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Abstract

Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of
microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire
it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4
(SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various
tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom
or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong
cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory
agencies, and may have value as a nutraceutical and antioxidant more generally.
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Introduction

Most of the classical vitamins such as vitamins A, B1, B2, B3, C, D,
etc., were discovered by means of the fact that an inadequacy
in their supply led to overt forms of deficiency disease such
as blindness, beri-beri, pellagra, scurvy, rickets and so on.
Consequently, it was easy to establish those food sources that
contained such vitamins, since they relieved or prevented the
relevant syndromes(1,2). It is correspondingly hard, by these
means, to detect the presence of a vitamin if it is present in
virtually every foodstuff that an individual consumes. Recently,
however, L-(þ)-ergothioneine, hereafter ergothioneine (ERG),
has emerged(3–10) as an important nutrient, and indeed possible
vitamin(3), that has precisely these properties of a verywidespread
occurrence coupled, commonly, to a functional undersupply.

A related class of nutrient, which has not been demonstrated
as necessary or essential for life yet provides health benefits

when added at levels greater than a normal diet generally provides,
has come to be known as nutraceuticals, a coinage based on an
amalgamationof ‘nutrition’ and ‘pharmaceutical’(11). Interest in such
nutraceuticals, also known as ‘functional foods’, has increased
enormously over the last few decades(11–22) as our understanding
of the important roles of diet in health has improved. However,
the enthusiasm for such products has not always been matched
by the extent or quality of the evidence for their efficacy(20,23–28).

Since ERG classes as a nutraceutical, it seems timely to bring
together the extensive but widespread knowledge of its biology
so that it may bemademore widely available, and that is the pur-
pose of this review.

Discovery and structure

ERG is a somewhat unusual betaine amino acid. It was discov-
ered by Charles Tanret in 1909 while investigating the ergot
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fungus Claviceps purpurea(29,30). It is also known as 2-mercapto-
histidine trimethylbetaine, and its formal International Union of
Pure and Applied Chemistry (IUPAC) name is (2S)-3-(2-thioxo-
2,3-dihydro-1H-imidazol-4-yl)-2-(trimethylammonio)propanoate.
It is an L-histidine derivative that is Nα,Nα,Nα-trimethyl-L-histidine
in which the hydrogen at position 2 on the imidazole ring is
replaced by a mercapto group. Its structure(31), and those of some
related molecules, is given in Fig. 1, indicating that is a tautomer
that has both a thiol and a thione form. Although it is a thiol, and
hence an antioxidant(32,33), the thione tautomer is predominant at
physiological pH(34,35), and this makes it unusually resistant to
autoxidation, i.e. simple oxidation by molecular O2

(32,36–38). Its
midpoint potential for a thiol is consequently unusually high,
being þ0·06 V v. −0·2 to −0·4 V for typical thiols including
glutathione(4,39–41) and mycothiol(42,43), and −0·193 V for the also
somewhat oxidising thiol cofactor coenzyme M, which is
2-mercaptoethanesulfonate(44). Its reaction with hydroxyl
radicals (OH•) is virtually instantaneous, while it reacts only
more slowly with H2O2 and/or O2

•−(38). Its Se equivalent
is known as selenoneine and also has strong antioxidant
properties(45–52), but is not otherwise discussed here.

From a pharmaco-chemical point of view ERG is also
unusual, since – using our standard substructure analysis(53,54)

in KNIME(55)
–we note that just two drugs marketed for human

consumption (the anti-thyroxine-production drug methima-
zole and its pro-drug carbimazole, Fig. 1), and no endogenous
genome-encoded metabolites from Recon2(56) contain the
imidazole-2-thione substructure(57). This said, a good many
fungicides do contain the benzimidazole substructure(58),
and a variety of benzothiazoles are used as dyes.

Biosynthesis and phylogenetic distribution

A particular feature of ERG is that although it is more or less uni-
versally distributed among higher organisms, none of them – as

is consistent with the idea that it may in fact be a vitamin requiring
exogeneous sources – can in fact biosynthesise it. The chief organ-
isms capable of its synthesis are fungi and certain yeasts(59,60),
though actinobacteria and certain other micro-organisms(60–66),
including the slime mould Physarum polycephalum(65),
cyanobacteria(67–71) and methylotrophs(72) are also naturally
capable of its production. The related mycothiol is typically
ten times more concentrated in actinobacteria than is ERG(73),
and its biosynthetic pathway might provide an antitubercular
drug target. Other organisms acquire ERG through transporter-
mediated uptake. Thus higher plants contain it but do not
biosynthesise it(74); instead they and other organisms(68,75) take
it up from fungal production in the soil(76–79), and possibly via
actinobacterial(80) or fungal(80,81) symbionts. Animals are also
considered not to biosynthesise it(82,83), and accumulate it using
a particular transporter, detailed below, via the plants and ani-
mals that they eat. Although not easy, it is possible to raise ani-
mals such as pigs on a diet such as casein, sucrose, lard, butter
and salts that is considered to lack ERG; such animals are said to
have undetectable levels of the compound(84), and rats treated
similarly have reproduced(85,86). However, we do not know
the minimum amount and its location that animals need, and
these are old experiments that need to be repeated with modern
techniques with lower detection limits. Only thenmight we have
a definitive statement as towhether ERG is absolutely required as
a true vitamin or not, and if so in what amounts for health. In a
similar vein, ERG can be present in cell culture media and cells
with organic cation transporter N1 (OCTN1)/solute carrier family
22, member 4 (SLC22A4) can accumulate it(87), a fact little con-
sidered to date in cell culture studies.

