDA V detected by electron microscopy in the salivary glands of rats. 
Infectious virus was subsequently isolated by inoculation of organ homogenates into 
newborn mice (Jonas et al. 1969). The virus is pathogenic for newborn mice by intracere
bral inoculation and causes neuronal degradation. Mouse passaged virus induces lesions 
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of the salivary and lacrimal glands in rats (Bhatt et al. 1972). After intranasal inoculation 

the virus spreads from the respiratory tract via cervical lymph nodes to submaxillary and 

parotid salivary glands (Jacoby et al. 1975). Within 2 days a rhinitis develops and necrotic 

lesions spread, especially in the ductal epithelium of the affected glands. The disease is 

self-limiting and no spread to other organs is detectable. Antibodies are demonstrable 

within 7 days. In addition to the infection of salivary glands, a keratoconjunctivitis and 

ophthalmic lesions can be associated with the disease (Lai et al. 1976; Weisbroth and 

Peress 1977). These lesions may be a secondary phenomenon due to bacterial invasion 

and impediment of the lacrimal glands. 

4 Pathogenetic Aspects 

The development of a disease process depends not only on the biological properties of 

the infectious agent but also on the host. Such factors as susceptibility, spread of virus 

through the body, type and severity of disease, and control and elimination of the infec

tious virus are all host-dependent. In this context, experiments carried out with MHVs 

have provided important information on the pathogenic mechanisms of coronavirus 

infections. 

4.1 The Role of Resistance in The Development of Disease 

4.1.1 Acute Infectious 

4.1.1.1 Murine Hepatitis Virus Type 2 

The fIrst evidence for an association of host genes with resistance to MHV infection was 

reported for MHV-2, which causes a fulminant hepatitis with high lethality in PRI mice 

but no clinical disease in adult C3H mice. Bang and Wmwick (1960) observed that 

peritoneal macrophages derived from PRI mice and cultured in vitro are able to replicate 

MHV-2, whereas novirus growth was detected in cultures ofC3H macrophages. Breed

ing experiments indicated that resistance is inherited by a single recessive gene. These 

observations suggested that the result of virus infection may depend on the genetically 

determined ability of cells from the macrophage lineage to replicate the virus. A differ

ence in susceptibility of macro phages was also observed by Taguchi etal. (1976) who com

pared the mouse strains DDD and CDP 1. However, as the following experiments illus

trate, a complex network of interactions with other cells of the immune system also 

influences and modifIes the outcome of infection (Bang 1981). 

Shif and Bang (1970a, b) demonstrated that macrophages of PRI and C3H mice 

absorb and take up the virus equally well although macrophage cultures derived from 

resistant C3H mice did not produce detectable amounts of infectious virus. The ability of 

macrophages from both strains to replicate equally well a variant virus which arose dur

ing high multiplicity of infection indicates, however, that this genetically determined 

resistance is not absolute and can be overcome by strain variation. Weiser and Bang (1976) 

bred a mouse strain (C3HSS) which contains the gene for MHV-2 susceptibility from 

PRI mice but is in all other respects congenic with the resistant C3H strain. Cotijl et al. (cit 

Bang 1981) used this new strain to show that whilst MHV-2 can replicate under single-



184 H. Wege et al. 

cycle conditions in macrophage cultures from both resistant and susceptible strains, the 
virus produced in resistant macrophages is relatively much less infectious for the geneti
cally incompatible system. 

Additional experiments have also shown that the resistance of adult C3H mice to he
patitis induced by MHV-2 can be modulated by procedures affecting T-cell functions. 
Whilst normal mice develop transitory hepatic lesions which do not lead to clinical signs, 
thymectomized animals are no longer resistant and die with an acute hepatitis (Sheets et 
a1. 1978). Macrophage cultures derived from thymectomized animals are, however, still 
relatively resistant This indicates that in addition to macrophage resistance, thymus-de
pendent functions are involved in preventing the disease. Also treatment of C3H mice 
with hydrocortisone, a steroid which suppresses T-cell functions, abolishes the resistance 
of C3H mice to MHV -2 (Gallily et al. 1964). On the other hand, polyclonal stimulation of 
lymphocytes by inoculation of concanavalin A into normally susceptible PRI mice 
induces resistance, again suggesting the involvement of T cell-mediated factors ( Weiser 

and Bang 1977). These in vivo observations were further supported by experiments with 
cultured macrophages in vitro (Weiser and Bang 1976, 1977; Taylor et al. 1981). These 
authors showed that macrophages from resistant mice can be modulated in their suscep
tibility by the addition of soluble mediators (lymphokines and interferon) which have 
been secreted by stimulated lymphocyte cultures. 

