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Abstract

IQGAP scaffold proteins are evolutionarily conserved in eukaryotes

and facilitate the formation of complexes that regulate cytoskele-

tal dynamics, intracellular signaling, and intercellular interactions.

Fungal and mammalian IQGAPs are implicated in cytokinesis.

IQGAP1, IQGAP2, and IQGAP3 have diverse roles in vertebrate

physiology, operating in the kidney, nervous system, cardio-

vascular system, pancreas, and lung. The functions of IQGAPs can

be corrupted during oncogenesis and are usurped by microbial

pathogens. Therefore, IQGAPs represent intriguing candidates for

novel therapeutic agents. While modulation of the cytoskeletal

architecture was initially thought to be the primary function of

IQGAPs, it is now clear that they have roles beyond the cytoskele-

ton. This review describes contributions of IQGAPs to physiology at

the organism level.
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Introduction

IQGAPs are an evolutionarily conserved family of proteins that

interact with many partners to regulate diverse cellular

processes, including cytokinesis [1,2], cell migration [3], cell

proliferation [4], intracellular signaling [4,5], vesicle trafficking

[5,6], and cytoskeletal dynamics [7,8]. IQGAP proteins are pres-

ent in a wide variety of fungi, protist, and animal cells. The

majority of vertebrates, including humans, express three related

isoforms IQGAP1, IQGAP2, and IQGAP3 (Fig 1). IQGAPs contain

several domains that mediate protein–protein interactions

(Table 1). While prior reviews have focused on the cellular

processes regulated by these interactions [3–5,7,8], attention to

the roles of IQGAPs at the organism level has been limited. This

review summarizes functions of fungal and vertebrate IQGAP

proteins in physiology.

IQGAPs scaffold diverse pathways

The multidomain composition of IQGAPs mediates the formation

of protein complexes required for cellular processes. For example,

interactions of the IQGAP1 calponin homology domain (CHD)

with F-actin and the GAP-related domain (GRD) with small

GTPases regulate the cytoskeleton to promote actin binding or

polymerization that regulates cytokinesis [1,2], cell migration [9],

and stability of cell–cell contacts [10,11]. IQGAPs also scaffold

molecules to form signaling complexes, such as components of

the mitogen-activated protein kinase (MAPK) pathway [12,13].

The MAPK signaling cascade is activated in response to stimuli,

which leads to sequential phosphorylation from Raf to MAPK-

ERK kinase (MEK) to extracellular signal-regulated kinase (ERK)

[14]. IQGAP1 regulates MAPK signaling by scaffolding several

MAPK components, including K-Ras [15], B-Raf [16,17], MEK

[13], and ERK [12,13]. These interactions promote ERK activa-

tion, which influences myriad cellular processes, ultimately

impacting physiology in a variety of tissues. IQGAPs also form

complexes with numerous other proteins. These include Ca2+/

calmodulin [18–20], Cdc42 [18,21–23], Rac1 [21], and actin

[19,20,24,25] to control the actin cytoskeleton, as well as mTor

and Akt kinases [26], to modulate Akt activation in processes

such as cell growth and survival.

Cytokinesis

Cytokinesis is the culminating event in cell division and is essen-

tial for development and tissue maintenance/homeostasis. Defects

in cytokinesis can result in aneuploidy, which can lead to devel-

opmental defects and has been implicated in cancer [27]. IQGAP

proteins have an evolutionarily conserved role in cytokinesis from

fungi to mammals. Fungi express a single IQGAP isoform that

participates in cytokinesis. A contractile ring, which forms

between parent and daughter cells, utilizes myosin motor proteins

and the actin cytoskeleton to generate the force necessary to

separate cells. Loss-of-function studies for several yeast and

fungal IQGAPs, including Saccharomyces cerevisiae Iqg1p/Cyk1p

[28–30], Schizosaccharomyces pombe Rng2p [31–33], and Candida

albicans Iqg1p [34], result in the formation of multinucleated
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cells, demonstrating a role for IQGAPs in the assembly of the

contractile ring and cytokinesis.

Unlike fungi, the amoeba Dictyostelium discoideum has four

IQGAP-like proteins: DGAP1/ddIQGAP1, GAPA/ddIQGAP2,

DDB0233055/ddIQGAP3 (Fig 1), and the hypothetical/putative

DDB0232202/ddIQGAP4 [35]. Both DGAP1 and GAPA function in

cleavage furrow formation in D. discoideum cytokinesis [36–38].

Additionally, GAPA promotes cleavage furrow formation in

response to mechanical stress, while DGAP1 inhibits this response

[39]. This suggests distinct roles for each protein in response to

specific stimuli, that is, DGAP1/biochemical signals and GAPA/

mechanosensory inputs.

Less is known about the contribution of IQGAP to cytokinesis in

higher eukaryotes. In the nematode Caenorhabditis elegans, RNA

interference was employed to identify proteins associated with

cleavage furrow formation and cytokinesis. Depletion of the

C. elegans IQGAP PES-7 resulted in the formation of multinucleated

germ cells and multinucleated embryos, indicating defects in the

completion of meiosis and mitosis [40]. The mid-body assembles

microtubules and other proteins necessary for completion of cell

division at the end of cytokinesis. In mammalian cells, IQGAP1 was

observed at the mid-body or contractile ring during cytokinesis in

mouse oocytes and embryos [41], Chinese hamster ovary, as well as

human HeLa cells [40].

Anillin proteins form complexes with actin and other proteins

necessary for assembling the actomyosin ring at the cleavage furrow

[42]. In S. pombe, Rng2p is recruited to the cleavage site by Mid1p,

an anillin-like protein [43,44]. Similarly, in mammalian cells, anillin

recruits IQGAP3 to the actomyosin ring [45]. Furthermore, loss-of-

function studies for IQGAP1 and IQGAP3 demonstrated roles for

both proteins in regulating the localization of machinery required

for cytokinesis in HeLa cells [45]. In contrast to prior reports,

IQGAP1 was not detected at the mid-body in this study. The reason

for the discrepancy is unknown. Nevertheless, depletion of either

IQGAP1 or IQGAP3 led to defects in cytokinesis and resulted in the

formation of multinucleated cells, with a more pronounced defect

upon depletion of both IQGAP1 and IQGAP3, suggesting contribu-

tions from both proteins to cytokinesis [45]. Further investigation is

required to dissect out the specific roles of IQGAP1 and IQGAP3 in

cytokinesis.

Physiological relevance

Evidence derived from knockout mice and cultured cells has identi-

fied roles for IQGAP proteins, particularly IQGAP1, in multiple

organs (Table 2). These studies are summarized here.

Kidney function

Podocytes are unique renal epithelial cells that form foot processes

which wrap around glomerular capillaries. The processes of neigh-

boring cells are connected by slit diaphragms, specialized intercellu-

lar junctions that mediate glomerular filtration [46] (Fig 2A).