To the extent that ERG is a ‘secondary’metabolite, defined(88)

as amolecule whose synthesis has a relatively restricted distribu-
tion in different organisms, the biosynthetic pathways diverge
from primary metabolism via the amino acids histidine, cysteine
and methionine(89–94). Thus (Fig. 2), histidine is trimethylated
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Fig. 1. Structures of ergothioneine and related molecules. For a colour figure, see the online version of the paper.
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using S-adenosyl methionine to form trimethyl histidine, also
known as hercynine(95,96). This reacts oxidatively with cysteine
to form hercynylcysteine sulfoxide(97), which is converted to
ERG. In someorganisms, hercynine takes amore convoluted route
via γ-glutamylhercynylcysteine sulfoxide (Fig. 2)(94). Table 1 pro-
vides references for different organisms. An excellent phyloge-
netic analysis is given by Jones et al.(60). In more recent work, it
has been suggested that ERG was probably first biosynthesised
by anaerobes using a slightly different route that converts hercy-
nine directly to ERG(98–100), and that was later repurposed.

Three-dimensional structures are known for a number of the
relevant enzymes, including mycobacterial EgtB(101) for exam-
ple, PDB 4XBE, EgtC(102) for example, PDB 4ZFJ, EgtD(103–105)

for example, PDB 4PIM, and Neurospora crassa early G1 tran-
script 2 (egt2) which is like egtE(106) for example, PDB 5UTS.

Very recently, EgtB from Candidatus Chloracidobacterium

thermophilum was crystallised(107), and engineered towards
Egt1 activity. Thumbnails are given in Fig. 2. Egt1 from N. crassa

is 876 amino acids long(108), while egtD (from Mycobacterium

tuberculosis(109)) is just 321 amino acids long; since the
N-terminal sequences are well conserved (Fig. 3), this implies
an extra C-terminal domain catalysing the production of hercy-
nylcysteine sulfoxide from hercynine.

In addition, enantiopure L-ERG has been synthesised
chemically(76,110–112), and by fermentation of genetically engi-
neeredmicro-organisms (Table 2). Initial efforts in ERG synthesis
were carried out in Schizosaccahromyces pombe using egt1

overexpression under an inducible promoter. The N starvation
and glucose starvation conditions causing long quiescence led
to the maximum ERG production of 1606·3 μM while the wild-
type strain produced 0·3 μM(50). Methylobacterium aquaticum

strain 22A was engineered by expressing an additional copy
of egtBD genes and by deleting the gene encoding histidine
ammonia lyase, which degrades an ERG precursor L-histidine.
The resulting strain produced up to 7·0 mg EGT/g dry cell weight
and 100 μg EGT/5ml per 7 d in test-tubes(113). The filamentous
fungus Aspergillus oryzae has also been engineered to produce
ERG by expression of egt1 and egt2 genes from N. crassa, result-
ing in 231mg ERG per kg of solid media(114).

Expression of egtBCDE genes from Mycobacterium smeg-

matis in Escherichia coli and optimisation of medium compo-
sition has led to 24 mg/l or 104 μM of secreted ERG(115). The
egtA gene from M. smegmatis was not expressed because
E. coli contains a homologous glutamate–cysteine ligase
encoded by gshA and involved in glutathione biosynthesis.

Fig. 2. The twomain pathways of aerobic ergothioneine (ERG) biosynthesis, noting the relevant enzymes and thumbnails of three-dimensional structures where known.

SAM, S-adenosyl methionine. For a colour figure, see the online version of the paper.

Table 1. Biosynthesis of ergothioneine in various non-recombinant micro-

organisms

Organism Selected references

Aspergillus fumigatus (257)

Aspergillus niger (59)

Aureobasidium pullulans (113)

Burkholderia pseudomallei (565)

Chlorobium limicola (99,100)

Claviceps purpurea (105,566,567)

Lactobacillus casei (568)

Methylobacterium aquaticum (72)

Mycobacterium tuberculosis (91–93)

Neurospora crassa (89)

Schizosaccharomyces pombe (50,569)

Streptomyces coelicolor (255)
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In a follow-up study, the authors expressed egtA from
M. smegmatis and it had a positive effect on ERG production.
Furthermore, they enhanced cysteine and S-adenosine methio-
nine biosynthesis and obtained 1·3 g/l or ERG in a fed-batch

fermentation(116), achieving currently the highest titre reported
for heterologous ERG production.

Recently, we reported the engineering of baker’s yeast
Saccharomyces cerevisiae for the production of ERG(117).

Fig. 3. Alignment of Neurospora crassa Egt1 and N-terminal part of Mycobacterium tuberculosis EgtD. For a colour figure, see the online version of the paper.

Table 2. Fermentative production of ergothioneine in recombinant micro-organisms

Organism Genetic modification(s) Titre Conditions Reference

Aspergillus oryzae Expression of egt1 and egt2 genes from
Neurospora crassa

231·0mg/kg of media Cultivation on solid, rice-based medium (114)

Escherichi coli Expression of egtBCDE genes from

Mycobacterium smegmatis

24 (SEM 4) mg/l

(extracellular)

Shake flasks. Medium supplemented

with yeast extract, His, Met,

20mM-thiosulfate as sulfur source for
L-cysteine synthesis. IPTG for inducing

heterologous gene expression

(115)

Escherichia coli Expression of the following genes:

egtABCDE from M. smegmatis,
altered cysE gene encoding serine

acetyltransferase feed-back resistant

to Cys, native ydeD gene encoding

inner membrane Cys exporter, altered
serA gene encoding L-serine

Feedback inhibition-insensitive mutant

of d-3-phosphoglycerate

dehydrogenase. Deletion of metJ
gene encoding transcriptional

repressor

1·3 g/l (extracellular) Fed-batch in 3-litre bioreactor, 216 h.