4.1.1.2 Murine Hepatitis Virus Type 3 

In the MHV -3 system, the resistance or susceptibility of animals is correlated with the 
degree of virus growth in macrophage cultures (Virelizierand Allison 1976; Macnaughton 

and Patterson 1980; reviewed by Virelizier 1981). Whilst little or no virus replication occurs 
in macrophage cultures from AIJ mice, a resistant strain (Table 6), the degree of virus re
plication in macrophage cultures from susceptible and semiresistant strains reflects the 
pathogenicity ofMHV-3 for the particular host Resistant and susceptible macrophage 

cultures absorb and incorporate virions to the same extend (Krzystyniak and Dupuy, 

Table 6. Different diseases induced by MHV-3 in inbread strains of mice. (Virelizier et al. 1975; Le 

Prevost et al. 1975a; Yamada et al. 1979) 

Type of disease 

Lethal, fulminant hepatitis 5-8 days pj., 

systemic infection 
Lethal hepatitis 6-10 days pj., selective 

destruction of T cells 
Chronic vasculitis 2-12 months pj. 

Chronic chorioependyrnitis 2-12 months pj. 
Clearance of virus within 7 days, survival 
Inapparent hepatitis, clearance of virus 
within 7 days pj. 

Mouse strain 

inoculated 

C57 BLl6, Balb/c, 
DBA2, and others 

C3H1He 

C3H1He 
A2G 

AlJ 

DDD 

Age at time 

of intraperitoneal 

infection 

6-8 weeks 

4 weeks 

5-8 months 

6-8 weeks 
Over 10 weeks 
4 weeks 
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1981). The restriction may affectlater stages in virus replication. LelYetal. (1981) observed 

that infection of macrophages from susceptible mouse strains leads to a significant stimu

lation of the blood coagulation system. This may be an additional parameter which con

tributes to the development of disease. The genetically determined degree of suscepti

bility is not only restricted to peritoneal macrophages, since hepatocyte cultures obtained 

by perfusion ofliver also reveal the same type of genetic restriction (A mheiter and Haller 

1981). LeIY-Leblond et al. (1979) have shown that at least two recessive genes are respon

sible for resistance and that they are associated with the histocompatibility (H2) genes. 

This suggests that antigen recognition by T -lymphocytes plays a role in virus elimination. 

Further evidence that impairment of virus replication in macrophages and cooperation 

with cells of the T-cell lineage are both required for resistance is the observation that 

resistance can only be transferred if peritoneal cells and adherent spleen cells are inocul

ated together (LeIY-Leblond and Dupuy 1977). Additionally, bone marrow cells enhance 

the protection transferred by spleen cells (Tardieu et al. 1980). The host-cell gene funct

ions which regulate the susceptibility for MIN -3 are apparently not important for the re

plication of other viruses (Amheiter and Haller 1981). 

The interferon system represents another important line of defence against MIN-3 

infection. Interferon is released by macrophages during the fIrst cycles of virus repli

cation and is induced in both resistant and susceptible mouse strains, with peak titers 1-2 

days pj. (Virelizieret al.1976). Application of an antiserum against virus-induced (type 1) 

interferon amplifles the disease course in susceptible mice and abolishes resistance if 

inoculated into resistant strains shortly before virus infection (Virelizierand Gresser 1978). 

No enhancement of disease by anti-interferon globulin can be found in chronically 

diseased animals (Sect 4.1.2). 