Mutations of critical components of slit diaphragms, such as nephrin

or podocin, cause the nephrotic syndrome [47]. To further under-

stand slit diaphragm architecture, interactors of the nephrin cyto-

plasmic domain were examined by mass spectrometry, and IQGAP1

was among the proteins identified [48]. Immunofluorescence micro-

scopy revealed that IQGAP1 co-distributed with nephrin in the podo-

cyte foot processes. IQGAP1 was also observed in kidney tubules

and glomeruli [48]. The participation of IQGAP1 in slit diaphragm

function was further suggested by the increased in vitro permeability

of a podocyte layer when IQGAP1 is knocked down [49]. These find-

ings and the association of IQGAP1 with several slit diaphragm

components (Fig 2A), including nephrin, a-actinin, aII spectrin,

bII spectrin, a-catenin, and podocin [49], suggest that IQGAP1 is an

integral component of slit diaphragm organization to facilitate filtration.

Although slit diaphragm junctions are different to adherens junc-

tions, they share key adherens junction proteins, including cadhe-

rins and catenins [46]. Adherens junctions are formed through

cadherin complexes, which are linked intracellularly to the actin

cytoskeleton via a-catenin and b-catenin [50]. IQGAP1 interacts

with several adhesion-associated proteins, including E-cadherin

(epithelial cadherin) [10,11], N-cadherin (neuronal cadherin) [51],

VE-cadherin (vascular endothelial cadherin) [52], and b-catenin

[10,53] (Table 1). The interaction of IQGAP1, nephrin, and adhe-

rens junction proteins suggests that this multiprotein complex may

modulate cadherin-mediated adhesion and cytoskeletal dynamics in

the kidney, consistent with previous reports in cultured epithelial

cells [11].

The peptide hormone angiotensin II, which activates smooth

muscle contraction thus contributing to hypertension, can induce

podocyte apoptosis [54]. This can cause podocyte injury or deple-

tion, resulting in glomerulosclerosis, a stiffening of the renal

glomeruli. Angiotensin II stimulates podocyte apoptosis

via MAPK [55]. Interestingly, angiotensin II increases IQGAP1

Glossary

AMPK AMP-activated protein kinase

Arp2/3 actin-related proteins 2/3

[Ca2+]i intracellular free calcium concentration

CHD calponin homology domain

CSFV classical swine fever virus

EB1 microtubule plus end binding protein 1

ERK extracellular signal-regulated kinase

FAK focal adhesion kinase

GAP GTPase-activating protein

GEF guanine nucleotide exchange factor

GRD GAP-related domain

IQ protein sequences containing Iso/Leu and Gln residues

Lis1 lissencephaly 1

M-MuLV Moloney murine leukemia virus

MAPK mitogen-activated protein kinase

MEK MAPK/ERK kinase

MLC myosin light chain

MLCK myosin light chain kinase

MLCP myosin light chain phosphatase

NGF nerve growth factor

N-WASP Neuronal Wiskott–Aldrich syndrome protein

PKCe protein kinase C e

PLCe1 phospholipase C e1

PPI protein–protein interaction

PTPl protein-tyrosine phosphatase l

RGCT RasGAP_C-terminus domain

RTK receptor tyrosine kinase

VEGF vascular endothelial growth factor

VEGFR2 vascular endothelial growth factor receptor 2

WW tryptophan-containing protein domain
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expression in both rat glomeruli in vivo and cultured podocytes

and promotes the interaction of ERK1/2 with IQGAP1 [56].

IQGAP1 knockdown prevents angiotensin II-induced ERK1/2 acti-

vation and apoptosis of podocytes. These findings suggest that

IQGAP1 participates in angiotensin II-mediated apoptosis by

modulating MAPK signaling.

IQGAP1 also interacts with phospholipase C epsilon (PLCe1)

[57]. Mutations in the PLCE1 gene have been implicated in early-

onset nephrotic syndrome, which leads to end-stage kidney disease

[57]. IQGAP1 co-immunoprecipitates with PLCe1 from cultured

podocytes. However, PLCe1-null mice do not manifest renal pathol-

ogy and it is not known whether PLCe1—and its association with

IQGAP1—contributes to podocyte function in the development of

kidney disease.

Neuronal function

The first documentation of IQGAP1 in neuronal cells was published

in 2005 [58]. IQGAP1 was observed throughout the cell, along neur-

ites and the developing axon, as well as at the growth cone. Over-

expression of IQGAP1 induced neurite outgrowth in NIE-115 mouse

neuroblastoma cells, an effect that was enhanced by phosphoryla-

tion of IQGAP1 by protein kinase C e (PKCe) [58] (Fig 2Bi). Later

work demonstrated that an interaction between IQGAP1 and

protein-tyrosine phosphatase PTPl is required for neurite outgrowth

in E8 chick nasal retinal ganglion cells [59] (Fig 2Bi). PTPl is a cell

surface receptor that interacts with cadherin/catenin complexes to

mediate cell–cell adhesion [60]. PTPl forms a complex with

IQGAP1, N-cadherin, E-cadherin, and b-catenin [59]. Active Cdc42

promotes the association of PTPl with IQGAP1 and disruption of
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Figure 1. Tree of IQGAP proteins.

IQGAP proteins are present in eukaryotes [221]. All contain a GRD. All mammals have five domains: CHD, WW domain, IQ domain, GRD, and RasGAP_C-terminus (RGCT).

Domains adapted from the SMART and Pfam databases, tree made as in [221].
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Table 1. Interactors of IQGAPs.

Interactor

Interaction

in vitroa
Interaction

in vivob Proposed function(s) Reference(s)

IQGAP1

Cytoskeleton-associated proteins

Actin Yes Yes Cross-links actin filaments [19,20,24,25]

APC Yes Yes Regulates actin dynamics in migrating cells [129]

Arp2/3 ND Yes Stimulates branched actin filament assembly [130,131]

CD44 ND Yes Links hyaluronan to actin cytoskeleton [132]

CLASP2 Yes Yes Links IQGAP1 to microtubules [133,134]

CLIP-170 Yes Yes Links Rac1 and Cdc42 to microtubules [135]

Cortactin ND Yes Regulates subcellular localization of cortactin, enhances

endothelial barrier

[85,136]

EB1 ND Yes Enhances endothelial barrier [85]

Ezrin Yesc Yes Unknown [137]

IFT-A ND Yes Unknown [138]

ILK ND Yes Regulates microtubule network [139,140]

Lis1 ND Yes Regulates Cdc42 activity during neuronal migration [63]

mDia1 Yes Yes Regulates phagocytosis and phagocytic cup formation [140,141]

N-WASP Yes Yes Stimulates branched actin filament assembly [130,131]

NUMB5 ND Yes Unknown [142]

PLD2 ND Yes Regulates IQGAP1 subcellular localization and interaction with Rac1 [136]

Protein 4.1R Yes Yes Localizes IQGAP1 at the leading edge of migrating cells [143]

Vimentin ND Yes Regulates desmosome-like junctions [144]

Wave2 ND Yes Unknown [145]