Complex medium supplemented with
IPTG, ammonium ferric citrate,

pyridoxine, Met, His, and thiosulfate

(116)

Methylobacterium

aquaticum strain 22A

Additional copy of egtBD expressed

from a plasmid, deletion of histidine
ammonia-lyase (hutH) gene

20mg/l Test-tubes. Complex medium with

methanol

(113)

Saccharomyces

cerevisiae

598 (SD 18) mg/l, of

which 59 % was

extracellular

Fed-batch fermentation in 1-litre

bioreactor, 84 h. Defined medium

supplemented with arginine, histidine,
methionine and pyridoxine

(570)

Schizosaccahromyces

pombe

egt1 overexpression under inducible

promoter

368 mg/l N and glucose starvation. Cultivation

method not given

(50)

IPTG, isopropyl β- d-1-thiogalactopyranoside.
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S. cerevisiae has a generally recognised as safe (GRAS) status
and has been exploited for the commercial production of sev-
eral nutraceutical compounds(118); it is thus a highly attractive
host for the production of ERG. We have tested sixteen differ-
ent pathway variants, nine containing only fungal genes, one
with bacterial genes from M. smegmatis, and six hybrid path-
way variants containing both fungal and bacterial transgenes.
The best-performing strain contained egt1 from N. crassa and
egt2 from C. purpurea. The composition of the medium was
improved using a fractional factorial design. Fed-batch culti-
vation resulted in 598 (SD 18) mg/l ERG after an 84-h fermen-
tation. Some 60 % of the measured ERG was extracellular and
the rest accumulated in the cells. Table 2 summarises the vari-
ous recombinant expression hosts that have been used.

The distribution of solute transporters between tissues in dif-
ferentiated organisms is particularly heterogeneous(119), and it is
to be expected that both SLC22A4 and ERGmight also be distrib-
uted heterogeneously as well. This is indeed the case, their dis-
tribution being especially high in tissues that are considered to
have the potential for oxidative stress(4), such as erythro-
cytes(120–129), bone marrow(130), liver and kidney(85,131), seminal
fluid(132,133) and the lens and cornea of the eyes(134). It may also
be accumulated in the CNS(135,136).

Finally, here, we note – as with the activity of the ‘master Fe
regulator’ hepcidin(137–141), that acts chiefly via the ferrous Fe
transporter ferroportin – that the action of a transporter in con-
centrating a substance in one tissue will typically lead to its
depletion from another. Consequently, it is necessary tomeasure
all relevant compartments to assess whether a molecule such as
ERG, whose distribution is strictly transporter-mediated, is pro-
tective against a particular disease/effect or otherwise in a par-
ticular place or case.

SLC22A4: the ergothioneine transporter

Although this view remains controversial, even hydrophobic
molecules do not normally ‘float across’ whatever phospholipid
bilayer portion of cells may be untrammelled by proteins.
Xenobiotics in particular need to ‘hitchhike’ on protein transport-
ers that have presumably evolved for ‘natural’ substrates but that
are capable of their uptake(142–152). While transporters seem to
have remained somewhat understudied(153), those transporters
involved in uptake and encoded by the human genome are
now catalogued formally as SLC for solute carriers(154,155), with
efflux transporters mainly being classed as ABC families(156).

One solute carrier, previously known as organic cation trans-
porter N1 (OCTN1)(157,158), and now known as SLC22A4 (the
human version is Uniprot Q9H015), a 551-amino-acid trans-
porter with three glycosylation sites, is of special interest. It
had been designated as a transporter of carnitine and of the
(non-physiological) tetraethylammonium cation. However, in
a really groundbreaking paper, Gründemann et al.(130) recog-
nised that the rates observed (using radioisotopes) were too
small to be physiologically meaningful, and using a method that
we would now refer to as ‘untargeted metabolomics’(159–164),
they incubated two kinds of HEK293 cells in serum. The first
were normal cells, that, as with many transporters(119), do not

in fact express SLC22A4 at significant levels, while the second
had been engineered to overexpress the transporter. They then
simply looked for those molecules that were most differentially
taken up, a molecule called stachydrine, also known as proline
betaine, being the main one observed, Stachydrine is a constitu-
ent of citrus juices(165–167). Some elementary cheminformatics
based on structure similarity searches(57,168) indicated that ERG,
as a betaine, was indeed similar to stachydrine. Incubating the
cells just with ERG showed that it was taken up about 100 times
more quickly than was tetraethylammonium, leading to the des-
ignation of SLC22A4 as ‘the’ ERG transporter(130). Subsequent
work(87,169–172) has confirmed and reinforced this view of
SLC22A4 and its homologues(173) as having significant specificity
for ERG, and weak activity for various drugs(174–177). It is concen-
trative, coupled in humans to influx of 2 or 3 Naþ ions per ERG
transported(130). Interestingly, it is up-regulated chronobiologi-
cally just before meal times(175). The rat and human orthologues
are interchangeable(178). Tissue levels of ERG depend on an
exogenous supply(179), but are then well correlated with the
expression levels of SLC22A4(3,180). SLC22A4 expresses well
even in microbial systems(181), and is widely tolerant of amino
acid substitutions(182). As yet, no other transporter with signifi-
cant activity for ERG in humans is known, making it a potentially
interesting drug target(183,184).