As in the MIN-2 system, inlrnunosuppressive treatments such as thymectomy or 

treatment with anti Thy-1 serum aggravate the disease - induced b-y MIN-3 and indi

cate that T cell-mediated immune mechanisms contribute to resistance (Dupuy et al. 

1975). SpecifIc antibodies are not of major importance, since transfer of serum from 

immunized, resistant mice to susceptible mice gives no protection (LePrevostetal.1975). 

It should also be noted, however, that immunosuppressive treatments impair not only 

T-cell functions but also the production of virus-induced interferon (Virelizieretal.1979). 

Interperitoneal inoculation of inactivated Corynebacterium parvum together with MIN -3 

suppresses the development of disease (Schindleret al. 1981). This type of resistance may 

be due to a nonspecifIc immune stimulation and activation of macrophages. 

This situation is still further complicated by the influence of age of the mouse at the 

time ofMIN-3 infection. For example, in young C3H mice T cells and not macrophages 

are the primary target for MIN -3 replication (Yamada et al. 1979). Thus although C3H 

mice infected at 4 weeks of age are susceptible, whilst D D D mice are relatively resistant, 

(Table 6), peritoneal macrophages from both strains support virus growth to the same ex

tent and serum interferon titers are very similar. However, in cultured spleen cells ofC3H 

mice virus growth is associated only with Thy-1-antigen-positive cells. 

4.1.1.3 Murine Hepatitis Virus JHM 

The third MIN strain that has been studied in some detail is MIN -JHM. Stohlman and 

Frelinger(1978) showed that resistance to JHM virus is a recessive genetic trait, not strong

ly associated with the H2 complex. The interaction of at least two host genes may be re-
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quired. A similar result was reported by Knobler et al. (1981b). It seems most important 
that in infections with MHV-JHM the development of resistance correlates with the 
maturation of the macrophage cell population. This is indicated by the results of cell 
transfer experiments (Stohlman et al. 1980, Stohlman and Frelinger 1981). SJL/J mice at 
an age of6 weeks are relatively susceptible compared to older mice of the same strain and re
sistance can be transferred from old to young mice by peritoneal exudate cells. Depletion of 
cells bearing markers for Tor B cells does not influence the transfer of protection. Virus repli
cation in macrophage cultures of both young and old mice is poor, andmacrophages have the 
ability to suppress virus growth in another susceptible cell culture which is permissive for 
the virus. This type of suppression is not mediated by interferon. When comparing resis
tant and susceptible strains, Knobleretal. (1981b) found a correlation between virus repli
cation in cultured macrophages and the outcome of disease in vivo. A similar age-depen
dent resistance associated with the IIl8;turation of macrophages was observed by Taguchi 

et al. (1977, 1979b, c, 1980) for MHV-S. 
Pickel etal. (1981) also studied the development of resistance to MHV-JHM infection 

during host maturation and found that a mature immune system is not the only re
quirement for protection. Intraperitoneal infection ofC3H mice withJHM virus up to 20 
days of age results in an acute fatal disease, whilst mice older than 20 days rapidly acquire 
resistance. Suckling mice can be rendered resistant by transferring spleen cells from 
adult mice immunized against JHM virus. Nonimmune spleen cells from adult mice, 
however, cannot protect after transfer. The transferred normal spleen cells were able to 

mediate a normal immune response in the immature host 

4.1.2 Chronic Infections 

The infection of semiresistant strains (C3H1He andA2G) withMHV -3 results ina persis
tent infection associated with a chronic neurological disease (Virelizier et al. 1975; Le
Prevost et al. 1975b). The majority of animals survive the acute stage of infection and 
develop a progressive chronic disease characterized by incoordination and paresis of one 
or more limbs (Table 6). The pathological fmdings in A2G mice consist mainly of a 
chronic chorioependymitis resulting in hydromelia and hydrocephalus, whereas C3H 
mice reveal a diffuse vasculitis in kidney, liver, spleen, brain, and spinal cord. Perivascu
lar infiltrations by polymorphonuclear lymphocytes and fibrinoid necrosis develop 
around veins and arteries. In the central nervous system destruction of myelin and axons 
can be found, but in contrast to neurotropic MHV strains virus antigen has never been 
demonstrated in neuronal cells. Antigens and immunoglobulin are, however, detectable 
in the walls of affected vessels. Inoculation of susceptible mouse strains with organ sus
pensions from chronically diseased animals induces a fatal acute hepatitis in the re
cipient Therefore, persistency in semisusceptible mice is a consequence of the host res
ponse and not due to the biological properties of the virus. 