Adhesion-associated proteins

a-actinin ND Yes Unknown [49]

a-catenin ND Yes Unknown [49]

aII spectrin ND Yes Unknown [49]

bII spectrin ND Yes Unknown [49]

b-catenin Yes Yes Inhibits cell–cell adhesion; enhances b-catenin mediated transcription [10,53]

b1-integrin ND Yes Regulates actin during mitosis [146]

b3-integrin Yes Yes Regulates pulmonary vascular permeability [84]

CD13 ND Yes Unknown [147]

E-cadherin Yes Yes Regulates E-cadherin-mediated cell–cell adhesion [10,11]

Filamin-A ND Yes Regulates directional cell migration. [148]

Melusin Yes Yes Regulates cardiomyocyte hypertrophy and survival [76]

Menin Yes Yes Links menin to E-cadherin/b-catenin [149]

N-cadherin ND Yes Links N-cadherin to ERK1/2 signaling during fear memory formation,

regulates cell–cell adhesion during spermatogenesis

[51,144]

Nectin-1 ND Yes Localizes IQGAP1 to cell–cell junctions [150]

Nephrin ND Yes Unknown [48,49]

Podocin ND Yes Unknown [49]

VASP ND Yes Unknown [151]

VE-cadherin ND Yes Regulates VE-cadherin localization at adherens junctions [52]

Ca2+-binding proteins

Calmodulin Yes Yes Regulates IQGAP1 function [11,18,19,20]
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Table 1 (continued)

Interactor

Interaction

in vitroa
Interaction

in vivob Proposed function(s) Reference(s)

Myosin ELC Yes ND Unknown [152]

S100B Yes Yes Regulates membrane morphology [153]

S100P Yes Yes Regulates IQGAP1 function in MAPK signaling [154]

Receptor tyrosine kinases

EGFR Yes Yes Regulates EGF-induced phosphorylation of EGFR and IQGAP1 [155,156]

FGFR1 Yes Yes Bridges FGFR1 to N-WASP-Arp2/3 complex [130]

HER2 Yes Yes Regulates HER2 expression and signaling; modulates trastuzumab

resistance

[157]

NGFR/TrkA ND Yesd Unknown [158]

PDGFbR ND Yes Modulates focal adhesion assembly [79]

VEGFR2 Yes Yes Cell migration and proliferation, vascular repair and maintenance,

angiogenesis

[52,77]

Receptor serine/threonine kinases

TGFbR2 Yes Yes Regulates TGFbR2 degradation and signaling [159]

G protein-coupled receptors

CXCR2 Yes Yes Unknown [160]

GPR161 ND Yes Regulates cell migration and proliferation [161]

KISS1R ND Yes Connects KISS1R to EGFR activation [162]

LPA1 ND Yes Regulates cell migration and invasion [163]

Other receptors

AMPA receptor,

GluR4 subunit

ND Yes Regulates AMPA signaling and synaptic targeting [164]

NMDAR ND Yes Regulates NR2A signaling, dendritic spine density and memory [69]

Lipids and lipid-associated proteins

DGKf ND Yes Promotes phagocytosis by macrophages. [165]

PIPKIc Yes Yes Recruits IQGAP1 to leading edge membrane [166]

PLCe1 ND Yes Unknown [57]

PtdIns3,4,5P3 Yesc Yes Unknown [167,168]

PtdIns4,5P2 Yes Yes Promotes actin polymerization and branching [166]

PTEN ND Yes Unknown [169]

Kinases and phosphatases

Akt ND Yes Regulates Akt activation, cardiac remodeling in response to

pressure overload

[72,170–172]

AMPK ND Yes Unknown [94]

Aurora A Yes Yes Stabilizes Aurora A [173]

B-Raf Yes Yes Regulates activation of B-Raf and its kinase activity; integrates

Ca2+/calmodulin and B-Raf signaling

[16,17]

CaMKII ND Yes Unknown [69,174]

C-Raf Yes ND Regulates MAPK activation [72]

ERK1 Yes Yes Scaffold for MAP kinase signaling [13]

ERK2 Yes Yes Scaffold for MAP kinase signaling [12]

FAK ND Yes Regulates cardiomyocyte hypertrophy and survival [76]

MEK1 Yes Yes Scaffold for MAP kinase signaling [13]

MEK2 Yes Yes Scaffold for MAP kinase signaling [13]

MTOR ND Yes Regulates cell proliferation [26,172]

PAK6 ND Yes Regulates adherens junction disassembly [175,176]
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Table 1 (continued)

Interactor

Interaction

in vitroa
Interaction

in vivob Proposed function(s) Reference(s)

PKA ND Yes Promotes migration [133]

PKCe ND Yes Substrate; regulates Cdc42 affinity and neurite outgrowth [58,178]

PP2A ND Yes Regulates interaction of integrins with cytoskeleton [146,179]

PTPl Yes Yes Regulates Cdc42-dependent IQGAP1 function and mediates neurite

outgrowth

[59]

Src ND Yes Regulates endothelial cell proliferation and VEGF-induced angiogenesis [78,136]

Scaffolds

14-3-3 ND Yesd Unknown [180]

AKAP79 Yes Yes Unknown [177]

AKAP220 Yes Yes Integrates Ca2+ and cAMP signals at the leading edge of migrating

cells

[133]

b-arrestin2 ND Yes Forms complex with IQGAP1 and LPA1 or GPR161 to regulate cell

migration

[161,163]

p14-MP1 ND Yes Regulates focal adhesion maturation [181]

RACK1 ND Yes Unknown [182]

ShcA Yes Yes May couple RTKs to cytoskeleton [183]

Small GTPases and their regulators

Arf6 ND Yes Regulates Arf6-induced Rac1 activation and glioma cell migration [184]

Asef Yes Yes Regulates Rac1 activation to enhance endothelial barrier function [185]

Cdc42 Yes Yes Inhibits intrinsic GTPase activity, increasing Cdc42GTP; promotes cell

motility

[9,18,21,23]

FGD6 ND Yes Regulates podosome formation [186]

K-Ras ND Yes Regulates interaction of K-Ras with B-RAF [15]

LRRK2 ND Yes Regulates the association of NFAT1 with IQGAP1 [187]

M-Ras ND Yes Unknown [188]

p190A-RhoGAP ND Yes Inactivates RhoA to regulate airway smooth muscle contractility [89]

Rab27a Yes Yes Regulates endocytosis of insulin secretory membranes [92]

Rac1 Yes Yes Inhibits intrinsic GTPase activity, increasing Rac1GTP; promotes cell

motility

[21]

Rac2 ND Yes Unknown [182]

RacGAP1 ND Yes Regulates cell migration and invasion [189]

Ran ND Yes Regulates b-catenin transcriptional function [190]

Rap1 ND Yes Regulates activation of Rap1 [191]

RhoA ND Yes Modulates RhoA activation; regulates cell proliferation and migration [89,192]

RhoC ND Yes Regulates RhoC-induced cell migration [193,194]