Expression patterns

SLC22A4 is known to express in the intestinal lumen(185), acting
to take up ERG, as well as some xenobiotics including pyril-
amine, quinidine and verapamil, and having multiple known
but weak inhibitors.

Fig. 4 shows the expression of the transcript for SLC22A4 in
fifty-six cell lines using previous data(119) taken from the human
protein atlas(186), indicating a range in expression levels between
different cell lines of more than 4000-fold, a number not atypical
for human transporters(119). Tissue expression data are given in
Fig. S4 of O’Hagan et al.(119).

The intracellular expression patterns are as yet uncertain,
with early claims for a mitochondrial expression(86,187–190) being
based on very weak and contradictory evidence(8). However,
while the cellular uptake of ERG does require plasmamembrane
expression, the latest version of the protein atlas indicates
mitochondrial expression as well(191). However, as is well
known, antibody specificities are rarely either known or
absolute(192–198). Thus, relying on antibody evidence alone
is rather hazardous, and, as mentioned before(8), mitochondrial
transporters have an SLC25 family designation(199,200). Definitive
measurements on the uptake or otherwise of ERG into isolated
mitochondria, or indeed into other organisms that cannot make
it, are eagerly awaited.

Evolution and phylogenetic distribution of SLC22A4

Phylogenetic analyses(201,202) indicate that homologues of
SLC22A4, a relative of the major facilitator superfamily 2, exist
only in vertebrate animals, especially mammals, birds and fish,
with occasional examples in reptiles (for example, Xenopus spp.).

In practice, it appears that the transporters responsible for the
uptake of some 85% of pharmaceutical drugs actually evolved to
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take up exogenous natural products(203). In the case of the
cocaine transporter(204), a simple narrative can serve to explain
how a cocaine-mediated ability to outrun a predator such as a
sabre-tooth tiger can rather obviously be selected provided
the bioactive substance is actually taken up by the host. More
generally, the ability to transport exogenous natural products
is likely to be selected for when these confer fitness benefits
on the host(205), and this probably underpins the finding that suc-
cessful, marketed drugs are indeed similar to (mainly ‘secon-
dary’) natural products(203).

Oxidative stress

Oxidative stress is widespread to the point of ubiquity in chronic,
inflammatory diseases(206,207), with over fifty papers having the
words ‘oxidative’, ‘stress’ and ‘review’ in their titles at PubMed
in 2018 alone! It can occur when oxygen tension is low and res-
piratory chains are over-reduced such that they reduce O2 with
one electron to superoxide or two electrons to H2O2, instead of
the four that are used during the reduction of dioxygen to water
by cytochrome oxidase(208) (Fig. 5). Peroxides are also produced
in vivo by various oxidases and peroxidases, such as xanthine
oxidase, by reduction of dioxygen (for example, Babior(209),
Cave et al.(210) and Bedard & Krause(211)).

While H2O2 and superoxide are certainly capable of effecting
unwanted oxidations, it is the hydroxyl radical that is the key.
Thus an important reaction of H2O2 with (free or poorly
liganded) Fe(II) is the Fenton reaction(208,212,213), leading to the
very reactive and damaging hydroxyl radical (OH•):

Fe IIð Þ þH2O2 ! Fe IIIð Þ þOH� þOH� (1)

which can react within nanosecondswith anything adjacent. The
role of Fe is absolutely vital here(208,213). Superoxide can also
react with ferric Fe in the Haber–Weiss reaction(214–216) to pro-
duce Fe(II) again, thereby effecting redox cycling, and mean-
ing the ‘iron’ is catalytic (Fig. 6):

O2
�� þ Fe IIIð Þ ! O2 þ Fe IIð Þ (2)

In addition O2
•− can release ‘catalytic’ Fe from Fe-S clusters

in certain proteins and from ferritin(208,217), another way in
which it can promote the Fenton reaction. Note that other
reactions can produce OH• anaerobically(218). Because OH•

is so reactive it is not really observable in its free form; its
action is detected via products of molecules with which it
has reacted. These include 8-oxo-guanine derivatives(219),
nitrotyrosine(220–222) (itself formed from peroxynitrite(223,224),
possibly formed more commonly via superoxide(225,226)),
4-hydroxy-nonenal(227), and many others reviewed previously(208).
In evaluating the antioxidant potency of ERG or anything else,
it is molecules such as these that are normally assessed.
Although the literature is somewhat scattered and hetero-
geneous, it seems clear that as well as hydroxyl radicals(228–232),
ERG can also react with and detoxify, or prevent the formation
of, singlet oxygen(233–242), ozone(243), superoxide(231,241,244–246),
peroxide(32,124,247,248), hypochlorite(32,232,249) and peroxyni-
trite(224,231,250,251). Consequently, it is a potent antioxidant.

Fig. 4. Differences in expression of SLC22A4 transcript in a series of mammalian cell lines. Data are from Thul et al.(186) and O’Hagan et al.(119). For a colour figure, see

the online version of the paper.
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Fig. 5. Superoxide and peroxide are produced by 1- and 2-electron reduction of dioxygen by themammalian respiratory chain. For a colour figure, see the online version

of the paper.
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liganded. For a colour figure, see the online version of the paper.
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Roles in the producer