The infection of host macrophages by MHV-3 results in modification of the immune 
response (Virelizier et al. 1976; Lahmy and Virelizier 1981). Application of antigen (sheep 
red blood cells) at the time of virus infection results in an immunostimulation against this 
antigen. However, an immunosuppression occurs if the antigen is inoculated later in 
infection. In persistent infection, a chronic immunosuppression is observed and may be 
associated with the continuous release of circulating (type 2) interferon. Furthermore, 
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prostaglandin(s) produced by stimulated macrophages contribute to immunosuppres

sion. This modification might be one of the mechanisms in the pathogenesis of chronic 

disease in semisusceptible mice. 

Athymic nude mice are another host in which a chronic MHV infection occurs. 

Several MHV s have been isolated from nude (nu/nu) mice (Table 5). The strain termed 

MHV-NuU is oflow virulence and causes a persistent infection with progressive necro

tizing hepatitis and perivascular infiltrations in the lung (Furuta et a1.1979). It is not patho

genic for heterozygote nul + mice with a Balbi c background. Interestingly, Tamura et al. 

(1977, 1978, 1980) found in infected athymic nulnu mice an immune response 

normally not detectable in these animals. After inoculation with thymus-dependent anti

gen (sheep red blood cells), chronically infected nulnu mice produce neutralizing anti

bodies (lgM and IgG) and also produce a secondary response (Tamura and Fujiwara 

1979). This immunostimulation is thought to involve the differentiation ofT -cell precur

sors. Humoral immunity alone however is not sufficient to prevent disease. Especially the 

functions ofT cells are required for protection (Kai et al. 1981). Additionally, during the 

early phase of disease; the phagocytic activity and number of macrophages is enhanced. 

Impairment of macrophage functions by the toxic effects of silica inoculation aggravates 

the disease course and leads to a lethal acute hepatitis (Tamura et al. 1979, 1980). 

4.2 Pathogenicity Associated with Viral Gene Sequences 

In the preceeding sections the importance of both viral and host factors in determining 

the outcome of coronaviral infection have been discussed. As a flrst step in attempting to 

defme the viral gene sequences which might playa major role in the pathogenicity of a 

particular virus strain, Lai and co-workers have compared the genomes of several MHV 

strains and variants by oligonucleotide fmgerprinting (Lai and Stohlman 1981ab; Lai et al. 

1981). Most interesting is their comparison oflarge- and small-plaque variants ofMHV

JHM (Stohlman et al. 1981). The large-plaque variant (DL) is highly virulent for mice, 

whereas the small-plaque variant is less virulent and might induce a more extensive 

demyelination (Fleming et al., personal communication). Each variant contains one 

unique oligonucleotide sequence which is missing in its counterpart. The unique oli

gonucleotide of the large-plaque variant is located on the genome about 14-15 kb from 

the 3' end, whilst the small-plaque variant oligonucleotide maps about 3-5 kb from the 

3' end. The respective mRNAs for these oligonucleotides have been tentatively identi

fled. Assuming that the same genes are associated with tropism in tissue culture and pa

thogenicity in animals, these studies, in conjunction with biochemical studies on viral 

replication (see Siddell et al. pp 131-165), could eventually indicate which protein(s) are 

important for the different biological properties of such mutant pairs. 

A similar approach is based on the observation that MHV-3 is more hepatotropic in 

comparison to MHV -A59. The genomic RNAs of these two virus strains have been com

pared by T 1 oligonucleotide mapping and are very similar except for two oligonucleotide 

sequences. The mRNAs encoded by these sequences are known. Consequently, when 

the proteins encoded by these mRNAs are identilled it may be possible to determine the 

proteins which are associated with the different pathogenicity of these virus strains. 
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5 Conclusions 

It is evident that the framework of host age and genetic background, biological properties 

of the virus strain, and dose and route of inoculation are the major factors which deter

mine the result of coronavirus infection. 