TC10 (RhoQ) Yes ND Unknown [195]

Tiam1 ND Yes Unknown [136]

Wnt signaling molecules

Dvl ND Yes Facilitates nuclear import of Dvl/b-catenin complex and modulates

Wnt signaling

[190,196]

LGR4 ND Yes Required for potentiation of b-catenin signaling by RSPO [197]

MCAM ND Yes Required for WRAMP structure assembly; bridges MCAM to cytoskeleton [198]

Nuclear molecules

ERa Yes Yes Modulates ERa transcriptional function [199]

ERb Yes Yes Unknown [199]

Importin-b5 ND Yes Modulates nuclear import of the IQGAP1/b-catenin/Dvl complex and

transactivation of Wnt target genes

[190]

EMBO reports Vol 16 | No 4 | 2015 Published 2015. This article is a U.S. Government work and is in the public domain in the USA

EMBO reports The biology of IQGAP proteins Andrew C Hedman et al

432



Table 1 (continued)

Interactor

Interaction

in vitroa
Interaction

in vivob Proposed function(s) Reference(s)

Mediator ND Yesd Unknown [200]

Nardilysin ND Yesd Unknown [201]

NFAT ND Yes Regulates nuclear translocation and function of NFAT [202]

Nrf2 Yes Yes Stimulates the nuclear translocation and activation of HO-1 stress

response

[203,204]

NRON ND Yes Forms RNA-scaffold complex (with GSK3b, DYRK, and CK1) to

regulate NFAT

[202]

PCNA ND Yes Unknown [205]

PGC-1a ND Yes Unknown [206]

RNase L ND Yes Required for ECyd-induced JNK phosphorylation and apoptosis [207]

RPA32 ND Yes Unknown [205]

TULP3 ND Yes Unknown [138]

WHSC1 ND Yes Unknown [208]

mRNA regulators and co-chaperones

Aha1 ND Yes Unknown [209]

SMG-9 Yes Yes Unknown [210]

Staufen ND Yes Unknown [211]

Microbial and viral interactors

30-C12-HSL Yes Yes Pseudomonas aeruginosa quorum sensing molecule that targets

IQGAP1 to modulate epithelial cell migration

[114]

CSFV core protein Yes ND Regulates growth and virulence of CSFV [118]

Ebola virus VP40 ND Yes Regulates viral egress [117]

Ibe Yes Yes Unknown [108]

MMLV MA Yes Yes Regulates MMLV invasion and replication [119]

SopE ND Yes Regulates S. typhimurium invasion [110]

SseI Yes Yes Modulates SseI-induced inhibition of cell migration [111]

Tir Yes Yes Regulates actin pedestal formation by EPEC [107]

YopM Yes ND Promotes caspase-1 activation in Y. pseudotuberculosis-infected cells [212]

Trafficking proteins

Exo70 Yes Yes Regulates Exo70 subcellular localization [91,213]

Sec3 Yes Yes Regulates formation and activity of invadopodia [213]

Sec8 Yes Yes Regulates formation and activity of invadopodia [91,213]

SEPT2 Yes Yes Regulates septin localization, filament organization and exocytosis [91]

Syntaxin 1A ND Yes Unknown [91]

TSG101 Yes Yes Unknown [120]

IQGAP2

AKAP220 ND Yes Recruits active Rac1 to promote membrane ruffling [214]

Arp2/3 ND Yes Regulates actin assembly downstream of thrombin stimulation [127]

b-catenin ND Yes Unknown [215]

Calmodulin Yesc Yes Unknown [125,126]

Cdc42 ND Yes Inhibits GTPase activity [126]

Ezrin Yesc ND Unknown [137]

F-actin ND Yes Regulates actin assembly downstream of thrombin stimulation [127]

LGR4 ND Yes Unknown [197]

NRON ND Yes Unknown [202]

Published 2015. This article is a U.S. Government work and is in the public domain in the USA EMBO reports Vol 16 | No 4 | 2015

Andrew C Hedman et al The biology of IQGAP proteins EMBO reports

433



this interaction with a cell-permeable peptide inhibitor abrogates

PTPl-mediated neurite outgrowth. Cdc42 is among the best-

characterized IQGAP1 binding partners (reviewed in [3,61]).

IQGAP1 binding stabilizes active Cdc42 to regulate crosslinking of

actin filaments, microtubule dynamics, and E-cadherin-mediated

cell–cell adhesion. The studies described above imply that IQGAP1

facilitates changes in the actin cytoskeleton that are required for

neurite outgrowth.

In contrast, decreasing endogenous IQGAP1 with siRNA did not

impair nerve growth factor (NGF)-stimulated neurite outgrowth in

PC12 rat pheochromocytoma cells [62]. However, reducing IQGAP3

attenuated neurite outgrowth induced by NGF. PC12 cells do not

contain IQGAP2 [62]. Therefore, the effect of knockdown of each

IQGAP isoform was examined in hippocampal neurons. Reducing

IQGAP2 or IQGAP3, but not IQGAP1, decreased axon elongation

[62]. Several factors may account for the different reports of IQGAP1

on neurite outgrowth. These include different cell lines (N1E-115

versus PC12), different experimental strategies (induction with or

without NGF), and different manipulations of IQGAP1 levels (over-

expression versus knockdown).

IQGAP1 participates in neuronal proliferation and migration,

which allows neurons to properly organize into a functional neural

network. In cultured cerebellar neurons, IQGAP1 and lissencephaly 1

(Lis1) co-localize in axons and growth cones [63]. Lis1 is required

Table 1 (continued)

Interactor

Interaction

in vitroa
Interaction

in vivob Proposed function(s) Reference(s)

PtdIns3,4,5P3 Yes ND Unknown [168]

Rac1 ND Yes Inhibits GTPase activity [126]

RhoG ND Yes Unknown [216]

IQGAP3

Anillin Yesc Yes Recruits IQGAP3 to the contractile ring during cytokinesis [45]

Calmodulin Yesc ND Unknown [125]

Cdc42 Yes Yes Modulates neurite outgrowth in PC12 cells [62,217]

DGKf ND Yes Unknown [165]

ERK1 ND Yes Modulates ERK1 activation [128]

F-actin Yes ND Unknown [62]

H-Ras ND Yes Modulates Ras/ERK signaling [217]

LGR4 ND Yes Unknown [197]

Myosin ELC Yesc ND Unknown [125]

Rac1 Yes Yes Modulates neurite outgrowth in PC12 cells [62,217]

aIn vitro interactions were demonstrated using pure proteins. In the absence of an in vitro interaction, direct binding between IQGAP and the target cannot be
inferred. ND, not determined.
bIn vivo interactions were demonstrated by co-immunoprecipitation from cell lysate, pulldown with recombinant fusion protein from cell lysate, and/or
co-localization unless otherwise noted. ND, not determined
cInteraction with full-length IQGAP not reported.
dInteraction identified via mass spectrometry. Targets in mass spectrometry databases not subject to peer review were not included in this table.