Although it is not a priori certain that they would be the same
in both producer and consumer organisms, it is of interest,
before looking at higher organisms, to consider the roles of
ERG in the producer organisms themselves. In the case
of C. purpurea, the ERG serves as an antioxidant to neutralise
a plant host defence response based on H2O2 that would
otherwise inhibit the production of its conidia(252,253). In
M. tuberculosis and other mycobacteria(254), and also in
other actinobacteria(255) and in fungi(247,256,257), it is clear that
ERG can have a role as an antioxidant(66,258–260) and also act
as a buffer against reductive stress(261). In nature many
organisms can be subjected to oxidative stress, and produce
a variety of molecules to combat it(262–270). This also seems
true of mushrooms(271,272), where ERG is typically the main
antioxidant(273–275), and where it may also inhibit the oxida-
tive enzyme tyrosinase(276). Given suggestions that the ‘pur-
pose’ of secondary metabolite formation is to serve as a
signalling molecule in different cells of the producer organ-
ism, i.e. as a pheromone(277), it is interesting to note that this
may also involve crosstalk of ERG(37), due in part to the
complex networks in which it may be embedded(278). The
same is true of the imidazole thiol-containing ovothiol(279,280).
In a similar vein, and although outwith our scope here, we
note the potential of other antioxidant natural products such
as curcumin(281–286).

Nutritional sources

Betaines are generally seen as nutritionally beneficial(287), and
many are ‘compatible solutes’(288–293), defined as solutes whose
accumulation assists the survival of the organism when under-
going various kinds of stress such as osmotic or thermal stress.
However, of these, only ERG is seen as a major antioxidant.
Although a variety of foodstuffs such as oats(294,295) contain
ERG because they take it up from exogenous sources, it is really
mushrooms that are the prime sources for humans(18,294).
Indeed, ERG has been proposed as a nutritional biomarker
for mushroom consumption(296,297), albeit that different
mushrooms typically contain different amounts(275,298–300),
and these can vary with physiological or environmental
conditions(301–305). Those with the highest amounts include
oyster mushrooms (Pleurotus spp., up to 4 mg/g DM)(306),
the golden oyster Pleurotus citrinopileatus with 10·65 mg/g
DM(307,308), and shiitake (Lentinula edodes, about 1 mg/g
DM), while of those more common outside Asia, porcini
or ceps (Boletus edulis, > 7 mg/g DM), stand out(6,294,300).
However, even common field or ‘button’ mushrooms,
Agaricus bisporus, contain some 0·4 mg/g DM(275,299,300,309).
Note too that tempe(h), the result of a solid substrate Rhizopus

oligosporus fermentation(310–314), also contains high levels of
ERG(6). Mushrooms may also be a significant benefit to those
seeking a meat-free diet as they can be made to share certain
organoleptic features with meat(315,316). Notably, ‘the production
of cultivated, edible mushrooms worldwide has increased more
than 30-fold since 1978, whereas the population has only
increased by about 1·7-fold during the same period’(10,317).

Some studies that have demonstrated nutritional/health ben-
efits of mushrooms and their antioxidant activity(125,271,318–351))
did not always seek to deconstruct these into their constituents
such as ERG, but ERG is clearly the chief mushroom antioxidant.
We note too that some effects may be dependent on the compo-
sition of the gut microflora(352), that are of course themselves
likely to be changed by ERG, just as they are by many other
non-antibiotic drugs(353).

Safety

Producer organisms such asmushrooms arewell known tomake
many secondary metabolites, some of which can be highly
toxic(354–356) and by various mechanisms(357). Notwithstanding
the highly variable intake between individuals(358), however, a
number of high-dose studies have indicated that ERG is safe
formammalian consumption at levels far in excess of those likely
to be encountered in foodstuffs(125,131,359,360), and it has been
declared safe by relevant committees such as those of the
European Food Standards Agency(361,362). It also lacks any
detectable mutagenicity or genotoxicity in such assays, even
at very high doses(363,364).

Analytics

Leaving aside early efforts such as the colorimetric methods
of Hunter(365), of Melville and colleagues(76,85,366) and of
Carlsson et al.(367), a variety of analytical methods have been
proposed(4), mostly involving capillary electrophoresis(368,369)

or chromatography(368,370–372) coupled to absorbance(373,374),
fluorescence detection(375–378), electrochemical detection(379)

or MS(72,127,256,368,378,380–382). A useful feature is that ERG is
unusually stable, in that anhydrous ERG decomposes only
at 275–276°C(76), allowing its isolation at temperatures close
to that of boiling water(72). As judged by the reversibility of
its acid–base titration(383), it is also stable to extremes of pH.

Industrial purification of glycine betaine is done by
extraction with water(384) and subsequent ion exchange
chromatography(384,385), which can be done in simulated mov-
ing bed fashion(386). Glycine betaine can then be crystal-
lised(384). As glycine betaine is structurally similar to ERG,
this straightforward industrial process could potentially be
adapted for ERG.

Serum and other concentrations

While most ERG is inside erythrocytes in whole
blood(6,121,122,129,387), there have been a number of measure-
ments of ERG concentrations in serum. Unsurprisingly it varies
with diet(388,389), starvation(390), age(391,392) and other factors,
including diseases of oxidative stress(393), with typical values
of 20–100 μg/ml. A detailed list is provided by Cheah &
Halliwell(4); a smaller listing is given in Table 3. Interestingly,
ERG is also present in seminal fluid(394–396) and human breast
milk(6). Any possible correlation with male fertility(397) seems
not to have been established, though there were no negative
effects(398), and ERG improved oocyte quality and maturation
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in cows and sheep(399). ERG is also present in eye lens, where its
concentration is lower in individuals with cataracts(400).