The respiratory and intestinal tract may be the site of primary replication for all 

coronavirus infections under natural conditions, although the involvement of other tar

get organs is important for the manifestation of disease in most cases. These target cells 

are hepatocytes and macrophages in the case of different MHV strains and FIPV, epen

dymal and endothelial cells for MHV -3 in semiresistant hosts, T cells in MHV -3 infection 

of young C3H mice, ductus cells in the salivary glands for SDA V infection, neurons in 

the case of infections with HEV and some MHV strains, and oligodendroglia cells for 

infection with MHV-JHM mutants. 

For most viruses causing enteric diseases (BCV, CCV, some MHV strains, TGEV, 

and TCV) and respiratory diseases (!BV, HCV, and RCV) the pathophysiological events 

leading to clinical symptoms are almost certainly due to the acute cytocidal infection of 

the target cells (epithelial cells of intestines or respiratory epithelium). These infections 

can be limited by the local immune response resulting in production of secretory anti

bodies. In enteric infections, maternal antibodies supplied by colostrum and milk are an 

additional important defence mechanism. 

In contrast, many coronaviruses are maintained and spread in the population as 

inapparent and subclinical infections. Many murine strains have been isolated from clini

cally healthy animals, and chronic infection by mv can result in prolonged virus shedd

ing. TGEV can also be carried for a prolonged time. In the case ofFIPV, although only a 

low percentage of animals develop disease there is good reason to believe that many 

more animals may be infected. In central nervous system infections with MHV-JHM a 

clinically silent acute encephalitis develops, which may later become a subacute to 

chronic demyelinating disease. 

The sequence of events leading to chronic diseases is unknown. During the patho

genesis of chronic and acute diseases stages of viral persistency can be involved. The 

result depends on the expression of viral genes, the functional impairment of host cells 

and the interaction with the host immune response. At the present stage, no experimen

tal data are available on the molecular mechanisms important in the development and 

maintenance of persistent infections. However, the use of permanent cultures of dif

ferentiated cells may be of great use in this respect. For example, neurotropic and non

neurotropic MHV viruses behave very differently in certain neuroblastoma lines (Lucas 

et al. 1977) and viral mutants exist which selectively replicate in oligodendroglia cells 

(Knobler et al. 1981a). Also, persistent infected neuroblastoma cell lines can harbor the 

virus without any indication of viral antigen expression and other lines can shed virus 

variants with altered pathogenicity (Stahlman et al. 1979a, b; Holmes and Behnke 1981; 

Hirano et al. 1981b). Such systems will be of value in investigating the physiological 

impairment of cell functions by virus persistence and as model systems to evaluate 

mechanisms of viral persistence. 

For several murine systems the host genetic background is an essential parameter 

determining resistance and the outcome of disease. A valuable system for investigating 

the mechanism of genetic resistance is formed by inbred mice, which are congenic with 

the exception of the gene( s) responsible for different susceptibility. Many results indicate 
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that macrophages playa key role in this genetic restriction. The detailed mechanisms for 

this restriction are as yet difficult to defme and cannot be generalized, and the effect of 

genes which influence the susceptibility may change during host maturation. Mutations 

within the virus population also have to be considered during prolonged virus-host 

relationships. Additionally, infection of macrophages and other cells of the immune sys

tem clearly modulates the host immune response and influences the outcome of the 

infection. 

The ftrst attempts to defme viral genes which influence pathogenicity have been re

ported. If strain differences are defmed in biochemical terms, it may be possible to de

scribe the role of these gene products in pathogenesis. Further work on variants which 

differ in only few mutations and show clear differences in biological properties can help 

to elucidate the function of viral genes in pathogenesis. 

Coronaviruses are pathogens of economic and clinical importance. Defmed ex

perimental systems have been established, especially for murine coronaviruses, which 

are valuable disease models representative for coronaviral and other diseases of man and 

animals. We may expect rapid progress to be made in the next few years. 
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