▸
Figure 2. Models for IQGAP1 physiological functions.

(A) Kidney function. IQGAP1 is involved in podocyte permeability and migration [49]. IQGAP1 forms a complex with nephrin and several adherens junction proteins,

including a-actinin, aII spectrin, bII spectrin, a-catenin, and podocin [49]. This complex may influence podocyte spacing and stability through cytoskeletal remodeling.

IQGAP1 contributes to renal apoptosis by facilitating angiotensin II-induced Erk activation [56]. (B) Neuronal function. (i) PTPl, IQGAP1, N-cadherin, E-cadherin, and

b-catenin form a complex in ganglion cells [59]. Cdc42 promotes the interaction of IQGAP1 with PTPl to stimulate actin remodeling and, ultimately, neurite outgrowth.

IQGAP1 phosphorylation by PKCe also stimulates neurite outgrowth in neuroblastoma cells [58]. (ii) IQGAP1 forms a complex with active Cdc42, Lis1, and CLIP-170 that

appears necessary for cerebellar neuronal motility [63]. (iii) In hippocampal neurons, the IQGAP1/N-WASP/Arp2/3 complex promotes dendritic spine head formation [68].

(C) Cardiac function. Pressure overload on the heart activates focal adhesion kinase (FAK), which signals through MAPK and Akt to regulate cardiomyocyte hypertrophy

and survival. MAPK and Akt signaling in this process is regulated by IQGAP1 [72,76]. IQGAP1 forms a complex with melusin that mediates MAPK signaling downstream of

FAK. The dashed lines depict intermediate signaling events that control Akt and Raf activation from FAK. (D) Vascular endothelial barrier function. (i) IQGAP1 binds to

VEGFR2 and regulates endothelial cell migration, proliferation, and angiogenesis [77,78]. (ii) Both the IQGAP1/EB1/cortactin complex [85] and the IQGAP1/integrin avb3

interaction [84] strengthen the endothelial barrier, reducing permeability. (E) Lung function. Stimulation of airway smooth muscle cells induces contraction. Acetylcholine

and histamine both activate RhoA and release Ca2+ from intracellular stores, which regulate phosphorylation of the regulatory myosin light chain (MLC). Ca2+ binds to

calmodulin (CaM), which activates MLC kinase (MLCK), catalyzing MLC phosphorylation. Phosphorylated MLC facilitates the interaction of myosin with F-actin, thereby

inducing smooth muscle contraction. RhoA stimulates Rho-associated protein kinase (ROCK), which phosphorylates and inhibits MLC phosphatase (MLCP). Together, Ca2+

and RhoA favor the phosphorylation of MLC and muscle contraction. IQGAP1 modulates contractility by forming a complex with p190A-RhoGAP and RhoA to inactivate

RhoA [89]. Loss of IQGAP1 promotes MLC phosphorylation and enhances airway smooth muscle cell contractility. The dashed lines depict intermediate signaling events

that control Ca2+ release and RhoA activation downstream of receptors. (F) Insulin secretion. Glucose stimulation of pancreatic b-cells induces release of insulin from

secretory vesicles. IQGAP1 interacts with exocyst components to facilitate insulin exocytosis [91]. An IQGAP1–Rab27a complex participates in endocytosis of insulin

secretory membranes [92].
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for neurogenesis, neuronal survival, and neuronal migration [64].

IQGAP1 co-immunoprecipitates with Lis1 and knockdown of

IQGAP1 impairs neuronal motility [63]. Further, neuronal cells

contain a multiprotein complex containing active Cdc42, Lis1,

IQGAP1, and CLIP-170, which appears necessary for optimal

motility of neurons (Fig 2Bii). In migrating epithelial cells, IQGAP1

accumulates at the leading edge and associates with CLIP-170,

linking Cdc42 and the cortical actin cytoskeleton to the microtubule

Table 2. The biological roles of IQGAP1.

Physiology

Relevant interactors Cellular function Physiological process

Putative role in

disease Citation

Kidney function

Nephrin, Podocin, PLCe1 Organization of slit diaphragms Glomerular filtration Nephrotic syndrome [48,49,57,218,219]

Neuronal function

PKCe, PTPl, Cdc42 Regulation of cytoskeleton for

neurite outgrowth

Neurite outgrowth, development

and maintenance of neurons

Epilepsy, memory

formation/loss

[58,59,62]

Lis1, Cdc42, CLIP170, VEGF Regulation of cytoskeleton for

neural migration

Adult neurogenesis Lissencephaly [63,66]

Cardiovascular function

Erk, Akt, Melusin Erk and Akt activation following

cardiac pressure overload

Cardiac remodeling Myocardial infarction,

cardiac hypertrophy

[72,76]

VEGFR2 Migration, proliferation Neovascularization, angiogenesis Cancer [52,66,77,78,81]

avb3, EB1, Cortactin Maintain cell–cell contacts that are

linked to the cytoskeleton

Maintenance of vascular

endothelial

barrier functions

Acute systemic

inflammatory diseases

[84,85]

PDGFR, Paxillin, Vincullin PDGFR signaling for VSMC migration Neointimal formation Atherosclerosis,

restenosis

[79]

Lung function

RhoA, P190A-RhoGAP Modulate RhoA and MLC activity Airway smooth muscle cell

contraction

Asthma [89]

Insulin secretion

Exocyst, Rab27a Insulin secretion Glucose homeostasis Diabetes [91,92]

Tumorigenesis

Relevant interactors Cellular function Putative role in cancer Citation

K-Ras, B-Raf, MEK1/2, ERK1/2 Proliferation, migration, invasion Cell growth and differentiation, tumor invasion and

metastasis

[101]

Akt, mTor Proliferation, survival Tumor growth, proliferation and survival [172]

Rac1, Cdc42, Actin Proliferation, migration, invasion Cell growth and differentiation, tumor invasion and

metastasis

[23,80]

Microbial infection

Pathogen Relevant interactor Putative role in infection Citation

E. coli Tir Actin pedestal formation, bacterial attachment [107]

E. coli Ibe Pedestal recruitment, bacterial attachment [108]

E. coli K1 b-catenin, actin Disassembly of adherens junctions, invasion of brain

endothelial cells, brain oedema in neonatal meningitis

[109]

S. typhimurium Actin, Cdc42, Rac1, SopE Actin polymerization and bacterial invasion [110,112]

S. typhimurium SseI Chronic infection [111]

C. pneumoniae Unknown Upregulation of IQGAP1, VSMC migration, atherosclerosis [113]

P. aeruginosa 3O-C(12)-HSL Modulates IQGAP1 expression, enhance host cell migration [114,220]

Ebola virus VP40 Viral egress [117]

Marburg virus TSG101 Viral egress [121]

M-MULV Gag Viral egress [119]

CSCV Core protein Viral egress [118]
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network (reviewed in [3]). In cultured cerebellar neurons, increas-

ing intracellular free Ca2+ concentrations ([Ca2+]i) promoted the

interaction of Lis1 with IQGAP1 and active Cdc42, suggesting

IQGAP1 is a scaffold through which Lis1 links Ca2+ influx to Cdc42

and the cytoskeleton [63]. These results are consistent with previ-

ous studies showing Ca2+/calmodulin binding to IQGAP1 regulates

its interactions (reviewed in [61]).