Metabolism and excretion

ERG is metabolised and excreted only slowly(360,371,401,402). In
a recent and detailed study, Cheah et al.(360) administered
5–25 mg daily doses of ERG to human volunteers for 7 d.
There was little urinary excretion (<4 %), and the main metab-
olites were hercynine, plus lesser amounts of S-methyl-ERG,
whose concentrations were well correlated with the level of
ERG and the dose of ERG given. Similar observations were made
in mice(131). Various other biomarkers of oxidative stress (for
example, 8-iso-PGF2α from lipid peroxidation) were lowered
concomitantly in the human study, attesting to the antioxidant
functions of ERG in vivo, although in this case the healthy young
subjects were probably not suffering from oxidative stress. There
was also quite some variation in uptake between individuals,
presumably reflecting variation in their expression of SLC22A4.
Agrobacterium radiobacter(403) and other bacteria(404–409) con-
tain an ergothionase that degrades ERG to thiolurocanic acid
(3-(1H-imidazol-5-yl)prop-2-enethioic S-acid) and trimethyl-
amine, also implying that such cells possess one or more trans-
porters for ERG. The thiolurocanic acid can be further degraded
to glutamate(410).

Apparent fitness benefits and bioactivities of ERG and the
role of SLC22A4

Given the great technical difficulties associated, because of its
ubiquity, with withholding ergothoneine from a human or ani-
mal diet, one means of ‘removing’ ERG from a host is to remove
the ERG transporter by genetic means. This has in fact been
done in mice(401); such SCL22A4–/– mice had immeasurably
low levels of ERG relative to controls, andweremuchmore sen-
sitive to oxidative stress than were the wild type. Similar effects
were observed in Caenorhabditis elegans(411). Polymorphisms
in SLC22A4, of which there can be many(177,412–415), under
selection(416), have also been associated with ischaemic
stroke(417), erythroid differentiation(418), hearing loss(412),
rheumatoid arthritis(126,180,419–427), lupus(428), Crohn’s
disease(401,429–436), hearing loss(412), type 1 diabetes(437) and
diabetic embryopathy(438). The expression of SLC22A4 can
itself be modulated by other factors, including by PPAR-α

activity(439). The very diversity of these diseases speaks natu-
rally to a broad and common underlying cause, the easiest of
which involves mechanisms of oxidative stress, inflammation
and cell death.

Mechanisms of action

It has become common to discover a binding of a small molecule
to another molecule such as a protein, and assume that this inter-
action, leading to activation or inhibition of the target, constitutes
‘the’ mechanism of action of the small molecule at a physiologi-
cal level. Unfortunately this is rarely the case, and known drugs,
despite often being selected for inhibiting potently a specific
molecular target(147), have, on average, six known binding
targets(440). When these interactions ramify through a complex
and non-linear biochemical network it can be hard to apportion
the effects of a small exogenous molecule between the various
interactions(441–443).

A standard view of systems or network biology (for example,
Kell(444) and Kell & Knowles(445)) develops these ideas in four
stages. In stages 1 and 2 we simply recognise the actors and
the interactions between them at a qualitative level. Stages 3
and 4 then seek to describe the equations reflecting individual
steps and the values of the parameters of those equations.
Armed with these we can make an ordinary or, if spatial resolu-
tion within a compartment is required, a partial differential equa-
tion model of the system. This can then be run and the
sensitivities of each step determined(446–448). We are very far from
this last part, and so studies of the effects of ERG have in
general(449) been rather descriptive in nature. Many have been
at the level of processes rather than mechanisms, and they have
been reviewed in detail(3,360). Table 4 and Fig. 7 provide a selec-
tion of determinands that have been shown to change their con-
centrations or activities when ERG is added to the system of
interest. In many cases it is not at all clear what the proximate
mechanisms are. Note as just one example that the highly pro-
miscuous transcription factor NF-κB(450–452), whose frequency-
dependent activity directly affects the expression of hundreds
of enzymes(453,454), is itself redox-sensitive(455–458), and is affected
by ERG(459,460), while NF-κB increases the rates of SC22A4
transcription(419). Thus, deconstructing the many possible
direct and consequential interactions of ERG with proteins,
v. whether these are simply a consequence of its provision
of a more reducing environment, is likely to be a formidable
task. In a similar vein, the effects of ERG on the microbiomes
of the hosts are likely to be significant, but do not yet seem to
have been studied.

It seems clear that the chief role of ERG, via a variety of mech-
anisms, including directly, is to serve as an antioxidant and
cellular protectant against various kinds of reactive oxygen
and N species.

Cytoprotection

At a high level, ERG is seen as an excellent cytoprotectant
against all kinds of cellular insults(3,4,6,124). We split some of
the more detailed analyses into subdivisions in the following
few sections.

Table 3. Concentrations of ergothioneine in human serum

Concentration Study

Crohn’s disease 7 μg/ml (401)

Healthy volunteer 38 μg/ml (401)

Healthy 1–10 years 15–20 μg/ml (387)

Healthy 11–18 years 37 μg/ml (387)

Healthy 19–50 years 23–30 μg/ml (387)

Healthy middle-aged

and older

Median 1 μM = 229 ng/ml,

range 0·36–3·08 μM*

Inverse

correlation

with age

(571)

Mice on normal diet 58 μg/ml (131)

*Molecular weight= 229·3, so 1mM= 229mg/l.
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Oxidative stress