Adult neurogenesis is the process by which neurons are gener-

ated from neural stem cells and progenitor cells. Neural progenitor

cells (NPCs) migrate into niches and differentiate into neuronal

precursors. Vascular endothelial growth factor (VEGF) stimulates

this process [65]. In the absence of IQGAP1, VEGF was unable to

stimulate migration of NPCs [66]. Consistent with these results,

IQGAP1-null mice exhibit a delay in NPC differentiation. Cdc42,

Rac1, and Lis1 binding to IQGAP1 is enhanced in VEGF-stimulated

NPC migration [66]. This study supports a model in which IQGAP1

acts as an effector of a VEGF-dependent migratory signal for neural

progenitor cells.

IQGAP1 contributes to the regulation of microtubules and the

actin cytoskeleton that determines dendritic shape and morphology.

Dendritic spines are actin-rich protrusions from a neuron that are

responsible for transmission of signals from presynaptic neurons.

The spine head connects to the shaft of the dendrite via a neck.

Reduction of IQGAP1 in hippocampal neurons decreases the total

number of dendrite tips, without significantly altering total dendrite

length [67]. Moreover, in the rat hippocampus, the IQGAP1 CHD

promotes spine head formation through interactions with the

neural Wiskott–Aldrich syndrome protein (N-WASP)–actin-related

protein 2/3 (Arp 2/3) complex, while the IQGAP1 GRD is essential

for stalk extension [68] (Fig 2Biii). Disruption of the association

between IQGAP1 and N-cadherin removes IQGAP1 from hippocam-

pal dendritic spines heads [51]. Importantly, IQGAP1�/� mice have

decreased spine density and number in brain areas involved in

cognition, emotion, and motivation [69]. IQGAP1�/� mice also have

long-term memory deficits, but anxiety and depression-like behavior

are unaffected. Loss of dendritic spines are major contributing

factors to psychiatric illness, such as schizophrenia and depression,

and neurodegenerative disorders, such as Alzheimer’s disease [70],

and it is tempting to speculate that IQGAP1 may participate in the

pathophysiology of these conditions.

Repeated seizures in temporal lobe epilepsy induce loss of

neurons, especially from the CA1 and CA3 areas of the hippocam-

pus. In a mouse model of epilepsy induced by pyramidal cell degen-

eration in the CA3 region, IQGAP1 expression was upregulated in

CA1 pyramidal neurons [71]. Detailed analysis indicated that

IQGAP1 is increased in uncommitted neural stem cells, leading the

authors to speculate that IQGAP1 may contribute to the etiology of

epileptogenesis. While additional studies are required to validate

this hypothesis, the evidence implicating IQGAP1 in neurite

outgrowth, spine development, synaptic plasticity, memory forma-

tion, and dendrite formation strongly supports a fundamental role

for IQGAP1 in brain function.

The cardiovascular system

Cardiac functions Excessive pressure on the heart activates intracel-

lular signaling pathways that regulate cardiac morphology.

Although IQGAP1-null mice have normal basal heart function,

prolonged pressure overload leads to unfavorable cardiac remodeling

with thinning of the ventricular walls, decreased contractility, and

increased apoptosis [72]. Cardiac pressure overload activates focal

adhesion kinase (FAK), which modulates ERK and Akt signaling

that control cardiac remodeling [73]. Deletion of the non-

receptor tyrosine kinase FAK from cardiac myocytes induces left

ventricle thinning and blocks ERK activation [74]. Analogous to

FAK, IQGAP1 modulates ERK and Akt activation in response to

cardiac pressure overload [72]. At the molecular level, long-term

(4-day) transverse aortic band-induced chronic pressure overload of

wild-type mouse cardiomyocytes (heart muscle cells) stimulates

activation of MEK and ERK, which promote proliferation, and Akt, a

kinase that promotes survival [72]. By contrast, MEK, ERK, and Akt

activation were abrogated in mice deficient in IQGAP1 [72].

Pressure overload upregulates melusin, a muscle-specific protein

[75]. An IQGAP1–melusin complex mediates ERK activation in

response to pressure overload [76] (Fig 2C). Additionally, IQGAP1

contribution to cardiac function was demonstrated with transgenic

mice overexpressing melusin in the heart and double-transgenic

mice that overexpress melusin, but lack IQGAP1. In the absence of

IQGAP1, ERK activity was reduced in response to pressure overload

and apoptotic death was increased in response to stress, demon-

strating a role for IQGAP1 in cardiomyocyte survival [76]. Taken

together, these observations implicate IQGAP1 as a signaling

platform in cardiac remodeling and morphology.

Vascular functions IQGAP1 influences blood vessel formation.

VEGF affects virtually all aspects of blood vessel formation and

function. IQGAP1 binds to the VEGF receptor 2 (VEGFR2) and is

necessary for VEGF-stimulated endothelial cell migration and prolif-

eration [77] (Fig 2Di). These observations imply that IQGAP1 scaf-

folds VEGFR2 signaling in maintenance and repair of blood vessels.

Subsequent studies showed that the IQGAP1/VEGFR2 interaction

regulates angiogenesis. For example, IQGAP1 knockdown

suppresses VEGF-stimulated angiogenesis in an in vivo model of

chicken chorioallantoic membrane [78]. Additional evidence linking

IQGAP1 to angiogenesis is derived from studies in mice. Blood

vessel formation in response to injury is impaired in mice lacking

IQGAP1 [79]. Further, IQGAP1 expression is increased in angiogene-

sis following ischemia [52] and overexpression of IQGAP1 signifi-

cantly increased angiogenesis in an in vivo mouse tumor model

[80]. Finally, IQGAP1-null mice have reduced recovery of blood

flow to the leg after hindlimb ischemia [81], further demonstrating

the contribution of IQGAP1 to angiogenesis.

Vascular endothelial cells form the barrier between blood and

tissues, and disruption of the barrier can result in acute systemic

inflammatory diseases. Reduction of IQGAP1 disrupts vascular

endothelial barrier integrity [82]. Integrins are important mediators

of endothelial barrier function. Mice lacking integrin b3 have

increased endothelial blood vessel leak in response to VEGF-

stimulation [83]. IQGAP1 binds integrin b3, and IQGAP1-null mice

have reduced localization of integrin avb3 to the cell–cell junction

and increased lung vascular permeability [84] (Fig 2Dii). Multiple

cytoskeletal signaling proteins, including microtubule plus end

binding protein 1 (EB1) and cortactin, control endothelial perme-

ability. A complex comprising IQGAP1, EB1, and cortactin links the

actin and microtubule cytoskeletons to strengthen endothelial

barrier [85]. Barrier integrity is also affected by shear stress, the

mechanical force exerted on endothelial cells by the flow of blood.
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IQGAP1 is essential for maintaining endothelial cell alignment under

shear stress [86]. Adhesion and alignment of endothelial cells

exposed to shear stress is impaired by IQGAP1 knockdown, suggest-

ing that IQGAP1 stabilizes adherens junctions under blood flow. By

controlling blood vessel formation and barrier integrity, IQGAP1 is a

critical integrator of multiple vascular processes.

Lung function

Asthma is a chronic inflammatory disease that affects ~235 million

people and results from airway smooth muscle contraction. Exer-

cise, allergens, microbes, or other stimuli activate the parasympa-

thetic nervous system, leading to release of acetylcholine and

histamine, which activate receptors on airway smooth muscle cells

to promote contraction [87] (Fig 2E). These receptors induce Ca2+

release from intracellular stores and RhoA activation, resulting

in myosin light chain (MLC) phosphorylation, enhancing the

interaction of myosin with actin, thereby promoting airway smooth

muscle cell contractility [88].

IQGAP1 modulates this process [89] (Fig 2E). IQGAP1 co-

immunoprecipitates with RhoA and p190A-RhoGAP, a protein that

inactivates RhoA, from airway smooth muscle cells. Knockdown of

IQGAP1 decreases the RhoA/p190A–RhoGAP co-localization.

Consistent with these results, IQGAP1�/� mice have enhanced

airway responsiveness, and increased levels of MLC phosphoryla-

tion and active RhoA in the posterior trachea [89]. Moreover,

IQGAP1 was significantly lower in airway smooth muscle biopsies

from patients with asthma than from healthy controls. Collectively,

these data imply that IQGAP1 may contribute to the severity of

asthma by controlling airway smooth muscle contractility.

Insulin secretion

Increased blood glucose concentration induces insulin release from

pancreatic b-cells. Glucose enters the b-cells where it is metabolized,

leading to a rise in [Ca2+]i, which triggers exocytosis of insulin

granules [90]. A complex comprising eight subunits, termed the

exocyst, tethers insulin-containing vesicles inducing release of insu-

lin at the plasma membrane. IQGAP1 co-immunoprecipitates with

the exocyst complex [91]. Knockdown of IQGAP1 significantly

reduced the ability of glucose to stimulate insulin secretion from

b-cells (Fig 2F). Another mechanism by which IQGAP1 may contrib-

ute to insulin secretion is via Rab27a. IQGAP1 forms a complex with

Rab27a [92], a small GTPase that is highly expressed in pancreatic

b-cells and regulates endocytosis of insulin secretory membranes.

Reducing expression of endogenous IQGAP1 with siRNA prevented

glucose-induced redistribution of Rab27a from the cytosol to the

plasma membrane [92]. Analysis revealed that an association

between IQGAP1 and Rab27a is required for endocytosis of secre-

tory membranes. Thus, IQGAP1 participates in both exocytosis and

endocytosis of insulin secretory vesicles in response to glucose stim-

ulation (Fig 2F).

Energy homeostasis and insulin secretion are regulated by AMP-

activated protein kinase (AMPK) [93]. IQGAP1 was recently identified

as an interactor of AMPK, and the proteins co-immunoprecipitated

from pancreatic b-cells [94]. Although there is no evidence that this

association contributes to b-cell function, the preponderance of

evidence suggests that IQGAP1 participates in insulin secretion.

IQGAP2 is expressed predominantly in the liver, an organ that is

central to glucose regulation. Knockout mouse models implicate

IQGAP2 in glucose homeostasis. IQGAP2�/� mice had insulin levels

similar to those in wild-type mice, but lower fasting blood glucose

levels and enhanced insulin sensitivity during a glucose tolerance

test [95]. IQGAP2 deficiency led to loss of facilitated long-chain fatty

acid synthesis and protection from diet-induced hepatic steatosis.

However, conflicting findings were subsequently reported. Another

group observed higher blood glucose and insulin levels in IQGAP2-

null mice [96]. The IQGAP2�/� mice exhibited aberrant hepatic

regulation of glycogenolysis, gluconeogenesis, and lipid homeo-

stasis, leading the authors to conclude that IQGAP2 deficiency

predisposes to non-alcoholic fatty liver disease. These differences

require further investigation. One notable distinction between the

studies was the different genetic backgrounds of the mice, SV129J

versus C57BL/6J. While the molecular mechanism is unknown, the

collective data argue for the involvement of IQGAP2 in glucose

homeostasis.

IQGAP1 as a therapeutic target

Carcinogenesis

Despite advances in chemotherapy, treatment often kills healthy

cells, producing severe side effects. Approximately 30% of human

neoplasms have mutations in Ras and B-Raf that overactivate ERK

[97], promoting tumor proliferation and migration. Although thera-

peutics targeting B-Raf (e.g., sorafenib, vemurafenib, and dabrafenib)

have been developed, responses are highly variable and resistance is

common [98]. Therefore, additional molecularly targeted cancer

therapeutics are required. IQGAP1 is potentially a new target

(Table 2). IQGAP1 is overexpressed in human cancer (reviewed in

[99,100]). Overexpression of IQGAP1 is associated with enhanced

tumor proliferation, invasion, and angiogenesis [80]. By interacting

with several MAPK components, IQGAP1 mediates optimal ERK acti-

vation [4,5]. Initial evidence suggests that targeting the IQGAP1/

MAPK pathway associations is feasible. Treatment of mice with cell-

permeable peptides (corresponding to the WW domain of IQGAP1)

disrupts IQGAP1–ERK1/2 interactions and inhibits Ras-driven

tumorigenesis [101]. Importantly, the peptides attenuated prolifera-

tion of melanoma cells resistant to the B-Raf inhibitor vemurafenib.

Neoplastic transformation by Ras and other oncoproteins often

relies on the Rho GTPases, Cdc42, and Rac1 [102]. Cdc42 and Rac1

are not mutated in cancer, but deregulation of their function leads to

carcinogenesis [102]. IQGAP1 inhibits the intrinsic GTPase activity

of Cdc42 and Rac1 to stabilize the GTP-bound, active forms [23].

Overexpression of IQGAP1 increases the pool of active Cdc42 and

Rac1, while knockdown of endogenous IQGAP1 significantly

decreases the amount of active Cdc42 and Rac1 in mammalian cells

[23,80]. A dominant-negative IQGAP1 construct, which decreases the

amount of GTP-bound Cdc42 in cell lysates [23], reduces neoplastic

transformation of malignant MCF-7 human breast epithelial cells

[80]. These results suggest that blocking the formation of IQGAP1–

Cdc42 and IQGAP1–Rac1 complexes will decrease the amount of

active Cdc42 and Rac1 in carcinoma cells, reducing tumorigenesis.

Small-molecule inhibitors that disrupt the binding of IQGAP1 to

select interactors may be specific chemotherapeutic agents. Targeting

a protein–protein interaction (PPI) with a small molecule was thought

to be difficult due the large, flat surface areas involved in binding.