Oxidative stress can be defined and measured in many
ways(461–468), but is broadly taken to involve a dysregulation
in the various redox systems of the organism of interest,
coupled to the production of various ‘reactive oxygen spe-
cies’, principally peroxide, superoxide, hydroxyl radical,
and singlet oxygen. ERG has been shown to decrease oxida-
tive stress in the liver and kidney of rats(469), rescued cells from
β-amyloid-induced apoptotic death(231), protected against pal-
mitic acid-induced cell death(470), mercuric chloride-induced
cellular dysfunction(471), and prevented Cu-induced oxidative
damage to DNA(472,473). It is protective against the oxidation of

various kinds of molecule(251,474), including astaxanthin(475),
and accumulates in a guinea-pig model of non-alcoholic fatty
liver disease(476), massively so in mouse models of myocardial
infarction and heart failure(477), and in a rat model of optic nerve
crush(478). It serves to resist H2O2-induced cell death(479), pyrogallol-
induced toxicity(124), cisplatin-(480) or oxaliplatin-induced(481)

toxicity, glucose-induced senescence(246,482), as well as
lipopolysaccharide-induced inflammation(483). In particular,
it is protective against ischaemia–reperfusion injury(484–486),
and may have uses in prolonging the lifetime of stored
blood(487). Probably such antioxidant activities are at the core
of its biological benefits.

Table 4. Biological properties whose expression or activity varies on exposure of a biological system to ergothioneine (ERG) or a modulation of SLC22A4
activity

Determinand System Comments
Selected

reference(s)

Cataract formation induced by
glucocorticoid

Developing chick embryo ERG inhibits (572)

Cell death Human neuronal hybridoma cell line

N-18-RE-105

H2O2 challenge
(251)

Caenorhabditis elegans Protection from amyloid-β-induced cell death (521)

Cell injury Rat pheochromocytoma cells Methylglyoxal challenge (573)

Cell proliferation K562 cells Involvement of SLC22A4 (418)

Caco-2 cells Involvement of SLC22A4 (429)

Diabetic embryopathy Rats ERG reduced it to control levels (574)

DNA damage in mitochondria HeLa, RAW 264·7, HaCaT, PC12 cells siRNA knockdown of SLC22A4 (3)

Embryo development Sheep Improvement, despite non-uptake of ERG (399,575)

Embryo quality and maturation Cows Improvement (576)

Excitotoxicity caused by N-methyl-D-
aspartate

Rat Protection by ERG (577)

Glycolysis Erythrocytes Preservation of lactate production during

starvation

(578)

Hepatocyte injury induced by CCl4 Hepatocytes Protection, also by β-hydroxy derivative (579)

Immune modulation Mouse macrophages Skewing towards a Th17 response (580)

Immunotherapy Tumour cells Improved vaccine responses by dampening

cytotoxic T-lymphocyte suppression

(581)

IL-8 Alveolar macrophages H2O2 and TNF-α induction. Possible
intermediacy of NF-κB

(460)

Fe incorporation into protoporphyrin Erythrocyte fractions Said to keep Fe reduced; does not seem to

have been confirmed

(562)

Kidney fibrosis Mice Worsens during chronic kidney disease if
SLC22A4 removed

(582)

Lipid peroxidation HeLa, RAW 264·7, HaCaT, PC12 cells siRNA knockdown of SLC22A4 (3)

In vitro Free radical initiated with anthracyclines (583)

Lung injury Rats Cytokine treatment; damage prevented by
ERG

(505)

Memory C57BL/6J mice Attenuates memory loss induced by

D-galactose; synergistic with melatonin

(584)

Metal ion chelation Coþþ, Cuþþ, Niþþ, Znþþ Direct and within enzymes (527)

Cuþþ
>Hgþþ

>Znþþ
>

Cdþþ
>Coþþ

>Znþþ
IR measurements (585)

Cuþþ NMR (586)

Cuþþ Chelation prevents DNA damage (473)

Cuþþ Chelation prevents DNA damage (472)

Hgþþ In intact erythrocytes, after glutathione (587)

Mutagenesis protection Multiple Often involving singlet oxygen (588–591)

Neuronal differentiation Neural progenitor cells ERG stimulated differentiation (592)

NF-κB MH7A cells Affects SLC22A4 expression (419)

Nrf2 HaCaT skin cells Anti-apoptotic following UV irradiation (549)

S-nitrosoglutathione catabolism In vitro ERG stimulates (593)

S6K1 mTOR and neurotrophin 4/5-TrkB Neural stem cells Rapid induction after ERG exposure (594)

Sickle cell anaemia ERG is protective (595)

SIRT1 and SIRT6 Endothelial cells Protection v. glucose-induced senescence (482)

Sperm motility Boars Protection v. Cuþþ inhibition (596)

siRNA, small interfering RNA; mTOR, mammalian target of rapamycin; SIRT, sirtuin.
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Ergothioneine as a therapeutic for chronic inflammatory
diseases?

Inflammation and oxidative stress go hand in hand(3), since
reactive oxygen species (and materials such as bacterial cell
wall components that can lead to their generation(206,488)),
lead to the production of inflammatory cytokines. Although
a great many chronic, inflammatory diseases are recognised
as having an oxidative stress component(223), the history of
treating them with antioxidants such as ascorbate has largely
been a litany of failure, with the treatment arm often even giv-
ing worse prognoses than the placebo(6,223,489–501). Arguably
this is because nominally antioxidant molecules such as ascor-
bate have complex, multi-electron redox chemistry, and can
in fact act as pro-oxidants(502,503), especially in the presence
of free Fe(208,213) or Cu(504). This is not an issue with ERG, how-
ever, partly because it can chelate them, and ERG levels are
decreased, or ERG has been proposed as a useful antioxidant,
in diseases such as acute respiratory distress syndrome(505),
CVD(506,507), chronic obstructive pulmonary disease(223), pre-
eclampsia(8) (see also Turner et al.(128)), overhydrated hereditary

stomatocytosis(508), and is significantly lowered in others such
as certain leukaemias(121,122). The evidence for this comes
from a variety of sources, including metabolite measurements
in human subjects(121,122,509), and intervention studies in both
animals(505) and cell lines(3,124,506). In particular, there is a
notable relationship between ERG consumption and longevity
(Fig. 6 in Beelman et al.(10)), while in a 3236-participant
Swedish study, ERG was the metabolite most strongly con-
nected to a ‘health conscious food pattern’ and was associated
with a lower risk of coronary disease (hazard ratio (HR) per 1
SD increment of ERG, HR = 0·85; P = 0·01), cardiovascular
mortality (HR = 0·79; P = 0·002) and overall mortality
(HR = 0·86; P = 4 × 10–5)(509).

Neurological diseases and cognitive function

Mushrooms have been shown to have very substantial effects
on cognitive function(341,348,510–513), and this is mainly ascribed
to their ERG content, that also deceases with the age of the
consumer(391). The kinds of evidence include both double-
blind, placebo-controlled clinical trials(341) and observational
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(cross-sectional) studies in both humans(348,510–512) and
rodents(513). Thus, consuming 1·5 mushroom servings per
week was associated with a halving of the incidence of mild
cognitive impairment (a precursor of Alzheimer’s dementia),
while intake of nine servings per week was associated with a
five-fold decrease(348). Note, however, that at least one mush-
room trial indicated no measurable benefits in healthy young
physical education students(514). Brain and serum ERG levels
are also markedly different in Parkinson’s disease(515), reviewed
in Hang et al.(516), Shao & Le(517) and Shah & Duda(518), and even
in sudden infant death syndrome(519), and ERG has been shown
to be protective against β-amyloid-induced neuronal injury(520)

and cytotoxicity(521). It can also act as an antidepressant(522).
The evidence for this comes from direct studies(520) and feed-
ing experiments(522) in mice, as well as via the reduction of
β-amyloid peptide in a transgenic C. elegans model(521). As
mentioned above, SLC22A4 polymorphisms are associated
with ischaemic stroke(417).

Use of ergothioneine as an antioxidant in processed
foodstuffs

Just as living beings exploit antioxidants, most foodstuffs can
also be oxidised to produce taints, rancidity or other undesirable
products(523–525), often via the Fenton reaction(208,526). ERG
inhibits polyphenoloxidases(527), and thus ERG has been used
in the feed of the shrimp Marsupenaeus japonicas to prevent
melanosis during storage(528), while ERG-rich mushroom extract
has also been used to prevent melanosis in post-harvest storage
of the crabChionoecetes japonicus(529). Thus, one can also envis-
age a role for ERG, whether natural or added, in extending shelf
lives and commercial value(245,328,475,528–539). The thermostability
of ERG is of particular importance here.

Use of ergothioneine in cosmetics

Just as processed foodstuffs ‘age’, so do tissues such as the skin,
and although the same principles apply(540), it is common to refer
to nutraceuticals that are also aimed at having cosmetic benefits
as ‘cosmeceuticals’(541–543). Here too, ERG has been widely
used(543–547), since much skin damage is caused by UV-mediated
reactive oxygen species production(548); indeed, ERG is known
as a skin protectant(240–244,549–551).

Role of ergothioneine as a cofactor?

Although it is possible that the role of ERG lies simply in
being an antioxidant capable of mopping up hydroxyl
radicals and other reactive oxygen species, especially in
prokaryotes(36,66,93,254,255,258–260,552,553), the roles of most other
vitamins involve interaction with proteins, often as cofactors.
This is also true for mycothiol(73,554–556), though that molecule
can also serve as a signal and nutrient resource(557). However,
despite many hypotheses(558,559), the only example of ERG act-
ing as a cofactor known to date is an involvement in the bio-
synthesis of lincomycin(560,561). An early paper(562) implying an
involvement of ERG in the maintenance of a reduced state of

Fe in Hb, although apparently accurate, does not seem to have
been followed up to date.

Conclusions

There is increasing awareness that health may be enhanced via
the consumption of substances that either have no recom-
mended daily intake or are taken at levels greater than normal,
and such substances are commonly referred to as nutraceuticals.
ERG, a potent and effective antioxidant, seems to be an impor-
tant nutraceutical, and we rehearse a very broad literature,
involving a great many cells, tissues and organisms, to that effect.
The chief source of ERG in the humandiet ismushrooms (usually
the fruiting bodies of Basidiomycetes). The fact that a specific
transporter known as SLC22A4 has evolved and been selected
to effect ERG uptake in all known animals suggests strongly that
ERG is of benefit to its consumers. While the evidence that ERG
may be a useful nutraceutical as a preventive or palliative for
various inflammatory diseases is extensive, it is mostly circum-
stantial rather than definitive, though many examples exist of
the benefits of mushrooms in combating the results of oxidative
stress.

Without mechanisms, finding that the concentration of a
dietarymetabolite X is low in diseaseY does notmean that giving
it might be of benefit in the prevention, delay or cure of that dis-
ease, although cases can clearly be made when X is a vitamin, or
oxidative stress is known to be a damaging component of Y(8,348).
Thus far, we lack examples in which ERG is found both to be low
in individuals with a particular syndrome and where exogenous
administration effects functional improvements, although – as
reviewed above – we often have one or the other.

To assess definitively any health benefits of ERG, the ‘gold
standard’ of randomised controlled trials may take time and
money, but – as with mushrooms(335,563) – are beginning. One
trial with pure ERG has been registered(564).

Note added in proof

A recent paper indicates that ERG relieves the effects seen in a rat
model of the pregnancy disorder pre-eclampsia(597).
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