However, the dynamic PPI interface provides more opportunities for
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small molecule binding than traditional ‘druggable’ binding pockets

[103]. Several small-molecule PPI inhibitors are at various stages of

development, including phase III clinical trials [104]. As IQGAP1 is

an oncogene, but is not required for viability [105], it is an attractive

molecule for the development of targeted chemotherapy (Table 2).

Microbial infection

Antibiotics are essential for treating bacterial infection. Typically,

antibiotics target bacterial enzymes to inhibit processes such as cell-

wall synthesis and protein translation. However, bacteria frequently

develop resistance to antibiotics. Novel strategies to combat infec-

tion are needed.

Most microbial pathogens usurp signaling pathways of the host

cell, particularly cytoskeletal dynamics [106]. Bacterial pathogens

manipulate the cytoskeleton to invade the host cell, move within the

cell, form vacuoles, and avoid phagocytosis. The role of IQGAP1 in

regulation of the cytoskeleton led to investigation of its participation

in microbial infection (Table 2). The best-characterized examples

include Escherichia coli, which usurps IQGAP1 to promote formation

of actin pedestals [107,108] and disassembly of adherens junctions

[109], and Salmonella typhimurium, which injects proteins that

‘hijack’ IQGAP1 to modulate the cytoskeleton for invasion into host

cells [110–112]. More recently, Chlamydia pneumonia [113] and

Pseudomonas aeruginosa [114] were observed to regulate IQGAP1

expression to alter cell adhesion and migration. Potentially, inhibi-

tion of IQGAP1 interactions with bacterial proteins could control

bacterial infection. A benefit of targeting a host protein is the

reduced likelihood of mutation, which commonly occurs with antibi-

otics directed at bacterial proteins. Disrupting a host protein may

produce systemic side effects. The benefits of treatment versus

off-target effects are a fundamental question in the therapy of many

diseases. Nevertheless, in light of the increasing problem of antibi-

otic resistance and the lack of new antibiotics coming to market

[115], alternative strategies may yield promising results.

During their life cycle, viruses utilize host-cell proteins to medi-

ate entry, replication and budding of viral particles to establish and

maintain infection [116]. IQGAP1 interacts with several viral

proteins, including Ebola virus protein VP40 [117], classical swine

fever virus (CSFV) core protein [118], and Moloney murine leuke-

mia virus (M-MuLV) matrix protein [119] (Table 2). Mutations of

these viral proteins that prevent interaction with IQGAP1 or deple-

tion of IQGAP1 from infected cells interfered with viral life cycle.

IQGAP1 also forms a complex with host protein TSG101 [120],

which mediates release of the Marburg virus [121]. Depletion of

IQGAP1 reduced the release of Marburg virus particles. These find-

ings suggest that IQGAP1 plays a critical role in the life cycle of

several viruses and is a potential target for antiviral medication.

Conclusions

Accumulating evidence supports diverse roles for IQGAPs in verte-

brates. At the molecular level, IQGAPs scaffold multiprotein

complexes that regulate similar processes in different tissues. For

example, modulation of cytoskeletal dynamics by the association of

IQGAP1 with actin, small GTPases and microtubule binding

proteins is critical for controlling tissue integrity and morphology.

This role is evident in organizing renal slit diaphragms for

glomerular filtration [48,49], controlling neural cell morphology for

coordinating neural networks [51,67–69], regulating neural cell

migration [58,59,63], and maintaining endothelial integrity and

stability for barrier functions of blood vessels [77–79,81,82].

Another conserved role for IQGAPs across tissues is the scaffolding

of cell signaling pathways, such as MAPK. IQGAP1 enhances activa-

tion of MAPK, but different tissues may have different responses.

In the kidney, angiotensin II enhances IQGAP1-regulated MAPK

signaling to contribute to apoptosis [56], whereas pressure overload

of cardiomyocytes promotes IQGAP1-regulated activation of MAPK

that leads to cardiac hypertrophy and survival [72,122]. IQGAP1

association with proteins or receptors that have restricted tissue

expression may mediate specific cellular responses. For example,

the interaction of the muscle-specific protein melusin with IQGAP1

enhances MAPK signaling in cardiomyocytes in response to pressure

overload [76].

Although the functions of IQGAP1 have been evaluated in

several tissues, the unique, redundant, or complementary roles for

IQGAP1, IQGAP2, and IQGAP3 require further investigation.

Unique functions may be conferred by the distinct tissue expression

of IQGAP isoforms. IQGAP1 is ubiquitously expressed, IQGAP2 is

predominantly expressed in liver, while IQGAP3 expression is

mainly in the brain [62]. Variations in IQGAP isoform sequence

may also contribute to specialized IQGAP functions. The amino

acid sequences of IQGAP2 and IQGAP3 are 62 and 59%, respec-

tively, identical to IQGAP1. Therefore, it is possible that IQGAPs

are differentially regulated through specific post-translational modi-

fications at residues that are not conserved among all three

proteins. For example, quantitative phosphoproteomics studies

have identified phosphorylation of IQGAP1 at Ser-330 [123,124], a

residue that is not conserved in IQGAP2 or IQGAP3. Further, while

IQGAPs share some binding partners, including calmodulin

[18,19,125,126] and F-actin [19,20,62,127], differences have been

reported. Although both IQGAP1 and IQGAP3 associate with ERK

proteins, IQGAP3 binds only ERK1 [128], while IQGAP1 interacts

with both ERK1 [13] and ERK2 [12]. Additionally, IQGAP3

co-immunoprecipitates with anillin, whereas IQGAP1 and IQGAP2

do not [45]. Anillin recruits IQGAP3 for specific roles in cytokinesis,

yet IQGAP1 may play a complementary role in this process as loss

of either IQGAP1 or IQGAP3 leads to defects in cytokinesis.

Isoform-specific knockout studies, including tissue specific knock-

outs, are needed to elucidate the biological roles of the three IQGAP

proteins.

IQGAP1 is overexpressed in a variety of cancers [99,100].

Potentially, inhibitors of IQGAP1 functions could prevent tumor

invasion, proliferation, and migration. Preliminary studies target-

ing IQGAP1 are encouraging [101], but efficacy in humans and

Sidebar A: In need of answers

(i) Do IQGAP1, IQGAP2, and IQGAP3 have differential roles in specific

tissues? Do the three IQGAPs have unique, redundant, or comple-

mentary functions in physiology?

(ii) What regulates the interactions of IQGAPs with specific binding

partners? Are these complexes tissue specific and/or IQGAP

isoform specific? How do IQGAP protein complexes influence

cancer, microbial infection, and other diseases?
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potential side effects need to be established. In the 20 years since

their discovery, the identified roles of IQGAP proteins have

expanded from cytoskeletal regulators to modulators of diverse

functions in several organs. We look forward to future studies

that expand upon the distinct roles of IQGAPs in physiology and

disease.
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